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Abstract

Unraveling the dynamical motions of biomolecules is essential for bridging their1

structure and function, yet it remains a major computational challenge. Molecular2

dynamics (MD) simulation provides a detailed depiction of biomolecular motion,3

but its high-resolution temporal evolution comes at significant computational cost,4

limiting its applicability to timescales of biological relevance. Deep learning ap-5

proaches have emerged as promising solutions to overcome these computational6

limitations by learning to predict long-timescale dynamics. However, generalizable7

kinetics models for proteins remain largely unexplored, and the fundamental limits8

of achievable acceleration while preserving dynamical accuracy are poorly under-9

stood. In this work, we fill this gap with DeepJump, an Euclidean-Equivariant10

Flow Matching-based model for predicting protein conformational dynamics across11

multiple temporal scales. We train DeepJump on trajectories of the diverse proteins12

of mdCATH, systematically studying our model’s performance in generalizing13

to long-term dynamics of fast-folding proteins and characterizing the trade-off14

between computational acceleration and prediction accuracy. We demonstrate the15

application of DeepJump to ab initio folding, showcasing prediction of folding16

pathways and native states. Our results demonstrate that DeepJump achieves sig-17

nificant computational acceleration while effectively recovering large-timescale18

dynamics, providing a stepping stone for enabling routine simulation of proteins.19

1 Introduction20

Proteins form the functional infrastructure of biological systems, performing complex actions through21

intricate dynamic reconfiguration [Nelson et al., 2008]. Uncovering protein motion is hence essential22

to elucidating the mechanisms of biological processes, and a key step towards developing strategies to23

combat disease at the molecular level. Classical Molecular Dynamics (MD) simulation describes the24

kinetics of molecules by integrating the Newtonian equations of motion yielded from atomic force-25

fields [Schlick, 2010]. However, high-frequency motion components often limit the practical timestep26

of first-principles simulation, making relevant biological timescales computationally prohibitive to27

achieve [Freddolino et al., 2010].28

In contrast, Deep Learning models have demonstrated remarkable success in resolving challenging29

prediction tasks of protein thermodynamics, such as in structure prediction [Jumper et al., 2021]30

and in ensemble distribution generation [Jing et al., 2024a, Lewis et al., 2025]. Still, while existing31

large-scale models enable generalizable prediction of static basin or equilibrium states, generalizable32

kinetics remains a challenging frontier for modeling biological processes, as it requires training and33

evaluation across vast conformational phase spaces through computationally expensive simulations.34

In this work, we hypothesize that training on short, structurally diverse trajectories can successfully35

capture generalizable dynamical behavior. To test this hypothesis, we develop DeepJump, a generative36

model that combines flow matching with equivariant neural networks to model protein conformational37

transitions. We train our model on the structurally diverse mdCATH dataset, evaluating it on extended38

microsecond simulations of fast-folding proteins. We show how the learned simulator successfully39
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Figure 1: DeepJump Architecture and Training. (a) Training data consists of diverse protein
trajectory snapshots from the mdCATH dataset, providing structural diversity across different protein
folds. (b) Two-stage architecture with conditioning encoder and transport network using equivariant
neural networks to predict conformational transitions. (c) Generative sampling produces long-
timescale trajectories by iteratively applying learned jumps to explore protein conformational space.

generalizes beyond its training timescales to reproduce long-term protein dynamics while achieving40

orders-of-magnitude computational speedup. We analyze the trade-offs between acceleration and41

simulation quality across different model capacities and temporal jump sizes. Finally, we demonstrate42

the utility of our model in performing ab initio folding simulations from extended conformations to43

native states.44

2 Related Work45

Diverse efforts aim to reproduce and tackle the fundamental bottlenecks of running MD. Machine46

learning force fields (MLFFs) like ANI [Smith et al., 2017] NequIP [Batzner et al., 2022] and47

MACE [Batatia et al., 2022] have demonstrated remarkable accuracy in reproducing potentials while48

maintaining computational efficiency. However, MLFFs are constrained by the timestep limitations,49

as they still require integration of the full atomic equations of motion around femtosecond resolution.50

Recent breakthroughs have instead turned to generative models, with approaches like AlphaFlow [Jing51

et al., 2024a] and BioEmu [Lewis et al., 2025] training over trajectory data to generate Boltzmann52

ensembles. Still, ensemble models fail to capture the whole picture of dynamics, as trajectories are53

needed for mechanistic understanding. In further development towards capturing kinetics, recent54

models [Schreiner et al., 2023, Li et al., 2024, Jing et al., 2024b] enable sampling of dynamics55

trajectories with large steps, suggesting a pathway for accelerated MD simulation where the large56

time that is skipped outweighs the cost of evaluating the neural network. In this work, we build57

upon EquiJump [Costa et al., 2024], incorporating multiple step sizes, as in ITO [Schreiner et al.,58

2023], while employing the efficient of guided Flow Matching [Lipman et al., 2022], as in F3low [Li59

et al., 2024]. We extend these works to investigate the acceleration-accuracy trade-offs across diverse60

protein systems and demonstrate generalization to long-timescale dynamics from short trajectories.61

3 Methods62

3.1 Generative Model63

We follow EquiJump [Costa et al., 2024] and model a protein (R,X) as a sequence R ∈ R and64

a 3D gas of geometric features X = (P,V), where P ∈ RN×3 are coordinates of Cα atoms and65

V ∈ RN×13×3 are 3D features listing for each residue the relative position of heavy atoms in relation66
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Figure 2: Dynamics Generalization to the Fast Folder Proteins. Ensemble visualization and
free energy landscapes in TIC space comparing DeepJump simulations with reference molecular
dynamics. Crystal 3D structure is shown in black. Free energy profiles for RMSD (top) and especially
fraction of native contacts (FNC) (bottom) demonstrate strong agreement between model (blue)
and reference data (black). The model successfully captures the main conformational basins and
transition pathways of the fast-folding proteins.

to the Cα. We train the model using trajectory data [Xt]
L
t=1. Given a starting point t and a jump time67

δ, we take state transition (Xt,Xt+δ) as the endpoints of a Conditional Flow Matching/Stochastic68

Interpolant [Li et al., 2024, Lipman et al., 2022, Albergo et al., 2023] that maps from a noised source69

state ρ0 = ρ(Xt +Z), where Z ∼ N , into a future time step ρ1 = ρ(Xt+δ|Xt). We learn a model to70

predict X̂1(Xτ |τ) ≈ X1, and in sampling reparameterize via b(Xτ |τ) = 1
(1−τ)

(
X̂1(Xτ |τ)−Xt

)
71

3.2 Architecture and Training72

Our architecture consists of two main stages (Figure 1.b). First, a conditioning encoder computes73

Ht = fcond(Xt,R, δ) from the current structural state Xt, sequence R, and jump time δ. Second, a74

transport network ftransp(X
τ |τ,Ht) iteratively updates the latent state Xτ to generate a new config-75

uration. Both networks use Euclidean-equivariant architectures [Geiger and Smidt, 2022] inspired76

by Transformer mechanisms [Vaswani et al., 2017] adapted to equivariant space (see Appendix A77

for details). During training, we optimize pairwise 3D distances between all atoms within d = 25Å78

using the Huber Loss [Huber, 1992].79

3.3 Datasets80

To ensure the generalization power of our model, we train it using the diverse structures of the81

mdCATH dataset [Mirarchi et al., 2024]. This dataset consists of all-atom systems for 5,398 domains,82

modeled with a state-of-the-art classical force field, and simulated in five replicates of 500 ns from83

the crystal state, each at five temperatures from 320 K to 450 K. While this dataset encompasses a84

broad range of different proteins, it is not sufficient for capturing long-timescale dynamical behavior85

and equilibrium properties due to its limited simulation time per trajectory. Instead, for evaluating86

our dynamics we test our model on the dataset of 12 fast-folder proteins of [Majewski et al., 2023]87

based on [Lindorff-Larsen et al., 2011]. In constrast to the training data, this set provides hundreds of88

microseconds of simulation time, enabling precise estimation of dynamical variables and asymptotic89

behavior.90
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Table 1: Model Performance across Jump Sizes. We fit Markov State Models (MSM) to the
transitions between TIC-based clusters, and compare obtained MSMs from reference and from learned
models. Results are averaged over the fast-folding proteins. We use Jensen Shannon Divergence
to measure distribution distance for stationary distributions and transition matrix (averaging over
rows), and absolute differences otherwise. To estimate folding metrics, we compare energetics and
timescales between clusters corresponding to the α-helix state and the crystal state.

δ (ns) 1 10 100
Model Dimensionality 32 64 128 32 64 128 32 64 128

Stationary Distribution Distance (bits) 0.18 0.06 0.07 0.27 0.11 0.17 0.29 0.24 0.31
Folding ∆G Error (kbT ) 3.02 1.24 1.14 3.64 2.05 1.88 5.11 3.37 3.24

Transition Matrix Distance (bits) 0.25 0.28 0.27 0.45 0.48 0.46 0.42 0.46 0.44
Folding MFPT Error (ns) 6928 346 471 10587 6796 7004 190511 22504 37687

Figure 3: Mapping Acceleration Fronts. We investigate the tradeoff between simulation fidelity
and computational speedup by varying model scale and conditioned jump size δ. We find that larger
jumps degrade simulation quality, with increased model capacity reducing error but only partially
mitigating the effect.

4 Results91

4.1 DeepJump Generalizes to Fast-Folder Phase Space92

To assess DeepJump’s ability to capture long-term dynamics beyond its short training trajectories, we93

extensively sample our model across the conformational phase space of the fast-folding proteins. For94

that, we employ Time-lagged Independent Component Analysis (TICA) [Molgedey and Schuster,95

1994, Pérez-Hernández et al., 2013] and find clusters that represent macrostates in the reduced96

dimensional space. Refer to Appendix B for further details. For each fast-folder, we start 120097

replicas uniformily across the clusters, and perform 1000 simulation steps. We fit a Markov State98

Model (MSM) to transition counts between clusters, and correct our measured observables to the99

MSM stationary distribution to estimate free energies (Figure 2). Analysis of the TIC free energy100

profiles shows that the learned simulator is able to generalize to unseen proteins and across the phase101

space. Similarly, while RMSD and FNC energy (Figure 2) analysis suggests a bias towards compact102

conformations, the model overall shows strong agreement with the reference data.103

4.2 Mapping the Frontiers of MD Acceleration104

To better understand the trade-offs between simulation accuracy and computational speedup, we105

analyze the MSMs constructed from simulations with different model capacities and jump step sizes,106

comparing them to MSMs built from the reference data. Table 1 shows the quantitative comparison107

of MSM properties across different configurations. We present these results in condensed form in108

Figure 3, where we estimate effective acceleration relative to Amber force-field [Wang et al., 2004]109

simulations (32 real s / simulation ns on A6000 [Exxact Corp.]) for the Lambda protein. Our plots110

show that while jump size significantly impacts simulation quality, model scaling can modestly111

compensate for this degradation. Nevertheless, our results reveal that substantial acceleration remains112

achievable within acceptable quality bounds.113
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4.3 Accelerating ab initio Folding114

To evaluate DeepJump in a practical application, we investigate its performance on the challenging115

task of ab initio protein folding. For each fast-folder, we start 64 replicas from an extended β-sheet116

state and perform 300k simulation steps. In Figure 4, we show folding trajectories and sampled117

structures with the closest match to the native state. Investigation of the curves reveals that our118

simulation successfully captures smooth folding pathways with physically realistic conformational119

transitions. Table 2 compares the performance of models using different jump sizes δ. We find that120

folding success varies with step size: models with 1ns and 10ns steps achieving the highest quality121

results, while 100ns steps fail to fold some proteins entirely. This is due to the increasing difficulty of122

accurately modeling large conformational transitions over extended time intervals, where smaller123

steps enable the model to capture rare barrier-crossing events and intermediate states that are crucial124

for successful folding, while larger jumps may bypass conformational pathways or become trapped125

in local minima. Refer to Appendix C for further discussion.126

Figure 4: Generative Simulation of Protein Folding. We run thousands of simulation steps for
the fast-folding proteins, showing the evolution of TIC coordinates, RMSD, and fraction of native
contacts (FNC). We highlight a trajectory achieving highest FNC structure.

4.4 Model Limitations127

While our model successfully generalizes to most fast-folder proteins, we found limits to its appli-128

cability across all systems. In particular, we found that it fails on proteins much smaller than those129

in the training data (e.g., Chignolin or Trp-Cage), generating chemically invalid states. We also130

highlight bias (Figure 2) toward globular conformations and basin states, as the training data predom-131

inantly consists of well-folded protein domains, limiting the model’s ability to capture disordered or132

extended conformational states that are often crucial to pathway modeling. Finally, our modeling133

assumes standard residues, which prevents application to proteins with non-standard amino acids134

(e.g., fast-folder Villin).135
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Table 2: Folding from Scratch. We quantify folding success by identifying trajectories that reach
the TICA-based cluster corresponding to the native crystal state. For the proteins that fold, we count
success per replica and Mean First Passage Time (MFPT). Results are averaged over the fast-folders.

δ (ns) 1 10 100
Proteins Folded (%) 100.00 100.00 62.50
Replicas Folded (%) 50.59 61.13 57.23

Mininum Crystal RMSD (Å) 1.54 1.64 2.35
Maximum FNC (%) 86.40 87.10 77.96

MFPT (Model Steps) 97322.98 81795.69 12686.58

Conclusion136

We have presented DeepJump, a generative model that leverages flow matching and equivariant137

neural networks to accelerate protein molecular dynamics simulations by learning conformational138

transitions from diverse trajectories. Our approach successfully reproduces key dynamical properties139

of fast-folding proteins, including realistic folding pathways and equilibrium distributions, while140

achieving orders-of-magnitude acceleration compared to traditional force-field simulations. Through141

analysis of acceleration fronts, we demonstrate important trade-offs between simulation speed and142

accuracy, where larger jump sizes provide greater computational speedup at the cost of simulation143

quality, with model scaling offering compensation. Additionally, in ab initio folding experiments,144

we show that the model can successfully fold proteins from extended conformations to native-like145

states, with folding success depending on the chosen temporal step size. In conclusion, DeepJump146

represents a promising step toward practical machine learning-accelerated molecular simulations,147

offering a path to building simulators to previously inaccessible timescales.148
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Appendix212

A Architecture and Training Details213

To operate efficiently on large proteins, we adapt a form of the attention mechanism to handle214

equivariant vectors (Algorithm 1). Drawing from GVP [Jing et al., 2020], our feedforward layers215

(Algorithm 2) interact vector and scalar features by incorporating vector norms into scalar processing,216

and gating vectors through scalars. All network modules incorporate residual connections and217

equivariant LayerNorm [Liao and Smidt, 2022] for stable training.218

We train our models on 4 A6000 machines. Models are trained for 500k steps with batch size of219

128 and crop length of 256. We use the Adam optimizer with learning rate decaying linearly from220

5× 10−3 to 3× 10−3, and gradient norm clip of 0.1.221

Algorithm 1 DeepJump Self-Attention

Require: Tensor Cloud (V,P)

1: k,q,v← Linear3×Nh×H(V)
2: vijh ← vjh ⊕ Y (Pi −Pj)
3: sij ← kih · qjh + f(i− j, ||Pi −Pj ||)h
4: vh ←

∑N
j Softmax(sijh) ·vijh

5: V′ ← LinearH(
⊕Nh

h vh)
6: return (V,P)

Algorithm 2 DeepJump FeedForward

Require: Tensor Cloud (P,V)

1: V0,Vg ← Linear2×(f×H)(V0)

2: V1,Vn ← Linear2×(f×H)(V1)
3: V← σ(V0)⊕ σ(Vg) ·V1 ⊕ ||Vn||22
4: V← LinearH(V)
5: return (V,P)

222

B Markov State Model and Dynamical Equilibration223

We fit 4 TIC components [Pérez-Hernández et al., 2013] to the reference data with a lag time of 10 ns.224

To partition the TIC space, we apply k-means clustering [Lloyd, 1982] with 32 clusters. We construct225

a Markov State Model from transition counts with lag time of 1ns between clusters and estimate its226

stationary distribution. We correct sampling densities by reweighting each cluster according to the227

ratio of its stationary probability to its observed frequency in our simulations. When comparing the228

MSM transition matrices of learned models to reference data, we compare the δ-th matrix power to229

account for the different temporal resolutions.230
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C Extended ab initio Plots231

Figure 5: Extended Plots for Folding Simulation.

In Figure 5 we plot the evolution of RMSD and FNC over 300k model simulation steps. We observe232

that δ = 1 ns shows the most consistent folding success across proteins, frequently reaching native233

basins and maintaining stability whereas δ = 10 ns demonstrates intermediate stability (as seen in234

WW domain and NTL9). While δ = 100 ns manages to fold several proteins, it fails to sample235

high-energy transition pathways that require fine-grained conformational sampling, such as the236

complex folding routes observed in NTL9 and Protein G.237
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