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Accelerating Protein Molecular
Dynamics Simulation with DeepJump

Abstract

Unraveling the dynamical motions of biomolecules is essential for bridging their
structure and function, yet it remains a major computational challenge. Molecular
dynamics (MD) simulation provides a detailed depiction of biomolecular motion,
but its high-resolution temporal evolution comes at significant computational cost,
limiting its applicability to timescales of biological relevance. Deep learning ap-
proaches have emerged as promising solutions to overcome these computational
limitations by learning to predict long-timescale dynamics. However, generalizable
kinetics models for proteins remain largely unexplored, and the fundamental limits
of achievable acceleration while preserving dynamical accuracy are poorly under-
stood. In this work, we fill this gap with DeepJump, an Euclidean-Equivariant
Flow Matching-based model for predicting protein conformational dynamics across
multiple temporal scales. We train DeepJump on trajectories of the diverse proteins
of mdCATH, systematically studying our model’s performance in generalizing
to long-term dynamics of fast-folding proteins and characterizing the trade-off
between computational acceleration and prediction accuracy. We demonstrate the
application of DeepJump to ab initio folding, showcasing prediction of folding
pathways and native states. Our results demonstrate that DeepJump achieves sig-
nificant computational acceleration while effectively recovering large-timescale
dynamics, providing a stepping stone for enabling routine simulation of proteins.

1 Introduction

Proteins form the functional infrastructure of biological systems, performing complex actions through
intricate dynamic reconfiguration [Nelson et al.,[2008]]. Uncovering protein motion is hence essential
to elucidating the mechanisms of biological processes, and a key step towards developing strategies to
combat disease at the molecular level. Classical Molecular Dynamics (MD) simulation describes the
kinetics of molecules by integrating the Newtonian equations of motion yielded from atomic force-
fields [Schlick} 2010|]. However, high-frequency motion components often limit the practical timestep
of first-principles simulation, making relevant biological timescales computationally prohibitive to
achieve [Freddolino et al., 2010].

In contrast, Deep Learning models have demonstrated remarkable success in resolving challenging
prediction tasks of protein thermodynamics, such as in structure prediction [Jumper et al., 2021]]
and in ensemble distribution generation [Jing et al., 20244l [Lewis et al., 2025]). Still, while existing
large-scale models enable generalizable prediction of static basin or equilibrium states, generalizable
kinetics remains a challenging frontier for modeling biological processes, as it requires training and
evaluation across vast conformational phase spaces through computationally expensive simulations.

In this work, we hypothesize that training on short, structurally diverse trajectories can successfully
capture generalizable dynamical behavior. To test this hypothesis, we develop DeepJump, a generative
model that combines flow matching with equivariant neural networks to model protein conformational
transitions. We train our model on the structurally diverse mdCATH dataset, evaluating it on extended
microsecond simulations of fast-folding proteins. We show how the learned simulator successfully
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Figure 1: DeepJump Architecture and Training. (a) Training data consists of diverse protein
trajectory snapshots from the mdCATH dataset, providing structural diversity across different protein
folds. (b) Two-stage architecture with conditioning encoder and transport network using equivariant
neural networks to predict conformational transitions. (c) Generative sampling produces long-
timescale trajectories by iteratively applying learned jumps to explore protein conformational space.

generalizes beyond its training timescales to reproduce long-term protein dynamics while achieving
orders-of-magnitude computational speedup. We analyze the trade-offs between acceleration and
simulation quality across different model capacities and temporal jump sizes. Finally, we demonstrate
the utility of our model in performing ab initio folding simulations from extended conformations to
native states.

2 Related Work

Diverse efforts aim to reproduce and tackle the fundamental bottlenecks of running MD. Machine
learning force fields (MLFFs) like ANI [Smith et al., 2017]] NequlP [Batzner et al., |2022]] and
MACE [Batatia et al.,2022]] have demonstrated remarkable accuracy in reproducing potentials while
maintaining computational efficiency. However, MLFFs are constrained by the timestep limitations,
as they still require integration of the full atomic equations of motion around femtosecond resolution.
Recent breakthroughs have instead turned to generative models, with approaches like AlphaFlow [Jing
et al.}2024a] and BioEmu [Lewis et al.}[2025] training over trajectory data to generate Boltzmann
ensembles. Still, ensemble models fail to capture the whole picture of dynamics, as trajectories are
needed for mechanistic understanding. In further development towards capturing kinetics, recent
models [[Schreiner et al., 2023| |L1 et al.l 2024, Jing et al., 2024b] enable sampling of dynamics
trajectories with large steps, suggesting a pathway for accelerated MD simulation where the large
time that is skipped outweighs the cost of evaluating the neural network. In this work, we build
upon EquiJump [[Costa et al.| [2024], incorporating multiple step sizes, as in ITO [Schreiner et al.,
2023, while employing the efficient of guided Flow Matching [Lipman et al.,[2022], as in F°low [Li
et al.| 2024]. We extend these works to investigate the acceleration-accuracy trade-offs across diverse
protein systems and demonstrate generalization to long-timescale dynamics from short trajectories.

3 Methods

3.1 Generative Model

We follow EquiJump [Costa et al., 2024]] and model a protein (R, X) as a sequence R € R and
a 3D gas of geometric features X = (P, V), where P € RV *3 are coordinates of C, atoms and
V € RVX13X3 are 3D features listing for each residue the relative position of heavy atoms in relation



67
68
69
70

71

72

73
74
75
76
7
78
79

80

81
82
83
84
85
86
87
88
89
90

P inn 1o
. Lé [
o

WWDOMAIN

HOMEODOMAIN

0 1 2
"‘"r"---'i; :
! a 10
ol V[
- o
2 a0 00 05 10
LR [w
i - -
e B 1 0
= o 0 20 3
= -

PROTEING

BBL

A3D

PROTEINB
LAMBDA

] 10
H
- N

-1 0 1 000 025 050 075

0
2 000 025 050 075

Figure 2: Dynamics Generalization to the Fast Folder Proteins. Ensemble visualization and
free energy landscapes in TIC space comparing DeepJump simulations with reference molecular
dynamics. Crystal 3D structure is shown in black. Free energy profiles for RMSD (top) and especially
fraction of native contacts (FNC) (bottom) demonstrate strong agreement between model (blue)
and reference data (black). The model successfully captures the main conformational basins and
transition pathways of the fast-folding proteins.

to the C,,. We train the model using trajectory data [X;]L_ ;. Given a starting point ¢ and a jump time
J, we take state transition (X, X;4s) as the endpoints of a Conditional Flow Matching/Stochastic
Interpolant [Li et al.}, 2024}, [LCipman et al., 2022}, [Albergo et al.,[2023]] that maps from a noised source
state po = p(X; + Z), where Z ~ N, into a future time step p; = p(X;15|X¢). We learn a model to

predict X' (X7|7) ~ X!, and in sampling reparameterize via b(X7 |7) = (1i7) (XN(X7|7) - Xy)

3.2 Architecture and Training

Our architecture consists of two main stages (Figure[I]b). First, a conditioning encoder computes
H; = f.0,a(X¢, R, §) from the current structural state X, sequence R, and jump time §. Second, a
transport network firungp (X7 |7, H;) iteratively updates the latent state X" to generate a new config-
uration. Both networks use Euclidean-equivariant architectures [Geiger and Smidt, 2022]] inspired
by Transformer mechanisms [Vaswani et al., 2017]] adapted to equivariant space (see Appendix @
for details). During training, we optimize pairwise 3D distances between all atoms within d = 25A

using the Huber Loss [1992].

3.3 Datasets

To ensure the generalization power of our model, we train it using the diverse structures of the
mdCATH dataset [Mirarchi et al., 2024]]. This dataset consists of all-atom systems for 5,398 domains,
modeled with a state-of-the-art classical force field, and simulated in five replicates of 500 ns from
the crystal state, each at five temperatures from 320 K to 450 K. While this dataset encompasses a
broad range of different proteins, it is not sufficient for capturing long-timescale dynamical behavior
and equilibrium properties due to its limited simulation time per trajectory. Instead, for evaluating
our dynamics we test our model on the dataset of 12 fast-folder proteins of [Majewski et al., 2023]]
based on [Lindorff-Larsen et al.} 2011]]. In constrast to the training data, this set provides hundreds of
microseconds of simulation time, enabling precise estimation of dynamical variables and asymptotic
behavior.
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Table 1: Model Performance across Jump Sizes. We fit Markov State Models (MSM) to the
transitions between TIC-based clusters, and compare obtained MSMs from reference and from learned
models. Results are averaged over the fast-folding proteins. We use Jensen Shannon Divergence
to measure distribution distance for stationary distributions and transition matrix (averaging over
rows), and absolute differences otherwise. To estimate folding metrics, we compare energetics and
timescales between clusters corresponding to the a-helix state and the crystal state.

6 (ns) 1 10 100
Model Dimensionality 32 64 128 32 64 128 32 64 128

Stationary Distribution Distance (bits) 0.18 0.06 0.07 0.27 0.11 0.17 0.29 0.24 0.31
Folding AG Error (k,7) 3.02 124 1.14 364 205 1.88 5.11 3.37 3.24

Transition Matrix Distance (bits) 0.25 0.28 0.27 045 048 046 0.42 0.46 0.44
Folding MFPT Error (ns) 6928 346 471 10587 6796 7004 190511 22504 37687
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Figure 3: Mapping Acceleration Fronts. We investigate the tradeoff between simulation fidelity
and computational speedup by varying model scale and conditioned jump size 6. We find that larger
jumps degrade simulation quality, with increased model capacity reducing error but only partially
mitigating the effect.

4 Results

4.1 DeepJump Generalizes to Fast-Folder Phase Space

To assess DeepJump’s ability to capture long-term dynamics beyond its short training trajectories, we
extensively sample our model across the conformational phase space of the fast-folding proteins. For
that, we employ Time-lagged Independent Component Analysis (TICA) [Molgedey and Schuster,
1994 Pérez-Hernandez et al.l 2013]] and find clusters that represent macrostates in the reduced
dimensional space. Refer to Appendix [B| for further details. For each fast-folder, we start 1200
replicas uniformily across the clusters, and perform 1000 simulation steps. We fit a Markov State
Model (MSM) to transition counts between clusters, and correct our measured observables to the
MSM stationary distribution to estimate free energies (Figure[2). Analysis of the TIC free energy
profiles shows that the learned simulator is able to generalize to unseen proteins and across the phase
space. Similarly, while RMSD and FNC energy (Figure 2)) analysis suggests a bias towards compact
conformations, the model overall shows strong agreement with the reference data.

4.2 Mapping the Frontiers of MD Acceleration

To better understand the trade-offs between simulation accuracy and computational speedup, we
analyze the MSMs constructed from simulations with different model capacities and jump step sizes,
comparing them to MSMs built from the reference data. Table [I]shows the quantitative comparison
of MSM properties across different configurations. We present these results in condensed form in
Figure 3] where we estimate effective acceleration relative to Amber force-field [Wang et al., 2004]]
simulations (32 real s / simulation ns on A6000 [Exxact Corp.|]) for the Lambda protein. Our plots
show that while jump size significantly impacts simulation quality, model scaling can modestly
compensate for this degradation. Nevertheless, our results reveal that substantial acceleration remains
achievable within acceptable quality bounds.
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4.3 Accelerating ab initio Folding

To evaluate DeepJump in a practical application, we investigate its performance on the challenging
task of ab initio protein folding. For each fast-folder, we start 64 replicas from an extended /3-sheet
state and perform 300k simulation steps. In Figure [ we show folding trajectories and sampled
structures with the closest match to the native state. Investigation of the curves reveals that our
simulation successfully captures smooth folding pathways with physically realistic conformational
transitions. Table[2]compares the performance of models using different jump sizes §. We find that
folding success varies with step size: models with 1ns and 10ns steps achieving the highest quality
results, while 100ns steps fail to fold some proteins entirely. This is due to the increasing difficulty of
accurately modeling large conformational transitions over extended time intervals, where smaller
steps enable the model to capture rare barrier-crossing events and intermediate states that are crucial
for successful folding, while larger jumps may bypass conformational pathways or become trapped
in local minima. Refer to Appendix [C]for further discussion.
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Figure 4: Generative Simulation of Protein Folding. We run thousands of simulation steps for
the fast-folding proteins, showing the evolution of TIC coordinates, RMSD, and fraction of native
contacts (FNC). We highlight a trajectory achieving highest FNC structure.

4.4 Model Limitations

While our model successfully generalizes to most fast-folder proteins, we found limits to its appli-
cability across all systems. In particular, we found that it fails on proteins much smaller than those
in the training data (e.g., Chignolin or Trp-Cage), generating chemically invalid states. We also
highlight bias (Figure [2)) toward globular conformations and basin states, as the training data predom-
inantly consists of well-folded protein domains, limiting the model’s ability to capture disordered or
extended conformational states that are often crucial to pathway modeling. Finally, our modeling
assumes standard residues, which prevents application to proteins with non-standard amino acids
(e.g., fast-folder Villin).
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Table 2: Folding from Scratch. We quantify folding success by identifying trajectories that reach
the TICA-based cluster corresponding to the native crystal state. For the proteins that fold, we count
success per replica and Mean First Passage Time (MFPT). Results are averaged over the fast-folders.

J (ns) 1 10 100

Proteins Folded (%) 100.00 100.00 62.50
Replicas Folded (%) 50.59 61.13 57.23
Mininum Crystal RMSD (A) 1.54 1.64 2.35
Maximum FNC (%) 86.40 87.10 77.96

MFPT (Model Steps) 97322.98 81795.69 12686.58

Conclusion

We have presented DeepJump, a generative model that leverages flow matching and equivariant
neural networks to accelerate protein molecular dynamics simulations by learning conformational
transitions from diverse trajectories. Our approach successfully reproduces key dynamical properties
of fast-folding proteins, including realistic folding pathways and equilibrium distributions, while
achieving orders-of-magnitude acceleration compared to traditional force-field simulations. Through
analysis of acceleration fronts, we demonstrate important trade-offs between simulation speed and
accuracy, where larger jump sizes provide greater computational speedup at the cost of simulation
quality, with model scaling offering compensation. Additionally, in ab initio folding experiments,
we show that the model can successfully fold proteins from extended conformations to native-like
states, with folding success depending on the chosen temporal step size. In conclusion, DeepJump
represents a promising step toward practical machine learning-accelerated molecular simulations,
offering a path to building simulators to previously inaccessible timescales.

References

M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden. Stochastic interpolants: A unifying framework
for flows and diffusions, 2023.

I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csdnyi. Mace: Higher order equivariant
message passing neural networks for fast and accurate force fields. Advances in Neural Information
Processing Systems, 35:11423-11436, 2022.

S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt, and
B. Kozinsky. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials. Nature communications, 13(1):2453, 2022.

A. D. S. Costa, I. Mitnikov, F. Pellegrini, A. Daigavane, M. Geiger, Z. Cao, K. Kreis, T. Smidt,
E. Kucukbenli, and J. Jacobson. Equijump: Protein dynamics simulation via so (3)-equivariant
stochastic interpolants. arXiv preprint arXiv:2410.09667, 2024.

Exxact Corp. Amber 24 nvidia gpu benchmarks. https://www.exxactcorp.com/blog/
molecular-dynamics/amber-molecular-dynamics-nvidia-gpu-benchmarks, 2024.

P. Freddolino, C. Harrison, Y. Liu, and K. Schulten. Challenges in protein 524 folding simulations:
timescale, representation, and analysis. Nat. Phys, 6(751-758):525, 2010.

M. Geiger and T. Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453, 2022.

P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pages 492-518. Springer, 1992.

B. Jing, S. Eismann, P. Suriana, R. J. Townshend, and R. Dror. Learning from protein structure with
geometric vector perceptrons. arXiv preprint arXiv:2009.01411, 2020.

B. Jing, B. Berger, and T. Jaakkola. Alphafold meets flow matching for generating protein ensembles.
arXiv preprint arXiv:2402.04845, 2024a.


https://www.exxactcorp.com/blog/molecular-dynamics/amber-molecular-dynamics-nvidia-gpu-benchmarks
https://www.exxactcorp.com/blog/molecular-dynamics/amber-molecular-dynamics-nvidia-gpu-benchmarks
https://www.exxactcorp.com/blog/molecular-dynamics/amber-molecular-dynamics-nvidia-gpu-benchmarks

172
173
174

175
176
177

178
179
180

181
182

183
184

185
186

187
188

189
190

191
192
193

194
195

196
197

198
199

200
201

202
203

204
205

206
207

208
209

210
211

B. Jing, H. Stark, T. Jaakkola, and B. Berger. Generative modeling of molecular dynamics trajectories.
In ICML’24 Workshop ML for Life and Material Science: From Theory to Industry Applications,
2024b.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Zidek, A. Potapenko, et al. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583-589, 2021.

S. Lewis, T. Hempel, J. Jiménez-Luna, M. Gastegger, Y. Xie, A. Y. Foong, V. G. Satorras, O. Abdin,
B. S. Veeling, I. Zaporozhets, et al. Scalable emulation of protein equilibrium ensembles with
generative deep learning. Science, page eadv9817, 2025.

S. Li, Y. Wang, M. Li, J. Zhang, B. Shao, N. Zheng, and J. Tang. Flow: Frame-to-frame coarse-
grained molecular dynamics with se(3) guided flow matching, 2024.

Y.-L. Liao and T. Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic graphs.
arXiv preprint arXiv:2206.11990, 2022.

K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw. How fast-folding proteins fold. Science,
334(6055):517-520, 2011.

Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling.
arXiv preprint arXiv:2210.02747, 2022.

S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129-137, 1982.

M. Majewski, A. Pérez, P. Tholke, S. Doerr, N. E. Charron, T. Giorgino, B. E. Husic, C. Clementi,
F. Noé, and G. De Fabritiis. Machine learning coarse-grained potentials of protein thermodynamics.
Nature Communications, 14(1):5739, 2023.

A. Mirarchi, T. Giorgino, and G. De Fabritiis. mdcath: A large-scale md dataset for data-driven
computational biophysics. Scientific Data, 11(1):1299, 2024.

L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed
correlations. Physical review letters, 72(23):3634, 1994.

D. L. Nelson, A. L. Lehninger, and M. M. Cox. Lehninger principles of biochemistry. Macmillan,
2008.

G. Pérez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé. Identification of slow molecular
order parameters for markov model construction. The Journal of chemical physics, 139(1), 2013.

T. Schlick. Molecular modeling and simulation: an interdisciplinary guide, volume 2. Springer,
2010.

M. Schreiner, O. Winther, and S. Olsson. Implicit transfer operator learning: Multiple time-resolution
surrogates for molecular dynamics, 2023.

J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1: an extensible neural network potential with dft
accuracy at force field computational cost. Chemical science, 8(4):3192-3203, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, .. Kaiser, and 1. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. Development and testing of a
general amber force field. Journal of computational chemistry, 25(9):1157-1174, 2004.



212

213

214
215
216
217
218

219
220
221

222

223

224
225
226
227
228
229
230

Appendix

A Architecture and Training Details

To operate efficiently on large proteins, we adapt a form of the attention mechanism to handle
equivariant vectors (Algorithm [I). Drawing from GVP [Jing et al.,2020]], our feedforward layers
(Algorithm [2) interact vector and scalar features by incorporating vector norms into scalar processing,
and gating vectors through scalars. All network modules incorporate residual connections and
equivariant LayerNorm [Liao and Smidt, 2022] for stable training.

We train our models on 4 A6000 machines. Models are trained for 500k steps with batch size of
128 and crop length of 256. We use the Adam optimizer with learning rate decaying linearly from
5 x 1073 to 3 x 1072, and gradient norm clip of 0.1.

Algorithm 1 DeepJump Self-Attention Algorithm 2 DeepJump FeedForward
Require: Tensor Cloud (V,P) Require: Tensor Cloud (P, V)

1: k,q,v < Linear®* "< H (V) 1: VO, V9 « Linear?*(/*#)(v0)

2 Vign < Vin @Y (Pi — Pj) 2: V1, V" « Linear? (/) (v1)

3t sig ¢ kean -y + fi=3,1Pi = Pj[)n 3: Ve o(VO)@o(V9)-Via ||V}

4 vy < > Softmax(sijn) “Vijn 4: V « Linear™ (V)

5. V' «+ Linear” (@f,v’ Vi) 5: return (V,P)

6: return (V,P)

B Markov State Model and Dynamical Equilibration

We fit 4 TIC components [Pérez-Hernandez et al., 2013] to the reference data with a lag time of 10 ns.
To partition the TIC space, we apply k-means clustering [Lloyd, |I982] with 32 clusters. We construct
a Markov State Model from transition counts with lag time of 1ns between clusters and estimate its
stationary distribution. We correct sampling densities by reweighting each cluster according to the
ratio of its stationary probability to its observed frequency in our simulations. When comparing the
MSM transition matrices of learned models to reference data, we compare the ¢-th matrix power to
account for the different temporal resolutions.
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Figure 5: Extended Plots for Folding Simulation.

In Figure [5] we plot the evolution of RMSD and FNC over 300k model simulation steps. We observe
that 6 = 1 ns shows the most consistent folding success across proteins, frequently reaching native
basins and maintaining stability whereas 6 = 10 ns demonstrates intermediate stability (as seen in
WW domain and NTL9). While § = 100 ns manages to fold several proteins, it fails to sample
high-energy transition pathways that require fine-grained conformational sampling, such as the
complex folding routes observed in NTL9 and Protein G.
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