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ABSTRACT

In recent years, large language models (LLMs) have significantly advanced the
field of natural language processing (NLP). By fine-tuning LLMs with data from
specific scenarios, these foundation models can better adapt to various down-
stream tasks. However, the fine-tuning process poses privacy leakage risks, par-
ticularly in centralized data processing scenarios. To address user privacy con-
cerns, federated learning (FL) has been introduced to mitigate the risks associated
with centralized data collection from multiple sources. Nevertheless, the privacy
of LLMs themselves is equally critical, as potential malicious attacks challenge
their security, an issue that has received limited attention in current research. Con-
sequently, establishing a trusted multi-party model fine-tuning environment is es-
sential. Additionally, the local deployment of large LLMs incurs significant stor-
age costs and high computational demands. To address these challenges, we pro-
pose for the first time a federated discrete and transferable prompt tuning, namely
FedDTPT, for black-box large language models. In the client optimization phase,
we adopt a token-level discrete prompt optimization method that leverages a feed-
back loop based on prediction accuracy to drive gradient-free prompt optimization
through the MLM API. For server optimization, we employ an attention mecha-
nism based on semantic similarity to filter all local prompt tokens, along with an
embedding distance elbow detection and DBSCAN clustering strategy to enhance
the filtering process. Experimental results demonstrate that, compared to state-of-
the-art methods, our approach achieves higher accuracy, reduced communication
overhead, and robustness to non-iid data in a black-box setting. Moreover, the
optimized prompts are transferable.

1 INTRODUCATION

Large language models (LLMs) have demonstrated significant success across numerous natural lan-
guage processing (NLP) tasks (Brown et al., 2020; Devlin et al., 2019; Radford et al., 2019). Typ-
ically, these models are trained on a vast text corpus and then applied to various downstream tasks
through fine-tuning or prompt tuning. However, task-specific data is often necessary for tuning pre-
trained LLMs, and this process typically relies on user-labeled data. In practice, securely leveraging
these labeled data presents challenges. Data must be collected and stored for training purposes, but
sharing and exchanging sensitive information can pose serious security risks and raise privacy con-
cerns. To mitigate the risk of potential data leakage, federated learning (FL) is proposed. FL enables
multiple devices to collaboratively fine-tune pre-trained LLMs on decentralized data while main-
taining data privacy. Recent work, such as the bilevel optimization method (Li et al., 2024), has
demonstrated efficient strategies to reduce communication overhead and improve optimization per-
formance in FL scenarios. Additionally, federated object detection frameworks (Kim et al., 2024)
and federated conditional stochastic optimization (Wu et al., 2023) have provided further insights
into addressing communication and computational challenges in decentralized learning. Privacy and
security remain critical in FL settings, and proactive defenses against model poisoning attacks, such
as RECESS (Yan et al., 2023), help safeguard model integrity while fine-tuning LLMs in federated
environments. Moreover, techniques like personalized federated learning (Yan et al., 2024) have in-
troduced new ways to enhance the adaptability of global models to specific client data, addressing
the heterogeneity often encountered in FL systems.
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When applying federated learning (FL) for tuning pre-trained LLMs, existing approaches can be cat-
egorized into federated fine-tuning and federated prompt tuning. However, both methods have their
limitations. For federated fine-tuning, the primary challenges include: (1) clients’ limited access to
the parameters of pre-trained language models (PLMs), (2) significant computational and storage
demands on local clients, and (3) high communication overhead within the FL system. These fac-
tors make federated fine-tuning impractical in real-world scenarios. In practice, devices primarily
interact with LLMs by invoking LLM APIs, which do not grant clients access to model parameters,
thus preventing local training. Moreover, even if access were available, devices with limited com-
putational resources would struggle to perform local LLM fine-tuning (Zhou et al., 2024). Several
approaches have been proposed to address the challenges posed by client heterogeneity and com-
munication costs, such as leveraging model architectures designed to improve performance in FL
systems despite data heterogeneity (Pieri et al., 2023), as well as bilevel optimization methods that
offer communication-efficient solutions for FL systems (Yang et al., 2024b). Additionally, methods
like dynamic personalized federated learning (Panchal et al., 2022), model reassembly techniques
(Wang et al., 2024), and federated multi-objective optimization frameworks (Yang et al., 2024a) of-
fer solutions for efficient model adaptation in decentralized environments. These innovations, which
target the optimization of client-specific models and data distribution challenges, may also inform
strategies for fine-tuning models in decentralized contexts.

An alternative approach, federated prompt tuning, as proposed by FedBPT (Sun et al., 2023), fo-
cuses on optimizing continuous prompts injected into text while keeping the PLM parameters frozen.
Although this method reduces computational costs for clients, continuous prompts still face several
limitations: (1) they are model-specific and cannot be directly applied to prediction APIs, which only
accept discrete inputs, (2) continuous prompts lack interpretability, and (3) they lack transferability,
meaning they cannot be seamlessly applied to other LLMs. To improve communication efficiency,
methods like spectral co-distillation (Chen et al., 2023) and one-pass distribution sketches (Liu et al.,
2024) have been explored, targeting efficient aggregation and reduced overhead. Furthermore, the
issue of communication efficiency and local model performance trade-offs has been explored in
works (Li & Huang, 2024), where the tension between local client computations and global model
performance is thoroughly examined, providing further insight into optimizing federated learning
strategies.

To address the aforementioned challenges, we propose FedDTPT, On the client side, we employ
a token-level discrete prompt tuning strategy. Given the absence of a probability distribution in the
inference results, we implement gradient-free prompts optimization through a feedback loop based
on prediction accuracy. On the server side, we utilize an attention mechanism grounded in semantic
similarity to filter prompt tokens from all clients. This mechanism identifies the most representative
discrete tokens. Additionally, we enhance the filtering effectiveness by employing an inflection point
detection in embedding distances and a Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering strategy. We conducted experiments on multiple datasets using SOTA PLMs.
The results indicate that, in comparison to the current state-of-the-art techniques, our methodology
attains superior accuracy, diminished communication expenses, and resilience to non-iid data within
a black-box framework. Furthermore, the refined prompts exhibit transferability. Our contributions
include:

• Problem Novelty: In this work, we introduce a new problem setting: discrete prompt learn-
ing in black-box federated learning. This setting enables the learning of transferable and
interpretable prompts while safeguarding both the privacy of the server’s model parameters
and the client’s data.

• Approach Novelty: In this work, we propose FedDTPT, a novel discrete prompt learning
framework in black-box federated learning scenarios. FedDTPT utilizes the novel token-
level optimization strategy to update the client prompt and a token selection method based
on semantic similarity to aggregate the discrete prompt.

• Experimental effect: Our method achieves high accuracy and low communication over-
head, and its optimized prompts exhibit transferability.
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2 BACKGROUND & RELATED WORK

LLMs as API Service. Due to the significant computational demands of large language models
(LLMs), an increasing number of LLMs are being deployed on servers as API services. From the
model supplier’s perspective, this approach allows them to retain proprietary control over their mod-
els, avoiding open sourcing due to commercial considerations and the risk of misuse. From the
user’s perspective, even when pre-trained LLMs are available, running them locally is often pro-
hibitively expensive or even infeasible due to hardware constraints and the need for continuous
updates (Bommasani et al., 2022). Given these advantages, deploying LLMs as API services has
become a mainstream approach and is now the dominant trend.

Federated Learning. Federated Learning (FL) is a decentralized machine learning approach where
multiple clients collaboratively train a model while keeping their data local, ensuring privacy
(Konečnỳ, 2016). For model suppliers, FL enables large-scale training without accessing user data,
reducing liability and complying with privacy regulations like GDPR 1. For users, it allows participa-
tion in model improvements while maintaining control over their data. Although FL offers privacy
benefits, challenges like data heterogeneity, communication costs, and system differences remain
key research areas. FL is increasingly applied to LLMs, especially in privacy-sensitive applications,
making it a critical tool in privacy-preserving AI.

Prompt Tuning. Prompt tuning has gained considerable attention in the field of large language
models (LLMs). Its goal is to search for an optimal prompt using minimal examples to guide an
LLM towards generating the desired output for a specific downstream task. In NLP applications,
there are two main types of prompt tuning methods: (1) continuous prompt tuning and (2) discrete
prompt tuning (Liu et al., 2023). In continuous prompt tuning, a sequence of continuous vectors
is appended to the input text embedding. Unlike discrete prompt, which operates at the vocabulary
level, continuous prompt tuning (Li & Liang, 2021) optimizes the prompt directly in the embedding
space. In contrast, discrete prompt tuning involves a sequence of discrete tokens, which remain
interpretable to humans.

3 METHOD

3.1 PROBLEM FORMULATION

Prompt tuning is a widely adopted Parameter-Efficient Fine-Tuning (PEFT) method for large lan-
guage models (LLMs). The prompts are optimized to adapt the model to specific downstream tasks.
Discrete prompt tuning refers to the independent optimization of discrete tokens pn ∈ P within
the prompt set P , where n denotes the number of tokens in P . This approach is more interpretable
than continuous prompt tuning strategies, such as soft prompt tuning. In a federated learning con-
text, federated discrete prompt tuning involves each client k, where k ∈ K, transmitting their local
prompts Pk = {pn

k}Nn=1 to a central server for a knowledge exchange based on discrete prompts.
The aggregated global prompt PF = {pn

F }Nn=1is then distributed back to all clients, where it is fur-
ther fine-tuned on Dk = {(xk,yk)}Kk=1 be a private local dataset in the k-th client for personalized
adaptation. The objective in this federated scenario can be expressed as:

P ∗
k = argmin

PF

K∑
k=1

wkLk (f (PF ;Dk)) , (1)

where n is the number of tokens in P , and K represents the number of clients involved. Prompt
tuning based on black-box LLMs refers to the process where the large model’s parameters are en-
tirely fixed, and the prompts are treated as learnable parameters. Since the gradients of the LLM
are inaccessible, gradient-free zeroth-order optimization methods are commonly used instead of tra-
ditional backpropagation techniques. Compared to standard prompt tuning, pure black-box prompt
tuning is a more challenging optimization task. Since the inference result of the LLM prediction
API, represented as f(P;X), is purely textual and does not provide a probability distribution, Eq.
(2), which relies on one-hot labels, is no longer applicable. Consequently, prompt optimization is
performed solely at the token level, and we accordingly use a more direct measure of accuracy as

1https://gdpr-info.eu/
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Figure 1: The structure of FedDTPT. The client uses prediction results as feedback to drive the
MLM API for discrete prompt optimization. The locally optimized prompts are then uploaded to the
server, where tokens are mapped to a high-dimensional latent space. Similarity calculations on these
high-dimensional embeddings yield weight values W , and a clustering strategy is applied to select
high-weight tokens. These tokens are then combined to form a global prompt, which is subsequently
distributed back to the clients.

the optimization objective:

P ∗
k = argmax

PF

K∑
k=1

wkAk (f (PF ;Dk)) , (2)

where Ak is the accuracy in client k.

3.2 DESIGN OVERVIEW

The overview of FedDTPT as shown in Figure 1. In the client optimization phase of FedDTPT,
we adopt a token-level discrete prompt tuning strategy that establishes a new feedback mecha-
nism for inference results to enable gradient-free prompt optimization. During the federated learning
stage, we employ a semantic similarity-based attention mechanism to sample prompt tokens from
all clients, selecting the most representative discrete tokens to construct optimized prompts. This
approach effectively facilitates knowledge transfer across clients while preserving privacy. At the
beginning of the optimization process, a public dataset Dg , containing representative samples, is
deployed to each client to assist in computing the prediction accuracy during local prompt tuning.
In each global communication round, the server first broadcasts a global prompt to all clients. In
the initial round, this prompt is based on the global task and can either be carefully designed or
straightforward. Subsequently, each client k uses the MLM API to fine-tune the global prompt,
recording the tuning information. The tuned prompt is then input into the LLM prediction API to
obtain inference results and calculate accuracy. The accuracy and tuning information are aggregated
as optimization feedback and fed back to the MLM API for further fine-tuning. Upon completion
of local optimization, all clients upload their local prompts to the server for knowledge aggregation.
The server maps the discrete tokens of all prompts to a high-dimensional latent space and employs a
clustering strategy based on the secondary-range elbow judgement strategy and DBSCAN approach
to cluster the embeddings. Finally, a latent space similarity-based attention mechanism is applied to
sample the embeddings and generate a global prompt.

3.3 CLIENT PROMPT INSTRUCTION TUNING

Unlike existing black-box prompt tuning tasks, in a purely black-box setting, large language mod-
els only output prediction text without probability distributions. The absence of loss information
necessitates that prompt optimization be performed solely at the token level, posing significant chal-
lenges. In the client-side optimization phase, we set accuracy improvement as the primary objec-
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tive and leverage the contextual understanding capabilities of masked language models (MLMs) to
achieve prompt tuning. Furthermore, we establish an inference feedback loop, which, compared to
random prompt optimization using MLMs, creates a closed loop between forward inference and
result feedback. This approach allows the MLM to make informed predictions based on comprehen-
sive historical information.

Specifically, the client first receives the global prompt dispatched by the server, uses the MLM for
tuning, and stores the modification details. The optimized prompt is then combined with input xk

and fed into the LLM Inference API for prediction. By comparing the inference results with the
labels yk, we calculate the accuracy on a batch basis. Finally, in subsequent iterations, the MLM
receives both the accumulated tuning modifications and accuracy results along with the prompt to
be optimized. This iterative process allows the MLM to perform more informed and effective tuning.
The optimization process is detailed in Algorithm 1.

Algorithm 1 Token-level Prompt Optimization with Inference Feedback for Client k

Input: Global prompt Pglobal, client data Dk = {(xk,yk)}Kk=1
Output: Optimized prompt P ∗

k for accuracy Ak

1: Initialize Pk = {pn
k}Nn=1← Pglobal

2: for iteration = 1 to max iterations do
3: Optimization Objective:
4: P ∗

k = argmaxPk
Ak (f (Pk;Dk))

5: MLM Tuning:
6: P ∗

k ← MLM API(Pk)
7: Inference and Accuracy Calculation:
8: predictions← LLM Inference API(P ∗

k , xk)
9: accuracyk ← calculate accuracy(predictions, yk)

10: Feedback fusion:
11: feedback info← (modifications, accuracyk)
12: Next iteration:
13: P ∗

k ← MLM API(Pk, feedback info)
14: end for
15: return P ∗

k as the optimized prompt for client k

Additionally, to address potential data imbalance during accuracy calculation in each iteration, we
introduce a small, balanced public dataset to assist in accuracy computation. Specifically, during the
accuracy calculation for each batch of client k’s data, the public dataset is incorporated as auxiliary
data. This approach effectively mitigates the impact of data imbalance and helps to counteract non-
iid data distribution issues.

3.4 SERVER PROMPT INSTRUCTION AGGREGATION

During client-side optimization, each client sends its locally optimized prompt to the server for
knowledge exchange. Since clients can only access token-level information, traditional global ag-
gregation strategies, such as simple weighted averaging, are difficult to implement. To address this,
we propose an attention mechanism based on semantic similarity, combined with high-dimensional
clustering methods, to effectively select and merge important tokens, thereby generating a globally
optimized prompt. The detailed methodology is outlined as follows:

Mapping Tokens to a High-Dimensional Latent Space. Each token from the prompts generated
by the clients is mapped to a high-dimensional latent space. Given the need for robust contextual
understanding, leveraging the embedding layers of pre-trained language models (MLMs) like BERT
or RoBERTa is well-suited for this purpose, as they can project semantically similar tokens to prox-
imate positions in the latent space. Let Pk = {p1

k,p
2
k, . . . ,p

N
k } represent the sequence of discrete

tokens generated by the k-th client, where k ∈ {1, 2, . . . ,K} and N denotes the number of to-
kens in each prompt. Each token pn

k is mapped to a high-dimensional embedding through a func-
tion z, resulting in an embedding vector En

k . The mapping function z can be formally expressed
as z : Pk → RN×d,Pk 7→ Ek = {E1

k, E
2
k, . . . , E

N
k }, where En

k = z(pn
k ) ∈ Rd is the high-

dimensional embedding vector corresponding to the token pn
k , d is the dimensionality of the latent

5
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space, and Ek is the matrix of embeddings for all tokens in the k-th client’s prompt. To incorpo-
rate context and semantics into the embeddings, the mapping function z may depend on additional
parameters, such as contextual weights θ from a pre-trained language model.

En
k = z(pn

k ; θ) = MLMθ(p
n
k ) (3)

where, θ represents the parameters of the pre-trained language model (MLM), such as BERT or
RoBERTa, MLMθ denotes the model’s embedding layer that captures the context and semantic
similarity of each token. Therefore, the overall mapping process for all tokens from all clients can
be expressed as a set:

E =

K⋃
k=1

Ek =

K⋃
k=1

{E1
k, E

2
k, . . . , E

N
k } =

K⋃
k=1

{z(p1
k; θ), z(p

2
k; θ), . . . , z(p

N
k ; θ)} (4)

where E represents the set of all high-dimensional embeddings for tokens across all clients.

Attention-Based Weight Calculation via Semantic Similarity. To compute the semantic similarity
between tokens, we use the cosine similarity between their high-dimensional embeddings. For a
token pn

k from the k-th client and a token pn′

k′ from another prompt (client k′), the cosine similarity
is given by:

sim(En
k , E

n′

k′ ) =
En

k · En′

k′

∥En
k ∥∥En′

k′ ∥
(5)

where:En
k · En′

k′ denotes the dot product of the embeddings. ∥En
k ∥ and ∥En′

k′ ∥ are the Euclidean
norms (magnitudes) of the embeddings.

The attention weight wn
k for a token pn

k is computed by aggregating its cosine similarities with all
tokens in other clients’ prompts. This can be expressed as:

wn
k =

K∑
k′=1
k′ ̸=k

N∑
n′=1

sim(En
k , E

n′

k′ ) (6)

where k′ iterates over all clients except the k-th client, n′ iterates over all tokens in the prompt of
client k′, and sim(En

k , E
n′

k′ ) is the cosine similarity between the embedding En
k and each embed-

ding En′

k′ . To normalize the attention weights across all tokens in a prompt, we apply a softmax
function to obtain a normalized weight αn

k =
exp(wn

k )∑N
n=1 exp(wn

k )
, where αn

k is the normalized atten-
tion weight of the token pn

k . The final attention vector for all tokens in the k-th client’s prompt is
αk = {α1

k, α
2
k, . . . , α

N
k }, where αk represents the normalized attention weights for all tokens in the

k-th client’s prompt, indicating the relative importance of each token based on its semantic similarity
to tokens in other prompts.

Semantic Aggregation Using High-Dimensional Clustering. After computing attention weights
for all tokens, we employ high-dimensional clustering (e.g., k-means) to further filter semantically
similar tokens. The clustering process proceeds as follows: The embeddings of all tokens serve as
shown in Algorithm 2. To further enhance the flexibility of token selection, we employ a strat-
egy based on embedding distance elbow detection and DBSCAN clustering. We calculate the dis-
tances between token embeddings and sort these distances, identifying significant changes as “el-
bow points” or inflection points. These points are used to determine the ϵ parameter for DBSCAN
clustering. Subsequently, DBSCAN forms clusters based on the density and connectivity of the em-
beddings. This approach allows the number of clusters and the number of tokens within each cluster
to be determined by the data itself, enabling adaptive and flexible grouping. Finally, the represen-
tative tokens from each cluster are reordered according to their original positions in the respective
prompts, forming a consolidated global prompt. This step ensures that the global prompt remains
semantically coherent and retains the most important information from each client.

6
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Algorithm 2 Semantic Aggregation Using High-Dimensional Clustering

Input:
1: embeddings: A list of high-dimensional embeddings for all tokens
2: attention weights: A list of attention weights corresponding to each token embedding
3: num clusters: The number of clusters for k-means

Output:
4: cluster representatives: A dictionary containing the representative token for each cluster
5: Step 1: Perform High-Dimensional Clustering
6: clusters← KMeans(n clusters = num clusters).fit predict(embeddings)
7: Initialize cluster representatives as an empty dictionary
8: Step 2: Find the Representative Token for Each Cluster
9: for cluster id in unique(clusters) do

10: cluster indices← [i for i, c in enumerate(clusters) if c = cluster id]
11: cluster weights← [attention weights[i] for i in cluster indices]
12: max weight index← cluster indices[argmax(cluster weights)]
13: cluster representatives[cluster id]← embeddings[max weight index]
14: end for
15: Return cluster representatives: A dictionary where each key is a cluster ID, and each value is

the embedding of the representative token for that cluster

4 EVALUATION

4.1 EVALUATION SETUP

Pre-trained LLMs. In our experiments, we selected two models as backbone models: DeepSeek-
V2-Lite (15B parameters) (DeepSeek-AI, 2024), and Llama-3.1-8B-Instruct (AI@Meta, 2024).

Dataset. We conducted experiments on seven datasets from the GLUE benchmark (Wang et al.,
2019): SST-2, RTE, QNLI, MRPC, QQP, WNLI, and CoLA. Additionally, we adopted the k-shot
approach for prompt training, which will be explained in detail in the following sections. Due to the
consistent number of classes across datasets, we used accuracy (ACC) instead of the Matthews Cor-
relation Coefficient (MCC) to evaluate the prediction performance for the CoLA dataset. Similarly,
for QQP and MRPC, ACC was used in place of the F1 score as the evaluation metric.

Comparison Baselines. We evaluated our pure black-box prompt-tuning federated learning method
against seven state-of-the-art (SOTA) approaches. Based on the amount of information obtained
about the backbone model, we categorized these methods into white-box and black-box approaches.
We define white-box LLM methods as those that have access to the full parameters of the backbone
model and can obtain gradient information through backpropagation.

The White-Box comparison methods include the following: FedPrompt (Zhao et al., 2023): A
SOTA method that offers communication efficiency and privacy protection by employing a prompt
exchange strategy to facilitate knowledge transfer between clients in federated learning. Open-
FedLLM (Ye et al., 2024): An open-source research library for training large language models
(LLMs) in a federated learning setting. OpenFedLLM allows for various configurations through
custom FL methods and LLM replacements. In this study, we used the widely adopted FedAvg al-
gorithm to implement federated learning for the backbone model. Manual prompt: It refers to a
manually designed prompting approach based on commonly used templates for zero-shot inference.

The Black-Box LLM methods do not have access to the model’s parameters or gradients; they can
only retrieve prediction outputs and the full probability distribution generated by the model during
forward inference. These methods include the following: FedBiOT (Wu et al., 2024): This method
compresses the original LLM into a lightweight model with similar performance, which is then dis-
tributed to each client. FedAvg-BBT (McMahan et al., 2017; Sun et al., 2022): A hybrid method that
combines the widely used federated learning approach, FedAvg, with a black-box discrete prompt
tuning method called BBT.

Implementation & Hyperparameters . The federated learning (FL) setup of our experiments fol-
lows the frameworks of FedPrompt and FedBPT. The FL environment consists of 10 clients, with a

7
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100% client participation rate in each training round. Additionally, we adopted the few-shot learn-
ing paradigm commonly used in large-scale model research. Following the BDPL approach, for each
dataset, we randomly sampled k instances from each class to form a new training set and sampled a
different set of k instances to construct a new validation set. The new test set was composed of the
original validation set. Detailed hyperparameter settings can be found in Appendix A.

4.2 EFFECTIVENESS RESULTS

Table 1: Effectiveness Results

Model Methods SST-2 RTE QNLI MRPC QQP WNLI CoLA Avg

Deepseek

White-Box

FedPrompt 87.81 78.28 85.94 89.80 87.24 83.13 78.49 84.38
OpenFedLLM 81.32 71.83 77.41 79.81 79.68 74.29 71.52 76.55
FedPepTAO 85.64 74.02 79.63 82.77 82.96 78.41 73.81 79.61

Black-Box

Manual 90.31 91.42 86.95 92.68 82.26 95.43 82.63 88.81
FedAvg-BBT 53.12 50.38 56.25 59.38 53.75 53.12 50.75 53.82
Our 97.43 94.86 94.69 97.88 95.73 94.72 91.85 95.33

Llama-3.1

White-Box

FedPrompt 91.63 82.41 89.91 95.18 94.24 84.71 81.52 88.51
OpenFedLLM 77.08 76.93 83.72 86.49 81.85 77.63 76.94 80.09
FedPepTAO 86.30 75.81 87.05 81.29 86.49 75.82 77.49 81.46

Black-Box

Manual 87.42 93.79 85.69 92.94 86.95 97.60 81.46 89.41
FedAvg-BBT 71.88 46.88 51.32 56.25 59.38 56.25 62.50 57.78
Our 95.58 95.03 93.69 95.52 92.59 95.90 87.52 93.69

We first measure the accuracy of the tuned LLMs on each downstream tasks. The accuracy of
FedDTPT and each comparsion baseline methods are listed on Table 1. From the results, we could
observe that our proposed black-box tuning significantly outperforms the other basaeline methods
in almost all settings. For Deepseek, in the most challenging Black-Box scenario, our method still
performs exceptionally well, achieving 95.73 accuracy, whereas competing methods like Manual
Prompting score lower (82.63). For Llama-3.1, the pattern of improvement is consistent. In Black-
Box results, our method scores 95.52 and 95.9, respectively, far surpassing other methods like Man-
ual Prompting and FedAvg-BBT, with the latter scoring as low as 46.88 in the Black-Box setting.
This indicates that our method excels even in scenarios with limited or no model access, making it
highly adaptable and robust.

4.3 TRANSFERABILITY RESULTS

Table 2: The Transferability Results

Setting Methods SST-2 RTE QNLI MRPC QQP WNLI CoLA

D to L
Manual 90.31 91.42 86.95 92.68 82.26 95.43 82.63
Ours 96.28 95.43 92.35 93.84 92.35 94.29 86.4

L to D
Manual 87.42 93.79 85.69 92.94 86.95 97.60 81.46
Ours 96.73 94.32 95.18 96.43 94.04 95.2 90.77

We now explore the transferability of our trained discrete prompt. It is important to note that con-
tinuous baseline methods cannot be applied to other large language models (LLMs) besides the one
on which the prompt was trained. As a result, these continuous baseline methods inherently lack
transferability. In contrast, we compare the transferability of FedDTPT to manual prompt baselines.
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The results, shown in Table 2, demonstrate that our learned discrete prompt achieves higher ac-
curacy across almost all benchmarks. This suggests that the prompt from FedDTPT can be easily
transferred to other LLMs for various downstream tasks, significantly reducing the prompt learning
process needed to adapt to different LLMs—a common necessity as LLMs are frequently updated.
The transferability highlights the advantage of discrete prompt optimization, where the learned dis-
crete prompt can be readily deployed across multiple LLMs.

4.4 OVERHEAD RESULTS

Table 3: Number of trainable parameters when adopting Llama 3.1 as the backbone model

Method FedPrompt OpenFedLLM FedPepTAO FedAvg-BBT Our

Trainable Params. 614k 81k-80B 1796k 500 150

The number of trainable parameters when using Llama3.1 as the PLM is presented in Table 3. From
the results, we observe that FedDTPT requires the fewest trainable parameters among all methods.
This is because, unlike continuous prompt learning methods, FedDTPT optimizes a discrete prompt,
which theoretically requires N× fewer parameters, where N is the embedding size of the LLM. The
results in Table 3 further highlight the advantage of discrete prompt tuning: it requires significantly
fewer tunable parameters, making it more communication-efficient.

4.5 ABLATION STUDIES

Client-Level. To evaluate the effectiveness of the improvements made during client-level optimiza-
tion, including the integration of prediction feedback loops and the use of MLM-API for prompt op-
timization, we conducted separate tests, as shown in Table 4. Here, Client-1 represents the approach
without the feedback loop and uses random token replacement for optimization, while Client-2 only
omits the feedback loop. The results in Table 4 demonstrate that the proposed client-level optimiza-
tion significantly outperforms both Client-1 and Client-2 across all tasks. Specifically, our approach
improves accuracy by a notable margin: for SST-2, it shows an increase of 14.6% over Client-1 and
5.6% over Client-2; for RTE, it improves by 7.1% and 4.1%, respectively. This clearly indicates the
effectiveness of the feedback loop and MLM-API optimizations. Additionally, the results show that
removing the feedback loop (Client-2) results in a consistent drop in performance across all tasks,
confirming that integrating feedback is critical for enhancing model accuracy.

Table 4: The effectiveness of our propsoed client level optimization

Method SST-2 RTE QNLI MRPC QQP WNLI CoLA
Client-1 83.36 87.92 84.18 86.35 81.59 88.48 79.95
Client-2 90.56 91.29 87.95 89.44 87.62 92.07 83.2

Our 95.58 95.03 93.69 95.52 92.59 95.9 87.52

Sever-Level. We evaluate the improvements made during the server optimization phase, including
attention-based token selection and token clustering strategies, with the results presented in Table 5.
Server-1 represents the method where high-dimensional embeddings are aggregated using a fedavg
approach. Server-2 indicates the method without the clustering strategy, while Server-3 employs a
fixed number of clusters. The results in Table 5 show that the proposed server-level optimization,
which includes attention-based token selection and token clustering strategies, significantly out-
performs other methods across all tasks. Compared to the baseline method Server-1, our approach
demonstrates considerable improvements, such as an increase of 65.51% for SST-2 and 36.97% for
MRPC. In comparison to Server-2, our approach shows an increase of 1.9% in SST-2 and 1.15%
in WNLI, highlighting the benefits of the clustering strategy. When compared to Server-3, our ap-
proach improves accuracy by 2.31% in SST-2 and 9.1% in CoLA, confirming that a flexible, adaptive
clustering strategy enhances performance across diverse tasks.
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Table 5: The effectiveness of our proposed server level optimization

Method SST-2 RTE QNLI MRPC QQP WNLI CoLA
Sever-1 57.75 62.21 56.48 59.36 51.89 47.33 56.52
Sever-2 94.68 93.97 92.81 93.6 91.77 94.25 95.65
Sever-3 93.27 94.19 91.22 94.08 90.92 94.38 86.16

Our 95.58 95.03 93.69 95.52 92.59 95.9 87.52

Figure 2: The accuracy of FedDTPT under different seed

Seed Impact.. To demonstrate the robustness of our optimization method against different initial
prompts, we design three types of prompts—concise, moderate, and detailed formats—across each
dataset and evaluate the optimization performance. The results are shown in Figure 2, with all prompt
examples provided in Appendix B. In Figure 2, ”Seed-n” represents the evaluation results using man-
ual prompts directly, while ”Ours+Seed-n” indicates results after applying our optimization method.
For prompts of moderate and detailed formats, our approach achieves outstanding performance.
Moreover, for concise prompts, although there is a larger drop in accuracy compared to other types,
our method still significantly demonstrates strong optimization effects.

Results on Non-iid Data. To demonstrate our method’s robustness against non-iid data among
clients in a federated learning scenario, we conducted experiments on three datasets of varying
scales: QQP, SST-2, and CoLA, as shown in Table 6. The data was simulated with Dirichlet-0.1 to
model non-iid distribution. Table 6 shows that all large-model-based algorithms exhibit resistance
to non-iid data, consistent with empirical observations. Furthermore, our method maintains consis-
tently strong performance, demonstrating its superior adaptability in non-iid federated scenarios.

Table 6: Performacne of FedDTPT on Non-iid Data

Benchmark FedPrompt OpenFedLL FedPepTAO Manual FedAvg-BBT Ours
SST-2 89.27 76.18 83.21 88.39 70.73 94.25
QQP 93.61 80.79 82.92 86.4 53.62 91.03
CoLA 79.34 76.11 74.58 81.73 61.72 85.79

5 CONCLUSION

We propose FedDTPT, a FL framework that enables clients to tune discrete and transferable prompts
with LLMs in black-box settings. Our approach eliminates the need for clients to access model pa-
rameters and requires only forward propagation for local training, reducing computational and stor-
age demands for both devices and LLM service providers. Additionally, our discrete prompts are
interpretable to developers and can be transferred to other LLMs without any modifications. Eval-
uations on several datasets using state-of-the-art PLMs show that FedDTPT outperforms existing
white-box and black-box methods with significantly lower communication and memory overhead.
Furthermore, FedDTPT demonstrates excellent transferability.
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