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Abstract

While Tensor-based Multi-view Subspace Clustering (TMSC) has garnered sig-
nificant attention for its capacity to effectively capture high-order correlations
among multiple views, three notable limitations in current TMSC methods necessi-
tate consideration: 1) high computational complexity and reliance on dictionary
completeness resulting from using observed data as the dictionary, 2) inaccurate
subspace representation stemming from the oversight of local geometric informa-
tion and 3) under-penalization of noise-related singular values within tensor data
caused by treating all singular values equally. To address these limitations, this pa-
per presents a Scalable TMSC framework with Triple infOrmatioN Enhancement
(STONE). Notably, an enhanced anchor dictionary learning mechanism has been
utilized to recover the low-rank anchor structure, resulting in reduced computational
complexity and increased resilience, especially in scenarios with inadequate dic-
tionaries. Additionally, we introduce an anchor hypergraph Laplacian regularizer
to preserve the inherent geometry of the data within the subspace representation.
Simultaneously, an improved hyperbolic tangent function has been employed as a
precise approximation for tensor rank, effectively capturing the significant varia-
tions in singular values. Extensive experiments on a variety of datasets show that
the STONE outperforms SOTA approaches in both effectiveness and efficiency.

1 Introduction

Data clustering, a fundamental technique within the domains of machine learning and computer
vision, aims to partition an unlabeled dataset into discernible subgroups characterized by substantial
internal similarity [1–5]. In practical scenarios, objects are frequently characterized by a multitude
of properties or data originating from various sources [6–9]. For instance, in medical analysis,
imaging data from modalities such as X-ray, CT, and MRI play a crucial role in diagnosis and disease
monitoring. These diverse features, representing various aspects of the same object, collectively
constitute multi-view data. Multi-view clustering (MVC), which endeavors to harness the abundant
information inherent in multi-view data to enhance the quality of clustering, has emerged as a
highly esteemed research avenue [10–12]. Existing MVC methods can be broadly categorized into
four groups based on the underlying learning mechanisms: matrix factorization-based approaches
[13–15], subspace-based approaches [16–18], graph-based approaches [19–21], and kernel-based
approaches [22–24]. Among these, subspace approaches are highly regarded for their straightforward
implementation and excellent results.
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Multi-view subspace clustering is oriented towards the incorporation of diverse constraints within
subspace representations to acquire a consensus one that is conducive to clustering [25–31]. For
instance, Cao et al. [26] and Li et al. [30] proposed the utilization of the Hilbert-Schmidt independence
criterion as a dependency measure, aiming to capture diversity and consistency from multi-view
data, respectively. Pan and Kang [28] integrated a contrastive loss regularization into the consensus
subspace representation, encouraging the proximity of similar samples and the separation of dissimilar
ones. In addition, Huang et al. [32] facilitated the extraction of valuable consensus representation
by assuming cross-view sparsity of inconsistent components in multi-view data. Nevertheless, these
methods are confined to investigating only the linear affinity relationships between data pairs within
individual views and do not capitalize on the higher-order correlations among data points across
multiple views. This limitation results in suboptimal clustering performance. As a result, tensor-based
multi-view subspace clustering methods (TMSC) have remained the focus of sustained attention in
recent years. Typically, these TMSC methods consolidate various subspace representations into a
3D tensor, subsequently applying global structural constraints to uncover the complex, nonlinear
relationships among data points across different views [33–39]. For example, Xie et al. [34] advanced
cross view consistency exploration by employing Tensor Nuclear Norm (TNN) on the rotated tensor.
Jia et al. [36] characterized the intra-view and inter-view relationships of data points by applying
symmetric low-rank constraints to the frontal slices and structured sparse low-rank constraints to
the horizontal slices. Furthermore, Guo et al. [38] and Sun et al. [39] introduced the logarithmic
Schatten-p norm and the arctan rank norm as compact surrogates for tensor rank, aimed at capturing
distinctive information from tensor singular values.

Despite the noteworthy clustering quality achieved by the TMSC methods described above, there
remains considerable potential for further enhancements across four critical dimensions. First, many
existing methods exhibit quadratic or even cubic time and space complexities, which restricts their
scalability for large-scale datasets. Second, previous techniques have utilized the given feature matrix
as the dictionary for subspace recovery. However, this method requires that the feature representations
to include a sufficient number of uncontaminated sampled points; otherwise, the resulting subspace
representation may not accurately capture the affinity relationships among the data points. Third,
traditional approaches often emphasize the low-rank structure of tensor representations to investigate
high-order nonlinear correlations among data points across various views, while frequently neglecting
the intricate local geometric correlations within individual view. Finally, many methods impose equal
penalties on the singular values of tensor data, which may lead to excessive penalization of larger
singular values while under-penalizing smaller ones, resulting in suboptimal tensor representations.
This issue arises from the differing significance of singular values in tensor data, where larger singular
values indicate valuable features and smaller ones are often associated with noise.

Drawing from the principles and justifications discussed previously, this paper proposes a Scalable
TMSC framework with Triple infOrmatioN Enhancement (STONE). First, STONE employs an
enhanced anchor dictionary representation mechanism instead of the traditional self-representation to
learn a subspace representation. This approach effectively reduces computational complexity and
enhances the stability and robustness of the algorithm in situations where dictionary are insufficient
or corrupted. Additionally, we introduce an anchor hypergraph Laplacian regularization to guide
the learning of target anchor tensor representation, facilitating the simultaneous utilization of high-
order correlations among data points across views and geometric correlations among data points
within each view. Furthermore, a refined hyperbolic tangent rank is developed as a non-convex
low-rank regularization for tensor data, enabling the STONE model to effectively distinguish the
distinct physical meanings of various singular values. Compared to existing TMSC methods, the
contributions of this paper can be outlined as follows:

• We introduce an enhanced anchor dictionary representation strategy to recover the anchor
subspace representation, mitigating the high computational complexity of self-representation
methods and improving accuracy under dictionary under-sampling.

• We develop a refined Hyperbolic Tangent Rank (HTR) as a precise approximation to the
tensor rank. In contrast to TNN, HTR allows for variable penalties on individual singular
values, facilitating a thorough exploration of differences among different singular values.

• We utilize anchor hypergraphs that encode geometric manifold correlation to regularize
the target tensor representation, allowing for the simultaneous utilization of high-order
correlations across different views and the complex relationships within each view.
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• We present an iterative optimization algorithm along with analyses of its complexity and
convergence. Comprehensive experimental results demonstrate that the STONE model
excels in both clustering performance and efficiency.

2 Theoretical Foundation

Let X= {x1, ...,xn} ∈ Rd×n denotes a dataset comprising n instances, with each instance repre-
sented by a d-dimensional feature vector. Low-Rank Representation (LRR) [40] aims to recover a
subspace representation by employing the feature matrix X as a dictionary, which can be mathemati-
cally described as follows:

min
Z,E
‖Z‖∗ + α‖E‖2,1, s.t.X = XZ + E, (1)

where Z ∈ Rn×n represents the subspace representation, which is regularized with the nuclear norm
‖ · ‖∗ to ensure a low-rank structure. The reconstruction error is denoted by E ∈ Rd×n and is
constrained by the `2,1-norm to promote sparsity. The parameter α serves as a balancing factor.

LRR has proven its effectiveness in uncovering the spatial structure of data patterns [41–43], yet it
hinges on a critical requirement: the data matrix X must contain a sufficient number of data points
sampled from the subspaces. Otherwise, a potential solution to Eq. (1) could be the identity matrix,
which hinders the implementation of low-rank representation (LRR). To address this issue, Liu and
Yan [44] proposed that, alongside the given data X, there exists a set of unobserved data points Y in
the dictionary representation, which acts as an ideal supplement to X. This strategy is known as the
latent low-rank representation model (LatLRR), which helps to mitigate the impacts of insufficient
and corrupted observational data. Its mathematical definition is as follows:

min
Z,E
‖Z‖∗ + α‖E‖2,1, s.t.X = [X;Y]Z + E, (2)

where Y ∈ Rk×n represents the unobserved feature representation, which is concatenated with X
along the columns to form a complete feature representation serving as the dictionary. For practicality,
[44] relaxes Eq. (2) into the following nuclear norm minimization problem to approximate the
unobserved data and learn an accurate subspace representation:

min
Z,P,E

‖Z‖∗+‖P‖∗+α‖E‖2,1, s.t.X=XZ+PX+E, (3)

where P ∈ Rd×d denotes an intermediate result, which is obtained through the skinny SVD theory,
which serves as a tool for feature extraction [44]. Emphasizing our focus on clustering, the subsequent
discussion revolves around the subspace representation Z, and the nuclear norm on P will be relaxed
to the Frobenius norm—a convex surrogate for low-rank constraint that adheres to the block diagonal
condition [45–47].

3 The Proposed Method

3.1 The STONE Model

Consider a dataset containing n samples and m views, denoted as {Xv}mv=1, where Xv ∈ Rdv×n
represents the v-th view feature, and dv indicating the corresponding dimension. The objective
of the TMSC method is to organize multiple view-specific subspace representations into a 3-D
low-rank tensor, with the aim of unveiling higher-order correlation information spanning multiple
views. Formally, the general mathematical expression of TMSC is as follows:

min
{Zv,Ev}

R(Z) + αL({Ev}) + βT ({Zv})

s.t. ∀v, Xv = XvZv+Ev,Z = ψ(Z1, ...,Zm),
(4)

where Zv ∈ Rn×n represents the subspace representation of the v-th view, and Z ∈ Rn×m×n is a
3-D tensor formed from the collection {Zv}mv=1, with ψ acting as the tensorization operator. R(·)
is used for compact approximation of the tensor rank, while L(·) is tailored to capture noise. T (·)
represents the structured constraint applied to the subspace representation Zv. α and β are two
trade-off parameters.
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Although model (4) effectively captures the high-order consistency of data points across different
views, it has two notable limitations regarding its mechanism of using the observed data as a dictionary
for constructing the tensor representation. First, the time and space complexity of Model (4) becomes
quadratic or even cubic, which restricts its scalability to large datasets. Second, it requires the
feature representation matrix Xv to contain a sufficient number of uncontaminated sampled data
points; otherwise, the learned subspace matrix Zv may manifest as the identity matrix, hindering the
effectiveness of the LRR method [44].

To overcome these limitations, we introduce the Enhanced Anchor Dictionary (EAD) representation
strategy for recovering anchor subspace representations. EAD first selects a set of distinctive samples
from the available data to form an anchor dictionary (i.e., Av ∈ Rdv×l, l is the number of anchors),
enabling the recovery of a subspace representation Zv ∈ Rn×l that is smaller in size. This approach
helps alleviate the issue of high computational complexity. Additionally, inspired by LatLRR [44],
EAD integrates the observed anchors Av with the unobserved sampled data Yv into a comprehensive
dictionary (i.e., [Xv;Yv]), effectively mitigating problems arising from under-sampling of feature
characteristics in the anchor dictionary. As a result, we formulate a TMVC framework induced by
EAD as follows:

min
{Zv,Av,Pv,Ev}

R(Z) + αF(P) + βL({Ev})+γT ({Zv})

s.t. ∀v, Xv = Av(Zv)
>

+ PvXv + Ev, (Av)>Av = I,

Z = ψ(Z1, ...,Zm),P = ψ(P1, ...,Pm),

(5)

where Zv ∈ Rn×l and Pv ∈ Rdv×dv denote the anchor subspace and projection matrix, respectively,
and presented in tensor forms as Z ∈ Rl×m×n and P ∈ Rdv×m×dv . F(·) is a constraint on P .
Notably, the anchor matrix Av ∈ Rdv×l is subjected to orthogonality constraints to ensure optimal
distinguishability. α, β and γ are three trade-off parameters.

To delve deeper into the valuable information embedded in multi-view data and refine the qual-
ity of the anchor tensor representation obtained in the Model (5), tailored constraints—including
Hyperbolic Tangent Rank, Linear Weighted Frobenius norm, and Anchor Hypergraph Laplacian
Regularization—are applied to Z , P , and Zv , respectively. These constraints are clearly defined as
follows:
Definition 1. For a tensor Z ∈ Rn1×n2×n3 , the Hyperbolic Tangent Rank (HTR) is defined as
follows:

‖Z‖HTR :=
1

n3

n3∑
k=1

‖Zkf‖HTR =
1

n3

n3∑
k=1

h∑
i=1

(eδCkf (i,i) − e−δCkf (i,i)
eδC

k
f (i,i) + e−δC

k
f (i,i)

)
, (6)

where δ>0, h = min(n1, n2). Zkf denotes the k-th frontal slice of Z and Ckf is the representation
of the Fourier domain obtained by the tensor-SVD (i.e., Zk

f = BkfC
k
f (Dkf )>).

Definition 2. For multiple matrices {Pv}mv=1, their Linearly Weighted Frobenius (LWF) norm is
defined as follows:

‖P‖LWF :=

m∑
v=1

‖Pv‖LWF =

m∑
v=1

ξv‖Pv‖F , (7)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and ξ = [ξ1, ξ2, ..., ξm] represents the weighted
coefficient vector, with each weight empirically set to 1.
Definition 3. For the given tensor Z ∈ Rl×m×n, its Anchor Hypergraph Laplacian Regularization
(AHR) is defined as follows:

‖Z‖AHR : =

m∑
v=1

‖Zv‖AHR =

m∑
v=1

Tr(ZvLvh(Zv)>), (8)

where Lvh denotes the anchor hyper-Laplacian matrix constructed based on the anchor hypergraph
Svh(V,Q,W) (with V, Q, and W denoting vertices, hyperedge set, and weights, respectively).
Specifically, Lvh = Dv

h −RvWv
e(Dv

e)
−1Rv. Here, Dv

h, Dv
e and Wv

e being degree matrices with
diagonal elements as vertex degrees, hyperedge degrees and hyperedge weights, respectively. Rv

defines vertex-hyperedge relationships, where rv(v, e) = 1 if the v-th vertex is in the e-th hyperedge,
otherwise 0 [48–50].
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By unifying Eqs. (5) - (8), we formulate the objective function for the STONE model as follows:

min
{Zv,Pv,Av},E,

‖Z‖HTR + α‖P‖LWF + β‖E‖2,1 + γ‖Z‖AHR

s.t. ∀v, Xv = Av(Zv)> + PvXv + Ev,E = [E1, . . . ,Em]>,

(Av)>Av = I,Z = ψ(Z1, . . . ,Zm), P = ψ(P1, . . . ,Pm),

(9)

where E =[E1; . . . ;Em]> is derived by horizontally concatenating elements along the rows of
{Ev}. In the end, by utilizing the k-means clustering algorithm on the left singular vectors of the
connectivity matrix Z̄ = 1√

m
[Z1, ...,Zm] ∈ Rn×lm, we achieve the clustering partition results [51].

Figure 1: Schematic of Enhanced Anchor
Dictionary Representation (EAD).

Remark 1. [Why STONE outperforms other self-
representation methods?] Unlike previous TMSC
methods [38, 52], the STONE model employs the
EAD strategy instead of self-representation to recover
subspace representations, combining the benefits of
anchor representation and latent low-rank representa-
tion (LatLRR) for the preservation of both accuracy
and efficiency. Notably, illustrated in Figure 1, the
efficacy of EAD stems from its thoughtful design: the
utilization of the anchor representation enables the
EAD model to recover the subspace representation
of size n× l, ensuring linear scalability for extensive
datasets. Additionally, the introduction of the LatLRR mechanism permits both the observed anchor
vectors and the unobserved sampled data to function as dictionaries, safeguarding the recovered
anchor tensor representation against deficiencies in insufficient dictionaries.
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Figure 2: Tensor Rank Approximation:
HTR vs. TNN and TLSpN.

Remark 2. [Why STONE outperforms other tensor
rank methods?] The STONE focuses on using the hy-
perbolic tangent tensor rank as a low-rank structural reg-
ularization constraint for tensor representation, defined as
f(x) = eδx−e−δx

eδx+e−δx
. Since HTR is a non-convex function

with adjustable slopes, it can delve into the distinct phys-
ical meanings of different singular values in tensor data,
thereby enhancing the representation capability of tensors.
Analysis of Figure 2 reveals a clear superiority of the HTR
in approximating tensor rank compared to TNN [34] and
TLSpN [38], particularly for values nearing zero and rel-
atively large singular values. Specifically, as x approaches
0, fHTR(x) is considerably greater than x and log(1 + xp); on the other hand, as x increases, fHTR(x)
approaches 1. The STONE method adaptively applies appropriate strong and weak penalties to both
small and large singular values, preserving valuable information while also demonstrating robustness
against noise. Furthermore, when x = 0, f(x) = 0, which is consistent with the true tensor rank.

3.2 Optimization

To tackle the objective function, we start by introducing auxiliary variables S and {Qv}, which
ensure that all variables in Eq. (9) become separable, as follows:

min
{Zv,Pv,Av,Qv},E,S

‖S‖HTR+α

m∑
v=1

‖Pv‖2F +β‖E‖2,1+γ

m∑
v=1

Tr(QvLvh(Qv)>)+
θ

2
‖Z−S+

Y
θ
‖2F

+
ε1
2

m∑
v=1

‖Xv−Av(Zv)>−PvXv −Ev +
Hv

1

ε1
‖2F +

ε2
2

m∑
v=1

‖Zv −Qv +
Hv

2

ε2
‖2F ,

(10)
where Y , {Hv

1} and {Hv
2} are the Lagrange multipliers, and θ, ε1 and ε2 signifies the penalty

coefficients. Then, the optimization of the STONE objective function can be streamlined into six
sub-problems labeled as {Zv}, {Av}, {Pv}, {Qv}, E and S for individual optimization. Given
space limitations, the comprehensive optimization procedures and pseudocode are outlined in the A.1
of the supplementary materials.
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3.3 Convergence Analysis

The validation presented in Theorem 1 establishes the reliability of the optimization algorithm’s
convergence, while Appendix A.2 of the supplementary materials offers an in-depth exploration of
the underlying details.

Theorem 1. The sequence generated by the employed optimization algorithm, denoted as Gt =
{Zvt ,Evt ,Pvt ,Av

t ,H
v
1t,H

v
2t,Q

v
t ,St}∞t=1, adheres to the following two fundamental principles:

• The set {Gt}∞t=1 is bounded;

• Any accumulation point of the sequence {Gt}∞t=1 is a KKT point of Eq.(10).

3.4 Complexity Analysis

The computational requirements of STONE are split into two primary areas: optimizing variables and
performing clustering. At the outset, the process involves updating several key variables-Lvh,Z

v,Ev,
Pv,Av,Qv,S -with their respective time complexities beingO(l2m log(l),O(nl2+nldv),O(ndv),
O(n(dv)2 + nldv),O(nldv + l2dv),O(nl2),O(mnl log(mn) + nm2l). In the following phase, the
computational complexity is given by O(nlm + ndmax). This indicates a direct proportionality
to the sample size n. Furthermore, the memory complexity of the STONE model, expressed as
O(nlm+ ndmax), also maintains a linear growth pattern with respect to n.

3.5 Comparison with Previous Studies

In recent years, various tensor-based multi-view clustering algorithms, such as MVSC-TLRR [36],
TLSpNM-MSC [38], SSG-TAR [39], NOODLE [53], ASR-ETR [33], and EDISON [54], have
been proposed to explore high-order correlations among views by pursuing a global low-rank
structure in tensor representations. However, our STONE model significantly differs from these
methods. For instance, unlike MVSC-TLRR, TLSpNM-MSC, SSG-TAR and NOODLE, our STONE
model differs by enhancing computational efficiency through the construction of anchor subspace
representations rather than relying on traditional subspace representations. Moreover, unlike the
ASR-ETR, which lowers computational complexity through anchor dictionary representation, our
STONE model builds on this by using the EAD strategy to address challenges related to insufficient
data sampling. Additionally, STONE employs anchor hypergraph Laplacian regularization rather
than anchor Laplacian regularization in ASR-ETR, which further enhances the accuracy of subspace
representations. In contrast to the EDISON, designed for incomplete multi-view data, our approach
not only has differences in dictionary representations due to variations in data completeness, but also
employs distinct non-convex functions to regularize the singular values of tensor data during the
recovery of compact tensor representations.

4 Experiment

In this section, we present comprehensive experiments to evaluate the performance of the STONE
model. Due to space constraints, a portion of the experiments is presented here, with additional
experiments detailed in the Appendix A.3 of the supplementary materials.

4.1 Experimental Setup

Table 1: Overview of Statistical Features for
Eight Datasets.

Datasets Type Samples Clusters Views
NGs Text 500 5 3

BBCSport Text 544 5 2
HW Digit 2000 10 2

Scene15 Scene 4485 15 3
MSRCV1 Object 210 7 5

Caltech101-all Object 9144 102 6
ALOI-100 Object 10800 100 4
CIFAR10 Object 50000 10 4

Datasets: For the clustering experiments, we em-
ploy eight datasets: NGs, BBCSport, HW, Scene15,
MSRCV1, Caltech101-all, ALOI-100, and CIFAR10.
More detailed descriptions of these datasets can be
found in Table 1.

Baselines: Ten SOTA methods, including eight
shallow-based models and two deep learning mod-
els: SMVSC (2021) [55], SFMC (2022) [56], GMC
(2019) [57], MSC2D (2023) [58], MVCtopl (2022)
[59], MVSCTM (2022) [60], ETLMC (2019) [61],
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Table 2: Clustering Performance Comparison Across Eight Datasets (Mean ± Standard Deviation).
Dataset Metric SC-best SMVSC SFMC GMC MSC2D MVCtopl MVSCTM ETLMSC TBGL MFLVC GCFAgg STONE

ACC 0.259±0.001 0.710±0.000 0.218±0.000 0.982±0.000 0.977±0.003 0.440±0.000 0.264±0.000 0.679±0.001 0.236±0.000 0.710±0.000 0.650±0.000 1.000±0.000
NMI 0.018±0.000 0.564±0.000 0.021±0.000 0.939±0.000 0.927±0.010 0.351±0.000 0.071±0.000 0.604±0.002 0.035±0.000 0.567±0.000 0.506±0.000 1.000±0.000
PUR 0.259±0.001 0.712±0.000 0.220±0.000 0.982±0.000 0.977±0.003 0.500±0.000 0.266±0.000 0.707±0.001 0.240±0.000 0.736±0.000 0.680±0.000 1.000±0.000

F-score 0.221±0.000 0.628±0.000 0.329±0.000 0.964±0.000 0.955±0.006 0.432±0.000 0.334±0.000 0.647±0.001 0.327±0.000 0.632±0.000 0.569±0.000 1.000±0.000
NGs

ARI 0.005±0.000 0.520±0.000 0.001±0.000 0.955±0.000 0.944±0.008 0.205±0.000 0.015±0.000 0.551±0.001 0.002±0.000 0.534±0.000 0.461±0.000 1.000±0.000
ACC 0.504±0.004 0.507±0.000 0.366±0.000 0.807±0.000 0.606±0.001 0.752±0.000 0.421±0.000 0.961±0.000 0.548±0.000 0.643±0.000 0.638±0.000 1.000±0.000
NMI 0.210±0.002 0.210±0.000 0.021±0.000 0.723±0.000 0.479±0.018 0.601±0.000 0.201±0.000 0.890±0.000 0.277±0.000 0.453±0.000 0.393±0.000 1.000±0.000
PUR 0.553±0.004 0.535±0.000 0.369±0.000 0.844±0.000 0.642±0.007 0.789±0.000 0.461±0.000 0.961±0.000 0.550±0.000 0.684±0.000 0.638±0.000 1.000±0.000

F-score 0.414±0.002 0.368±0.000 0.385±0.000 0.794±0.000 0.581±0.008 0.689±0.000 0.445±0.000 0.938±0.000 0.473±0.000 0.510±0.000 0.482±0.000 1.000±0.000
BBCSport

ARI 0.159±0.005 0.171±0.000 0.004±0.000 0.722±0.000 0.373±0.014 0.577±0.000 0.125±0.000 0.919±0.000 0.188±0.000 0.375±0.000 0.339±0.000 1.000±0.000
ACC 0.739±0.000 0.821±0.000 0.859±0.000 0.882±0.000 0.879±0.010 0.631±0.000 0.653±0.000 0.998±0.000 0.863±0.000 0.871±0.000 0.829±0.000 1.000±0.000
NMI 0.699±0.000 0.789±0.000 0.900±0.000 0.893±0.000 0.892±0.011 0.676±0.000 0.691±0.000 0.995±0.000 0.890±0.000 0.883±0.000 0.791±0.000 1.000±0.000
PUR 0.739±0.000 0.821±0.000 0.883±0.000 0.882±0.000 0.879±0.010 0.674±0.000 0.696±0.000 0.998±0.000 0.881±0.000 0.871±0.000 0.829±0.000 1.000±0.000

F-score 0.653±0.000 0.752±0.000 0.855±0.000 0.865±0.000 0.860±0.018 0.595±0.000 0.613±0.000 0.996±0.000 0.854±0.000 0.850±0.000 0.744±0.000 1.000±0.000
HW

ARI 0.612±0.000 0.723±0.000 0.838±0.000 0.850±0.000 0.844±0.021 0.542±0.000 0.563±0.000 0.996±0.000 0.836±0.000 0.833±0.000 0.715±0.000 1.000±0.000
ACC 0.229±0.005 0.336±0.000 0.092±0.000 0.140±0.000 0.274±0.059 0.631±0.000 0.196±0.000 0.847±0.030 0.298±0.000 0.328±0.000 0.341±0.000 0.977±0.000
NMI 0.204±0.002 0.323±0.000 0.000±0.000 0.058±0.000 0.218±0.072 0.676±0.000 0.160±0.000 0.867±0.016 0.257±0.000 0.344±0.000 0.359±0.000 0.962±0.000
PUR 0.288±0.003 0.348±0.000 0.092±0.000 0.146±0.000 0.290±0.056 0.674±0.000 0.232±0.000 0.886±0.017 0.302±0.000 0.339±0.000 0.383±0.000 0.977±0.000

F-score 0.151±0.003 0.242±0.000 0.129±0.000 0.132±0.000 0.172±0.041 0.595±0.000 0.133±0.000 0.831±0.033 0.199±0.000 0.245±0.000 0.242±0.000 0.958±0.000
Scene15

ARI 0.085±0.003 0.170±0.000 0.000±0.000 0.004±0.000 0.060±0.054 0.542±0.000 0.015±0.000 0.818±0.035 0.102±0.000 0.183±0.000 0.187±0.000 0.955±0.000
ACC 0.643±0.000 0.819±0.000 0.810±0.000 0.748±0.000 0.846±0.052 0.367±0.000 0.376±0.000 0.962±0.000 1.000±0.000 0.414±0.000 0.543±0.000 1.000±0.000
NMI 0.555±0.000 0.718±0.000 0.721±0.000 0.742±0.000 0.780±0.017 0.287±0.000 0.296±0.000 0.937±0.000 1.000±0.000 0.387±0.000 0.496±0.000 1.000±0.000
PUR 0.700±0.000 0.819±0.000 0.810±0.000 0.790±0.000 0.855±0.032 0.400±0.000 0.410±0.000 0.962±0.000 1.000±0.000 0.419±0.000 0.557±0.000 1.000±0.000

F-score 0.531±0.000 0.699±0.000 0.714±0.000 0.697±0.000 0.754±0.026 0.295±0.000 0.295±0.000 0.928±0.000 1.000±0.000 0.372±0.000 0.433±0.000 1.000±0.000
MSRCV1

ARI 0.452±0.000 0.649±0.000 0.663±0.000 0.640±0.000 0.712±0.032 0.155±0.000 0.157±0.000 0.917±0.000 1.000±0.000 0.244±0.000 0.346±0.000 1.000±0.000
ACC 0.651±0.011 0.351±0.000 0.680±0.000 0.721±0.000 0.689±0.035 0.441±0.000 0.443±0.000 0.767±0.000 0.694±0.000 0.274±0.000 0.807±0.000 0.814±0.000
NMI 0.802±0.003 0.613±0.000 0.702±0.000 0.744±0.000 0.732±0.026 0.652±0.000 0.619±0.000 0.862±0.000 0.728±0.000 0.687±0.000 0.908±0.000 0.909±0.000
PUR 0.677±0.010 0.359±0.000 0.691±0.000 0.731±0.000 0.707±0.028 0.514±0.000 0.509±0.000 0.789±0.000 0.709±0.000 0.274±0.000 0.824±0.000 0.849±0.000

F-score 0.553±0.009 0.217±0.000 0.129±0.000 0.173±0.000 0.166±0.034 0.187±0.000 0.111±0.000 0.687±0.000 0.162±0.000 0.228±0.000 0.760±0.000 0.736±0.000
ALOI-100

ARI 0.548±0.009 0.206±0.000 0.114±0.000 0.158±0.000 0.151±0.035 0.173±0.000 0.095±0.000 0.684±0.000 0.147±0.000 0.215±0.000 0.757±0.000 0.733±0.000
ACC 0.193±0.004 0.307±0.000 0.241±0.000 0.195±0.000 0.225±0.048 0.121±0.000 0.122±0.000 OM OM 0.217±0.000 0.197±0.000 0.650±0.000
NMI 0.403±0.004 0.397±0.000 0.206±0.000 0.238±0.000 0.224±0.051 0.183±0.000 0.181±0.000 OM OM 0.275±0.000 0.431±0.000 0.862±0.000
PUR 0.404±0.007 0.370±0.000 0.290±0.000 0.301±0.000 0.296±0.052 0.208±0.000 0.213±0.000 OM OM 0.287±0.000 0.379±0.000 0.855±0.000

F-score 0.147±0.007 0.266±0.000 0.054±0.000 0.050±0.000 0.057±0.005 0.050±0.000 0.048±0.000 OM OM 0.172±0.000 0.229±0.000 0.528±0.000
Caltech101-all

ARI 0.132±0.007 0.235±0.000 0.000±0.000 -0.004±0.000 0.003±0.006 -0.002±0.000 -0.005±0.000 OM OM 0.134±0.000 0.216±0.000 0.519±0.000
ACC 0.907±0.000 0.990±0.000 0.988±0.000 OM OM OM OM OM OM 0.993±0.000 0.989±0.000 0.994±0.000
NMI 0.805±0.000 0.973±0.000 0.969±0.000 OM OM OM OM OM OM 0.980±0.000 0.974±0.000 0.984±0.000
PUR 0.907±0.000 0.990±0.000 0.988±0.000 OM OM OM OM OM OM 0.993±0.000 0.989±0.000 0.994±0.000

F-score 0.827±0.000 0.980±0.000 0.977±0.000 OM OM OM OM OM OM 0.986±0.000 0.979±0.000 0.989±0.000
CIFAR10

ARI 0.807±0.000 0.978±0.000 0.975±0.000 OM OM OM OM OM OM 0.985±0.000 0.976±0.000 0.988±0.000
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Figure 3: Impact of Parameter δ on the STONE Model.

TBGL (2023) [62], MFLVC (2022) [63], GCFAgg (2023) [64], along with spectral clustering with
the best view (SC-best) [65], are used for comparison.

Evaluation Metrics: To provide a comprehensive evaluation of clustering quality, we employ five
metrics, namely ACC, NMI, PUR, F-score, and ARI. Better clustering quality is indicated by higher
values of these metrics.

Implementation Overview: For the comparative methods, the parameters are fine-tuned in ac-
cordance with the instructions presented in the respective literature, and the optimal outcomes are
reported. For the STONE model, there are five parameters that necessitate adjustment. To be specific,
the intrinsic parameter δ and the number of anchor points c are tuned individually within the ranges
[0.1, 0.5, 1, 1.5, 5] and [c, 2c, ..., 7c], respectively. The three balancing parameters α, β, and γ
are finely tuned within the range [1e-5,1e-5,..., 1e+1] using a grid search strategy. To maintain
rigor, we perform each experiment a total of 10 times, and we present both the mean results and the
standard deviations for comparison. The experimental procedures for the shallow learning model are
implemented using MATLAB 2018a on a computer featuring a 3.70GHz i9-10900k CPU and 64GB
RAM. Conversely, the deep learning model experiments are facilitated by PyTorch 1.12, deployed on
an RTX 4060 GPU.

4.2 Comparison of Clustering Performance and Efficiency

The clustering performance and computational efficiency of the proposed STONE model are demon-
strated separately in this subsection.

Performance Assessment: To validate the effectiveness of our STONE method, we evaluate its
clustering performance on eight datasets and compared it with ten SOTA methods across five metrics.
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Table 3: Efficiency Comparison of Different Methods on Datasets with over 4,000 Samples.

Datasets SMVSC SFMC GMC MSC2D MVCtopl MVSCTM ETLMSC TBGL MFLVC GCFAgg STONE
Scene15 19.79 23.91 57.14 174.1 131.91 482.22 639.95 1279.9 107.59 145.65 6.52

ALOI-100 197.76 148.75 440.36 1013.9 7067.8 2064.7 4257.3 26109 659.69 400.85 66.57
Caltech101-all 247.29 165.36 398.94 856.3 5704.9 1169.2 OM OM 1212.5 589.01 285.11

CIFAR10 867.26 4251.3 OM OM OM OM OM OM 1257.08 1978.88 860.8
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Figure 4: The Influence of Anchor Quantity on STONE Model Performance.

The results are summarized in Table 2, where the highest and second-highest values are marked with
bold and underlined, respectively. The acronym ’OM’ signifies occurrences of out-of-memory errors.
From Table 2, we can draw the following three findings:

1) Our STONE model exhibits excellent clustering performance across all datasets, significantly
surpassing competitors in certain scenarios. For instance, on the Scene15 dataset, STONE outperforms
the second-ranked method, ETMSLC, across five performance metrics (ACC, NMI, PUR, F-score,
and ARI) with improvements of 13%, 9.5%, 9.1%, 12.7% and 13.7%, respectively. Moreover,
STONE demonstrates ideal clustering performance on the NGs, BBCSport, HW, and MSRCV1
datasets. These results indicate that the STONE model effectively uncovers higher-order correlations
among multiple views as well as the geometric manifold information within each view, contributing
to improved clustering outcomes.

2) Methods based on tensor constraints often outperform those based on matrix constraints in terms
of clustering performance. This enhancement is primarily attributed to the ability of tensor-based
approaches to impose low-rank constraints at the tensor level, effectively capturing the inherent
high-order correlations in multi-view data. In contrast, matrix-based methods generally focus only on
linear correlations within individual views.

3) In comparison to prominent deep learning models, such as MFLVC [63] and GCFAgg [64], the
STONE method demonstrates superior performance in most scenarios. This suggests that shallow
learning models can still produce more effective clustering results than deep learning methods in
multi-view tasks by cleverly extracting the rich information contained within multi-view data.

Efficiency Assessment: To demonstrate the efficiency of the STONE method, we record its running
time on datasets containing over 4000 instances and compared it with other benchmark methods. The
comparison results are summarized in Table 3. Notably, STONE exhibits significant efficiency in this
comparison. For instance, on the ALOI-100 dataset, our method runs in 66.57 seconds, whereas the
anchor tensor-induced model TBGL takes over 26000 seconds, which is considerably longer than the
STONE model. The STONE method achieves higher efficiency due to its innovative combination of
anchor point dictionary representation learning and anchor hypergraph Laplacian regularization. This
approach selectively incorporates a small subset of the most discriminative anchor points, ensuring
faster computational efficiency while preserving precise clustering performance.

4.3 Parameters Analysis

In the STONE model, there are five parameters, including the built-in parameter δ, the number of
anchors l, and three balancing parameters α, β, and γ. This subsection investigates the impact of
these parameters on the STONE model. Specifically, the parameters δ and l are treated as independent
variables for individual tuning, while the balancing parameters are adjusted pairwise using a grid
search strategy.
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Figure 5: Sensitivity Analysis of the STONE Model to the Balance Parameters α, β and γ.

Impact of the Built-in Parameter δ: HTR is utilized as a non-convex penalty term for the singular
values of tensor data, dynamically controlling the degree of shrinkage applied to different singular
values by adjusting the parameteras δ. We explore the impact on clustering results for datasets NGs,
HW, and MSRCV1 by adjusting the parameter δ across the values [0.1, 0.5, 1, 1.5, 2, 5]. This
variation enabled us to assess its impact on the clustering outcomes, with the results detailed in
Figure 3. Clearly, alterations in the value of δ lead to fluctuations in the clustering results, driven by
the varying contraction degree of δ across different singular values.

Influence of the Number of Anchors: In this subsection, we study how the number of anchors
affects the performance of STONE, with anchor counts ranging from [c, 7c] and a step size of c.
As illustrated in Figure 4, the clustering performance of STONE shows a fluctuating pattern as the
number of anchors varies. Interestingly, the performance curve does not monotonically increase
with the number of anchors, which means that choosing a smaller number of discriminant anchors is
preferable to choosing a larger number of non-discriminant anchors. In addition, the best clustering
quality can be obtained by using c or 2c anchor points in STONE, which shows that the coordination
between the EAD and the AHR improves the discrimination of the anchor points.

Sensitivity Analysis of Balancing Parameters: To assess the importance of the balancing parameters
α, β, and γ in the STONE model, we implement a grid search strategy across the range of [1e-5,
1e+1] to optimize these parameters. Figure 5 demonstrates how the model’s performance changes
with various combinations of these parameters, highlighting fluctuations in clustering performance
based on the chosen values. Notably, optimal performance can be achieved through careful tuning,
suggesting that the modules within the STONE model can effectively coordinate their importance to
extract valuable information, thereby enhancing clustering performance.

4.4 Convergence Behavior

This subsection provides an experimental validation of the convergence of the STONE model, utilizing
two key metrics: reconstruction error (RE), defined as RE =

∑m
v=1 ‖Xv−Av(Zv)>−PvXv−Ev‖∞

and matching error (ME), represented as ME = ‖Z −S‖∞. The iterative trends observed on the
NGs, HW, and MSRCV1 datasets, as depicted in Figure 6, demonstrate that both RE and ME exhibit
rapid convergence to 0 within 15 iterations, followed by stabilization. This outcome substantiates the
robust convergence properties of the STONE method.

4.5 Ablation Study

Table 4: Analysis of STONE Model Ablation.

Datasets NGs MSRCV1 HW
LEAD LRE LAHR ACC NMI ACC NMI ACC NMI
" 0.438 0.291 0.148 0.030 0.988 0.974

" 0.208 0.012 0.205 0.033 0.977 0.951
" 0.596 0.473 0.148 0.030 0.988 0.974

" " 0.960 0.897 0.976 0.946 0.881 0.841
" " 0.534 0.397 0.786 0.631 0.983 0.971

" " 0.458 0.311 0.571 0.384 0.854 0.841
" " " 1.000 1.000 1.000 1.000 1.000 1.000

Comprehensive ablation experiments are car-
ried out in this subsection to systematically as-
sess the contributions of various modules within
the STONE model. Here, we assign the val-
ues of the balancing parametersset α, β, and
γ—governing the loss terms LEAD, LRE , and
LAHR, respectively—to 0, essentially isolating
and removing each loss term separately from the
STONE model. The experimental results for the
NGs, MSRCV1 and HW datasets are presented in Table 4, with checkmarks denoting the considera-
tion of the corresponding loss. The best-performing results are indicated in bold. Table 4 reveals
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Table 5: Comparison of STONE and STONE-v1 across Different Datasets.
Datasets NGs BBCSport HW Scene15 MSRCV1 ALOI-100 Cal101-all CIFAR10

STONE-v1 0.379±0.000 0.648±0.000 0.740±0.000 0.629±0.000 0.469±0.000 0.600±0.000 0.319±0.000 0.501±0.000
STONE 1.000±0.000 1.000±0.000 1.000±0.000 0.977±0.000 1.000±0.000 0.814±0.000 0.650±0.000 0.994±0.000
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Figure 6: Convergence Curves of STONE on Three Datasets.

that the clustering performance of degraded models, achieved by removing one or two submodules
from the STONE model, is notably inferior to that of the complete STONE model. This emphasizes
the successful collaboration of LEAD, LRE , and LAHR within the STONE framework, allowing
them to synergistically exploit the abundant information embedded in multi-view data and attain
commendable clustering performance. Additionally, HTR is a novel tensor low-rank constraint in
our STONE model, aimed at capturing high-order correlations and managing variations in tensor
singular values. To assess its impact, we conduct an ablation study comparing the original STONE
model with a version that excludes the HTR module (referred to as STONE-v1). Table 5 shows the
clustering ACC across different datasets, revealing a drop in performance on all datasets when the
HTR module is removed. This suggests that the integration of HTR enhances the exploration of
high-order correlations, thereby improving the quality of data partitioning.

5 Conclusion

This paper introduces a novel tensor-based multi-view subspace clustering framework that integrates
triple information enhancement from dictionary to tensor representation. Through the design of
the enhanced anchor dictionary representation, hyperbolic tangent rank, and anchored hypergraph
Laplacian regularization, our model extensively investigates valuable insights within multi-view data.
Experimental results demonstrate that the STONE model outperforms SOTA models on eight datasets
in terms of both effectiveness and efficiency.
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A Appendix / supplemental material

This supplementary material offers a comprehensive elaboration on the optimization steps presented
in the main manuscript, as well as the validation of the theorems. We also include additional
experimental results.

A.1 Optimization of the Algorithm

As detailed in the main text, auxiliary variables S and {Qv} are introduced to facilitate the indepen-
dent optimization of each variable.

min
{Zv,Pv,Av,Qv},E,S

‖S‖HTR +
α

2

m∑
v=1

‖Pv‖2F + β‖E‖2,1 + γ

m∑
v=1

Tr(QvLvh(Qv)>)

+
θ

2
‖Z − S +

Y
θ
‖2F +

ε1
2

m∑
v=1

‖Xv−Av(Zv)>−PvXv −Ev +
Yv

1

ε1
‖2F

+
ε2
2

m∑
v=1

‖Zv −Qv +
Yv

2

ε2
‖2F ,

(11)

Next, we utilize the ADMM algorithm [66] to individually optimize each variable as follows:

{Zv} Subproblem: Under the assumption that all other variables remain constant while Zv varies,
the optimization in Eq (11) simplifies to a single-variable optimization problem. To find the optimal
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solution, we take the partial derivative of Eq (11) with respect to Zv and set it to zero, resulting in the
following solution:

Zv = (θSv −Yv + ε1(Xv)>Av − ε1(Ev)>Av− ε1(Xv)>(Qv)>Av

+ ε1(Hv
1)>Av+ ε2Q

v −Hv
2)× [(θ + ε2)I + ε1(Av)>Av]−1.

(12)

{Pv} Subproblem: In this case, we treat only Pv as a variable. To find the optimal solution, we set
the first derivative of Eq. (11) with respect to Pv to zero, resulting in the following expression:

Pv =(ε1X
v − ε1Av(Zv)> − ε1Ev + Hv

1)

× (Xv)>(αI + ε1X
v(Xv)>)−1.

(13)

E Subproblem: In a similar vein, assuming that all variables in Eq (11) are constant except for E,
we can reframe the optimization problem for E as follows:

min
E

β

ε1
‖E‖2,1 +

1

2
‖E−R‖2F . (14)

where R is constructed by horizontally stacking Xv−Av(Zv)>−PvXv+
Hv

1

ε1
. The optimal solution

for E can then be derived by solving Eq (14) as follows:

E∗:,i =

{
‖R:,i‖2− β

ε1

‖R:,i‖2 R:,i, ‖R:,i‖2 > β
ε1

0, otherwise
(15)

{Av} Subproblem: When the other variables are held constant and Av is treated as the variable, the
optimization problem for Av can be reformulated as follows:

max
Av

Tr((Av)>K), s.t. (Av)>Av = I, (16)

In Eq (16), we define K =
∑m
v=1

ε1
2 (Xv − PvXv − Ev +

Hv
1

ε1
)Zv and apply singular value

decomposition (SVD). From the results of the SVD, we can determine that the optimal solution for
A = BD>, where B and D represent the left and right singular vector matrices, respectively.

{Qv} Subproblem: In the scenario where Qv is the sole variable in Eq (11), we take the partial
derivative of Eq (11) with respect to Qv and set it to zero, leading us to express the optimal solution
for Qv in the following form:

Qv = (ε2Z
v −Hv

2)(2γLvh + ε2I)
−1, (17)

S Subproblem: When S is the only variable, the optimal value of S can be redefined as a tensor
hyperbolic tangent rank optimization problem in the following mathematical form:

min
S
‖S‖HTR +

θ

2

∥∥∥∥Z − S +
Y
θ

∥∥∥∥2
F

(18)

To find the solution for Eq. (18) with respect to S, we first introduce the following theorem related to
the tensor optimization problem:
Theorem 2. Let G ∈ Rn1×n2×n3 be a tensor, and consider its t-SVD (tensor singular value
decomposition) expressed as G = B ∗ C ∗D>. We will analyze the following tensorial hyperbolic
tangent rank minimization problem:

min
S
τ‖S‖HTR +

1

2
‖S − G‖2F , (19)

The optimal solution for Eq. (19) takes the following mathematical form:

S∗ = B ∗ ifft(Θf,τ (C(k)f ), [], 3) ∗D>, (20)

where ifft(Θf,τ (C(k)f ), [], 3) is a tensor in which all frontal slices are diagonal matrices, and

Θf,τ (C(k)f (ii)) meet the following condition:

Θf,τ (C(k)f (ii)) = min
x≥0

1

2
(x− Ckf (ii)2) + τf(x), (21)

where f(x) = eδx−e−δx
eδx+e−δx

.
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Algorithm 1: Algorithm for solving STONE model
Input: Multi-view data {Xv}mv=1, trade-off parameters α, β, γ, cluster number c and anchor

number l.
Output: Clustering results

1 Initialize {Zv,Pv,Qv,Ev,Hv
1,H

v
2}mv=1 with zero matrix, S = Y = 0, ε1 = ε2 = θ = 10−5,

η = 2, µmax = θmax = 1010, µ = 10−7;
2 while not converge do
3 Compute hyper-Laplacian matrices {Lvh}mv=1 from {Av}mv=1;
4 Update {Zv}mv=1 by solving Eq. (12);
5 Update {Pv}mv=1 by solving Eq. (13);
6 Update E by solving Eq. (14);
7 Update {Av}mv=1 by solving Eq. (16);
8 Update {Qv}mv=1 by solving Eq. (17);
9 Update S by solving Eq. (20);

10 Update Y , Hv
1 , Hv

2 , εi and θ by using Eq. (23);
11 Check the convergence conditions: ‖Xv−Av(Zv)>−PvXv−Ev‖∞ < µ and

‖Z −S‖∞ < µ
12 end
13 Output clustering results via k-means on the left singular vector of the concatenated matrix Z̄.

Eq. (21) incorporates a mix of concave and convex functions, which allows for the use of difference
of convex programming [67]. This technique facilitates obtaining a closed-form solution.

φiter+1 =

(
C(k)f (ii)− τ∂f(φiter)

θ

)
+

(22)

where φ = Θf, βθ
(C(k)f (ii)), f(x) = eδx−e−δx

eδx+e−δx
and iter indicates the iteration count.

Multipliers and the Penalty Parameters Subproblem: Finally, Y , Hv
1 , Hv

2 , εi and θ are updated as
follows: 

Y = Y + θ(Z − S),
Hv

1 = Hv
1+ ε1(Xv−Av(Zv)>−PvXv−Ev),

Hv
2 = Hv

2+ ε2(Zv −Qv),
µi = min(ηεi, εmax), i = 1, 2,
θ = min(ηθ, θmax).

(23)

Thus, the solutions for all variables in the STONE model have been optimized. To provide clarity, the
complete optimization process is detailed in Algorithm 1.

A.2 Convergence Proof

The Theorem 1 presented in the main text ensures the convergence of the optimization algorithm.
We will now demonstrate the two conditions specified in Theorem 1. To begin, we introduce the
following lemma:
Lemma 1. In the context of the real Hilbert spaceH, we define an inner product 〈·, ·〉 and a norm
| · |, along with their dual norm ‖ · ‖dual. For any element y within the subdifferential of the function
f(·), denoted as y ∈ ∂|x|, the subsequent properties are observed: when x is not the zero vector, the
dual norm of y is exactly 1; when x is the zero vector, the dual norm of y does not exceed 1.
Lemma 2. Consider the function F(X) = f ◦ δ(X), where δ(X) = (σ1(X), . . . , σr(X)) is the
vector of singular values derived from the singular value decomposition (SVD) of X ∈ Rm×n, with
r being the minimum of m and n. The function f(·) : Rr → R is assumed to be differentiable and
invariant under permutation of its arguments. The subdifferential of F (X) at the point X can be
expressed as:

∂F (X)

∂X
= BDiag(∂f(δ(X)))D>,

where ∂f(δ(X)) =
(
∂f(σ1(x))

∂X , . . . , ∂f(σr(x))∂X

)
.
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Proof of the boundedness of the sequence {Gt}∞t=1: In the course of the (t + 1)-th cycle, the
mechanism updating Evt+1 ensures it complies with the necessary first-order optimality criteria.
Consequently, it follows that:

0 ∈ β∂‖Evt+1‖2,1 + ε1t‖Evt+1−(Xv
t+1−Av(Zvt+1)>−Pvt+1X

v+
Hv

1t

ε1
)‖2F

= β∂‖Evt+1‖2,1 −Hv
1,t+1,

(24)

From Eq. (24), we can derive the following:
1

β
[Hv

1,t+1]:,j = ∂‖[Evt+1]:,j‖2, (25)

where [Hv
1,t+1]:,j and [Evt+1]:,j correspond to the j-th column of the matrices. Furthermore, taking

into account the self-duality property of the `2 norm and utilizing Lemma 2, we can conclude that
1
β [Hv

1,t+1]:,j ≤ 1. This further establishes the boundedness of the sequence [Hv
1,t+1]. In parallel,

the update for Qv
t+1 ensures that H2,t+1 not only meets but also optimizes the first-order optimality

criteria. Hence, it can be inferred that the sequence Hv
2,t+1 is bounded as well.

Regarding the sequence {Yt+1}, the update mechanism for S guarantees that St+1 achieves opti-
mality and meets the criteria for first-order optimality. Thus, we have:

∂‖St+1‖HTR = Yt+1. (26)

Furthermore, leveraging the tensor singular value decomposition and Lemma 2, we can derive the
following relationship:

‖∂‖St+1‖HTR‖2F =

∥∥∥∥ 1

n
B ∗ ifft(∂f(Cf ), [], 3) ∗DT

∥∥∥∥
=

∥∥∥∥ 1

n2
(ifft(∂f(Cf ), [], 3))

∥∥∥∥2
F

=

∥∥∥∥ 1

n3
(∂f(Cf ))

∥∥∥∥2
F

≤ 1

n3

n∑
k=1

min(n,m)∑
j=1

[(∂f(Ckf (jj))]2.

(27)

This observation indicates that ∂‖Sf,t+1‖HTR has an upper bound, which in turn allows us to deduce
that the sequenc {Yt+1} is bounded.

Based on the iterative procedures described in Algorithm 1, we can derive the following inequality
relationships:

L(Zvt+1,E
v
t+1,P

v
t+1,A

v
t+1,Q

v
t+1,St+1,H

v
1,t,H

v
2,t,Yt, θt, ε1,t, ε2,t)

≤ L(Zvt ,E
v
t ,P

v
t ,A

v
t ,Q

v
t ,St,Hv

1,t,H
v
2,t,Yt, θt, ε1,t, ε2,t)

= L(Zvt ,E
v
t ,P

v
t ,A

v
t ,Q

v
t ,St,Hv

1,t−1,H
v
2,t−1,Yt−1, θt−1, ε1,t−1, ε2,t−1)

+
θt − θt−1

2θ2t−1
‖Yt −Yt−1‖2F +

ε1,t − ε1,t−1
2ε21,t−1

∥∥Hv
1,t −Hv

1,t−1
∥∥2
F

+
ε2,t − ε2,t−1

2ε22,t−1

∥∥Hv
2,t −Hv

2,t−1
∥∥2
F

(28)

Consequently, by adding up both sides of Eq. (28) over the range from t = 1 to t = n, we deduce the
following consequence:

L(Zvt+1,E
v
t+1,P

v
t+1,A

v
t+1,Q

v
t+1,St+1,H

v
1,t,H

v
2,t,Yt, θt, ε1,t, ε2,t)

≤ L(Zv1,E
v
1,P

v
1,A

v
1,Q

v
1,S1,H

v
1,0,H

v
2,0,Y0, θ0, ε1,0, ε2,0)

+

n∑
t=1

θt − θt−1
2θ2t−1

‖Yt −Yt−1‖2F

+

n∑
t=1

ε1,t − ε1,t−1
2ε21,t−1

∥∥Hv
1,t −Hv

1,t−1
∥∥2
F

+

n∑
t=1

ε2,t − ε2,t−1
2ε22,t−1

∥∥Hv
2,t −Hv

2,t−1
∥∥2
F

(29)
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Given the finite nature of the initial L(Zv1,E
v
1,P

v
1,A

v
1,Q

v
1,S1,H

v
1,0,H

v
2,0,Y0, θ0, ε1,0, ε2,0) eval-

uated at the starting points and the boundedness of the sequences {Yt}, {H1,t}, {H2,t}, along
with the boundedness of the incremental sums involving

∑n
t=1

θt−θt−1

2θ2t−1
,
∑n
t=1

ε1,t−ε1,t−1

2ε21,t−1
and∑n

t=1
ε2,t−ε2,t−1

2ε22,t−1
, we deduce that sequence L remains bounded at iteration t + 1. Additionally,

since the norm ‖St+1‖HTR is bounded, it follows that the singular values of St+1 are also con-
strained. Continuing with the equation:

‖St+1‖2F =
1

n3
‖St+1‖2F

=
1

n3

n3∑
i=1

min(n1,n2)∑
j=1

[((C(i)f (jj))]2,

(30)

It is verified that the sequence {St+1} has finite limits. Moreover, it is evident that the
sequences{Av

t+1}, {Zvt+1}, {Qv
t+1},and {Pvt+1} are also finite.

Continuing from the earlier findings, we can assert that the sequence Gt, as yielded by Algorithm 1,
is bounded for every component within it.

Proof of convergence of accumulation points to stationary KKT points: As per the Weierstrass-
Bolzano theorem, it is guaranteed that the sequence {Gt}∞t=1 contains at least one accumulation point,
which we label as G∗t = {Zvt ,Evt ,Pvt ,Av

t ,Yt,Hv
1t,H

v
2t,St}∞t=1. From this, we can infer that:

lim
t→∞

(Zvt ,E
v
t ,P

v
t ,A

v
t ,Q

v
t ,St,Hv

1t,H
v
2t,Yt)

=(Zv∗,E
v
∗,P

v
∗,A

v
∗,Q

∗
v,S∗,Hv

1∗,H
v
2∗,Y∗).

(31)

Adhering to the update mechanism forY , we arrive at the subsequent expression:
Zt+1 − St+1 = (Yt+1 −Yt)/θt, (32)

Since θt approach infinity as t goes to infinity, and considering that the sequence {Yt} is bounded,
we can use the properties of limits to derive:

lim
t→∞
Zt+1 − St+1 = lim

t→∞
(Yt+1 −Yt)/θt = 0 (33)

By applying the analogous update processes for H1 and H2, we can formulate the subsequent
relationship: 

Xv
t+1 −Av

t+1(Zvt+1)> −Pvt+1X
v −Evt+1 =

Hv
1,t+1 −Hv

1,t

ε1,t
,

Zvt+1 −Qv
t+1 =

Hv
2,t+1 −Hv

2,t

ε2,t
.

(34)

In the same vein, considering that the sequences {Hv
1,t} and {Hv

2,t} remain bounded, while ε1,t and
ε2,t increase indefinitely as t approaches infinity, we can infer the following conclusions based on
limit properties:

lim
t→∞

Xv
t+1 −Av

t+1(Zvt+1)> −Pvt+1X
v −Evt+1 = lim

t→∞

Hv
1,t+1 −Hv

1,t

ε1,t
= 0,

lim
t→∞

Zvt+1 −Qv
t+1 = lim

t→∞

Hv
2,t+1 −Hv

2,t

ε2,t
= 0.

(35)

Based on Eqs. (33) and (35), we can deduce that in the limit,Z∗ is equal to Z∗, while Xv and Ev

exhibit a specific linear relationship, and Zv∗ equals Qv
∗. Additionally, since St+1, Evt+1 and Qv

t+1
satisfy the first-order optimality conditions, we can conclude that:

0 ∈ ∂‖St+1‖HTR −Yt+1 ⇒ Y∗ = ∂‖S∗‖HTR

0 ∈ β∂‖Evt+1‖2,1 −Hv
1,t+1 ⇒ Hv

1,∗ = β∂‖Ev∗‖2,1
0 ∈ γ∂Tr(Qv

t+1L
v
t+1(Qv

t+1)>)−Hv
2,t+1 ⇒ Hv

2,∗ = γ∂Tr(Qv
∗L

v
∗(Q

v
∗)
>)

(36)

Consequently, the accumulation points of the sequence Gt produced by Algorithm 1 fulfill the KKT
conditions.
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Figure 7: Contrasting Consensus Affinity Matrices: STONE vs. SOTA on NGs Dataset.

A.3 Additional Experimental Results

This section outlines additional experimental results, including visualizations of block diagonal
structures, t-SNE, and some extra experiments mentioned in the text, such as parameter sensitivity,
convergence curves, and ablation studies.

Comparison of Block Diagonal Structures in Affinity Matrices: In this section, we examine
the block diagonal structures of affinity matrices learned by the STONE model alongside several
other state-of-the-art multi-view clustering methods. The comparative results on the NGs dataset
are illustrated in Figure 7. Notably, the consensus affinity matrix generated by the STONE model
clearly displays a well-defined block diagonal structure, while those produced by other approaches
frequently exhibit many spurious connections. This reinforces the effectiveness of the STONE
model in leveraging rich information from multi-view data through the synergistic integration of
discriminative anchor point learning, local structural information extraction, and the utilization of
tensor data priors, ultimately enhancing clustering performance.

Analysis of Multi-View Advantages Over Single-View: To demonstrate the STONE model’s
capability in leveraging the rich information inherent in multi-view data, Figure 8 displays the
t-SNE visualizations for each individual view alongside the integrated consensus graph. Notably, the
consensus graph presents a more distinct clustering pattern when compared to the individual view
graphs, which aids in the more precise segregation of the MSRCV1 dataset into seven unique classes.
This finding highlights the effectiveness of the STONE method in synthesizing multi-view data for
improved clustering performance.

Experimental Results for More Datasets: Due to space constraints, the main text presents only
partial results for some experiments. Here, we provide the complete results for all datasets, including
parameter sensitivity analyses, convergence curves, and ablation studies. Specifically, Figure 9,
Figure 10 and Figure 11 showcase the sensitivity of the STONE model to the parameters δ, the
number of anchors l, and the balancing parameters. Figure 12 illustrates the convergence curves for
eight datasets, while Table 6-Table 9 summarize the ablation studies for the three loss terms LEAD,
LRE and LAHR of STONE across all datasets.
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Figure 8: Comparative t-SNE Visualization Analysis: View-Specific Graphs vs. Consensus Graph.

Table 6: Analysis of STONE Model Ablation on NGs and BBCSport Datasets.

Datasets NGs BBCSport
LEAD LRE LAHR ACC NMI PUR F-score ARI ACC NMI PUR F-score ARI
" 0.438 0.291 0.438 0.348 0.183 0.800 0.690 0.800 0.691 0.600

" 0.208 0.012 0.212 0.329 0.000 0.831 0.712 0.831 0.711 0.624
" 0.596 0.473 0.636 0.532 0.396 0.996 0.987 0.996 0.996 0.995

" " 0.960 0.897 0.960 0.924 0.905 0.818 0.715 0.818 0.691 0.598
" " 0.534 0.397 0.572 0.449 0.274 0.368 0.137 0.474 0.296 0.084

" " 0.458 0.311 0.502 0.404 0.196 0.358 0.134 0.474 0.292 0.083
" " " 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: Analysis of STONE Model Ablation on HW and Scene15 Datasets.

Datasets HW Scene15
LEAD LRE LAHR ACC NMI PUR F-score ARI ACC NMI PUR F-score ARI
" 0.988 0.974 0.988 0.976 0.974 0.589 0.557 0.597 0.480 0.440

" 0.977 0.951 0.977 0.955 0.950 0.787 0.844 0.802 0.714 0.693
" 0.988 0.974 0.988 0.976 0.974 0.328 0.297 0.359 0.228 0.168

" " 0.881 0.841 0.881 0.815 0.794 0.724 0.802 0.760 0.655 0.629
" " 0.983 0.971 0.983 0.968 0.965 0.713 0.800 0.764 0.656 0.630

" " 0.854 0.841 0.854 0.786 0.762 0.678 0.807 0.746 0.687 0.663
" " " 1.000 1.000 1.000 1.000 1.000 0.977 0.962 0.977 0.958 0.955

20



0.1 0.5 1  1.5 2  5  
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(a) NGs
0.1 0.5 1  1.5 2  5  

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(b) BBCSport
0.1 0.5 1  1.5 2  5  

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(c) HW
0.1 0.5 1  1.5 2  5  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(d) Scene15

0.1 0.5 1  1.5 2  5  
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(e) MSRCV1
0.1 0.5 1  1.5 2  5  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(f) Caltech101-all
0.1 0.5 1  1.5 2  5  

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(g) ALOI-100
0.1 0.5 1  1.5 2  5  

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(h) CIFAR10

Figure 9: Impact of Parameter δ on the STONE Model on Eight Datasets.
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Figure 10: The Influence of Anchor Quantity on STONE Model Performance Across Eight Datasets.

Table 8: Analysis of STONE Model Ablation on MSRCV1 and ALOI-100 Datasets.

Datasets MSRCV1 ALOI-100
LEAD LRE LAHR ACC NMI PUR F-score ARI ACC NMI PUR F-score ARI
" 0.148 0.030 0.171 0.243 0.001 0.611 0.759 0.630 0.470 0.464

" 0.205 0.033 0.214 0.175 -0.002 0.592 0.757 0.628 0.444 0.438
" 0.148 0.030 0.171 0.243 0.001 0.488 0.669 0.530 0.234 0.222

" " 0.976 0.946 0.976 0.952 0.944 0.545 0.778 0.614 0.440 0.433
" " 0.786 0.631 0.786 0.630 0.570 0.580 0.776 0.625 0.447 0.439

" " 0.571 0.384 0.571 0.407 0.306 0.557 0.737 0.592 0.391 0.383
" " " 1.000 1.000 1.000 1.000 1.000 0.814 0.909 0.849 0.736 0.733
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Figure 11: Sensitivity Analysis of the STONE Model to Parameters α, β and γ on Eight Datasets.
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Figure 12: Convergence Curves of STONE Model on Eight Datasets.

Table 9: Analysis of STONE Model Ablation on Caltech101-all and CIFAR10 Datasets.

Datasets Caltech101-all CIFAR10
LEAD LRE LAHR ACC NMI PUR F-score ARI ACC NMI PUR F-score ARI
" 0.185 0.368 0.365 0.182 0.168 0.833 0.782 0.833 0.733 0.703

" 0.475 0.786 0.717 0.345 0.334 0.931 0.876 0.931 0.874 0.860
" 0.271 0.477 0.467 0.206 0.191 0.994 0.983 0.994 0.988 0.987

" " 0.499 0.799 0.753 0.378 0.368 0.830 0.867 0.857 0.829 0.809
" " 0.297 0.531 0.527 0.244 0.229 0.830 0.867 0.857 0.829 0.809

" " 0.516 0.740 0.732 0.405 0.394 0.884 0.821 0.884 0.805 0.783
" " " 0.609 0.834 0.815 0.494 0.485 0.994 0.984 0.994 0.989 0.988
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide a clear and accurate overview of the
paper’s contributions and scope, aligning with the main claims made throughout the text.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA]

Justification: The paper predominantly highlights the development of a new multi-view
clustering model, which, in comparison to state-of-the-art methods, doesn’t appear to exhibit
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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23



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A.2 presents the proof of convergence for the iterative optimization
algorithm, with each lemma and theorem involved being rigorously proven within this
subsection.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the source code and datasets in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental settings have been introduced in subsection 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We reported the standard deviations of various algorithms on different datasets
in Table 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In subsection 4.2 of the experimental section, we compared the runtime of
our method with other SOTA methods. Additionally, in subsection 3.4, we analyzed the
computational complexity and space complexity of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics
in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: The paper does not involve applications with direct societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the description of safeguards for responsible release
of data or models with a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code for the comparison methods in the experimental section all includes
proper citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided the source code of our algorithm, which is included in the
supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper focuses on machine learning algorithm research and does not involve
crowdsourcing or research with human subjects at all.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our manuscript focuses on algorithmic research, and it does not involve
crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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