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ABSTRACT

Estimation of shortest-path (SP) distance lies at the heart of network analysis
tasks. Along with the rapid emergence of large-scale and complex graphs, ap-
proximate SP-representing algorithms that transform a graph into compact and
low-dimensional representations are critical for fast and scalable online analysis.
Among different approaches, learning-based representation methods have made
a breakthrough both in response time and accuracy. Several competitive works
in learning-based methods heuristically leverage truncated random walk and op-
timization on the arbitrary linkage for SP representation learning. However, they
have limitations on both exploration range and distance preservation. We propose
in this paper an efficient and interpretable SP representation method called Be-
tweenness Centrality-based Distance Resampling (BCDR). First, we prove that
betweenness centrality-based random walk can occupy a wider exploration range
of distance due to its awareness of high-order path structures. Second, we lever-
age distance resampling to simulate random shortest paths from original paths and
prove that the optimization on such shortest paths preserves distance relations via
implicitly decomposing SP distance-based similarity matrix. BCDR yields an av-
erage improvement of 25% accuracy and 25-30% query speed, compared to all
existing approximate methods when evaluated on a broad class of real-world and
synthetic graphs with diverse sizes and structures.

1 INTRODUCTION

Estimation of shortest-path (SP) distance lies at the heart of many network analysis tasks, such as
centrality computation (Schönfeld & Pfeffer, 2021), node separation (Houidi et al., 2020), com-
munity detection (Zhang et al., 2020; Asif et al., 2022), which also directly contributes to enormous
downstream applications, including point of interest (POI) search (Qi et al., 2020; Chen et al., 2021a)
social relationship analysis (Carlton, 2020; Melkonian et al., 2021), biomedical structure predic-
tion (Yue et al., 2019; Sokolowski & Wasserman, 2021), learning theory (Yang et al., 2021; Yuan
et al., 2021), optimization (Rahmad Syah et al., 2021; Jiang et al., 2021b), etc. Nowadays, a key
challenge of computing SP distance is the prohibitive complexity in very large and complex graphs.
e.g., for a sparse undirected graph with N nodes and k queries, the time complexity of A* (Hart
et al., 1968) and Dijkstra algorithm (Thorup & Zwick, 2004) are up to O(kN) and O(kN logN)
for unweighted and weighted graph, respectively.

Regarding this issue, various methods (Cohen et al., 2003; Fu et al., 2013; Akiba et al., 2013; Delling
et al., 2014; Farhan et al., 2019; Liu et al., 2021) attempt answering exact distance in microseconds
online via indexing or compressing techniques, which suffer huge storage costs on all pair SP dis-
tance representations and fail to reflect latent sub-structures in graphs for scalable queries (see Fig-
ure 1). Highly concise SP representation for large-scale and complex graphs remains to be studied
yet. Regarding this, a surging number of approximate SP-representing algorithms that transform
a graph into compact and low-dimensional representations are thus critical for fast and scalable
online analysis. They can be categorized into oracle-based (Thorup & Zwick, 2004; Baswana &
Kavitha, 2006), landmark-based (Potamias et al., 2009; Sarma et al., 2010; Gubichev et al., 2010)
and learning-based (Rizi et al., 2018; Schlötterer et al., 2019; Qi et al., 2020; Jiang et al., 2021a) SP
representation methods. Among these categories, learning-based methods are of high accuracy and
short response time (see Table 1), owing much to flexible node embeddings in a metric space.
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Figure 1: Differences between approximate (ours.) and exact (PLL (Akiba et al., 2013), effi-
cient implementation of the hub-labeling method) SP representation methods regarding storage cost
(megabytes, MB) and response time (nanoseconds, ns). We simulate a group of Bernoulli random
graphs with |V | nodes, and each edge is filled independently with probability p. (a) and (c) show
the storage cost of exact representations increases dramatically relative to the graph size. (b) and (d)
reflect longer response time of exact methods, induced by random access to massive information.

Table 1: Overall comparison of approaches to SP representation on DBLP dataset (A.8.4). PTC: pre-
processing time complexity, PSC: preprocessing space complexity, RTC: response time complexity,
TSC: the total storage cost for answering online distance queries, RT: real response time, AL: accu-
racy loss which is measured by mRE (see Equation 1). N : the number of nodes in the graph, L̄(N):
the average label size of each node which increases along with N , D̄: the amortized degree on each
node. α0, L, n, d, w, l, c and β are hyperparameters in corresponded models.

Categories Method PTC PSC RTC TSC RT AL
Hub-labeling PLL (Akiba et al., 2013) O(N1+log L̄(N)) O(NL̄(N)) O(L̄(N)) 611.2 MB 2104.4 ns -
Oracle-based ADO (Thorup & Zwick, 2004) O(α0N

1+ 1
α0 ) O(α0N

1+ 1
α0 ) O(α0) 5, 980 MB 8, 598 ns 0.4985

Landmark-based LS (Potamias et al., 2009) O(lN) O(lN) O(l) 334.6 MB 12, 094 ns 0.3939
Learning-based Orion (Xiaohan et al., 2010) O(n2 + nN) O(dN) O(d) 19.35 MB 82.25 ns 1.1897

Rigel (Xiaohan et al., 2011) O(n2 + nN) O(dN) O(d+ D̄) 35.37 MB 5, 657 ns 1.0662
DADL (Rizi et al., 2018) O((|L|+ wl)N) O(dN + c) O(d+ D̄) 35.37 MB 7, 562 ns 0.2016
Path2Vec (Kutuzov et al., 2019) O((|L|+ wl)N) O(dN + c) O(d+ D̄) 35.37 MB 7, 700 ns 0.6097
HALK (Schlötterer et al., 2019) O((|L|+ wl)N) O(dN + c) O(d+ D̄) 35.37 MB 7, 704 ns 0.3077
CatBoost-SDP (Jiang et al., 2021a) O((|L|N) O(|L|N + c) O(|L|c) 44.16 MB 9, 270 ns 0.0890
BCDR (ours.) O((|L|+ wl

β )N) O(|L|N + c) O(|L|c+ D̄) 39.19 MB 7, 247 ns 0.0798
BCDR-FQ (ours.) O((|L|+ wl

β )N) O(dN + c) O(d) 19.35 MB 58.82 ns 0.1840

Several competitive works in learning-based methods (Rizi et al., 2018; Schlötterer et al., 2019)
heuristically leverage truncated random walk and optimization of node-cooccurrence likelihood on
the arbitrary linkage to learn SP representations, which once achieved the state-of-the-art perfor-
mance on approximation quality. However, they are not without limitations on efficiency and inter-
pretability. On one side, a random walk is an unstrained node sequence from the root, possessing
a limited exploration range of distance, thus resulting in uncaught distance relations with remote
nodes. This is because each transition on nodes is not implied for a specific direction to move to-
wards or beyond the root, especially after several walk steps, which restricts it from visiting remote
nodes under limited walk steps (see Figure 2a). On the other side, the optimization on arbitrary link-
age reflects excessively versatile local similarity among nodes, which preserves inaccurate distance
relations from original graphs to the embedding space. In fact, it exerts a too-general metric over
nodes’ correlation, wherein the more edges or paths exist between two nodes, the stronger corre-
lation they share. That means there are many ways to simulate a strong correlation for two nodes
(e.g., add mutual edges, delete an edge to other nodes) even if some of the operations do not influ-
ence their actual SP distance (see Figures 2c and 2d). A detailed statement of related works on SP
representation and motivation for estimating accurate SP distance can be found in Appendix A.1.

In this paper, we address the above shortcomings by proposing an efficient and interpretable SP rep-
resentation method called Betweenness Centrality-based Distance Resampling (BCDR). It improves
the approximation quality of SP representations with two components. The first is betweenness cen-
trality (BC)-based random walk which explores a wider range of distance correlation on the graph
due to its awareness of high-order path structures. To our best knowledge, there is no existing
method that combines betweenness centrality and random walk to learn SP representations.
We prove that BC-based transition is prone to jump out of local neighborhoods compared to random
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(a) (b) (c) (d)

Figure 2: Distance confusion in previous SP representation learning. (a) random walk from va
has much difficulty in exploring beyond current community to vc. (b): node similarity on random
paths misleads the measurement of SP distance since the walk from va is prone to steer clear of
vb for starters and back to vb as the end, causing an extremely weak correlation between va and
vb even though they have an immediate edge. (c): a sufficient number of 2-hop links between vc
and va induce a shorter distance in embedding space than that of vb and va. (d): vb and vc sharing
substantial connection are mapped closed to each other even if they have a large SP distance gap,
while the divergence of distance between vb, vc and va is also plagued with extraction.

transition. The second is distance resampling which preserves accurate SP distance relations via im-
plicitly decomposing an SP distance-based similarity matrix. In essence, it simulates the observation
of random SPs from original walk paths and exerts desirable constraints on node representations to
preserve distance relations over the graph.

We summarize the major contributions as follows: i) We propose BC-based random walk as an
efficient strategy for exploring a wider range of SP distance within limited walk steps (see Section
3.1). ii) We propose distance resampling to preserve accurate distance relations among nodes to
learn an interpretable SP representation (see Section 3.2). iii) We evaluate BCDR with a broad
class of real-world and synthetic graphs, and it yields an average improvement of 25% accuracy and
25-30% query speed compared to all existing methods (see Section 4).

2 PRELIMINARY

Notation: G = (V,E) denotes an undirected graph, with V = {vi} being the set of nodes and
E = {(vi, vj)} being the set of undirected edges, and N = |V |, M = |E|. We use ZN×d to
represent a matrix comprising embedded vectors of nodes, where d is the embedding size, and the
i-th row of Z is corresponded with vi. A path pij of length l ∈ N+ on graph G is an ordered
sequence of nodes (vi, va1 , · · · , val−1

, vj), where each node except the last one has an edge with the
subsequent node. The shortest path p̊ij is one of the paths with the minimum length Dij between
vi and vj . Also, the SP distance matrix D comprises {Dij}. A node vi’s neighborhood Ni is a set
of nodes with an edge with vi, i.e., Ni = {vj |(vi, vj) ∈ E}. For high-order neighborhoods of vi,
N (h)
i is defined as a set of nodes h-hop away from vi, i.e., {vj |Dij = h}. To avoid confusion with

the symbol of paths, we use P̃ (·) to represent a probability distribution in this paper. A truncated
random walkWi rooted at node vi of length l is a random vector of 〈W1

i ,W2
i , · · · ,W l

i〉, whereWk
i

is a node chosen from the neighborhood of nodeWk−1
i for k = 1, ..., l, with the initial probability

P̃ (W0
i = vi) ≡ 1. Wi is a categorical distribution of nodes onWi, and the probability of each node

in Wi represents the frequency of occurrence on the sampled paths.

Problem Definition & Metrics: The evaluation of approximate SP representation methods is di-
vided into two stages. For the offline stage, the processing time and memory usage when construct-
ing SP representations are evaluated, and the storage size of such representations is considered. For
the online stage, the query speed, memory usage, and approximation quality are evaluated. There-
into, to evaluate query speed and memory usage, a million times of query requests for arbitrary node
pairs are performed, then the memory and average response time for each node pair are recorded.
For approximation quality, the commonly used metrics are mean of relative error (mRE) and mean
of absolute error (mAE). For a group of SP distance queries Q = {(vi, vj)}, mRE is defined as the
relative loss of the estimated value D̃ij with respect to the real value Dij , while mAE measures the
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absolute gap between them:

mRE :=
1

|Q|
∑

(vi,vj)∈Q

|D̃ij −Dij |
Dij

mAE :=
1

|Q|
∑

(vi,vj)∈Q

|D̃ij −Dij |
(1)

3 METHOD

Although random walk (RW) is universally accepted as an efficient serialization strategy of simi-
larity measurement on graphs (Grover & Leskovec, 2016; Zhuang & Ma, 2018), we argue that the
intuitive practice of RW in representing SP structures has several limitations. Consider a walk path
p = (va, va1

, va2
, · · · , val) ∈ Pa sampled by stochastic selection on neighborhoods from root node

va. Distance measured along p (i.e., the order on the walk) is not consistent with that on the graph
(see Figure 2b) since the node sequence is unstrained, i.e., for vai , vaj ∈ p, i ≤ j < Daai ≤ Daaj ,
where i and j are indices of node vai and vaj on p, and 1 ≤ i, j ≤ l. Therefore, optimizing node
co-occurrence likelihood on such walk paths incurs two problems.

1. Problem 1: Limited exploration range of distance. The exploration range of rooted
random walk is not in proportion to its length since each transition on the walk has an
agnostic tendency to move towards or beyond the root after a few steps (see Figure 2a).

2. Problem 2: Intractability of distance relations on paths. The distance measured on
walk paths may not actually reflect the SP distance on the graph because of the unbalanced
number of edges between different nodes (see Figure 2c and 2d).

In this section, we describe in detail our method as a decent way of representing SP structures. We
discuss two techniques named BC-based random walk and distance resampling to address the above
problems, respectively, and present the corresponding theoretical analysis for their interpretability.
A time and space-efficient implementation of BCDR to integrate these techniques is available in
Appendix A.2.

3.1 BC-BASED RANDOM WALK FOR WIDER EXPLORATION RANGE OF DISTANCE

Definition 1. (Betweenness Centrality) Define G = (V,E) as undirected graph. vi, vs, vt are
arbitrary nodes in V . σst(vi) represents the number of shortest paths between vs and vt that pass
vi, and σst is the total number of shortest paths between vs and vt. Then we say that BC of vi is

BC(vi) =
∑
s 6=i6=t

σst(vi)

σst
(2)

To address Problem 1, we propose BC-based random walk. As defined in Definition 1, BC(vi)
determines the probability of vi located on SPs of arbitrary node pairs. Thus, we consider a node
with a large BC value vitally significant to drive the walk to move away from the root node, since
it reveals an easy way of traveling to some other nodes with minimal steps. And to leverage this
property, in BC-based random walk Wa = 〈W1

a ,W2
a , ...Wj

a, ...〉 on node va, we prefer choosing
nodes with the largest BC values among their neighborhoods when simulating walk paths, i.e.,

P̃ (Wj
a = vm|Wj−1

a = vn) =
BC(vm)∑

vk∈Nn BC(vk)
, vm ∈ Nn (3)

Theorem 2, proved in Appendix A.3, indicates that BC-based random walk is prone to transit from
N (h)
a toN (h+1)

a , leading to a wider exploration range measured by the intrinsic graph’s SP distance.
Specifically, for each node va, N (h)

a comprises two components, i.e., final nodes fh(va) and con-
nective nodes eh(va). Thereinto, nodes in fh(va) have no edge withN (h+1)

a , while nodes in eh(va)

have several edges with N (h+1)
a , as illustrated in Figure 3a. Our method significantly improves the

performance when the number of final nodes |fh(va)| is larger or there are more edges from fh(va)
to eh(va) (see analysis in Remark 1).
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(a) (b)

Figure 3: (a): high-order neighborhoods’ structure of va. BC-based random walk enhances the
transition from fh to eh and eh to eh+1, prone to jump out of local neighborhoods. (b): comparison
between general RW-based graph learning and BCDR. Distance resampling transforms the observa-
tion into random shortest paths, which exerts desirable constraints on learning SP representations.

Practically, pre-computing BC value on each node is time-consuming, which takes at least O(NM)
time. To address this problem, we estimate BC by leveraging breadth-first search (BFS) from a fixed
number of landmarks, since nodes with large BC values tend to be visited first by BFS from any
landmark. We show in Algorithm 1 and Appendix A.2.1 that this process could be involved in the
simulation of distance triplets without introducing extra time complexity.

Finally, we conclude that BC-based random walk is a competitive walking pattern regarding explo-
ration range of SP distance, since it possesses a strong tendency to jump out of local neighborhoods.
We further verify our conclusion by comparing it with existing RW techniques in Section 4.2.

3.2 DISTANCE RESAMPLING FOR SP DISTANCE PRESERVATION

To address Problem 2, we propose distance resampling. We first illustrate a general RW-based graph
learning paradigm in Figure 3b and clarify the differences between ours and other approaches. The
basic idea of RW-based methods is to learn node-level embeddings Z from pieces of observation
(i.e., walk paths), and Z thus reflects the structural bias on graphs. Specifically, for the naive RW
strategy and its variants utilized in other approaches, the observation is a set of stochastic paths re-
flecting the property of arbitrary linkage between nodes, which asks Z to preserve point-wise mutual
information (PMI) similarity (proved in Levy & Goldberg (2014); Shaosheng et al. (2015)). Unfor-
tunately, the PMI similarity shares no direct connection with SP distance and causes the problems
depicted in Figure 2c and 2d. To fit Z with correct information about SP structures, we intend to
observe random shortest paths instead. This practice is feasible since the SP problem always has
optimal substructures, i.e., the subpath between two nodes on any SP could also be extracted as an
SP between these nodes. However, the prohibitive complexity of computing all pairs of SPs for-
bids us from performing such sufficient observation (see both technical and empirical comparisons
between utilizing BCDR and directly sampling SPs for optimization in Appendix A.7). By way of
an alternative, we propose a resampling strategy to transform BC random paths into approximate
random SPs with efficient linear processing time and better performance.

Initially, we formulate the SP representation problem from the RW-based learning perspective. we
refer to random SP walk W̊i as an ideal walking pattern whose transition reflects the probability
of each shortest path passing through vi. It means paths sampled from W̊i are prone to be an SP
rooted at vi. For sufficient observation on SPs, we thus have an optimization objective on W̊i,
i.e., L(Z) = Evi∈P̃ (V )

[
log P̃W̊i|Zi(W̊i|Zi)

]
. To reduce optimization complexity, we replace the

intrinsic probability normalization by negative sampling, according to Mikolov et al. (2013a;b), i.e.,

Ln(Z) =
∑
vi∈V

P̃ (vi)
{
Evj∼P̃W̊i (V )[log σ̂(ZiZ

T
j )] + λEvk∼P̃n(V )[log σ̂(−ZiZTk )]

}
(4)

, since we prefer an informative Z instead of the accurate probability. Thereinto, P̃n is the dis-
tribution of negative sampling over the graph, λ denotes the number of negative samples, and
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σ̂(x) = (1 + e−x)−1. It is notable that W̊i on each node vi is backbreaking to extract, since it
requires a traversal on all SPs passing through vi. To address this, we revisit the node distribution
P̃Wi

on BC-based random walk Wi and construct a distribution Q̃Wi
resampled from P̃Wi

, as an
efficient approximation to P̃W̊i

, i.e.,

Q̃Wi(vj) =
αDijBC(vj)∑

vk∈Wi
αDikBC(vk)

(5)

where α is a hyper-parameter controlling the weight decay by the distance, 0 < α < 1.

Finally, we maximize the following approximate objective L̂n on Wi (instead of Ln on W̊i), i.e.,

L̂n(Z) =
∑
vi∈V

P̃ (vi)
{
Evj∼Q̃Wi (V )[log σ̂(ZiZ

T
j )] + λEvk∼P̃n(V )[log σ̂(−ZiZTk )]

}
(6)

We show in Proposition 1 that optimization of Equation 6 conforms to implicitly decompose an SP
distance-based similarity matrix where for any va and vb located far away from each other under the
SP metric (i.e., a small Dab) should be mapped with low similarity in the embedding space (i.e., a
large |D̂ab|). Also, further discussion in Remark 2 shows that such similarity matrix D̂ shares strong
connections with the real SP distance matrix D on graphs.
Proposition 1. Let G be an undirected graph, Wi be the categorical distribution of nodes on the
paths sampled by BC-based random walk. Negative sampling on each node vi takes a uniform
distribution on Wi. Then, for sufficient observation of W1, · · · ,WN , maximizing L̂n defined by
Equation 6 with embeddings Z is equivalent to decomposing an SP distance-based similarity matrix
D̂ = ZZT , where for any va and vb, the distance between them in the embedding space varies
linearly with respect to distance Dab, namely,

D̂ab = ZaZ
T
b = − log ε+Dab logα (7)

where ε is a small constant related to the negative samples, which is independent of vb, and α is the
hyper-parameter defined in Equation 5, where 0 < α < 1.

Proposition 1 is proved in Appendix A.4 by deriving the extreme point of L̂n regarding Z.

Then, we consider the preservation of SP distance relations. Some studies on metric learning (Her-
mans et al., 2017; Zeng et al., 2020) have revealed that a triplet of samples (va, vb, vc) being easy to
learn means if vb shares strong correlation with va, the distance between vb and va in the embedding
space should be shorter than that of vc and va. With this property, we have the following theorem
(proved in A.6 by directly applying Proprosition 1), which indicates that our method is consistent
with distance relations under the intrinsic SP metric.
Theorem 1. Each symbol here follows the definition in Proposition 1. Let D be a global distance
matrix defined on graph G and Dab be graph’s SP distance between node va and vb. Then for any
nodes va, vb, vc ∈ G,

(Dab −Dac)(D̂ab − D̂ac) ≤ 0 (8)

In conclusion, we discuss here the significance of distance resampling for preserving accurate dis-
tance relations. It exerts two implicit constraints on Z to learn an interpretable SP representation.
First, as stated in Proposition 1, the distance measured in the embedding space shares a strong neg-
ative correlation with that measured on the graph. Second, for any node triplet, the distance relation
between any two of them is preserved according to Theorem 1. The two constraints are further
verified in Section 4.3 against existing techniques.

3.3 EFFICIENT IMPLEMENTATION OF BCDR ALGORITHM

We also provide a time and space-efficient implementation of BCDR to integrate the above tech-
niques in Algorithm 1. Like previous learning-based SP representation methods (Rizi et al., 2018),
we first transform the graph into low-dimensional embeddings (i.e., ZN×d) and learn a distance
predictor gφ : (Rd,Rd)→ R by observed distance triplets {(Za,Zb, Dab)}. Then, the predictor gφ
will be involved in answering online distance queries. In addition, similar to Jiang et al. (2021a),
we also improve the prediction results via gradient boosting techniques. The detailed designs of
these procedures are described in Appendix A.2, and an ablation study to evaluate their impact on
performance is provided in Appendix A.11.
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4 EXPERIMENTAL EVALUATION

In this section, we show the comprehensive performance of BCDR with 5 real-world graphs of
different sizes and 6 synthetic graphs of different structures. Specifically, we evaluate BCDR on 3
small graphs (i.e., Cora, Facebook, and GrQc) and 2 large graphs (i.e., DBLP and Youtube) for its
scalability (see Section 4.1), and evaluate it on 6 synthetic graphs for its representational capacity
of complex structures (see Section 4.2 and 4.3). Our method is compared with strong baselines
from both approximate SP representation and general graph representation learning (GRL). In the
experiments, we also provide two variants of BCDR, i.e., BCDR-FC and BCDR-FQ, for accelerating
the construction and querying process, respectively. A detailed description of the datasets, including
statistics and visualization, is thoroughly provided in Appendix A.8.

4.1 PERFORMANCE OF APPROXIMATE SP DISTANCE QUERY

We compare BCDR with other learning-based SP representation methods (i.e., Orion (Xiaohan et al.,
2010), Rigel (Xiaohan et al., 2011), DADL (Rizi et al., 2018), Path2Vec (Kutuzov et al., 2019),
HALK (Schlötterer et al., 2019)) and CatBoost-SDP (Jiang et al., 2021a) as well as other approx-
imate methods, including landmark-based (i.e., LS (Potamias et al., 2009) and oracle-based (i.e.,
ADO (Thorup & Zwick, 2004)) techniques. All of the above models are run with six 3.50GHz Intel
Xeon(R) CPUs and 128GB memory, and the precomputed representations of each model are serial-
ized by Pickle. Each baseline generally follows the default parameters discussed in its paper with
some trivial changes, so that its performance can be evaluated in a unified way. The detailed param-
eter setups of each model are provided in Appendix A.9. Like previous works, we initially compute
all pairs of SP distance on each graph by BFS and take a uniform sampling to select 1, 000, 000
distance triplets {(va, vb, Dab)} as test samples. All of the baselines, including ours, are purely im-
plemented in Python 3.9 and evaluated under the same environment. Since only unweighted graphs
are considered, the outputs of each model are quantized to integer when evaluating accuracy loss.
Some of the experimental results are shown in Table 2 (see Appendix A.10 for extended compar-
isons with GRL models). We can see from the table that our model not only outperforms previous
models regarding accuracy loss for all graphs but also shares competitive results on other metrics.

In detail, for accuracy loss (mAE and mRE), BCDR answers arbitrary queries with the minimum
error due to a wider exploration range of distance and distance-preserved optimization. Notably, the
variants of BCDR without boosting module (i.e., BCDR-FQ and BCDR-FC) also achieve the highest
accuracy against other RW-based learning approaches (i.e., DADL and HALK) within almost the
least storage cost. For offline processing time (PT), memory usage (PMU), and storage cost (SC),
the results show BCDR possesses powerful scalability against the growth of graph scale. Even for a
graph with millions of nodes, the offline processing could be completed within several hours, and the
memory usage is close to the graph size. This is because we perform BC-based random walks with
a fixed length on each graph, and the size of walk data is further reduced by distance resampling.
In addition, although CatBoost-SDP seems to achieve strong scalability on these metrics, we need
to point out that this method does not learn any representation of nodes and completely optimizes
all pairs of distance in a boosting way, which subsequently suffers higher time and space cost for
online queries. For response time (RT) and memory usage (QMU) in querying, we see BCDR-FC
and most other learning-based models share similar low memory overhead since each distance query
could be answered by checking the node embeddings and graph adjacency matrices. Furthermore,
BCDR-FQ and Orion could answer such a query within tens of nanoseconds due to the absence of
double-checking on adjacency matrices.

Besides, to evaluate the impact of critical components and hyper-parameters in BCDR, we further
conduct an ablation study in Appendix A.11 where we discuss 6 different modifications to BCDR
as well as an investigation on 9 critical parameters to show their impacts on different metrics.

4.2 EXPLORATION RANGE OF DISTANCE

As stated in Section 3.1, the exploration range of distance could be widened by BC-based random
walk (BC-RW), since the latter helps to jump out of local neighborhoods. Here, we compare BC-
RW with existing renowned walk strategies, including naive random walk (NRW) (Perozzi et al.,
2014; Zhuang & Ma, 2018), second-order random walk (SORW) (Grover & Leskovec, 2016), and
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Table 2: Performance comparison of approximate methods on SP distance queries. PT: processing
time when constructing SP representations, PMU: processing memory usage, SC: space cost on stor-
ing SP representations, RT: average response time of answering a distance query, QMU: querying
memory usage. mAE and mRE are the accuracy metrics. DNF means it did not finish in one day.
We bold the top three performances, and highlight the top one with an underline.

Dataset Model PT PMU SC RT QMU mAE mRE

Cora

ADO 0.3179 s 6.205 MB 0.9905 MB 9, 813 ns 11.89 MB 2.1070 0.4266
LS 0.6355 s 2.952 MB 0.6791 MB 11, 537 ns 10.92 MB 1.0599 0.2068

Orion 61.34 s 15.06 MB 0.1655 MB 63.87 ns 0.1654 MB 3.0542 0.5242
Rigel 61.36 s 15.06 MB 0.1655 MB 4,587 ns 0.2482 MB 3.0464 0.5164

DADL 68.22 s 27.36 MB 0.1696 MB 6, 798 ns 0.2486 MB 1.0822 0.1862
Path2Vec 172.9 s 2.870 MB 0.1696 MB 6, 820 ns 0.2486 MB 3.2020 0.6066

HALK 30.44s 6.715 MB 0.1696 MB 6, 802 ns 0.2486 MB 1.7702 0.3293
CatBoost-SDP 9.582 s 0.4444 MB 0.4711 MB 8, 987 ns 4.285 MB 0.8907 0.1585
BCDR (ours.) 40.85 s 2.979 MB 0.4079 MB 6, 376 ns 4.0623 MB 0.8046 0.1411

BCDR-FQ (ours.) 39.51 s 2.728 MB 0.1696 MB 50.85 ns 0.1657 MB 0.7249 0.1247
BCDR-FC (ours.) 35.60 s 2.728 MB 0.1696 MB 6, 830 ns 0.2486 MB 0.8243 0.1384

Facebook

ADO 1.991 s 13.10 MB 1.783 MB 8, 105 ns 16.94 MB 1.1842 0.5080
LS 3.382 s 4.390 MB 0.9929 MB 11, 664 ns 12.28 MB 0.9566 0.3924

Orion 80.53 s 21.00 MB 0.2419 MB 60.81 ns 0.2418 MB 1.7770 0.6864
Rigel 80.31 s 21.00 MB 0.2419 MB 4,976 ns 1.588 MB 1.7531 0.6625

DADL 176.3 s 42.44 MB 0.2459 MB 8, 601 ns 1.588 MB 0.2250 0.0792
Path2Vec 284.5 s 5.459 MB 0.2459 MB 8, 582 ns 1.588 MB 1.4263 0.5489

HALK 75.95 s 21.28 MB 0.2459 MB 8, 777 ns 1.588 MB 0.9004 0.3517
CatBoost-SDP 12.84 s 1.874 MB 0.6896 MB 8, 955 ns 4.504 MB 0.0203 0.0159
BCDR (ours.) 142.7 s 6.804 MB 1.210 MB 8, 298 ns 5.402 MB 0.0106 0.0044

BCDR-FQ (ours.) 160.6 s 5.213 MB 0.2459 MB 53.78 ns 0.2421 MB 0.0978 0.0385
BCDR-FC(ours.) 91.71 s 5.213 MB 0.2459 MB 8, 713 ns 1.588 MB 0.1463 0.0478

GrQc

ADO 1.322 s 17.75 MB 2.922 MB 13, 555 ns 19.19 MB 1.8747 0.3582
LS 2.098 s 5.722 MB 1.315 MB 11, 825 ns 13.60 MB 1.1538 0.2097

Orion 98.14 s 21.33 MB 0.3202 MB 62.80 ns 0.3201 MB 3.0532 0.4849
Rigel 98.00 s 21.33 MB 0.3202 MB 4,872 ns 0.5519 MB 3.0493 0.4810

DADL 103.0 s 53.09 MB 0.3242 MB 6, 912 ns 0.5523 MB 0.9812 0.1659
Path2Vec 333.0 s 5.632 MB 0.3242 MB 6, 938 ns 0.5523 MB 4.1239 0.7231

HALK 48.30 s 13.80 MB 0.3242 MB 6, 955 ns 0.5523 MB 1.1695 0.2063
CatBoost-SDP 11.03 s 0.9305 MB 0.7846 MB 9, 015 ns 4.599 MB 0.7815 0.1416
BCDR (ours.) 69.61 s 5.907 MB 0.7916 MB 6, 452 ns 4.367 MB 0.7043 0.1274

BCDR-FQ (ours.) 67.98 s 5.351 MB 0.3242 MB 51.90 ns 0.3204 MB 0.8743 0.1501
BCDR-FC (ours.) 58.30 s 5.351 MB 0.3242 MB 6, 965 ns 0.5523 MB 0.8776 0.1442

DBLP

ADO 37, 029 s 8, 899 MB 199.8 MB 8, 598 ns 5, 980 MB 3.0691 0.4985
LS 5, 838 s 349.0 MB 80.02 MB 12, 094 ns 344.6 MB 2.5060 0.3939

Orion 5, 531 s 321.8 MB 19.36 MB 82.25 ns 19.35 MB 3.5044 0.5165
Rigel 5, 523 s 321.8 MB 19.36 MB 5,657 ns 35.37 MB 3.5043 0.5164

DADL 2, 650 s 1, 958 MB 19.36 MB 7, 562 ns 35.37 MB 1.2753 0.2016
Path2Vec 27, 453 s 140.9 MB 19.36 MB 7, 700 ns 35.37 MB 3.9474 0.6097

HALK 1, 270 s 649.6 MB 19.36 MB 7, 704 ns 35.37 MB 1.8477 0.3077
CatBoost-SDP 244.4 s 56.47 MB 40.34 MB 9, 270 ns 44.16 MB 0.5492 0.0890
BCDR (ours.) 1, 099 s 89.04 MB 41.82 MB 7, 247 ns 39.19 MB 0.4923 0.0798

BCDR-FQ (ours.) 1,026 s 53.52 MB 19.36 MB 58.82 ns 19.35 MB 1.3018 0.1840
BCDR-FC (ours.) 999.8 s 53.52 MB 19.36 MB 7, 617 ns 35.37 MB 1.1014 0.1580

Youtube

ADO DNF − − − − − −
LS 87, 902 s 1, 258 MB 286.7 MB 16, 672 ns 1, 217 MB 2.0159 0.4091

Orion 50, 484 s 1, 251 MB 69.26 MB 163.9 ns 69.26 MB 2.8642 0.5473
Rigel 51, 246 s 1, 251 MB 69.26 MB 13, 808 ns 114.9 MB 2.8642 0.5473

DADL 28, 351 s 6, 983 MB 69.27 MB 7, 708 ns 114.9 MB 1.1144 0.2163
Path2Vec DNF − − − − − −

HALK 5,971 s 2, 187 MB 69.27 MB 7, 764 ns 114.9 MB 1.9035 0.3860
CatBoost-SDP 3,030 s 190.4 MB 141.7 MB 9, 921 ns 145.5 MB 0.4022 0.0724
BCDR (ours.) 9, 247 s 295.2 MB 141.6 MB 7, 393 ns 118.7 MB 0.3297 0.0676

BCDR-FQ (ours.) 7, 893 s 179.8 MB 69.27 MB 63.78 ns 69.27 MB 0.9004 0.1704
BCDR-FC (ours.) 6,000 s 179.8 MB 69.27 MB 6,156 ns 114.9 MB 0.9083 0.1745

random surfing (RS) (Cao et al., 2016). We also consider a DFS-like random walk (DFS-RW) as a
strong baseline by setting a very small q in Node2Vec for deep exploration. The methods are tested
on 6 synthetic graphs with divergent structures. We randomly sample 20 root nodes and, for each
root, simulate 10 walks to show how many nodes with different distance are explored at each step of
the walk. The ideal situation for rooted walk paths with a fixed length l is to cover up to nodes l-hop
away from the current root. The results on circle graphs are shown in Figure 4. We can see from
the results that our proposed BC-RW is much more competitive in exploring a wider range of SP
distance. Further results and analysis on different graph structures are presented in Appendix A.12.

4.3 PRESERVATION OF DISTANCE RELATIONS

As discussed in Section 3.2, distance resampling is proposed to preserve accurate distance relations
via implicitly decomposing an SP distance-based similarity matrix. Here, we show its interpretabil-
ity for SP representations by visualizing the properties of embedded vectors Z when compared with
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Figure 4: Exploration range of distance of different walk strategies on circle graphs. Column from
left to right: different walk strategies, i.e, NRW, SORW, RS, DFS-RW, BC-RW (ours.).

the maximum likelihood optimization on other biased random walks. Environment configuration
follows the previous section.

First, we evaluate the relation of distance measured on graphs and embedding spaces for each node
pair. Specifically, distance on the embedding space is measured by inner product ZiZTj for given
nodes vi and vj , and that on the graph is measured by SP distance. Initially, we learn embedded
vectors from walk paths simulated by each walk strategy and randomly sample 100 source nodes
with 100 destinations for each source. The results on circle graphs are shown in Figure 5 (refer to
Appendix A.13 for extended results on other graphs), which indicates that embeddings enhanced by
distance resampling have a better tendency to maintain a linear relationship on the distance metric
between the original graph and embedding space. The results also verified our analysis in Remark 2
regarding relations between the SP distance-based similarity matrix D̂ and the distance matrix D.
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Figure 5: Row 1: measured distance from the embedding space and the original graph. Row 2:
whether distance relations are violated in the embedding space. Columns from left to right: em-
beddings learned by different walk strategies,i.e., NRW, SORW, RS, DFS-RW, and BC-RW (ours.),
respectively. For ours, walk paths are further simulated by distance resampling.

Second, we try to find out how much the probability distance relation is violated in the embedding
space, i.e., whether a pair of nodes with larger SP distance is corresponded with less embedded sim-
ilarity as described in Theorem 1. We randomly take 10, 000 node triplets {(va, vb, vc)}, and record
if Equation 8 is satisfied. The results on circle graphs are shown in Figure 5 (refer to Appendix A.13
for extended results on other graphs). The figure confirms that our model is much more satisfactory
in preserving distance relation than existing methods. This is because BC-RW provides sufficient
observation on each node by locating many remote nodes with a sequence of centralized nodes on a
graph, and thus distance resampling based on such observation could preserve distance relations of
each node within its exploration range.

5 CONCLUSION

In this paper, we propose a novel graph SP representation method called Betweenness Centrality-
based Distance Resampling (BCDR) and discuss two significant techniques for an efficient and
interpretable SP representation. The experimental evaluation indicates that BCDR improves the ap-
proximation quality with a shorter response time for SP distance queries and possesses strong scala-
bility to large-scale and complex graphs. Notably, the produced node representations by our method
also reflect the highly-efficient paths for high-order message passing in GNNs, which appears to be
helpful for structural graph pooling and inference. We leave it for our future work.
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A APPENDIX

A.1 RELATED WORK

A.1.1 ESTIMATION OF ACCURATE SP DISTANCE

As an important global measurement on graphs, SP distance reflects the minimum travelling cost
from node to node, similar to the geodesic distance on manifolds. Along the rapid emergence of
large-scale graphs in many areas, space- and time-efficient estimation of accurate SP distance is
urgently required in many downstream applications. In this part, we investigate the direct impact of
SP distance estimation in different fields by discussing several real-world scenerios.

Case 1: find nearest points of interest in road and social networks Points of interest
(POIs) (Chen et al., 2021a) are specific point locations that someone may find useful or interest-
ing, e.g., hotels, campsites, fuel stations, etc. A real road network may contain millions of nodes,
while thousands of users may issue SP distance queries simultaneously for searching the nearest
POI from their location, like ’finding restaurants within 5 km distance’ or ’ranking restaurant search
results by distance’. To achieve such demands, learning to accurately and fast answer SP distance
with limited computing resources is of high significance. Specifically, utilizing limited computing
resources means the algorithm should be space- and time-efficient. Thereinto, less storage overhead
enables the representations to be stored in users’ mobile devices instead of centrally computing SP
on the server. And less query time ensures that the computation of SP distance can be processed in
real-time (since some POIs may change their positions frequently over time).

Case 2: construct skeleton graph from mesh for 3D animation In the literature of 3D animation,
animating an articulated character requires constructing a skeleton graph to control the movement of
the surface, i.e., place the skeleton joints inside the character and specify which parts of the surface
are attached to which bone. A critical technique (Aujay et al., 2007; Poirier & Paquette, 2009)
to automatically embed a skeleton into a character relies on computing a harmonic function under
the SP metric on mesh graphs. This requires finding a group of nodes that locally maximize SP
distance with the user-defined node. Since the mesh of a delicate-described character may have tens
or hundreds of vertices, estimating and finding such nodes with the longest SP distance accurately
and fast are also well-motivated.
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Case 3: estimate latencies in communication networks In large-scale communication networks,
the latencies between Internet hosts are defined as a round-trip measurement from one to another
(i.e., SP distance), which is utilized for performance optimization in many network applications
such as content distribution networks (Ratnasamy et al., 2002), multicast systems (Nogueira, 2014),
distributed file system (Rhea et al., 2003), etc.

A.1.2 APPROXIMATE SP REPRESENTATION

Hard-coding Perspective Compared with exact SP representations that improve query speed at the
expense of huge storage costs, approximate methods are designed to find a compact and scalable
representation of high performance both in time and space. The basic idea of these methods is
to reduce the complexity of SP distance matrices. Thorup and Zwick (Thorup & Zwick, 2004)
initially observe that a hierarchical sparse sampling of nodes could significantly reduce the number
of elements in the distance matrix, and all pairs of SP distance are thus approximately represented
by the distance relations on those nodes with a bounded error. They also provide a time-efficient
algorithm to compute the pruned distance relations. Several later extensions (Baswana & Kavitha,
2006; Enachescu et al., 2008; Chen et al., 2009) are proposed to improve the processing time and
space on specific graphs. However, these methods still have limitations on space complexity and
accuracy. First, the sampled distance relations take O(α0N

1+α0) space which is not linear to the
number of nodes N , thus inducing scalable problems on large graphs. Second, the bounded error
is often unacceptable on graphs with smaller diameters since even the most accurate model (with
α0 = 2) allows three times the error of real distance.

Addressing these issues, landmark-based distance estimation methods (Potamias et al., 2009; Gu-
bichev et al., 2010; Sarma et al., 2010) are proposed. Instead of sampling hierarchical sets of nodes,
landmark-based methods only preserve distance relations between a fixed number of nodes (called
landmarks) to others on the graph, and all pairs of SP distance could be bounded by their distance
related to landmarks according to triangle inequality (Zheng et al., 2005; Lee et al., 2006; Mao et al.,
2006), i.e., for any nodes va and vb,

max
vi∈L
|Dai −Dib| ≤ Dab ≤ min

vj∈L
|Dai +Dib| (9)

where Dab denotes the SP distance between va and vb, L denotes the set of landmarks. The average
accuracy could be optimized by selecting proper landmarks that covers as many SPs as possible.
Unfortunately, finding the optimal finite set of landmarks with the minimal size has been proved
to be NP-hard, which is mapping to a set-cover problem (Balas, 1982). Therefore, several heuris-
tic selection strategies are discussed to tight Equation 9 by leading Dab almost near to its upper
bound (Potamias et al., 2009). Other efforts (Gubichev et al., 2010; Tretyakov et al., 2011) are made
to store SP trees for each landmark instead of distances at the cost of extra storage and response
time. Nevertheless, the approximation performance in these models relies highly on graph struc-
tures, since less-centralized graphs (e.g., a grid-like graph) and graphs of large diameters (e.g., a
large planar graph) require a large number of distributed landmarks to cover remote pairs of nodes.

Learning Perspective Instead of the hard-coding techniques mentioned above, our work steps
forward from a learning perspective of SP distance estimation, which constructs general and scalable
representations for arbitrary graphs. Under the low-rank assumption of SP distance matrices, the
basic idea of learning-based methods is to transform the graph into a metric space while preserving
the distance between pairs of nodes. As the embedding space is low-dimensional and continuous,
extracting distance from learning-based SP representations is fast and scalable. However, directly
optimizing the distance between all pairs is time-consuming, which takes at least O(N2) time for
computing distance and subsequent optimization. Towards this, many graph coordinate systems (Ng
& Zhang, 2002; Tang & Crovella, 2003; Costa et al., 2004; Dabek et al., 2004; Ng & Zhang, 2004)
have been studied in the past years. To reduce processing complexity, a feasible learning procedure
for very large graphs later proposed in Orion (Xiaohan et al., 2010) contains three steps. First,
perform breadth-first search (BFS) from a small landmark set L and record node pairs as well as
their distance as training triplets {〈vl, va, Dla〉} where vl ∈ L, va ∈ V . Second, create a graph
coordinate system M by preserving distance relations among nodes in L, i.e.,

arg min
LM={vMi |vi∈L}

∑
vi,vj∈L

|DM
ij −Dij | (10)
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where vMi denotes the embedded vector corresponding to the node vi, andDM
ij denotes the geodesic

distance between vMi and vMj measured on M . Third, fix LM and calibrate distance between other
nodes and landmarks iteratively. Among these steps, the metric tensor defined onM significantly af-
fects the accuracy of distance estimation, and models regarding embedding in euclidean space (Rao,
1999; Lee, 2009; Xiaohan et al., 2010) and hyperbolic space (Shavitt & Tankel, 2008; Xiaohan et al.,
2011) are well studied respectively.

Inspired by the great success in graph representation learning (GRL), further work (Rizi et al., 2018;
Schlötterer et al., 2019) including ours treatsM as an agnostic but definite manifold learned by GRL
techniques and estimates distance based on learnable metric criteria (usually a multi-layer percep-
tron). Therefore, the learning task here is converted from ”calibrate the position of each node” to
”learn powerful metric criteria to extract distance everywhere.” This novel paradigm achieves higher
accuracy with reduced training time despite the fact that we are unsure about whether general GRL
models could embed sufficient information to infer all pairs of SPs. In this paper, we thus discuss
an interpretable SP representation learning method and improve the comprehensive performance of
SP distance estimation.

A.1.3 GRAPH REPRESENTATION LEARNING

Graph representation learning (GRL) organizes symbolic objects (such as nodes, edges, and clus-
ters) in a way such that their similarities on the graph are well-preserved in the low-dimensional
embedding space. Currently, most of these methods focus on preserving arbitrary linkage on graphs
by considering high-order adjacency matrices, and are categorized into matrix factorization (MF)
and random walk (RW) approaches. Thereinto, our work shares strong connections with general
RW approaches, which embed remote nodes’ correlation within linear complexity compared with
MF methods. The basic idea of RW-based learning methods proposed in Deepwalk (Perozzi et al.,
2014) is to dump complicated linkage structure on graphs into a few fixed-length node sequences
in a statistical view and learn node embeddings to reflect their co-occurrence on walk paths us-
ing a skip-gram algorithm (Mikolov et al., 2013a;b). The learning process is to solve a maximum
likelihood optimization problem based on observed sequences, i.e., for any nodes va and vb,

arg max
Za,Zb

log σ̂(ZaZ
T
b ) + λEvk∼P̃n(V )[log σ̂(−ZaZTk )])] (11)

where Za denotes the embedded vector of va, λ denotes the number of negative samples, σ̂(·) de-
notes the sigmoid function where σ̂(x) = (1 + e−x)−1, and P̃n(·) denotes a probability distribution
of the negative sampling. Several practical strategies are proposed in the past few years to sim-
ulate structure-aware traversal on graphs in RW-based methods (Grover & Leskovec, 2016; Cao
et al., 2016; Perozzi et al., 2017; Chen et al., 2018). In detail, to enhance sensibility on divergent
structures, Node2Vec (Grover & Leskovec, 2016) exploits a biased random walk strategy to per-
form combinatorial traversal on graphs, including breadth-first search (BFS) and depth-first search
(DFS), which explores both local-neighborhood linkage and correlation with remote nodes simulta-
neously. To reflect the locality around each node, a random walk with restarting mechanism (called
random surfing) is applied in learning point-wise mutual information (PMI) representations (Cao
et al., 2016). For capturing multi-scale representations of different-order neighborhoods, hierarchi-
cal random walks by skipping some of the nodes on paths are also proposed (Perozzi et al., 2017;
Chen et al., 2018). Recently, Schlotterer et al. (Schlötterer et al., 2019) observed that RW-based
methods perform better than others in exploring a wide range of distance and evaluated these meth-
ods as being helpful for SP distance estimation. However, a specific and insightful investigation of
RW-based SP representation remains to be studied. In this paper, we discuss a novel biased random
walk strategy toward high-order SP exploration and provide an explicit optimization algorithm for
distance-preserved representation.

A.2 EFFICIENT IMPLEMENTATION OF BCDR ALGORITHM

We discuss here an efficient implementation to integrate the techniques mentioned in Section 3.1
and 3.2. Our algorithm is presented in Algorithm 1, including constructing SP representations and
answering online distance queries. The description and analysis of these procedures are provided as
follows.
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Algorithm 1: construct SP representations & answer distance queries
Input: input graph G = (V,E), set of landmarks L, distance queries of node pairs Q, dimension of embeddings d, number

of walk paths on each node win, length of walk paths lin, BC decay coefficient ζ, number of resampled walk paths on
each node wout, length of resampled walk paths lout, distance decay coefficient α, training epochs m, learning rate
ηr, usage of fast query τ , usage of boosting χ.

Output: SP representation Z, predictor gφ, estimated distance D. (optional: regressors b1, b2, global representation Z ′)
1 Def sim DT with BC(G, L):
2 distance triplets T := list[]
3 approximate BCs γ := dict{vi : 0,∀vi ∈ V }
4 for each landmark vi ∈ L do
5 γ[vi]← 1
6 for each node vj ∈ V reached by BFS from vi do
7 append (vi, vj , Dij) to T
8 γ[vj ]← γ[vj ] + 1

Dij

9 end
10 end
11 return T , γ
12 Def sim BC Walk(G, vi, win, lin, γ):
13 distance map Di := dict{vi : 0}
14 visit counter B := dict{vj : 0,∀vj ∈ V }
15 for walk k from 0 to win do
16 visit sign set Si := {vi}
17 current node vc := vi
18 length ci := 0
19 while ci < lin do
20 probabilities of the next candidate nodes

P̃ kc := dict{}
21 for vj ∈ Nc ∧ vj /∈ Si do
22 P̃ kc [vj ]← γ[vi]× (2− tanh(ζ −B[vj ]))
23 if vj ∈ Di then
24 Di[vj ] = min{Di[vj ], Di[vc] + 1}
25 else
26 Di[vn] = Di[vc] + 1
27 end
28 end
29 sample next vn from normalized P̃ kc
30 vc ← vn, Si ← vn
31 ci ← ci + 1
32 B[vn]← B[vn] + 1
33 end
34 end
35 return Di

36 Def cons BCDR(G, d, L, win, lin, ζ, wout, lout, α, m, η):
37 T, γ ← sim DT with BC(G, L), P = list[]
38 for vi ∈ V do
39 Di ← sim BC Walk(G, vi, win, lin, γ)
40 probabilities of candidates nodes P̃i = dict{}
41 for vj ∈ Di.keys do
42 P̃i[vj ] := αDi[vj ] · γ[vj ]
43 end
44 for walk k from 0 to wout do
45 sample walk path pi of length lout by normalized P̃i
46 append pi to P
47 end
48 end
49 maximize Equation 6 with ZN×d and P by skip-gram.
50 define learnable distance predictor gφ := (Rd,Rd)→ R
51 for each epoch from 0 to m do
52 LMSE(va, vb) :=

[gφ(Za,Zb)−Dab]
2
, ∀(va, vb, Dab) ∈ T

53 minimize LMSE with φ at the learning rate ηr by SGD.
54 end
55 if χ then
56 define CatBoostRegressor b1, b2.
57 Z ′ := {Z′i|Z′i := list[Dij ]

|L|
j=0,∀vj ∈ L}

58 Train b1 by (Z′a,Z
′
b)→ Dab

59 Train b2 by (Z′a,Z
′
b,b1(Z′a,Z

′
b), gφ(Za,Zb))→ Dab

60 end
61 return Z, gφ [, Z ′, b1, b2]
62 Def query BCDR(Q, Z, gφ, τ [, E, Z ′]):
63 estimated distance D[va, vb] = gφ(Za,Zb), ∀(va, vb) ∈ Q
64 if χ then
65 D[va, vb] = b2(Z′a,Z

′
b,b1(Z′a,Z

′
b), D[va, vb])

66 end
67 if not τ then
68 D[va, vb]← 1, ∀(va, vb) ∈ Q ∩ E
69 end
70 return D

A.2.1 SIMULATION OF DISTANCE TRIPLETS & BC WALK

To simulate distance triplets (line 1 to 11), we perform BFS from a fixed number of landmarks L and
record their distance to each node on the graph (line 6 and 7). L comprises nodes that are selected
by heuristic strategies (e.g., by their degrees in descending order or randomly), and the simulated
triplets with linear complexity reflect a sufficient group of distance relations among V ×V for metric
learning. Before simulating BC walk paths, pre-computed BC of each node is also required at first,
which takes at least O(NM) time on unweighted graphs for an exact solution. To reduce the time
complexity, we consider a time-efficient approximation by integrating this process into the above
simulation of distance triplets (line 8). Intuitively, BC(va) measures some kind of relationship
between va and the centers of the graph, and nodes with larger BC values possess a shorter average
SP distance to any node on the graph. Since BFS visits each node just in ascending order of distance,
we thus estimate BC on each node by the average distance to all landmarks in L without introducing
extra time complexity.

Then, in the simulation of BC walk paths (line 12 to 35), we are interested in ”nodes on these walk
paths” instead of the full paths themselves, and the former with their distance to the root vi (i.e., Di)
will be passed to feed subsequent construction (line 39). Therefore, we enlarge the node coverage by
a decay mechanism on BC to diverge different walks. Note that BC-based random walk possessing
the ability to explore remote nodes tends to choose the paths that are prone to travel further, which
causes ignorance of nodes on some dead ends. Addressing this, as stated in line 22, the probability
of transiting to a node with large BC will be saturated after a sufficient number of walks passing
through it, which means some rare paths are getting much easier to be visited later.
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A.2.2 LEARNING EMBEDDINGS & DISTANCE PREDICTOR

To learn node embeddings Z on SP structures (line 37 to 49), we initially sample a group of BC walk
paths as distance maps {Di} (line 39), and then resample from them to feed the skip-gram algorithm
by considering distance decay and BC (line 42 and line 45), which preserves the property of distance
relations discussed in Theorem 1. Besides, the resampling process also provides a shape transform
of observed node sequences from win × lin to wout × lout. Let β = (winlin)/(woutlout) > 1, and
this property leads the actual time cost of learning embeddings to be reduced to its 1/β, compared
with learning directly on the original paths.

For the learning of the distance predictor (line 37, and line 50 to 54), we utilize a two-layer fully
connected neural network as the predictor, which takes the concatenation of two nodes’ embeddings
as input, and outputs a scalar to indicate the distance (line 50). The predictor model is learned from
distance triplets T by minimizing a mean squared error (MSE) between the predicted value and the
real distance using the stochastic gradient descent (SGD) technique. Finally, the parameter of neural
network φ and node embeddings Z are stored as graph SP representations.

To improve the prediction results, we further integrate the distance predictor with CatBoost tech-
niques (Dorogush et al., 2018). Initially, we treat the feature of nodes as a combination of global
features and local features. Thereinto, local features are already represented by Z, since we have
constructed SP representations on each node locally. For the global feature of any node vi, we
directly leverage the distance to each landmark as its global embedding Z′i. Then, we train two Cat-
Boost regressors (i.e., b1, b2) in turn. The first regressor b1 takes global features of two nodes as
input and predicts their distance as output (line 58), while the second regressor b2 takes as input not
only such global features, but the distance predicted from both global (i.e., b1(Z′a,Z

′
b)) and local

(i.e., gφ(Za,Zb)) features. Finally, the outputs of b2 are regarded as the final prediction results of
SP distance.

A.2.3 ANSWERING DISTANCE QUERIES

For distance queries, We provide two versions with different properties based on the same SP repre-
sentations. As revealed in previous studies of learning-based SP representation methods, the distance
relations in local neighborhoods are really hard to converge, which causes a decline in average accu-
racy (Rizi et al., 2018; Kutuzov et al., 2019). For an input query pair (va, vb), it is helpful to alleviate
such decline if we perform an extra search among first-order neighbors (i.e., search in the adjacency
matrix) to judge if (va, vb) is an edge in the graph. Since this practice prolongs the total response
time, we also preserve a fast version (BCDR-FQ) without neighbors searching for some potential
applications.

A.2.4 PARALLELISM

The implementation of BCDR is easy to be highly parallelized. In detail, the construction of SP
representations could be divided into three parts, including simulating distance triplets, performing
BC-based random walk, training embeddings, as well as the distance predictor. First, the BFS from
each landmark could be parallelized at a thread level up to the size of the landmark set. Second, for
the simulation of BC walk paths, the paths from different roots could also be simulated simultane-
ously. Third, the training process in the skip-gram algorithm and neural network could be locally
parallelized by matrix computations.

A.3 THEOREM FOR CLARIFYING THE SIGNIFICANCE OF BC-BASED RANDOM WALK

Theorem 2. Define N (h)
a = {vj |Daj = h} as a set of nodes that are h-hops away from va and

N
(h)
a = |N (h)

a | as the number of nodes in the set. Nodes in N (h)
a could be divided into two sets,

i.e., eh(va) and fh(va). Thereinto, eh(va) comprises nodes that have an edge with the nodes in
N (h+1)
a (called connective nodes), and fh(va) comprises the other nodes (called final nodes). The

BC value of each node is approximated by considering only the shortest path of nodes within a
range of k-hops locally. Let P̃R(N (h)

a → N (h+1)
a ) represent the probability to transit from N (h)

a to
N (h+1)
a by a naive random walk, and P̃B(N (h)

a → N (h+1)
a ) represent that by a BC-based random

walk. Let P̃R(fh(va)→ eh(va)) be the probability of transition from fh(va) to eh(va). E(va) is the
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eccentricity of va, E(va) = maxvb∈GDab. Then, for sufficient large E(va), any node va ∈ G and
any h > 1,

P̃B(N (h)
a → N (h+1)

a )

P̃R(N (h)
a → N (h+1)

a )
= 1 +B(k) + C (12)

lim
k→E(va)−1−h

B(k) + C =
A2 − 1

A1
+ C > 0

A1 =
|eh(va)|
|fh(va)|

, A2 =
1

P̃R(fh(va)→ eh(va))
, C ≥ 0.

(13)

Proof. We simplify symbols N (h)
a , N

(h)
a , eh(va), fh(va) as Nh, Nh, eh, fh for short.

→
Nh = #(

min{E(va),h+k−1}⋃
i=h

{vj |vj ∈ N (i)
a })

←
Nh = #(

h⋃
i=max{0,h−k+1}

{vj |vj ∈ N (i)
a })

(14)

where #(·) is a counting function indicating the number of occurrence times of specified nodes, i.e.,
the cardinality of a sampled set.

According to the definition in Theorem 2, we have Nh = |eh| + |fh|. Since only nodes in eh
could travel from Nh to Nh+1, We firstly consider P̃R(eh → eh+1|eh → Nh+1) and P̃B(eh →
eh+1|eh → Nh+1).

For general random walks, the choice of destination is based on uniform sampling, thus causing

P̃R(eh → eh+1|eh → Nh+1) =
|eh+1|
Nh+1

(15)

For BC-based random walk, we need calculate BC value of nodes of eh+1 and fh+1 for starters. Let
BC(eh+1) and BC(fh+1) represent the BC value of nodes in eh+1 and fh+1 respectively, and the

correspond legal SPs counts come from 4 sources as {
←
N h →

→
N h+2}, {

←
N h → Nh+1}, {Nh+1 →

→
N h+2} and {Nh+1 → Nh+1}. And we use BC({· → ·}) as the BC gain from the specified source,
then

BC({
←
N h →

→
N h+2}) =

←
Nh

→
Nh+2

BC({
←
N h → Nh+1}) =

←
Nh(|fh+1| · 0 + |eh+1|β(1)

e )

BC({Nh+1 →
→
N h+2}) =

→
Nh+2(|fh+1| · 1 + |eh+1|β(1)

e )

BC({Nh+1 → Nh+1}) = N2
h+1β

(2)
e

(16)

where β(1)
e means average BC gain between nodes in eh+1 and

→
N h+2, and β(2)

e means average BC
gain between nodes both in eh+1, which are constantly related with G. Therefore, we have

BC(eh+1) =
←
Nh

→
Nh+2 + (

←
Nh +

→
Nh+2)|eh+1|β(1)

e +
→
Nh+2|fh+1|+N2

h+1β
(2)
e

(17)

Likewise, we calculate

BC(fh+1) =
←
Nh

→
Nh+2 · 0 +

←
Nh(|fh+1|β(1)

f + |eh+1| · 0) +
→
Nh+2(|fh+1|β(1)

f + eh+1 · 0) +N2
h+1β

(2)
e

=(
←
Nh +

→
Nh+2)β

(1)
f +N2

h+1β
(2)
f

(18)
To compare the above BC(eh+1) and BC(fh+1),

BC(fh+1)

BC(eh+1)
=

(
←
Nh +

→
Nh+2)β

(1)
f +N2

h+1β
(2)
f

←
Nh

→
Nh+2 + (

←
Nh +

→
Nh+2)|eh+1|β(1)

e +
→
Nh+2|fh+1|+N2

h+1β
(2)
e

(19)
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note that for any Nj and N(x,y) =
→
N0 −

←
Nx −

→
Ny where j, x, y ∈ {0, E(va)},

lim
k→E(va)−1−h

Nj
N(x,y)

= lim
k→E(va)−1−h

ε(k) = 0 (20)

Equation 18 is reduced to

BC(fh+1)

BC(eh+1)
=

2ε(k)β
(1)
f + ε(k2)β

(2)
f

1 + 2ε(k)n|eh+1|β(1)
e + ε(k)|fh+1|+ ε(k2)β

(2)
e

= 2β
(1)
f ε(k) (21)

Then, we perform weighted random sampling based on BC and get

P̃B(eh → eh+1|eh → Nh+1) =
|eh+1|

|eh+1|+ 2|fh+1|β(1)
f ε(k)

(22)

Now, we consider the relation between P̃R(Nh → eh+1|Nh → Nh+1) and P̃B(Nh → eh+1|Nh →
Nh+1).

P̃B(Nh → Nh+1)

P̃R(Nh → Nh+1)
=
P̃B(eh)P̃B(eh → Nh+1)

P̃R(eh)P̃R(eh → Nh+1)

=
P̃B(Nh−1 → eh) + P̃B(Nh−1 → fh)P̃B(fh → eh)

P̃R(Nh−1 → eh) + P̃R(Nh−1 → fh)P̃R(fh → eh)

= 1 +

[
P̃B(Nh−1 → eh)− P̃R(Nh−1 → eh)

]
[1− P̃R(fh → eh)]

P̃R(Nh−1 → eh) + P̃R(Nh−1 → fh)P̃R(fh → eh)

+
P̃R(fh → eh)ε

P̃R(Nh−1 → eh) + P̃R(Nh−1 → fh)P̃R(fh → eh)

= 1 +
|fh|[1− 2|fh|β(1)

f ε(k)][1− P̃R(fh → eh)]

(1 + |fh|
|eh| )[|eh|+ 2|fh|β(1)

f ε(k)]P̃R(fh → eh)

+
P̃R(fh → eh)ε

P̃R(Nh−1 → eh) + P̃R(Nh−1 → fh)P̃R(fh → eh)

(23)

Let C = P̃R(fh→eh)ε

P̃R(Nh−1→eh)+P̃R(Nh−1→fh)P̃R(fh→eh)
, B(k) =

|fh|[1−2|fh|β(1)
f ε(k)][1−P̃R(fh→eh)]

(1+
|fh|
|eh|

)[|eh|+2|fh|β(1)
f ε(k)]P̃R(fh→eh)

.

Since C is a non-negative value independent of k, finally we get

P̃B(Nh → Nh+1)

P̃R(Nh → Nh+1)
= 1 +B(k) + C (24)

where

lim
k→E(va)−1−h

B(k) + C =
A2 − 1

A1
+ C. (25)

Remark 1. Equations 12 and 13 in Theorem 2 give definite conditions under which BC-based
random walk travels further than random walk. Since nodes in va’s h-order neighborhood N (h)

a

could always be divided into eh(va) and fh(va) like Figure 3a, BC-based random walk improves
exploration distance beyond local loops and dead ends in contrast with naive random walk by two
aspects. On one side, even if N (h)

a comprises a larger number of nodes in fh(va) than eh(va) and
thusA1 decreases, BC-based random walk tends to transit in eh(va) to get near with the next desired
set N (h+1)

a . On the other side, even if nodes in fh(va) have fewer links to those in eh(va) and thus
A2 increases, BC-based random walk tends to transit between fh(va) and eh(va) instead of looping
within fh(va) as well as N (h−1)

a .
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A.4 PROOF OF PROPOSITION 1

Proof. In Proposition 1, we optimize an approximate objective L̂n instead of Ln, i.e.,

L̂n(Z) =
∑
vi∈V

P̃ (vi)
{
Evj∼Q̃Wi (V )[log σ̂(ZiZ

T
j )] + λEvk∼P̃n(V )[log σ̂(−ZiZTk )]

}
(26)

Here, we rewrite the negative sampling item of Equation 26 as

Evk∼P̃n(Wi)
[log σ̂(−ZiZTk )]) =

∑
vk∈Wi

P̃n(vk|vi)[log σ̂(−ZiZTk )]

= P̃n(vj |vi)[log σ̂(−ZiZTj )] +
∑

vk∈Wi\{vj}

P̃n(vk|vi)[log σ̂(−ZiZTk )]
(27)

Then, for each pair of vi ∈ V and vj ∈Wi, we get independent objective by combing similar items
from the total likelihood L̂n, and reach

L̂n(Z) =
∑
vi∈V

∑
vj∈Wi

L′(Zi,Zj)

L′(Zi,Zj) = P̃ (vi, vj) log σ̂(−ZiZTj ) + λP̃ (vi)P̃n(vj |vi) log σ̂(−ZiZTj )

(28)

Let D̂ = ZZT , for each node pair (va, vb) with SP distance D̂ab, consider

D̂ab = ZaZ
T
b = arg max

Za,Zb
L′(Za,Zb) (29)

Remember that Q̃Wi is a distribution resampled from P̃Wi , as an efficient approximation to P̃W̊i
,

i.e.,

Q̃Wi
(vj) =

αDijBC(vj)∑
vk∈Wi

αDikBC(vk)
(30)

Denote BC(vb) by γb, according to Equation 30, the joint distribution of each pair (va, vb) could be
formulated as

P̃ (va, vb) = P̃ (va) · P̃ (vb|va) = P̃ (va) · αDabγb (31)

Then, consider the formualtion of P̃n(vb|va). Recall that the negative sampling is a uniform distri-
bution onWa which are simulated by BC-based random walk, and the probability of vb’s occurrence
relies on γb andWa. Thus there holds

P̃n(vb|va) =
γb

κ(va)
(32)

where κ(va) is in proportion with the number of nodes covered byWa on the graph.

Furthermore, Equation 29 could be rewritten as

D̂ab = arg max
D̂ab

P̃ (va)αDabγb log σ̂(D̂ab) +
λ

κ(va)
P̃ (va)γb log σ̂(−D̂ab) (33)

Solve the above problem by just let ∂L(va,vb)

∂D̂ab
be equal to zero, i.e.,

∂L(va, vb)

∂D̂ab

= P̃ (va)αnγbσ̂(1− D̂ab)−
λ

κ(va)
p(va)γbσ̂(1 + D̂ab) = 0 (34)

After some simplification, we get

D̂ab = Dab logα− log
λ

κ(va)
(35)

Let ε = λκ−1(va) and there holds

D̂ab = − log ε+Dab logα (36)
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A.5 REMARK FOR THE RELATIONSHIP BETWEEN DISTANCE MATRIX & DISTANCE-BASED
SIMILARITY MATRIX

Remark 2. Equation 7 in Proposition 1 reveals the linear projections between elements in D̂ and
D. Thereinto, − log ε is a big positive constant with respect to |log|Wa|| − | log λ|, and Dab logα is
a negative value that decreases linearly with SP distance Dab. It indicates that there exists a finite
distance range n ∈ N+, for each node vb ∈ {vx|Dax ≤ n}, the distance relation between va and
vb could be well-optimized by converging ZaZTb → D̂ab > 0. It also reveals that the significance of
distance resampling is to preserve the SP distance relations between nodes which are well-observed
on given arbitrary walk paths. Besides, although the similarity matrix D̂ could not directly tell the
absolute distance, it also shares similar properties with D, i.e., if we fix va as the source node in a
path, the comparison between the similarities of (va, vb) and (va, vc) just reflects the SP distance
relations between them. This practical property is discussed in Theorem 1.

A.6 PROOF OF THEOREM 1

Proof. In terms of node pair (va, vb), as proved in Proposition 1, their similarity D̂ab in the embed-
ding space varies linear with respect to the SP distance Dab on the graph, i.e.,

D̂ab = − log ε+Dab logα (37)

Likewise, for (va, vc), there holds

|D̂ac| = − log ε+Dac logα (38)

where 0 < α < 1 and ε relies on Wa which is independent of vb and vc.

Then, consider the distance relation of va, vb and vc, there holds

(Dab −Dac)(D̂ab − D̂bc) = (Dab −Dac)((Dab −Dac)) logα = logα · (Dab −Dac)
2 ≤ 0.

(39)

A.7 MOTIVATION OF BCDR PROCEDURE AGAINST DIRECTLY SAMPLING SPS

We further clarify in this section the motivation for leveraging BCDR instead of directly sampling
SPs. As a prerequisite, it should be acknowledged that we need sampled SPs as observation to opti-
mize node embeddings Z. However, to perform sufficient observation on all pairs of shortest paths
is time-consuming, which takes at least O(N2) time on sparse unweighted graphs. Towards this, an
intuitive idea is to sample a limited number of paths that starts only at a few nodes (landmarks). But
it will introduce strong bias on the landmarks and ignore many shortest paths far away from them.
To alleviate this bias, in BCDR, we hope to observe shortest paths rooted at all nodes on the graph
(instead of the landmarks only). Therefore, we need some strategies to overcome the huge complex-
ity of directly sampling these paths (since it requires performing BFS on all nodes). The proposed
strategy is BC-based random walk where we intend to equip ’random walk’ with the awareness of
high-order SP structure and make the sampled walk paths much more likely to be certain shortest
paths. This strategy is comparatively efficient since the sampling complexity is proportional to its
path length l. Then the subsequent module DR further resampled from these paths for implicitly
preserving SP distance relations on Z.

According to the above discussion, a brief procedure of BCDR with its motivation could be summa-
rized as follows.

• estimate BC just by BFS from only a few nodes (landmarks).
motivation: determine which node is prone to trigger high-order explorations of SP distances.

• perform BC-based random walk.
motivation: observe the potential shortest paths rooted at each node sufficiently.

• leverage DR for resampling approximate random shortest paths.
motivation: implicitly preserving distance relations on observed paths.
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• optimize Z from the observation of the resampled paths.
motivation: reflect the SP structure on the graph instead of arbitrary linkage.

Each step above possesses linear complexity with respect to N (number of nodes in the graph).

Besides, we are convinced of the necessity of BCDR procedure and would like to explain it carefully
from both technical and empirical perspectives.

From a technical perspective, directly leveraging shortest paths as observation to optimize Z has a
few shortcomings.

• Prohibitive Complexity of Sufficient Observation. Observing all pairs of SP distance requires
at least O(N2) time for sparse unweighted graphs. Alternatively, an insufficient observation with
linear complexity will cause a loss in accuracy (see experimental results below).

• Inflexible Path Length for Optimization. Since we leverage the skip-gram algorithm for op-
timizing Z, it should be clear how long the sliding window size is, serving to reconstruct the
distance relations between nodes. But shortest paths rooted at a certain node factually possess
significantly divergent path lengths, which causes difficulty in determining proper sliding win-
dow size on different paths, i.e., a longer window helps to capture long-distance correlation but
causes indistinguishable in shorter paths and vice versa. Alternatively, if we only select shortest
paths of a certain fixed length, paths shorter than this length will be ignored, thus impairing the
performance.

Correspondingly, the BCDR procedure overcomes the above shortcomings as follows.

• Linear Complexity of Such Observation. Instead of directly simulating shortest paths, we sam-
ple paths by BC-based random walk and transform the paths into approximate random shortest
paths by DR. Both of these operation share linear time complexity. Also, the optimization on
such resampled paths is proved to share similar properties with that on real shortest paths by
Proposition 1 and Theorem 2.

• Flexible Path Length for Optimization. Since the paths are resampled from random paths, the
number and length of them (i.e., wout, lout) could be customized. We are thus able to fix them at
a certain proper length for subsequent optimization.

From an empirical perspective, we further construct and evaluate 6 competitive baselines which
have the same architecture and hyper-parameters as BCDR, but adopt different intuitive strategies to
directly optimize on shortest paths. The basic description of these baselines is stated as follows.

• Shortest Paths on Landmarks only (SPoL) Since we need anyway perform BFS from landmarks
to acquire distance triplet for learning distance predictor, we intuitively retrieve the shortest paths
starting from the landmarks. This operation introduces little extra time cost. The size of landmark
set is the same as BCDR (i.e., |L| = 80)

• Shortest Paths on Landmarks only with Fixed Length (SPoL-F) This is similar to SPoL but
restricts the output walk length at a certain level (the same as BCDR, i.e., lout = 10).

• Shortest Paths on All Nodes (SPoN) In BCDR, we perform BC random walk on each node
va to locate its position on the graph. Here, we directly sample shortest paths from va to any
other nodes instead. Specifically, for each source node va, we take a uniform sampling over V to
acquire the destination nodes, and retrieve the shortest paths between them. The number and max
length of shortest paths on each node is the same as BCDR (i.e., wout = 40, lout = 10).

• Shortest Paths on All Nodes with Fixed Length (SPoN-F) This is similar to SPoN but restricts
the output walk length (the same as BCDR, i.e., lout = 10).

• Shortest Paths on Arbitrary Node Pair (SPoANP) We randomly select a group of node pairs
(vs, vt) and retrieve one of the shortest paths between them by BFS. The number of paths is the
same as the total number of walk paths on all nodes in BCDR (i.e., N × wout).

• Shortest Paths on Arbitrary Node Pair (SPoANP-F) This is similar to SPoANP but restricts
the output walk length (the same as BCDR, i.e., lout = 10).

All of the above baselines are evaluated on GrQc dataset, and the experimental results are presented
in Table 3.
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Table 3: Comparisons between BCDR and directly sampling SPs by different intuitive strategies.
PT: pre-processing time, ST: time of sampling paths, mAE: mean of Absolute Error, mRE: mean of
Relative Error.

Model PT ST mAE mRE
SPoL 60.71 s 15.36s 0.9703 0.1641

SPoL-F 60.46s 15.63 s 1.2874 0.1961
SPoN 283.0 s 235.5 s 1.0411 0.1645

SPoN-F 2,702 s 2,656 s 1.2961 0.1969
SPoANP 282.1 s 234.4 s 1.3564 0.2047

SPoANP-F 6,341 s 6,290 s 1.3294 0.2003
BCDR 69.61 s 27.66 s 0.7043 0.1274

We see from the table that BCDR outperforms all the baselines in approximation quality (i.e., mAE
and mRE) within proper time. Specifically, SPoL possesses desirable pre-processing time since
only the shortest paths rooted at landmarks are considered. But they are plagued with insufficient
observation of other shortest paths that do not pass through landmarks. SPoN and SPoANP suffer
huge complexity when retrieving shortest paths on the whole graph, and perform even worse due to
the uncertainty of reasonable sliding window size. From SPoL-F, SPoN-F, and SPoANP, we see that
even if the path length is fixed, some uncaptured shorter paths will also cause a loss in accuracy.

A.8 DATASETS

To thoroughly evaluate our proposed method, we conduct experiments on real-world graphs and
synthetic graphs with divergent properties on sizes, structures, diameters, etc. Thereinto, real-world
graphs are extracted from Stanford Large Network Dataset Collection (Leskovec & Krevl, 2014),
and synthetic graphs are simulated according to specific rules described in A.8.6. The visualization
results of each graph are illustrated in Figure 6, and the corresponding statistics are presented in
Table 4. In the experiments, we show the efficiency and scalability of BCDR on real-world graphs
of different sizes and test on smaller synthetic graphs with different structures for further analysis of
exploration range and distance preservation. Here are brief descriptions of these graphs:

A.8.1 CORA

This is a graph that describes the citation relationship of papers, which contains 2708 nodes and
10556 directed edges among them. Each node also has a predefined feature with 1433 dimensions.

A.8.2 FACEBOOK

This is a graph that describes the relationship among Facebook users by their social circles (or friend
lists), which is collected from a group of test users. Facebook has also encoded each user with a
reindexed user ID to protect their privacy.

A.8.3 GRQC

This is a graph recorded from the e-print arXiv in the period from January 1993 to April 2003,
which represents co-author relationships based on their submission. Each undirected edge (vi, vj)
represents that an author vi is co-authored a paper with another author vj . If one paper is owned by
k authors, a complete subgraph of k nodes is generated correspondingly.

A.8.4 DBLP

This is a graph collected as a computer science bibliography that provides a comprehensive list of
research papers in computer science. As an undirected collaboration network, each edge reflects the
corresponding two authors who have at least one paper together.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 6: Visualization results of the graphs used for evaluation. (a): Cora. (b): Facebook. (c):
GrQc. (d): DBLP. (e): YouTube. (f): CG. (g): TG. (h): TCG. (i): TRG. (j): SG. (k): NG.

A.8.5 YOUTUBE

This is a graph constructed from users’ social relations on a video-sharing website Youtube. Each
node represents a user, and each edge indicates a friendship between two users.

A.8.6 SYNTHETIC GRAPHS

We also construct some smaller graphs reflecting one or some of the typical sub-structures which
are frequently occurred in complex graphs. The simulation rules of each graph are listed as follows.

• Circle Graph (CG): this is a graph that contains several circles of different sizes. The sim-
ulation of circle graphs takes an iterative process where for each newly introduced circle,
there are a limited number of nodes (called exit nodes) connected to the previous circles.
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Table 4: Statistics of the graphs used for evaluation. N denotes the number of nodes, M denotes
the number of edges, RoBC denotes the range of BC, mBC denotes the average BC on nodes, D
denotes the diameter of a graph, BFS denotes the average processing time of breadth-first search on
all nodes. Each graph is considered an undirected and unweighted graph in the SP representation
problem.

N M M/N D RoBC mBC BFS
Cora 2, 708 10, 787 3.9834 21 375.20 2.7174 0.0074 s

Facebook 4, 039 176, 437 21.846 8 1, 306.9 0.8993 0.0191 s
GrQc 5, 242 30, 042 5.7310 17 148.43 2.7219 0.0148 s
DBLP 317, 080 1, 049, 866 3.3110 21 1, 140.9 2.0795 46.0907 s

YouTube 1, 134, 890 5, 975, 248 5.2650 20 - - 691.0986 s
CG 197 216 1.0964 46 0.6058 0.1032 -
TG 384 984 2.5625 100 0.4987 0.0928 -

TCG 242 594 2.4545 31 0.4891 0.0551 -
TRG 134 133 0.9925 12 0.6416 0.0630 -
SG 550 585 1.0636 85 0.3068 0.0528 -
NG 200 364 1.8200 28 0.2914 0.1215 -

• Triangle Graph (TG): this is a graph possessing several cliques which are linearly connected
mutually.
• Tri-circle Graph (TCG): this is a graph that combines the properties of circle graphs and

triangle graphs. Here, each circle is simulated by connecting triangle sub-graphs end to
end.
• Tree Graph (TRG): this is a graph that is generated from one root to several leaves recur-

sively. There is no cycle in tree graphs. To control the tree structure, we define a splitting
probability that is decayed exponentially with current depth.
• Spiral Graph (SG): this is a graph shaped like a spiral line. We first simulate a line graph

and add edges between nodes with exponentially increased distances by their indices on
the line.
• Net Graph (NG): this is a graph containing grid-like connections between nodes. We define

a small probability of dropping those edges stochastically.

A.9 BASELINE & PARAMETER SETUP

The parameter setups of each baseline are listed as follows. For the oracle-based method, α0 is set
to 2 for the best accuracy, as discussed in the previous work. For the landmark-based method, we
choose a sufficient size of the landmark set as |L| = 128 and take the constrained strategy, i.e.,
for each landmark selected, nodes within two hops are discarded from consideration. For learning-
based methods, the embedding size d is fixed at 16. In addition, the number of selected landmarks
in learning-based methods is up to 80 for small graphs (i.e., Cora, Facebook, and GrQc) and 24 for
large graphs (i.e., DBLP and Youtube). Other hyper-parameters of each model follow the default
configurations discussed in their works. For the baselines proposed in road networks, the coordinate-
related features are omitted in their models, since there’s no coordinate assumption in our graph
datasets. For general GRL methods, all of the baselines follow the default configurations and are
further trained by linear regression to extract the distance between any two nodes.

For our proposed method, we simulate win = 20 walks on each node, and each walk is truncated at
a length of lin = 40. Each landmark is selected randomly up to the size of a landmark set |L| = 80.
The number of negative samples n is set to 1. The process of distance resampling outputs wout = 40
walks with each walk at a length of lout = 10. The decay coefficients of BC and distance are fixed
as ζ = 10, α = 0.35. We train the distance predictor using a two-layer perceptron with a learning
rate εr = 0.01 for 15 epochs and train the CatBoost regressors with a grid search for their best
parameters at the offline stage. For large graphs (i.e., DBLP and YouTube), we adjust the above
parameters by |L| = 5, win = 2, ζ = 1.0. For BCDR-FC, the number of walks is reduced by a half
for every graph. For BCDR-FQ, we take the raw outputs of the distance predictor without searching
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Table 5: Parameter settings of evaluation on 5 real-world graphs. Smaller graphs include Cora,
FaceBook, and GrQc. Larger Graphs include DBLP and YouTube.

Parameters for Smaller Graphs for Larger Graphs
d 16 16
|L| 80 5
win 20 2
lin 40 40
wout 40 40
lout 10 10
ζ 10 1
α 0.35 0.35

epochs 15 15

first-order neighborhoods on the graph (i.e., set τ = True). The boosting module is only utilized in
BCDR and disabled in BCDR-FQ and BCDR-FC (i.e. set χ = False). We summarized the critical
parameter setting to reproduce results in Table 2 as follows.

A.10 EXTENDED COMPARISONS WITH GRL MODELS ON APPROXIMATION QUALITY

We present in Table 6 the experimental results of comparisons to general GRL models. Here, only
the approximation quality (i.e., mAE and mRE) is evaluated, and the metrics are exerted directly on
the representations without quantizing the outputs to integers or checking adjacency matrices. We
see from Table 6 that although general embeddings by GRL methods could preserve some local SP
structures, our proposed method with explicit SP constraint possesses better approximation quality
for the SP distance queries.

Table 6: Extended comparison to general GRL models on approximation quality

Model Cora Facebook GrQc
mAE mRE mAE mRE mAE mRE

LLE (Roweis & Saul, 2000) 5.6265 0.8445 1.9921 0.6841 4.8849 0.7105
LE (Roweis & Saul, 2000) 5.6393 0.8455 2.0312 0.6998 5.0046 0.7366

GF (Ahmed et al., 2013) 5.6249 0.8440 1.8743 0.6383 4.8562 0.7125
DeepWalk (Perozzi et al., 2014) 1.5183 0.2425 0.9323 0.3289 2.8002 0.4169
GraRep (Shaosheng et al., 2015) 2.6206 0.3830 2.8702 1.0479 4.2445 0.6292

Node2Vec (Grover & Leskovec, 2016) 1.3072 0.2115 0.8541 0.2993 1.5156 0.2278
NetMF (Qiu et al., 2018) 4.1736 0.6025 1.6982 0.6163 3.8799 0.5779

VERSE (Tsitsulin et al., 2018) 2.8895 0.4049 1.1092 0.3729 3.3436 0.4689
LPCA (Chanpuriya et al., 2020) 2.2813 0.3337 2.1373 0.8611 2.4526 0.3475

BCDR (ours.) 0.9768 0.1605 0.4804 0.1770 1.0490 0.1684

A.11 FURTHER INVESTIGATION ON BCDR FRAMEWORK

A.11.1 ABLATION STUDY OF BCDR FRAMEWORK ON APPROXIMATION QUALITY

We discuss here the impact on approximation quality of different components in BCDR framework.
In addition to those plausible post-processing operations described in Algorithm 1 (i.e., enable τ, χ
or not), we also explore other operations that influnces approximation quality when pre-processing
graphs. The modifications to BCDR are stated as follows, and the corresponding results evaluated
on Facebook and DBLP are shown in Table 7.

• no checks on adjacency. The outputs of BCDR are accepted as predictions of SP distance
without checking if there is any immediate edge between each node pair (i.e., set τ =
True).

• no global features. SP distances are solely predicted by the two-layer neural network, and
the boosting module based on global distances to landmarks is omitted (i.e., set χ = False).
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• no local features. SP distances are solely predicted by the boosting module, and the learn-
ing process of the two-layer neural network on local features is omitted.
• no BC. Node representations are learned without BC-based random walk. For any nodes,

each transition in simulating walks considers its first-order neighbors equally, ignoring their
BC values.
• no DR. Node representations are learned without distance resampling. The resampling rule

(i.e. Equation 5) is replaced by a uniform sampling.
• degree selection. In simulation of distance triplets and BC values, the landmarks are se-

lected in descending order of degree, instead of random selection.

We see from the table that the full approach of BCDR achieves the best performance on approxima-
tion quality. It also reveals that all of the components significantly improve the prediction results.
Specifically, for the checks on adjacency, it is notable that learning-based methods on SP represen-
tation show much difficulty in catching distance to first-order neighbors. Checking adjacency of
input node pairs is necessary for accurate SP prediction. For global and local features, SP distance
predicted from global features performs better than that from local features. It means leveraging
global distances to each landmark helps a lot in locating a node on the graph. Furthermore, BCDR
combines both global and local features for prediction and shows superior performance compared
to either of them. For representing local features (i.e., BC and DR), we see that both BC-based
random walk and distance resampling help to enhance the node representations with high-order SP
structures, making it easier to extract distances to remote nodes. For landmark selection, we find
that random selection of landmarks is more necessary for BCDR than other existing strategies. This
is because we need to estimate BC values by performing BFS from these landmarks, and any as-
sumption on landmark distribution will lead to unfair numerical estimation. If only landmarks with
large degrees are selected, the BC value of nodes located in dense regions will be over-estimated,
which impairs the efficiency of BC-based random walk.

Table 7: Ablation study of BCDR framework on approximation quality

Model Facebook DBLP
mAE mRE mAE mRE

BCDR - no checks on adjacency 0.0253 0.0180 0.5677 0.0907
BCDR - no global features 0.1138 0.0378 1.0070 0.1484
BCDR - no local features 0.0453 0.0171 0.5385 0.0855
BCDR - no BC 0.0210 0.0086 0.5437 0.0839
BCDR - no DR 0.0285 0.0142 0.5093 0.0808
BCDR - degree selection 0.3820 0.1139 1.1524 0.1611
BCDR - full approach 0.0106 0.0044 0.4923 0.0798

A.11.2 FURTHER INVESTIGATION ON CRITICAL PARAMETER SETTING OF BCDR

Then, we further investigate the parameter settings of BCDR and discuss 9 critical parameters for
their impacts on performance. Notably, although we describe rather detailed settings of parameters
in Appendix A.9, the proposed method BCDR is factually robust and effective, and its performance
does not sensitively rely on any one of them. Here, we show the impacts of these parameters on
related metrics and how to easily tune them in any unweighted graphs, both conceptually and prac-
tically. The next discussion and evaluation of each parameter follow its order in Table 5.

d: the dimension of node-level embeddings (i.e., Z). In our experiment, d is not a fine-
tuned parameter but fixed at a certain value (i.e., d = 16) among different models to fairly eval-
uate their performance. This parameter could improve the performance on accuracy since a large
size of embeddings could dump more valuable information about SP structures at the expense of
higher storage cost and deficiency in query speed. To verify this, We test BCDR with different
d = {2, 4, 16, 64, 128, 256} on Facebook and GrQc to evaluate their performance under these met-
rics.

From the Table 8 and 9, we see that the accuracy loss could be cut down by increasing d, but it will
lead to significant deterioration in storage cost and query speed. As we discuss a low-dimensional
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and accurate SP representation in this paper, the results also reveal that even at a rather lower dimen-
sion of embeddings (like d = 4), the distance relations on the graph could be well-preserved.

Table 8: Impacts of d on the performance of BCDR evaluated on FaceBook

d 2 4 16 64 128 256
Storage 0.1307 MB 0.1924 MB 1.210 MB 3.160 MB 5.944 MB 8.579 MB
mAE 0.0902 0.0150 0.0202 0.0499 0.0310 0.0130
mRE 0.0347 0.0075 0.0091 0.0212 0.0122 0.0064

Query Time 4,089 ns 4,664 ns 8,334 ns 22,430 ns 41,142 ns 81,188 ns

Table 9: Impacts of d on the performance of BCDR evaluated on GrQc

d 2 4 16 64 128 256
Storage 0.2240 MB 0.3023 MB 0.7916 MB 2.750 MB 5.415 MB 10.86 MB
mAE 0.8719 0.8954 0.7089 0.6867 0.6746 0.677
mRE 0.1548 0.1555 0.1259 0.1227 0.1201 0.1209

Query Time 2,421 ns 3,011 ns 6, 570 ns 20,837 ns 39, 479 ns 79,023 ns

|L|: the number of landmarks for constructing distance triplet and estimating BC. This pa-
rameter mainly affects accuracy and pre-processing time since involving more landmarks helps to
alleviate harmful inductive bias on a certain part of the graph but suffers higher computing overhead.
It is also observed in the previous works (Rizi et al., 2018) that for large graphs with strong central-
ity on a few nodes, the number of landmarks could be reduced without much loss of accuracy. We
evaluate BCDR with a group of landmarks (|L| = {10, 20, 40, 80, 160}) on Facebook and GrQc, to
see their impacts on the two metrics.

Table 10: Impacts of |L| on the performance of BCDR evaluated on FaceBook

|L| 10 20 40 80 160
Pre-processing Time 127.8 s 134.3 s 142.5 s 157.5 s 187.5 s

mAE 0.0342 0.0297 0.0148 0.0193 0.0124
mRE 0.0134 0.0108 0.0063 0.0096 0.0062

Table 11: Impacts of |L| on the performance of BCDR evaluated on GrQc

|L| 10 20 40 80 160
Pre-processing Time 47.47 s 52.95 s 64.35 s 83.75 s 123.7 s

mAE 0.9922 0.6837 0.7383 0.7112 0.7065
mRE 0.1591 0.1185 0.1266 0.1217 0.1231

The results in Table 10 and 11 show that the pre-processing time on graphs increases linearly with
|L| since performing BFS from the added landmarks needs extra traversal on the whole graph for
O(N +M) time. It is also interesting to see that the number of landmarks large enough for the best
performance diverges for dense and sparse graphs, i.e., it generally takes more than 40 landmarks
for Facebook but only 20 landmarks necessary for GrQc. Specifically, for relatively dense graphs
(i.e., Facebook), each node shares weaker centrality due to the enriched links, which means we need
to observe more landmarks to cover more SPs on the graphs (according to the hub-labeling theory
in (Cohen et al., 2003)). But for sparse graphs (i.e., GrQc), as long as several nodes with strong
centrality are well-observed, SP distance between most node pairs could be preserved, resulting in
tolerance of reduced landmarks.

win, lin: the number and length of sampled BC walks on each node. These parameters affect
the accuracy and pre-processing time. When we simluate BC walks rooted at a certain node, a
large win makes it sufficient to observe the local structure of each node (like BFS), while a large
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lin allows wider exploration on the graph to let the distance with remote nodes be seen (like DFS).
Like the previous evaluation, we test win = {5, 10, 20, 30, 40} and lin = {5, 10, 20, 40, 60, 80} to
investigate their impacts, respectively.

Table 12: Impacts of win on the performance of BCDR evaluated on FaceBook

win 5 10 20 30 40
Pre-processing Time 128.5 s 143.7 s 186.3 s 228.2 s 273.5 s

mAE 0.0136 0.0454 0.0113 0.0188 0.0062
mRE 0.0061 0.0182 0.0056 0.0093 0.0027

Table 13: Impacts of lin on the performance of BCDR evaluated on FaceBook

lin 5 10 20 40 60 80
Pre-processing Time 126.9 s 131.6 s 145.9 s 182.8 s 215.4 s 114.0 s

mAE 0.0133 0.0145 0.0725 0.0081 0.0320 0.0370
mRE 0.0065 0.0067 0.0304 0.0037 0.0132 0.0184

Table 14: Impacts of win on the performance of BCDR evaluated on GrQc

win 5 10 20 30 40
Pre-processing Time 112.2 s 114.5 s 118.8 s 125.1 s 130.2 s

mAE 0.7227 0.6671 0.6581 0.6930 0.7115
mRE 0.1250 0.1195 0.1166 0.1245 0.1259

Table 15: Impacts of lin on the performance of BCDR evaluated on GrQc

lin 5 10 20 40 60 80
Pre-processing Time 114.0 s 115.7 s 117.8 s 119.3 s 119.7 s 120.8 s

mAE 0.7460 0.6765 0.7074 0.6643 0.6895 0.6926
mRE 0.1280 0.1146 0.1217 0.1171 0.1227 0.1230

The experimental results from Table 12 to 15 show the accuracy of BCDR is not sensitive to these
parameters, owing much to the efficiency of BC walk and well-preserved distance relations by DR.
Intuitively, we recommend setting lin proportional to the diameter of the graph, which makes the
whole graph observed from any nodes. Also, win could be reduced when the connectivity on the
graph is relatively weak since the local structures are quite simple to explore.

wout, lout: the number and length of resampled paths (by DR) on each node. These param-
eters control the shape of output node sequences to subsequently optimize Z under a skip-gram
procedure. To avoid much loss of information and preserve the correlation in BC walks, we intend
to keep the scale of outputs similar to that of inputs, i.e., woutlout = Ω(winlin). To accelerate
the optimization process, we could further shorten lout and keep this scale (by correspondingly
expanding wout). Note that this reshaping operation does not apparently change the locality nor
impair the performance since DR resamples nodes from high-order neighborhoods with respect to
their distance from the root, thus resulting in well-defined convergence, as shown in Prop. 1. In
the experiment, we fix the scale of output node sequences as half of the scale of BC walks (i.e.,
woutlout = winlin/2 = 400), and test different combinations of their settings as (wout, lin) =
{(200, 2), (100, 4), (50, 8), (40, 10), (25, 16), (16, 25), (10, 40), (8, 50), (4, 100), (2, 200)}.
The results in Table 16 and 17 reveal that the pre-processing time dramatically increases along with
lout. This is because we utilize the whole sequence to optimize co-occurrence likelihood between
the root and nodes in this sequence, which requires joint training with a large number of node
embeddings proportional to lout. It is also shown that the accuracy does not significantly fluctuate
as pre-processing time, indicating a relatively small lout will help to reduce the off-line time cost.
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Table 16: Impacts of (wout, lout) on the performance of BCDR evaluated on FaceBook

(wout, lout) (200,2) (100,4) (50,8) (40,10) (25,16) (16,25) (10,40) (8,50) (4,100) (2,200)
Pre-processing Time 176.3 s 154.1 s 148.6 s 150.6 s 156.8 s 170.5 s 206.3 s 236.8 s 501.0 s 1,521 s

mAE 0.0237 0.0217 0.0249 0.0258 0.0303 0.0128 0.0127 0.0360 0.0083 0.0237
mRE 0.0097 0.0093 0.0107 0.0108 0.0136 0.0059 0.0043 0.0145 0.0041 0.0098

Table 17: Impacts of (wout, lout) on the performance of BCDR evaluated on GrQc

(wout, lout) (200,2) (100,4) (50,8) (40,10) (25,16) (16,25) (10,40) (8,50) (4,100) (2,200)
Pre-processing Time 73.00 s 75.65 s 77.78 s 80.03 s 88.09 s 106.2 s 151.1 s 191.4 s 512.2 s 1,709 s

mAE 0.7829 0.7107 0.6811 0.6780 0.7170 0.7129 0.6970 0.6751 0.7340 0.6986
mRE 0.1389 0.1225 0.1209 0.1225 0.1274 0.1204 0.1240 0.1212 0.1295 0.1263

ζ, α: the decay coefficient of BC values and distance weights. These parameters mainly affect
the performance on accuracy by dominating the intrinsic behaviors of BC walk and DR, respec-
tively. Thereinto, ζ determines how frequently a node could be enrolled in the current BC walk,
which helps to diverge the direction of different walks from one root. Likewise, α determines how
frequently a node with more hops from the root could be selected into resampled paths, which
helps to distinguish neighbors of different orders. Like the previous evaluation, we test BCDR with
ζ = {−1, 0, 1, 2, 4, 10, 20} and α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.9, 0.98} to show their impacts.

Table 18: Impacts of ζ and α on the performance of BCDR evaluated on FaceBook

ζ -1 0 1 2 4 10 20
mAE 0.0522 0.0146 0.0061 0.0243 0.0137 0.0143 0.0131
mRE 0.0186 0.0069 0.0026 0.0099 0.0053 0.0056 0.0052
α 0.1 0.2 0.3 0.4 0.5 0.9 0.98

mAE 0.0104 0.0418 0.0506 0.0096 0.0252 0.0197 0.0341
mRE 0.0046 0.0204 0.0178 0.0046 0.0125 0.0096 0.0159

Table 19: Impacts of ζ and α on the performance of BCDR evaluated on GrQc

ζ -1 0 1 2 4 10 20
mAE 0.6419 0.6865 0.6844 0.6717 0.7219 0.6734 0.6879
mRE 0.1146 0.1234 0.1209 0.1214 0.1235 0.1175 0.1209
α 0.1 0.2 0.3 0.4 0.5 0.9 0.98

mAE 0.7216 0.6780 0.7036 0.7441 0.7006 0.7281 0.7258
mRE 0.1237 0.1202 0.1239 0.1295 0.1234 0.1267 0.1290

From the Table 18 and 19, we see the accuracy of BCDR is not sensitive to these parameters, but a
fine-tuning process could improve the performance on specific graphs.

For choices of ζ, it depends on the fluctuation of centrality on neighbor nodes. Specifically, for
relatively dense graphs (like Facebook) with flattened centrality on neighbors, a larger ζ resists the
frequency decaying of most preferred walk paths, leading to efficient exploration for high-order
distance relations. On the contrary, a quick BC decaying (smaller ζ) makes the priority of neighbor
nodes indistinguishable, dragging down the performance like a naive random walk, since many
neighbors possess similar centrality on such graphs.

For choices of α, as discussed in Remark 2, it reflects a trade-off between quality (i.e., preserves
accurate distance relations) and quantity (i.e., embeds more relations with a widened range of nodes).
In detail, a smaller α slows down the process D̂ab → 0, allowing relations between node pairs with
larger distance Dab to converge, i.e., ZaZTb → D̂ab > 0, but it causes nodes possessing similar
distance from the root indistinguishable due to the noise in the embedding space, and vice versa.
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Number of epochs. The number of epochs determines if it is sufficient to learn a NN distance
predictor. To produce the results of Table 2, we just leverage the empirical value as discussed
in (Rizi et al., 2018). Here, we evaluate its impact on accuracy loss and pre-processing time.

Table 20: Impacts of the number of epochs on the performance of BCDR evaluated on FaceBook

Num. of epochs 1 2 5 10 15 20 40
Pre-processing Time 121.2 s 125.3 s 130.7 s 139.7 s 150.1 s 160.0 s 194.7 s

mAE 0.0174 0.0136 0.0167 0.0121 0.0107 0.0176 0.0259
mRE 0.0087 0.0067 0.0083 0.0057 0.0048 0.0070 0.0104

Table 21: Impacts of the number of epochs on the performance of BCDR evaluated on GrQc

Num. of epochs 1 2 5 10 15 20 40
Pre-processing Time 44.67 s 47.92 s 54.69 s 68.03 s 79.85 s 92.09 s 141.5 s

mAE 0.6888 0.6913 0.7071 0.6786 0.6803 0.6884 0.7047
mRE 0.1225 0.1257 0.1263 0.1158 0.1197 0.1194 0.1225

The results in Table 20 and 21 show that learning with 15 epochs is generally appropriate for many
real-world graphs. It also reflects that training the distance predictor with more iterations may cause
an over-fitting problem since the training data (distance triplets) are extracted from a few landmarks,
which induces harmful inductive bias on a certain part of the graph.

A.12 EXTENDED RESULTS ON EXPLORATION RANGE OF DISTANCE

The extended results on all synthetic graphs are shown in Figure 7. We analyze the significance of
utilizing BC-RW for a wider range of exploration on different structures as follows.

• For CGs and TCGs, BC-RW tends to choose the exit nodes of each circle since they provide
a large BC gain by splitting all SPs between inner nodes and outer nodes regarding the
current circle.

• For TGs, transitions on every triangle clique tend to move forward along the trunk road
since the number of nodes beyond the current clique is often larger than that of inner nodes,
contributing to more SPs.

• For TRGs, each transition from the root to leaves appears to be biased since subtrees with
more descendants contribute to more SPs and possess larger BC values.

• For SGs, there are many shortcuts that link some nodes on the trunk road, and the BC values
of shortcut nodes and other nodes are usually on par. BC-RW possesses a slight advantage
by keeping a relatively good balance on these nodes.

• For NGs, most of the nodes are passed through by SPs with similar probabilities, and BC-
RW is hard to tell the proper direction for deeper exploration like other walk strategies.

A.13 EXTENDED RESULTS ON PRESERVATION OF DISTANCE RELATIONS

The extended results of distance preservation are shown in Figure 8 and 9. These figures confirm that
our model is much more satisfactory in preserving distance relation than existing methods except
for TGs. For most graphs, BC walk paths provide sufficient observation on each node by locating
many remote nodes with a sequence of center nodes on a graph, and thus the resampling process
based on such observation could preserve distance relations in the exploration range. For TGs,
however, there are many final nodes (i.e., leaves) possessing trivial significance on BC walks which
are insufficiently observed for calibrating their distance relations well.
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Figure 7: Exploration range of distance when taking different walk strategies tested on six synthetic
graphs. Row from top to bottom: different synthetic graphs including CG, TG, TCG, TRG, SG,
and NG, respectively. Column from left to right: different walk strategies including NRW, SORW,
RS, DFS-RW, BC-RW (ours.), respectively.
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Figure 8: Measured distance from the embedding space and the original graph. Row from top to
bottom: different graphs including CG, TG, TCG, TRG, SG, and NG, respectively. Column from
left to right: embeddings learned by different walk strategies,i.e., NRW, SORW, RS, DFS-RW, and
BC-RW (ours.), respectively. For ours, walk paths are further simulated by distance resampling.
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Figure 9: Distance preservation among node triplets in the embedding spaces. Row from top to
bottom: different graphs including CG, TG, TCG, TRG, SG, and NG, respectively. Column from
left to right: embeddings learned by different walk strategies,i.e., NRW, SORW, RS, DFS-RW, and
BC-RW (ours.), respectively. For ours, walk paths are further simulated by distance resampling.
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