
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDDTPT: FEDERATED DISCRETE AND TRANSFER-
ABLE PROMPT TUNING FOR BLACK-BOX LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, large language models (LLMs) have significantly advanced the
field of natural language processing (NLP). By fine-tuning LLMs with data from
specific scenarios, these foundation models can better adapt to various down-
stream tasks. However, the fine-tuning process poses privacy leakage risks, par-
ticularly in centralized data processing scenarios. To address user privacy con-
cerns, federated learning (FL) has been introduced to mitigate the risks associated
with centralized data collection from multiple sources. Nevertheless, the privacy
of LLMs themselves is equally critical, as potential malicious attacks challenge
their security, an issue that has received limited attention in current research. Con-
sequently, establishing a trusted multi-party model fine-tuning environment is es-
sential. Additionally, the local deployment of large LLMs incurs significant stor-
age costs and high computational demands. To address these challenges, we pro-
pose for the first time a federated discrete and transferable prompt tuning, namely
FedDTPT, for black-box large language models. In the client optimization phase,
we adopt a token-level discrete prompt optimization method that leverages a feed-
back loop based on prediction accuracy to drive gradient-free prompt optimization
through the MLM API. For server optimization, we employ an attention mecha-
nism based on semantic similarity to filter all local prompt tokens, along with an
embedding distance elbow detection and DBSCAN clustering strategy to enhance
the filtering process. Experimental results demonstrate that, compared to state-of-
the-art methods, our approach achieves higher accuracy, reduced communication
overhead, and robustness to non-iid data in a black-box setting. Moreover, the
optimized prompts are transferable.

1 INTRODUCATION

Large language models (LLMs) have demonstrated significant success across numerous natural lan-
guage processing (NLP) tasks (Brown et al., 2020; Devlin et al., 2019; Radford et al., 2019). Typ-
ically, these models are trained on a vast text corpus and then applied to various downstream tasks
through fine-tuning or prompt tuning. However, task-specific data is often necessary for tuning pre-
trained LLMs, and this process typically relies on user-labeled data. In practice, securely leveraging
these labeled data presents challenges. Data must be collected and stored for training purposes, but
sharing and exchanging sensitive information can pose serious security risks and raise privacy con-
cerns. To mitigate the risk of potential data leakage, federated learning (FL) is proposed. FL enables
multiple devices to collaboratively fine-tune pre-trained LLMs on decentralized data while main-
taining data privacy. Recent work, such as the bilevel optimization method (Li et al., 2024), has
demonstrated efficient strategies to reduce communication overhead and improve optimization per-
formance in FL scenarios. Additionally, federated object detection frameworks (Kim et al., 2024)
and federated conditional stochastic optimization (Wu et al., 2023) have provided further insights
into addressing communication and computational challenges in decentralized learning. Privacy and
security remain critical in FL settings, and proactive defenses against model poisoning attacks, such
as RECESS (Yan et al., 2023), help safeguard model integrity while fine-tuning LLMs in federated
environments. Moreover, techniques like personalized federated learning (Yan et al., 2024) have in-
troduced new ways to enhance the adaptability of global models to specific client data, addressing
the heterogeneity often encountered in FL systems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

When applying federated learning (FL) for tuning pre-trained LLMs, existing approaches can be cat-
egorized into federated fine-tuning and federated prompt tuning. However, both methods have their
limitations. For federated fine-tuning, the primary challenges include: (1) clients’ limited access to
the parameters of pre-trained language models (PLMs), (2) significant computational and storage
demands on local clients, and (3) high communication overhead within the FL system. These fac-
tors make federated fine-tuning impractical in real-world scenarios. In practice, devices primarily
interact with LLMs by invoking LLM APIs, which do not grant clients access to model parameters,
thus preventing local training. Moreover, even if access were available, devices with limited com-
putational resources would struggle to perform local LLM fine-tuning (Zhou et al., 2024). Several
approaches have been proposed to address the challenges posed by client heterogeneity and com-
munication costs, such as leveraging model architectures designed to improve performance in FL
systems despite data heterogeneity (Pieri et al., 2023), as well as bilevel optimization methods that
offer communication-efficient solutions for FL systems (Yang et al., 2024b). Additionally, methods
like dynamic personalized federated learning (Panchal et al., 2022), model reassembly techniques
(Wang et al., 2024), and federated multi-objective optimization frameworks (Yang et al., 2024a) of-
fer solutions for efficient model adaptation in decentralized environments. These innovations, which
target the optimization of client-specific models and data distribution challenges, may also inform
strategies for fine-tuning models in decentralized contexts.

An alternative approach, federated prompt tuning, as proposed by FedBPT (Sun et al., 2023), fo-
cuses on optimizing continuous prompts injected into text while keeping the PLM parameters frozen.
Although this method reduces computational costs for clients, continuous prompts still face several
limitations: (1) they are model-specific and cannot be directly applied to prediction APIs, which only
accept discrete inputs, (2) continuous prompts lack interpretability, and (3) they lack transferability,
meaning they cannot be seamlessly applied to other LLMs. To improve communication efficiency,
methods like spectral co-distillation (Chen et al., 2023) and one-pass distribution sketches (Liu et al.,
2024) have been explored, targeting efficient aggregation and reduced overhead. Furthermore, the
issue of communication efficiency and local model performance trade-offs has been explored in
works (Li & Huang, 2024), where the tension between local client computations and global model
performance is thoroughly examined, providing further insight into optimizing federated learning
strategies.

To address the aforementioned challenges, we propose FedDTPT, On the client side, we employ
a token-level discrete prompt tuning strategy. Given the absence of a probability distribution in the
inference results, we implement gradient-free prompts optimization through a feedback loop based
on prediction accuracy. On the server side, we utilize an attention mechanism grounded in semantic
similarity to filter prompt tokens from all clients. This mechanism identifies the most representative
discrete tokens. Additionally, we enhance the filtering effectiveness by employing an inflection point
detection in embedding distances and a Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering strategy. We conducted experiments on multiple datasets using SOTA PLMs.
The results indicate that, in comparison to the current state-of-the-art techniques, our methodology
attains superior accuracy, diminished communication expenses, and resilience to non-iid data within
a black-box framework. Furthermore, the refined prompts exhibit transferability. Our contributions
include:

• Problem Novelty: In this work, we introduce a new problem setting: discrete prompt learn-
ing in black-box federated learning. This setting enables the learning of transferable and
interpretable prompts while safeguarding both the privacy of the server’s model parameters
and the client’s data.

• Approach Novelty: In this work, we propose FedDTPT, a novel discrete prompt learning
framework in black-box federated learning scenarios. FedDTPT utilizes the novel token-
level optimization strategy to update the client prompt and a token selection method based
on semantic similarity to aggregate the discrete prompt.

• Experimental effect: Our method achieves high accuracy and low communication over-
head, and its optimized prompts exhibit transferability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND & RELATED WORK

LLMs as API Service. Due to the significant computational demands of large language models
(LLMs), an increasing number of LLMs are being deployed on servers as API services. From the
model supplier’s perspective, this approach allows them to retain proprietary control over their mod-
els, avoiding open sourcing due to commercial considerations and the risk of misuse. From the
user’s perspective, even when pre-trained LLMs are available, running them locally is often pro-
hibitively expensive or even infeasible due to hardware constraints and the need for continuous
updates (Bommasani et al., 2022). Given these advantages, deploying LLMs as API services has
become a mainstream approach and is now the dominant trend.

Federated Learning. Federated Learning (FL) is a decentralized machine learning approach where
multiple clients collaboratively train a model while keeping their data local, ensuring privacy
(Konečnỳ, 2016). For model suppliers, FL enables large-scale training without accessing user data,
reducing liability and complying with privacy regulations like GDPR 1. For users, it allows participa-
tion in model improvements while maintaining control over their data. Although FL offers privacy
benefits, challenges like data heterogeneity, communication costs, and system differences remain
key research areas. FL is increasingly applied to LLMs, especially in privacy-sensitive applications,
making it a critical tool in privacy-preserving AI.

Prompt Tuning. Prompt tuning has gained considerable attention in the field of large language
models (LLMs). Its goal is to search for an optimal prompt using minimal examples to guide an
LLM towards generating the desired output for a specific downstream task. In NLP applications,
there are two main types of prompt tuning methods: (1) continuous prompt tuning and (2) discrete
prompt tuning (Liu et al., 2023). In continuous prompt tuning, a sequence of continuous vectors
is appended to the input text embedding. Unlike discrete prompt, which operates at the vocabulary
level, continuous prompt tuning (Li & Liang, 2021) optimizes the prompt directly in the embedding
space. In contrast, discrete prompt tuning involves a sequence of discrete tokens, which remain
interpretable to humans.

3 METHOD

3.1 PROBLEM FORMULATION

Prompt tuning is a widely adopted Parameter-Efficient Fine-Tuning (PEFT) method for large lan-
guage models (LLMs). The prompts are optimized to adapt the model to specific downstream tasks.
Discrete prompt tuning refers to the independent optimization of discrete tokens pn ∈ P within
the prompt set P , where n denotes the number of tokens in P . This approach is more interpretable
than continuous prompt tuning strategies, such as soft prompt tuning. In a federated learning con-
text, federated discrete prompt tuning involves each client k, where k ∈ K, transmitting their local
prompts Pk = {pn

k}Nn=1 to a central server for a knowledge exchange based on discrete prompts.
The aggregated global prompt PF = {pn

F }Nn=1is then distributed back to all clients, where it is fur-
ther fine-tuned on Dk = {(xk,yk)}Kk=1 be a private local dataset in the k-th client for personalized
adaptation. The objective in this federated scenario can be expressed as:

P ∗
k = argmin

PF

K∑
k=1

wkLk (f (PF ;Dk)) , (1)

where n is the number of tokens in P , and K represents the number of clients involved. Prompt
tuning based on black-box LLMs refers to the process where the large model’s parameters are en-
tirely fixed, and the prompts are treated as learnable parameters. Since the gradients of the LLM
are inaccessible, gradient-free zeroth-order optimization methods are commonly used instead of tra-
ditional backpropagation techniques. Compared to standard prompt tuning, pure black-box prompt
tuning is a more challenging optimization task. Since the inference result of the LLM prediction
API, represented as f(P;X), is purely textual and does not provide a probability distribution, Eq.
(2), which relies on one-hot labels, is no longer applicable. Consequently, prompt optimization is
performed solely at the token level, and we accordingly use a more direct measure of accuracy as

1https://gdpr-info.eu/

3

https://gdpr-info.eu/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

...

Client 2: p2
1, p2

2, ..., p2
n

Client k: pk
1, pk

2, ..., pk
n

Client 1: p1
1, p1

2, ..., p1
n

...

E

z(pk
n)

W

pF
1, pF

2, ..., pF
n

Global Prompt

Centralized Server

Global prompt

Local prompts

Requirement：assess these words,

<negative> or <positive>.

User：Today is a nice day!
＋

LLM Inference API

Positive/

Negative

 assess the sentiment, <negative> or <positive>.

position: one-index

changed token: assess

accuracy: 95.38%

 InfoFeedback

Optimized

 Prompt：

 Acc

Client 1

Prompt Generator API

Input:

Label

Prediction:

L
L

M
 In

feren
ce A

P
I

 evaluate the sentiment,

<negative> or <positive>.

Optimized Prompt

Client k

Prompt Generator API
Input

 Requirement: ... + User : ...

Figure 1: The structure of FedDTPT. The client uses prediction results as feedback to drive the
MLM API for discrete prompt optimization. The locally optimized prompts are then uploaded to the
server, where tokens are mapped to a high-dimensional latent space. Similarity calculations on these
high-dimensional embeddings yield weight values W , and a clustering strategy is applied to select
high-weight tokens. These tokens are then combined to form a global prompt, which is subsequently
distributed back to the clients.

the optimization objective:

P ∗
k = argmax

PF

K∑
k=1

wkAk (f (PF ;Dk)) , (2)

where Ak is the accuracy in client k.

3.2 DESIGN OVERVIEW

The overview of FedDTPT as shown in Figure 1. In the client optimization phase of FedDTPT,
we adopt a token-level discrete prompt tuning strategy that establishes a new feedback mecha-
nism for inference results to enable gradient-free prompt optimization. During the federated learning
stage, we employ a semantic similarity-based attention mechanism to sample prompt tokens from
all clients, selecting the most representative discrete tokens to construct optimized prompts. This
approach effectively facilitates knowledge transfer across clients while preserving privacy. At the
beginning of the optimization process, a public dataset Dg , containing representative samples, is
deployed to each client to assist in computing the prediction accuracy during local prompt tuning.
In each global communication round, the server first broadcasts a global prompt to all clients. In
the initial round, this prompt is based on the global task and can either be carefully designed or
straightforward. Subsequently, each client k uses the MLM API to fine-tune the global prompt,
recording the tuning information. The tuned prompt is then input into the LLM prediction API to
obtain inference results and calculate accuracy. The accuracy and tuning information are aggregated
as optimization feedback and fed back to the MLM API for further fine-tuning. Upon completion
of local optimization, all clients upload their local prompts to the server for knowledge aggregation.
The server maps the discrete tokens of all prompts to a high-dimensional latent space and employs a
clustering strategy based on the secondary-range elbow judgement strategy and DBSCAN approach
to cluster the embeddings. Finally, a latent space similarity-based attention mechanism is applied to
sample the embeddings and generate a global prompt.

3.3 CLIENT PROMPT INSTRUCTION TUNING

Unlike existing black-box prompt tuning tasks, in a purely black-box setting, large language mod-
els only output prediction text without probability distributions. The absence of loss information
necessitates that prompt optimization be performed solely at the token level, posing significant chal-
lenges. In the client-side optimization phase, we set accuracy improvement as the primary objec-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tive and leverage the contextual understanding capabilities of masked language models (MLMs) to
achieve prompt tuning. Furthermore, we establish an inference feedback loop, which, compared to
random prompt optimization using MLMs, creates a closed loop between forward inference and
result feedback. This approach allows the MLM to make informed predictions based on comprehen-
sive historical information.

Specifically, the client first receives the global prompt dispatched by the server, uses the MLM for
tuning, and stores the modification details. The optimized prompt is then combined with input xk

and fed into the LLM Inference API for prediction. By comparing the inference results with the
labels yk, we calculate the accuracy on a batch basis. Finally, in subsequent iterations, the MLM
receives both the accumulated tuning modifications and accuracy results along with the prompt to
be optimized. This iterative process allows the MLM to perform more informed and effective tuning.
The optimization process is detailed in Algorithm 1.

Algorithm 1 Token-level Prompt Optimization with Inference Feedback for Client k

Input: Global prompt Pglobal, client data Dk = {(xk,yk)}Kk=1
Output: Optimized prompt P ∗

k for accuracy Ak

1: Initialize Pk = {pn
k}Nn=1← Pglobal

2: for iteration = 1 to max iterations do
3: Optimization Objective:
4: P ∗

k = argmaxPk
Ak (f (Pk;Dk))

5: MLM Tuning:
6: P ∗

k ← MLM API(Pk)
7: Inference and Accuracy Calculation:
8: predictions← LLM Inference API(P ∗

k , xk)
9: accuracyk ← calculate accuracy(predictions, yk)

10: Feedback fusion:
11: feedback info← (modifications, accuracyk)
12: Next iteration:
13: P ∗

k ← MLM API(Pk, feedback info)
14: end for
15: return P ∗

k as the optimized prompt for client k

Additionally, to address potential data imbalance during accuracy calculation in each iteration, we
introduce a small, balanced public dataset to assist in accuracy computation. Specifically, during the
accuracy calculation for each batch of client k’s data, the public dataset is incorporated as auxiliary
data. This approach effectively mitigates the impact of data imbalance and helps to counteract non-
iid data distribution issues.

3.4 SERVER PROMPT INSTRUCTION AGGREGATION

During client-side optimization, each client sends its locally optimized prompt to the server for
knowledge exchange. Since clients can only access token-level information, traditional global ag-
gregation strategies, such as simple weighted averaging, are difficult to implement. To address this,
we propose an attention mechanism based on semantic similarity, combined with high-dimensional
clustering methods, to effectively select and merge important tokens, thereby generating a globally
optimized prompt. The detailed methodology is outlined as follows:

Mapping Tokens to a High-Dimensional Latent Space. Each token from the prompts generated
by the clients is mapped to a high-dimensional latent space. Given the need for robust contextual
understanding, leveraging the embedding layers of pre-trained language models (MLMs) like BERT
or RoBERTa is well-suited for this purpose, as they can project semantically similar tokens to prox-
imate positions in the latent space. Let Pk = {p1

k,p
2
k, . . . ,p

N
k } represent the sequence of discrete

tokens generated by the k-th client, where k ∈ {1, 2, . . . ,K} and N denotes the number of to-
kens in each prompt. Each token pn

k is mapped to a high-dimensional embedding through a func-
tion z, resulting in an embedding vector En

k . The mapping function z can be formally expressed
as z : Pk → RN×d,Pk 7→ Ek = {E1

k, E
2
k, . . . , E

N
k }, where En

k = z(pn
k) ∈ Rd is the high-

dimensional embedding vector corresponding to the token pn
k , d is the dimensionality of the latent

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

space, and Ek is the matrix of embeddings for all tokens in the k-th client’s prompt. To incorpo-
rate context and semantics into the embeddings, the mapping function z may depend on additional
parameters, such as contextual weights θ from a pre-trained language model.

En
k = z(pn

k ; θ) = MLMθ(p
n
k) (3)

where, θ represents the parameters of the pre-trained language model (MLM), such as BERT or
RoBERTa, MLMθ denotes the model’s embedding layer that captures the context and semantic
similarity of each token. Therefore, the overall mapping process for all tokens from all clients can
be expressed as a set:

E =

K⋃
k=1

Ek =

K⋃
k=1

{E1
k, E

2
k, . . . , E

N
k } =

K⋃
k=1

{z(p1
k; θ), z(p

2
k; θ), . . . , z(p

N
k ; θ)} (4)

where E represents the set of all high-dimensional embeddings for tokens across all clients.

Attention-Based Weight Calculation via Semantic Similarity. To compute the semantic similarity
between tokens, we use the cosine similarity between their high-dimensional embeddings. For a
token pn

k from the k-th client and a token pn′

k′ from another prompt (client k′), the cosine similarity
is given by:

sim(En
k , E

n′

k′) =
En

k · En′

k′

∥En
k ∥∥En′

k′ ∥
(5)

where:En
k · En′

k′ denotes the dot product of the embeddings. ∥En
k ∥ and ∥En′

k′ ∥ are the Euclidean
norms (magnitudes) of the embeddings.

The attention weight wn
k for a token pn

k is computed by aggregating its cosine similarities with all
tokens in other clients’ prompts. This can be expressed as:

wn
k =

K∑
k′=1
k′ ̸=k

N∑
n′=1

sim(En
k , E

n′

k′) (6)

where k′ iterates over all clients except the k-th client, n′ iterates over all tokens in the prompt of
client k′, and sim(En

k , E
n′

k′) is the cosine similarity between the embedding En
k and each embed-

ding En′

k′ . To normalize the attention weights across all tokens in a prompt, we apply a softmax
function to obtain a normalized weight αn

k =
exp(wn

k)∑N
n=1 exp(wn

k)
, where αn

k is the normalized atten-
tion weight of the token pn

k . The final attention vector for all tokens in the k-th client’s prompt is
αk = {α1

k, α
2
k, . . . , α

N
k }, where αk represents the normalized attention weights for all tokens in the

k-th client’s prompt, indicating the relative importance of each token based on its semantic similarity
to tokens in other prompts.

Semantic Aggregation Using High-Dimensional Clustering. After computing attention weights
for all tokens, we employ high-dimensional clustering (e.g., k-means) to further filter semantically
similar tokens. The clustering process proceeds as follows: The embeddings of all tokens serve as
shown in Algorithm 2. To further enhance the flexibility of token selection, we employ a strat-
egy based on embedding distance elbow detection and DBSCAN clustering. We calculate the dis-
tances between token embeddings and sort these distances, identifying significant changes as “el-
bow points” or inflection points. These points are used to determine the ϵ parameter for DBSCAN
clustering. Subsequently, DBSCAN forms clusters based on the density and connectivity of the em-
beddings. This approach allows the number of clusters and the number of tokens within each cluster
to be determined by the data itself, enabling adaptive and flexible grouping. Finally, the represen-
tative tokens from each cluster are reordered according to their original positions in the respective
prompts, forming a consolidated global prompt. This step ensures that the global prompt remains
semantically coherent and retains the most important information from each client.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Semantic Aggregation Using High-Dimensional Clustering

Input:
1: embeddings: A list of high-dimensional embeddings for all tokens
2: attention weights: A list of attention weights corresponding to each token embedding
3: num clusters: The number of clusters for k-means

Output:
4: cluster representatives: A dictionary containing the representative token for each cluster
5: Step 1: Perform High-Dimensional Clustering
6: clusters← KMeans(n clusters = num clusters).fit predict(embeddings)
7: Initialize cluster representatives as an empty dictionary
8: Step 2: Find the Representative Token for Each Cluster
9: for cluster id in unique(clusters) do

10: cluster indices← [i for i, c in enumerate(clusters) if c = cluster id]
11: cluster weights← [attention weights[i] for i in cluster indices]
12: max weight index← cluster indices[argmax(cluster weights)]
13: cluster representatives[cluster id]← embeddings[max weight index]
14: end for
15: Return cluster representatives: A dictionary where each key is a cluster ID, and each value is

the embedding of the representative token for that cluster

4 EVALUATION

4.1 EVALUATION SETUP

Pre-trained LLMs. In our experiments, we selected two models as backbone models: DeepSeek-
V2-Lite (15B parameters) (DeepSeek-AI, 2024), and Llama-3.1-8B-Instruct (AI@Meta, 2024).

Dataset. We conducted experiments on seven datasets from the GLUE benchmark (Wang et al.,
2019): SST-2, RTE, QNLI, MRPC, QQP, WNLI, and CoLA. Additionally, we adopted the k-shot
approach for prompt training, which will be explained in detail in the following sections. Due to the
consistent number of classes across datasets, we used accuracy (ACC) instead of the Matthews Cor-
relation Coefficient (MCC) to evaluate the prediction performance for the CoLA dataset. Similarly,
for QQP and MRPC, ACC was used in place of the F1 score as the evaluation metric.

Comparison Baselines. We evaluated our pure black-box prompt-tuning federated learning method
against seven state-of-the-art (SOTA) approaches. Based on the amount of information obtained
about the backbone model, we categorized these methods into white-box and black-box approaches.
We define white-box LLM methods as those that have access to the full parameters of the backbone
model and can obtain gradient information through backpropagation.

The White-Box comparison methods include the following: FedPrompt (Zhao et al., 2023): A
SOTA method that offers communication efficiency and privacy protection by employing a prompt
exchange strategy to facilitate knowledge transfer between clients in federated learning. Open-
FedLLM (Ye et al., 2024): An open-source research library for training large language models
(LLMs) in a federated learning setting. OpenFedLLM allows for various configurations through
custom FL methods and LLM replacements. In this study, we used the widely adopted FedAvg al-
gorithm to implement federated learning for the backbone model. Manual prompt: It refers to a
manually designed prompting approach based on commonly used templates for zero-shot inference.

The Black-Box LLM methods do not have access to the model’s parameters or gradients; they can
only retrieve prediction outputs and the full probability distribution generated by the model during
forward inference. These methods include the following: FedBiOT (Wu et al., 2024): This method
compresses the original LLM into a lightweight model with similar performance, which is then dis-
tributed to each client. FedAvg-BBT (McMahan et al., 2017; Sun et al., 2022): A hybrid method that
combines the widely used federated learning approach, FedAvg, with a black-box discrete prompt
tuning method called BBT.

Implementation & Hyperparameters . The federated learning (FL) setup of our experiments fol-
lows the frameworks of FedPrompt and FedBPT. The FL environment consists of 10 clients, with a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100% client participation rate in each training round. Additionally, we adopted the few-shot learn-
ing paradigm commonly used in large-scale model research. Following the BDPL approach, for each
dataset, we randomly sampled k instances from each class to form a new training set and sampled a
different set of k instances to construct a new validation set. The new test set was composed of the
original validation set. Detailed hyperparameter settings can be found in Appendix A.

4.2 EFFECTIVENESS RESULTS

Table 1: Effectiveness Results

Model Methods SST-2 RTE QNLI MRPC QQP WNLI CoLA Avg

Deepseek

White-Box

FedPrompt 87.81 78.28 85.94 89.80 87.24 83.13 78.49 84.38
OpenFedLLM 81.32 71.83 77.41 79.81 79.68 74.29 71.52 76.55
FedPepTAO 85.64 74.02 79.63 82.77 82.96 78.41 73.81 79.61

Black-Box

Manual 90.31 91.42 86.95 92.68 82.26 95.43 82.63 88.81
FedAvg-BBT 53.12 50.38 56.25 59.38 53.75 53.12 50.75 53.82
Our 97.43 94.86 94.69 97.88 95.73 94.72 91.85 95.33

Llama-3.1

White-Box

FedPrompt 91.63 82.41 89.91 95.18 94.24 84.71 81.52 88.51
OpenFedLLM 77.08 76.93 83.72 86.49 81.85 77.63 76.94 80.09
FedPepTAO 86.30 75.81 87.05 81.29 86.49 75.82 77.49 81.46

Black-Box

Manual 87.42 93.79 85.69 92.94 86.95 97.60 81.46 89.41
FedAvg-BBT 71.88 46.88 51.32 56.25 59.38 56.25 62.50 57.78
Our 95.58 95.03 93.69 95.52 92.59 95.90 87.52 93.69

We first measure the accuracy of the tuned LLMs on each downstream tasks. The accuracy of
FedDTPT and each comparsion baseline methods are listed on Table 1. From the results, we could
observe that our proposed black-box tuning significantly outperforms the other basaeline methods
in almost all settings. For Deepseek, in the most challenging Black-Box scenario, our method still
performs exceptionally well, achieving 95.73 accuracy, whereas competing methods like Manual
Prompting score lower (82.63). For Llama-3.1, the pattern of improvement is consistent. In Black-
Box results, our method scores 95.52 and 95.9, respectively, far surpassing other methods like Man-
ual Prompting and FedAvg-BBT, with the latter scoring as low as 46.88 in the Black-Box setting.
This indicates that our method excels even in scenarios with limited or no model access, making it
highly adaptable and robust.

4.3 TRANSFERABILITY RESULTS

Table 2: The Transferability Results

Setting Methods SST-2 RTE QNLI MRPC QQP WNLI CoLA

D to L
Manual 90.31 91.42 86.95 92.68 82.26 95.43 82.63
Ours 96.28 95.43 92.35 93.84 92.35 94.29 86.4

L to D
Manual 87.42 93.79 85.69 92.94 86.95 97.60 81.46
Ours 96.73 94.32 95.18 96.43 94.04 95.2 90.77

We now explore the transferability of our trained discrete prompt. It is important to note that con-
tinuous baseline methods cannot be applied to other large language models (LLMs) besides the one
on which the prompt was trained. As a result, these continuous baseline methods inherently lack
transferability. In contrast, we compare the transferability of FedDTPT to manual prompt baselines.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The results, shown in Table 2, demonstrate that our learned discrete prompt achieves higher ac-
curacy across almost all benchmarks. This suggests that the prompt from FedDTPT can be easily
transferred to other LLMs for various downstream tasks, significantly reducing the prompt learning
process needed to adapt to different LLMs—a common necessity as LLMs are frequently updated.
The transferability highlights the advantage of discrete prompt optimization, where the learned dis-
crete prompt can be readily deployed across multiple LLMs.

4.4 OVERHEAD RESULTS

Table 3: Number of trainable parameters when adopting Llama 3.1 as the backbone model

Method FedPrompt OpenFedLLM FedPepTAO FedAvg-BBT Our

Trainable Params. 614k 81k-80B 1796k 500 150

The number of trainable parameters when using Llama3.1 as the PLM is presented in Table 3. From
the results, we observe that FedDTPT requires the fewest trainable parameters among all methods.
This is because, unlike continuous prompt learning methods, FedDTPT optimizes a discrete prompt,
which theoretically requires N× fewer parameters, where N is the embedding size of the LLM. The
results in Table 3 further highlight the advantage of discrete prompt tuning: it requires significantly
fewer tunable parameters, making it more communication-efficient.

4.5 ABLATION STUDIES

Client-Level. To evaluate the effectiveness of the improvements made during client-level optimiza-
tion, including the integration of prediction feedback loops and the use of MLM-API for prompt op-
timization, we conducted separate tests, as shown in Table 4. Here, Client-1 represents the approach
without the feedback loop and uses random token replacement for optimization, while Client-2 only
omits the feedback loop. The results in Table 4 demonstrate that the proposed client-level optimiza-
tion significantly outperforms both Client-1 and Client-2 across all tasks. Specifically, our approach
improves accuracy by a notable margin: for SST-2, it shows an increase of 14.6% over Client-1 and
5.6% over Client-2; for RTE, it improves by 7.1% and 4.1%, respectively. This clearly indicates the
effectiveness of the feedback loop and MLM-API optimizations. Additionally, the results show that
removing the feedback loop (Client-2) results in a consistent drop in performance across all tasks,
confirming that integrating feedback is critical for enhancing model accuracy.

Table 4: The effectiveness of our propsoed client level optimization

Method SST-2 RTE QNLI MRPC QQP WNLI CoLA
Client-1 83.36 87.92 84.18 86.35 81.59 88.48 79.95
Client-2 90.56 91.29 87.95 89.44 87.62 92.07 83.2

Our 95.58 95.03 93.69 95.52 92.59 95.9 87.52

Sever-Level. We evaluate the improvements made during the server optimization phase, including
attention-based token selection and token clustering strategies, with the results presented in Table 5.
Server-1 represents the method where high-dimensional embeddings are aggregated using a fedavg
approach. Server-2 indicates the method without the clustering strategy, while Server-3 employs a
fixed number of clusters. The results in Table 5 show that the proposed server-level optimization,
which includes attention-based token selection and token clustering strategies, significantly out-
performs other methods across all tasks. Compared to the baseline method Server-1, our approach
demonstrates considerable improvements, such as an increase of 65.51% for SST-2 and 36.97% for
MRPC. In comparison to Server-2, our approach shows an increase of 1.9% in SST-2 and 1.15%
in WNLI, highlighting the benefits of the clustering strategy. When compared to Server-3, our ap-
proach improves accuracy by 2.31% in SST-2 and 9.1% in CoLA, confirming that a flexible, adaptive
clustering strategy enhances performance across diverse tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: The effectiveness of our proposed server level optimization

Method SST-2 RTE QNLI MRPC QQP WNLI CoLA
Sever-1 57.75 62.21 56.48 59.36 51.89 47.33 56.52
Sever-2 94.68 93.97 92.81 93.6 91.77 94.25 95.65
Sever-3 93.27 94.19 91.22 94.08 90.92 94.38 86.16

Our 95.58 95.03 93.69 95.52 92.59 95.9 87.52

Figure 2: The accuracy of FedDTPT under different seed

Seed Impact.. To demonstrate the robustness of our optimization method against different initial
prompts, we design three types of prompts—concise, moderate, and detailed formats—across each
dataset and evaluate the optimization performance. The results are shown in Figure 2, with all prompt
examples provided in Appendix B. In Figure 2, ”Seed-n” represents the evaluation results using man-
ual prompts directly, while ”Ours+Seed-n” indicates results after applying our optimization method.
For prompts of moderate and detailed formats, our approach achieves outstanding performance.
Moreover, for concise prompts, although there is a larger drop in accuracy compared to other types,
our method still significantly demonstrates strong optimization effects.

Results on Non-iid Data. To demonstrate our method’s robustness against non-iid data among
clients in a federated learning scenario, we conducted experiments on three datasets of varying
scales: QQP, SST-2, and CoLA, as shown in Table 6. The data was simulated with Dirichlet-0.1 to
model non-iid distribution. Table 6 shows that all large-model-based algorithms exhibit resistance
to non-iid data, consistent with empirical observations. Furthermore, our method maintains consis-
tently strong performance, demonstrating its superior adaptability in non-iid federated scenarios.

Table 6: Performacne of FedDTPT on Non-iid Data

Benchmark FedPrompt OpenFedLL FedPepTAO Manual FedAvg-BBT Ours
SST-2 89.27 76.18 83.21 88.39 70.73 94.25
QQP 93.61 80.79 82.92 86.4 53.62 91.03
CoLA 79.34 76.11 74.58 81.73 61.72 85.79

5 CONCLUSION

We propose FedDTPT, a FL framework that enables clients to tune discrete and transferable prompts
with LLMs in black-box settings. Our approach eliminates the need for clients to access model pa-
rameters and requires only forward propagation for local training, reducing computational and stor-
age demands for both devices and LLM service providers. Additionally, our discrete prompts are
interpretable to developers and can be transferred to other LLMs without any modifications. Eval-
uations on several datasets using state-of-the-art PLMs show that FedDTPT outperforms existing
white-box and black-box methods with significantly lower communication and memory overhead.
Furthermore, FedDTPT demonstrates excellent transferability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/
MODEL CARD.md.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the opportunities and risks of foundation models, 2022. URL https://arxiv.org/abs/2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zihan Chen, Howard Yang, Tony Quek, and Kai Fong Ernest Chong. Spectral co-distillation for
personalized federated learning. Advances in Neural Information Processing Systems, 36:8757–
8773, 2023.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Taehyeon Kim, Eric Lin, Junu Lee, Christian Lau, and Vaikkunth Mugunthan. Navigating data
heterogeneity in federated learning a semi-supervised federated object detection, 2024. URL
https://arxiv.org/abs/2310.17097.

Jakub Konečnỳ. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Junyi Li and Heng Huang. Resolving the tug-of-war: a separation of communication and learning
in federated learning. Advances in Neural Information Processing Systems, 36, 2024.

Junyi Li, Feihu Huang, and Heng Huang. Communication-efficient federated bilevel optimization
with global and local lower level problems. Advances in Neural Information Processing Systems,
36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2310.17097

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zichang Liu, Zhaozhuo Xu, Benjamin Coleman, and Anshumali Shrivastava. One-pass distribution
sketch for measuring data heterogeneity in federated learning. Advances in Neural Information
Processing Systems, 36, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial in-
telligence and statistics, pp. 1273–1282. PMLR, 2017.

Kunjal Panchal, Sunav Choudhary, and Hui Guan. Flow: Per-instance personalized federated learn-
ing through dynamic routing. arXiv preprint arXiv:2211.15281, 2022.

Sara Pieri, Jose Restom, Samuel Horvath, and Hisham Cholakkal. Handling data heterogeneity via
architectural design for federated visual recognition. Advances in Neural Information Processing
Systems, 36:4115–4136, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, and Holger R Roth.
Fedbpt: Efficient federated black-box prompt tuning for large language models. arXiv preprint
arXiv:2310.01467, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service, 2022. URL https://arxiv.org/abs/2201.03514.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

Jiaqi Wang, Xingyi Yang, Suhan Cui, Liwei Che, Lingjuan Lyu, Dongkuan DK Xu, and Fenglong
Ma. Towards personalized federated learning via heterogeneous model reassembly. Advances in
Neural Information Processing Systems, 36, 2024.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in feder-
ated learning without full model, 2024. URL https://arxiv.org/abs/2406.17706.

Xidong Wu, Jianhui Sun, Zhengmian Hu, Junyi Li, Aidong Zhang, and Heng Huang. Federated
conditional stochastic optimization, 2023. URL https://arxiv.org/abs/2310.02524.

Haonan Yan, Wenjing Zhang, Qian Chen, Xiaoguang Li, Wenhai Sun, Hui Li, and Xiaodong Lin.
Recess vaccine for federated learning: Proactive defense against model poisoning attacks, 2023.
URL https://arxiv.org/abs/2310.05431.

Haonan Yan, Wenjing Zhang, Qian Chen, Xiaoguang Li, Wenhai Sun, Hui Li, and Xiaodong Lin.
Recess vaccine for federated learning: Proactive defense against model poisoning attacks. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Haibo Yang, Zhuqing Liu, Jia Liu, Chaosheng Dong, and Michinari Momma. Federated multi-
objective learning. Advances in Neural Information Processing Systems, 36, 2024a.

Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Simfbo: Towards simple, flexible and communication-
efficient federated bilevel learning. Advances in Neural Information Processing Systems, 36,
2024b.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via
federated learning, 2024. URL https://arxiv.org/abs/2402.06954.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Fedprompt: Communication-
efficient and privacy preserving prompt tuning in federated learning, 2023. URL https://arxiv.org/
abs/2208.12268.

Hanhan Zhou, Tian Lan, Guru Prasadh Venkataramani, and Wenbo Ding. Every parameter matters:
Ensuring the convergence of federated learning with dynamic heterogeneous models reduction.
Advances in Neural Information Processing Systems, 36, 2024.

12

https://arxiv.org/abs/2201.03514
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2406.17706
https://arxiv.org/abs/2310.02524
https://arxiv.org/abs/2310.05431
https://arxiv.org/abs/2402.06954
https://arxiv.org/abs/2208.12268
https://arxiv.org/abs/2208.12268

	Introducation
	Background & Related Work
	Method
	Problem Formulation
	Design Overview
	Client Prompt Instruction Tuning
	Server Prompt Instruction Aggregation

	Evaluation
	Evaluation Setup
	Effectiveness Results
	Transferability Results
	Overhead Results
	Ablation Studies

	Conclusion
	Appendix A
	Appendix B

