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ABSTRACT
In this paper, we identify and leverage a novel ‘bright ending’ (BE) anomaly in dif-
fusion models prone to memorizing training images to address a new task: locating
localized memorization regions within these models. BE refers to a distinct cross-
attention pattern observed in text-to-image generations using diffusion models.
Specifically, memorized image patches exhibit significantly greater attention to the
end token during the final inference step compared to non-memorized patches. This
attention map effectively highlights regions where the generated image replicates
training data. Furthermore, driven by our observation that local memorization sig-
nificantly underperforms in existing tasks of measuring, detecting, and mitigating
memorization in diffusion models compared to global memorization, we propose a
simple yet effective method to integrate BE and the results of the new localization
task into these existing frameworks. This integration effectively improves their
performances by narrowing the performance gap caused by local memorization.
Our results not only demonstrate the successful execution of the new localization
task but also establish new state-of-the-art performance across all existing tasks,
underscoring the significance of the BE phenomenon.

1 INTRODUCTION

Text-to-image diffusion models like Stable Diffusion (Rombach et al., 2022) have achieved unparal-
leled proficiency in creating images that not only showcase exceptional fidelity and diversity but also
closely correspond with the user’s input textual prompts. This advancement has garnered attention
from a broad spectrum of users, leading to the extensive dissemination and commercial utilization
of models trained on comprehensive web-scale datasets, such as LAION (Schuhmann et al., 2022),
alongside their produced images. However, this widespread usage introduces legal complexities for
both the proprietors and users of these models, particularly when the training datasets encompass
copyrighted content. The inherent ability of these models to memorize and replicate training data
during inference raises significant concerns, potentially infringing on copyright laws without notifying
either the model’s owners or users or the copyright holders of the replicated content. The challenge
is further exacerbated by the training datasets’ vast size, which makes thorough human scrutiny
unfeasible. Illustratively, several high-profile lawsuits (Saveri & Matthew, 2023) have been initiated
against entities like Stability AI, DeviantArt, Midjourney, and Runway AI by distinguished artists.
These lawsuits argue that Stable Diffusion acts as a ‘21st-century collage tool’, remixing copyrighted
works of countless artists used in its training data.

In response to these legal challenges, Carlini et al. (2023) and Somepalli et al. (2023a) proposed
similarity metrics to evaluate memorization, and recent efforts (Somepalli et al., 2023b; Wen et al.,
2024; Chen et al., 2024) have focused on developing strategies to detect and mitigate memorization,
achieving notable success. However, these metrics and strategies adopt a global perspective, com-
paring entire generated images to training images. We identify a significant gap in these approaches
when dealing with cases where only parts of the training image are memorized, which we refer to as
local memorization, as opposed to cases where the entire training image is memorized, termed global
memorization. Specifically, current methods can be easily tricked in local memorization scenarios by
introducing diversity in non-memorized regions, resulting in many false negatives during evaluation
and detection. Consequently, this failure to correctly identify local memorization may prevent the
activation of mitigation strategies. Motivated by this research gap, we developed a localization insight
as a novel view of the memorization issues, where we argue that improved metrics and strategies
should concentrate exclusively on the locally memorized regions, as these areas pose risks. In contrast,
unmemorized parts of the image, which do not present risks, should be completely ignored.

Building on this localization insight, we introduce a new task: extracting localized memorized regions.
This task is crucial for better understanding local memorization and developing targeted strategies
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Figure 1: Memorization in diffusion models can occur both globally (right) and locally (left). The
first row displays the memorized training image, the second row shows the corresponding generated
image, and the third row highlights the local memorization mask extracted using ‘bright ending’.
to reduce the associated performance gap. To accomplish this task effectively and efficiently, we
introduce the concept of the ‘bright ending’ (BE), a phenomenon observed in the cross-attention maps
of text-to-image diffusion models. The bright ending occurs when the end token in the final inference
step exhibits abnormally high attention scores on specific image patches in memorized generations
compared to non-memorized ones. This distinctive pattern effectively highlights the regions where
the model has memorized the training data, requiring only a single inference pass and without relying
on access to the training data. To our knowledge, this is the first method to achieve such precise and
efficient localization, emphasizing the significance of BE. Finally, we propose a simple yet effective
method to integrate BE and its extracted local memorization masks into existing state-of-the-art
memorization evaluation, detection, and mitigation strategies. Our extensive experiments demonstrate
that this integration significantly enhances the performance of these existing tasks by narrowing the
gap caused by local memorization, further underscoring the contribution of BE.

In summary, our contributions are three-fold: 1) We analyze the performance gap between local
and global memorization in existing tasks and introduce a novel localized view of memorization in
diffusion models. 2) We pioneer a new task of locating localized memorization regions and propose
the novel ‘bright ending’ (BE) phenomenon, which is the first method to successfully achieve this
task using only a single inference process without requiring access to training data and conducting
a nearest neighbor search over all ground truth images. 3) By integrating the local memorization
mask extracted using BE into existing evaluation, detection, and mitigation strategies, we refine these
approaches to focus on local perspectives, in contrast to the global focus of all existing strategies.
This refinement narrows the gap caused by local memorization and sets a new state-of-the-art in these
existing tasks. This simple and effective incorporation further demonstrates the power of BE.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models (Rombach et al., 2022; Ho et al., 2020; Nichol & Dhariwal, 2021) represent a
state-of-the-art class of generative models, emerging as the predominant choice for various generation
tasks. They entail a two-stage mechanism, beginning with a forward process that incrementally
introduces Gaussian noise to an image originating from a real-data distribution x0 ∼ q(x) across T
timesteps, culminating in xT ∼ N (0, I):

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (2)

where xt represents the version of x0 with added noise at timestep t, and {βt}Tt=1 is the noise schedule
controls the amount of noise injected into the data at each step. By using the reparameterization
trick (Kingma & Welling, 2014), we can derive the Diffusion Kernel, allowing for the sampling of xt

at any given timestep t in a closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (3)
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Figure 2: Left: Variations in non-memorized regions significantly impact similarity scores with
existing global metrics. Right: Local memorization is more challenging to detect than global
memorization, with more failure cases observed using the current state-of-the-art detection method.

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. Subsequently, in the reverse process, generative model-
ing is accomplished by training a denoiser network pθ to closely estimate the true distribution of
q(xt−1|xt, x0):

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
θ(xt)I) (4)

pθ(xT :0) = p(xT )

1∏
t=T

pθ(xt−1|xt) (5)

where µθ(xt) and σ2
θ(xt) are the approximated mean and variance of q(xt−1|xt, x0), whose true

values can be derived using Bayes rule and the Diffusion Kernel as in Eq. 3. The learning objective
simplifies to having the denoiser network ϵθ predict the noise ϵt instead of the image xt−1 at any
arbitrary step t:

L = Et∈[1,T ],ϵ∼N (0,I)[∥ϵt − ϵθ(xt, t)∥22] (6)

where the denoiser network can be easily reformulated as a conditional generative model ϵθ(xt, y, t)
by incorporating additional class or text conditioning y.

3 A LOCALIZED VIEW OF MEMORIZATION IN DIFFUSION MODELS

Fig. 1 illustrates that diffusion models can exhibit both global and local memorization. Global
memorization refers to the model remembering the entire image, whereas local memorization pertains
to the model retaining only a portion of the image. Notably, global memorization can be seen as a
special case of local memorization when the memorized region encompasses the whole image.

Existing global metrics fall short for local memorization evaluation. We observe that all existing
studies on memorization in diffusion models are from a global perspective, where the effectiveness
of any proposed detection methods and mitigation strategies are evaluated using global metrics,
such as L2 distance or Self-Supervised Copy Detection (SSCD) (Pizzi et al., 2022). These metrics
measure similarity between entire generated images and training images rather than focusing on
locally memorized areas. However, these metrics are not robust to variations outside the locally
memorized areas and can be easily tricked. A generated image may memorize only a local area of
the training image while making the remaining areas novel and diverse, leading to false negatives.
Fig. 2 (left) illustrates failures of the global metric approach, where variations in non-memorized
regions significantly reduce the similarity scores measured by SSCD. The current standard considers
SSCD scores greater than 0.5 as memorization. This results in some images being falsely identified
as non-memorized despite all being locally memorized, with differences only in the non-memorized
regions.

Existing global strategies struggle with local memorization detection and mitigation. Current
detection and mitigation strategies are evaluated using global metrics and are thus developed from a
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Figure 3: Local memorization tends to have smaller magnitudes than global memorization, making it
harder to distinguish from non-memorization. Incorporating BE into the existing detection method
effectively increases the magnitude of local cases while keeping the other cases mostly unchanged.

global perspective. For instance, Wen et al. (2024) distinguishes memorized cases from unmemorized
ones by utilizing the magnitude over the global latent space (Eq. 7), with memorized cases exhibiting
larger magnitudes. This detection method has outperformed its predecessors, setting the current
state-of-the-art. However, this approach is less effective for local memorization cases than for global
ones, as variations in non-memorized regions impact magnitude computations, increasing variance
and diminishing the reliability of the detection signal, which leads to more false negatives. To verify
this theory, we visualized the density plot of magnitudes for all three scenarios (global, local, and
no memorization) in Fig. 2 (right) and Fig. 3 and observed that local cases indeed have smaller
magnitudes than global ones, making them closer in magnitude to unmemorized cases and harder to
detect. Regarding mitigation, local memorization also underperforms. Wen et al. (2024) employs
prompt engineering when a positive detection is made, optimizing the prompt using global magnitude
as the loss function, which is, therefore, also sensitive to variations in non-memorized regions.
Additionally, the compromised global detection method, which produces more false negatives, often
leaves the mitigation strategy untriggered, increasing the risk of unaddressed memorization and
potentially leading to legal challenges.

D =
1

T

T∑
t=1

∥(εθ(xt, ep)− εθ(xt, eϕ))∥2 (7)

The localization insight: local memorization is a more generalized and practical notion of
memorization. Recognizing the gap in research on measuring, detecting, and mitigating local
memorization, we propose that further investigations should adopt a local perspective. Local memo-
rization is a more meaningful and generalized concept for the following reasons: (1) Unmemorized
regions pose no litigation risk and can be disregarded, while even a small locally memorized area can
present significant legal concerns. (2) Local memorization is a more encompassing definition, with
global memorization being a specific instance. Focusing on local memorization does not diminish the
value of global investigations; instead, it complements and extends the scope of existing work.
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Figure 4: Visualization of cross-attention maps during the final denoising step in pre-trained Stable
Diffusion models. Typically, the end token shows a dark cross-attention map, shifting the denoiser’s
attention from semantic meanings to fine details. However, in memorized models, ‘bright ending’
anomaly occurs, where the end token displays abnormally high cross-attention scores, focusing
on coarser structures, specifically, the local memorized regions, effectively serving as an efficient
automatic extraction of the local memorization mask without needing access to the training data.

4 BRIGHT ENDING

Introducing a new task: extracting localized memorized regions. The observed performance gap
caused by local memorization has prompted us to explore a new task: extracting localized memorized
regions as a mask. This task is essential for investigating memorization from a local perspective, and
the resulting mask can be integrated into existing evaluation, detection, and mitigation strategies. This
integration refines these strategies into localized approaches, effectively reducing the performance
gap associated with local memorization. One naive method to create such a local memorization mask
is to compare generated images with the closest training image. However, this reliance on training
data presents limitations: (1) It compromises privacy for a task aimed at preventing the memorization
of training data and assumes that the user of the pre-trained model has access to the training data;
(2) It requires significantly more computation due to the need for nearest neighbor searches on the
large LAION training dataset. Consequently, this naive approach diminishes its practical significance
when the mask is used in detection and mitigation algorithms. Therefore, we aim to extract such
masks without using training data, relying solely on the pre-trained model’s memory to identify
distinguishing memorization patterns.

Recent work has highlighted the important role of prompts in causing memorization. For example,
Somepalli et al. (2023b) identified that duplicated prompts during the training of text-to-image Stable
Diffusion models make the prompts become the “keys” to the models’ memory. Similarly, Wen
et al. (2024) observed that prompts prone to memorization tend to result in larger text-conditional
noise predictions during inference than non-memorization cases. Additionally, Chen et al. (2024)
successfully utilized classifier-free guidance to steer generations away from memorized prompts,
improving mitigation. Inspired by these findings, we focused on using prompts to extract our desired
local mask. This naturally led us to explore the cross-attention mechanism in the U-Net architecture
within diffusion models, which links prompts to specific attention-focusing areas in the generated
images. One of our key intuitions is that the pre-trained diffusion model’s memories resulting from
overfitting should differ from those learned through generalization. Memorized generations are
inflexible and follow a fixed denoising trajectory that is observably different from non-memorized
scenarios. This is evidenced by Wen et al. (2024), who observed that in memorized cases, the
magnitude of text-conditional noise prediction during the denoising trajectory is abnormally higher
than in non-memorization cases.

Automatic local memorization mask extraction via bright ending (BE). Inspired by our intuition,
we visualized each token’s cross-attention maps in memorized and non-memorized prompts to identify
distinguishing patterns (Fig. 4). We discovered an interesting phenomenon in pre-trained text-to-
image Stable Diffusion models: during the final denoising step, the end token typically shows a dark
cross-attention map. Specifically, these dark maps often contain only extremely low-attention finer
edges or random scatter points. Since the end token summarizes all semantic meanings in the prompt,
this indicates that when the noised image is very close to a clean image, the denoiser’s attention on
text-conditioning shifts from focusing on its semantic meanings to concentrating only on fine details.
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Figure 5: Left: Box plot showing the distribution of end token cross-attention scores during the final
inference step for different memorization types. The plot is based on 9,600 generated images, with 16
images generated for 300 memorized and 300 non-memorized prompts each. It clearly distinguishes
the three types: non-memorized cases have attention scores close to zero, while memorized cases
exhibit abnormally high scores. Global memorization shows higher scores than local memorization
due to the larger memorized regions. This further validates the ‘bright ending’ observation. Right:
Violin plots displaying the impact on magnitudes for different memorization types.

However, when the model exhibits memorization, we observe an anomaly where the end token
displays abnormally high cross-attention scores at the end of denoising steps — a phenomenon
we refer to as the ‘bright ending’ (BE). Specifically, it focuses on the coarser structure of image
patches rather than finer details or random scatter points. This indicates that the denoiser remains
focused on text-conditioning even during the final inference step, demonstrating overfitting to the
text-conditioning. This aligns with the finding in Somepalli et al. (2023b) that memorized generations
result from overfitting to duplicated caption-conditioning during training, thus following a fixed
noise trajectory during inference. Thus, BE is a robust indicator for differentiating memorized
generations from unmemorized ones, with bright regions identifying the memorized areas. This
effectively functions as an automatic memorization mask, acting as a global mask during global
memorization and a local mask during local memorization, as can be visually observed in Fig. 4 and
1. To further validate this observation, we used 300 memorized prompts and 300 non-memorized
prompts to generate 16 images for each prompt, resulting in a total of 9600 generations. We then
employed a box plot (Fig. 5) to visualize the distribution of the attention scores of the end token
during the final inference step for these generated images. We observed a clear distinction among
the three memorization types: non-memorized cases consistently had attention scores close to zero,
while memorized cases exhibited abnormally high scores. Furthermore, global memorization showed
higher scores than local memorization due to the larger regions being memorized in global cases
compared to local ones.

Beyond BE’s effectiveness in performing the new task of extracting localized memorized regions, it is
also remarkably efficient, requiring only a single inference pass without needing access to the training
data. To our knowledge, BE is the first method to achieve such precise and efficient localization.

5 LOCALIZED DETECTION, MITIGATING AND EVALUATION METHODS

5.1 INCORPORATING THE BRIGHT ENDING (BE)

BE’s success in the new task of extracting localized memorized regions can also benefit existing
tasks of evaluating, detecting, and mitigating memorization in diffusion models. By integrating the
extracted local mask into current strategies, these approaches can adopt a local perspective, thereby
reducing the performance gap associated with local memorization. Specifically, as discussed in Sec.
4, the bright ending (BE) attention map inherently serves as an automatically extracted memorization
mask. This mask directly utilizes the BE attention scores as its values, eliminating the need for
thresholding to convert it into a binary mask of only 0s and 1s. By doing so, it avoids the added
variability introduced by thresholding hyperparameters, which may be less effective under certain
threshold settings, thereby improving robustness. The approach remains effective regardless of
whether the memorized regions are subtle or abstract, as it solely relies on the pre-trained model’s
overfitted memory to extract the mask. This eliminates the dependence on factors such as the
degree of subtlety or abstraction of memorized regions or thresholding based on size or intensity
of memorization. For a qualitative evaluation of the mask, please refer to Fig. 1 and Fig. 4, where
brighter patches indicate higher attention scores and darker patches indicate lower ones.
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Detection strategy. As discussed in Sec. 3, computing magnitudes in the global space, as shown
in Eq. 7, can be misleading during local memorization. To ensure that the magnitude computation
corresponds solely to the locally memorized area and remains invariant to other areas, we propose
element-wise multiplication of the magnitude by our memorization mask extracted via BE:

LD =
1

T

T∑
t=1

∥(εθ(xt, ep)− εθ(xt, eϕ)) ◦m∥2

/(
1

N

N∑
i=1

mi

)
(8)

Here, N is the number of elements in the mask m. Unlike methods requiring hyperparameter tuning,
such as setting thresholds to convert attention scores into a binary mask, our approach uses the
attention scores directly as weights. This reweights the relative importance of each pixel in the
magnitude computations. To ensure comparability, the result is normalized by the mean of the
attention weights m.
Mitigation strategy. Also, as discussed in Sec. 3, the baseline mitigation strategy employs prompt
engineering when a positive detection outcome is identified, using global magnitude as the loss
function for such prompt optimization. Our proposed BE introduces two key enhancements to
this process: (1) Accurate trigger: The mitigation strategy is triggered more accurately due to
our improved detection method, which utilizes masked local magnitude by incorporating BE. (2)
Improved loss function: By using masked local magnitude as the loss function, we provide more
effective gradient information during backpropagation for prompt optimization, further enhancing
the efficacy of the mitigation strategy, again thanks to the incorporation of BE.
Evaluation strategy. To verify the effectiveness of the bright ending when used for evaluating
metrics, we design a localized similarity metric, denoted as LS, to measure the similarity between
generated image x̂ and training image x. This metric is a masked version of the L2 distance and is
combined with the standard SSCD metric, as defined in Eq. 9. We expect this approach to outperform
the sole use of SSCD and the combination of SSCD with the original global L2 distance (denoted as
S), as in Eq. 10.

LS(x̂, x) = −1SSCD<0.5 · ∥(x̂− x) ◦m∥2 (9)

S(x̂, x) = −1SSCD<0.5 · ∥(x̂− x)∥2 (10)

5.2 EXPERIMENTS

Setup. Following previous works, we conducted experiments on Stable Diffusion v1-4. We adhered
to the baseline prompt dataset (Wen et al., 2024), using 500 prompts each from Lexica, LAION,
COCO, and random captions as non-memorized prompts. We used the dataset organized by Webster
(2023) for memorized prompts. However, since not all 500 prompts in Webster (2023)’s dataset
are prone to memorization, we selected 300 memorized prompts for our experiments. For each
memorized and non-memorized prompt, we generated 16 images.

We follow the baseline methodology from Wen et al. (2024) and evaluate performance using the area
under the curve (AUC) of the receiver operating characteristic (ROC) curve, the True Positive Rate
at 1% False Positive Rate (T@1%F), and the F1 score, and report the detection performance during
the 1, 10, and 50 inference steps. However, the baseline detection performance measures whether a
prompt is prone to memorization rather than if a specific generation is memorized. They experimented
with how well the average magnitude of 1, 4, and 32 generations per prompt differentiates between
memorized and non-memorized cases. This approach is flawed because using different random seeds,
a prompt prone to memorization can sometimes generate non-memorized images. Consequently,
a prompt that rarely yields memorization might still be classified as memorized. For example,
generating four non-memorized images from a prompt classified as memorized due to its occasional
memorized output can falsely inflate performance metrics. Conversely, failing to classify these as
non-memorized when they are all non-memorized should not be penalized. To address this, we
assess detection performance based on accurately predicting each generation as memorized or not
rather than each prompt. We re-implement the baseline method under the same conditions for a fair
comparison. For mitigation, the output utility is evaluated based on the CLIP score, which measures
the text-alignment of generated outputs. We evaluate similarity scores using both traditional SSCD
and our proposed localized metric to provide a comprehensive performance view, experimenting with
multiple privacy levels. Due to current metrics’ failure to accurately identify memorized cases, we
manually label the ground truth for each generated image from the memorized prompts. Webster
(2023) organizes the nearest training images for these generations, making it easy to observe local
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memorization cases with minimal subjectivity in manual labeling. Please check out Sec. 8.1 for a
detailed illustration of the labeling process.

We separately evaluate performance for local and global memorization, contrasting our localized
strategies with the baseline’s globalized strategies. Table 1 presents a comparison between our
localized detection strategy, which uses LD as the detection signal (Eq. 8), and the baseline globalized
detection strategy that relies on D (Eq. 7). Figures 6 and 7 highlight comparisons of localized
mitigation, utilizing LD (Eq. 8) as both the triggering signal and loss function, with globalized
mitigation strategies that use D (Eq. 7). Finally, Table 2 compares the localized similarity metric
LS (Eq. 9) against S (Eq. 10) and SSCD in terms of F1-score, using memorization thresholds. For
SSCD, we follow the standard threshold of 0.50, while for LS and S, we adopt a threshold of -50.

Implementationally, we experimented with the cross-attention maps on different layers of the U-Net
and found that averaging the first two 64-pixel downsampling layers most effectively extracts the local
memorization mask. The inference process takes about 2 seconds per generation using RTX4090.

Table 1: Detection performance for local and global memorization at different inference steps T .

T = 1 T = 10 T = 50
AUC F1 T@1%F AUC F1 T@1%F AUC F1 T@1%F

Baseline (D) - Local 0.918 0.864 0.629 0.989 0.982 0.953 0.990 0.983 0.560
Ours (LD) - Local 0.943 0.893 0.731 0.995 0.987 0.985 0.996 0.988 0.926
Baseline (D) - Global 0.979 0.944 0.934 1.000 0.987 1.000 0.999 0.976 1.000
Ours (LD) - Global 0.981 0.948 0.940 1.000 0.987 1.000 0.999 0.977 1.000
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Figure 6: Local memorization’s mitigation.
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Figure 7: Global memorization’s mitigation.

Results. As the baseline detection strategy in Eq. 7 incorporates a hyperparameter T , where
the detection signal is defined as the average magnitude over T inference steps, Tab. 1 evaluates
performance across different values of T . This evaluation compares the baseline’s magnitude with
our proposed masked/localized magnitude, incorporating the BE mask as outlined in Eq. 8 under
such different choices of baseline’s hyperparameter values for demonstrating BE’s ablation effects.

The results in Tab. 1 consistently demonstrate that integrating the BE mask improves detection
performance under varying baseline hyperparameter settings across all metrics for local memorization
while maintaining the performance for global memorization. These findings validate (1) the BE
mask’s effectiveness in accurately identifying memorized regions and (2) the importance of adopting a
localized perspective for studying memorization, which remains under-explored. Additionally, Fig. 3
and 5 (Right) further demonstrate this targeted improvement in local memorization. The magnitudes
for non-memorization and global memorization remain almost unchanged, but the magnitudes
for local memorization are successfully amplified, making them more distinguishable from non-
memorization cases. This effectively reduces the performance gap caused by local memorization by
converting previous False Negative cases into True Positives (examples shown in Fig. 8).

For mitigation, we also include the original Stable Diffusion (SD) without any mitigation strategies
applied in Fig. 6 and 7 for comparison, illustrating the extent to which we have reduced the local
memorization performance gap. The horizontal axis (CLIP score) represents utility, while the vertical
axis (similarity score) reflects memorization risks. A more favorable privacy-utility trade-off is
indicated by points that are further toward the bottom-right of the figures. This placement signifies
lower privacy risks for the same utility level (same x-axis value) and higher utility for the same level
of privacy risks (same y-axis value). Specifically, for local memorization, under the high-utility
scenario where we aim to minimally reduce the CLIP score while mitigating memorization, our
approach achieves a significantly better trade-off than the baseline. We reduce SD’s similarity score
by twice as much as the baseline while simultaneously observing a much smaller reduction in the
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CLIP score - less than half compared to the baseline. We also tested different privacy levels and
consistently achieved a better trade-off for local memorization. Specifically, we observe a lower
similarity score for the same CLIP score, as measured by both SSCD and our localized metric.
Additionally, we consistently observe a higher CLIP score for the same similarity score. As expected,
the results for global memorization remain almost identical to the baseline. This further confirms
BE’s effectiveness in addressing the performance gap introduced by local memorization in the task of
mitigating memorization.

For evaluation metric, Tab. 2 demonstrates the superiority of our localized metric, LS (Eq. 9), which
integrates SSCD, L2, and our BE mask, over the globalized metric, S (Eq. 10), which uses only SSCD
and L2. This highlights the contribution of incorporating the BE mask. Furthermore, the results
underscore the limitations of solely relying on SSCD, which performs well for global memorization
but struggles with local cases. Notably, our design of LS, which incorporates SSCD, retains strong
performance for global memorization while addressing the performance gap in local memorization,
further validating the benefit of such a design.

It is worth noting that the effectiveness of these strategies not only demonstrates our improvement
over the current state-of-the-art in existing tasks after incorporating BE’s local memorization mask,
but also serves as an extrinsic validation of BE’s effectiveness in the new task we propose - extracting
local memorization masks. To our knowledge, BE is the first method to precisely extract local
memorization masks in a highly efficient manner, requiring only one inference step without the need
to query the training data.

Figure 8: Examples of converting FN into TP. Generated
image followed by training image.

Table 2: F1-score comparisons for dif-
ferent evaluation metrics.

Local Global
SSCD 0.940 1.000
S 0.991 1.000
LS (Ours) 0.995 1.000

6 RELATED WORK
Memorization in Diffusion Models Numerous studies have previously explored memorization
phenomena in language models (Carlini et al., 2021; Kandpal et al., 2022a;b; Lee et al., 2022) and
GANs (Tinsley et al., 2021; Arora et al., 2018; Heusel et al., 2017). Over the past year, memorization
within diffusion models has increasingly been scrutinized. Somepalli et al. (2023a) and Carlini
et al. (2023) concurrently pioneered the examination of this issue, discovering that pretrained text-
conditional models, such as Stable Diffusion, frequently replicate their training data. Similar findings
were observed for unconditional generations in pretrained DDPMs on CIFAR-10 (Krizhevsky,
2009), as well as DDPMs trained on smaller datasets like CelebA (Liu et al., 2015) and Oxford
Flowers (Nilsback & Zisserman, 2008). Additionally, Chen et al. (2024) explored class-conditional
DDPMs on CIFAR-10, further highlighting the significance of this issue.
Types of Memorization Webster (2023) categorizes memorized captions into three types: (1)
Matching Verbatim (MV), where the generated image using a memorized caption is an exact replica of
the corresponding image; (2) Retrieval Verbatim (RV), where the generated image using a memorized
caption replicates other training images rather than the corresponding one; and (3) Template Verbatim
(TV), where the generated image using a memorized caption replicates only the template shared by
a subset of training images, with variations in fixed locations outside the template, corresponding
to different captions. This categorization focuses on the causes of memorization: MV results from
overfitting in the one-to-one mapping between image and caption in the training set, while many-to-
many mappings lead to RV and TV. However, the concepts of Local Memorization (LM) and Global
Memorization (GM) differ, focusing on whether the generated image exactly replicates an entire
training image or just a portion of it, regardless of whether the training image matches the prompt’s
corresponding image or the causes of memorization. RV and TV can be seen as subsets of LM,
as there are additional causes of LM beyond the “many-to-many mapping overfitting” that remain
unidentified. For instance, in Fig. 8, the image in the third column is classified as MV by Webster
(2023) due to the one-to-one mapping of the training image-caption, rather than many-to-many.
However, it only memorizes a local portion of the image in the last column. This suggests that a
pre-trained model may occasionally exhibit creativity when recalling overfitted memories, which can
also lead to local memorization.
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Detection and Mitigation Strategies Carlini et al. (2023) detects memorization by calculating
the Euclidean distance between generated images and training images, recommending re-training
on de-duplicated data as a mitigation strategy.Daras et al. (2023) suggests mitigating memorization
by training models on corrupted data. Somepalli et al. (2023b) proposes to mitigate memorization
by injecting randomness into text prompts, such as adding random tokens or noise, to break the link
between memorized prompts and their corresponding images. Chen et al. (2024) employs a nearest
neighbor search, similar to Carlini et al. (2023), to identify potential memorized outputs and then
selectively applies guidance methods to instruct these generations away from the memorized training
images, demonstrating outstanding mitigation performance. Recently, Wen et al. (2024) proposed an
efficient method for detecting memorization during the inference phase of diffusion models. This
approach uses the magnitude of text-conditional predictions for prompt detection, enabling high
accuracy from the initial inference step, and triggers a mitigation strategy to optimize the prompt
embedding when memorization is detected. Both the proposed detection and mitigation strategies
have achieved state-of-the-art results. A most recent work (Ren et al., 2024) utilized cross-attention
patterns to design detection and mitigation strategies, achieving performance comparable to Wen et al.
(2024). The key insight is that the cross-attention scores for memorized prompts are less concentrated
across all tokens in a prompt during multiple inference steps. This lack of concentration is quantified
using entropy, which captures the distribution of cross-attention at the prompt-level.While both
leverage cross-attention, it is important to note that our bright ending cross-attention (BE) differs from
the cross-attention entropy approach regarding objectives, insights, inputs, and the final computed
statistic. Specifically, different from Ren et al. (2024)’s objective of leveraging cross-attention for
designing detection and mitigation strategies, BE also aims to achieve a new task of precisely and
efficiently locating localized memorization regions. Also, BE does not rely on the concentration
patterns of all tokens during multiple steps as the insight and inputs but instead uses the raw final step
attention score of the end token. Also, BE employs the raw image-patch level distribution rather than
the prompt-level distribution as the computed statistic, serving as a local memorization mask.

7 CONCLUSION AND LIMITATIONS
Conclusion. In this paper, we identified a performance gap in existing tasks of measuring, detecting,
and mitigating memorization in diffusion models, particularly in cases where the generated images
memorize only parts of the training images. To address this, we introduced a new localized view
of memorization in diffusion models, distinguishing between global and local memorization, with
the latter being a more meaningful and generalized concept. To facilitate investigation from a local
perspective, we pioneered a new task: extracting localized memorized regions. We proposed leverag-
ing the newly observed ‘bright ending’ (BE) phenomenon to precisely and efficiently accomplish
this task, resulting in a local memorization mask. Through extensive experiments, we demonstrated
that the mask generated by this new task can also be used to enhance performance in existing tasks.
Specifically, we proposed a simple yet effective strategy to incorporate the BE local memorization
mask into existing frameworks, refining them to adopt a local perspective. This approach reduces the
performance gap associated with local memorization and achieves new state-of-the-art results. The
improved results not only highlight our improvements in existing tasks but also serve as extrinsic
validation of BE’s effectiveness in the new task of local memorization mask extraction, underscoring
the significant contribution of BE.
Limitations and future work. One limitation of using the memorization mask extracted through
the bright ending phenomenon in tasks like detection and mitigation is that it can only be observed at
the end of the inference process. This requirement results in a longer processing time than existing
strategies when applied to existing tasks such as detection and mitigation. However, we believe the
additional time is justified by its significant positive contributions to investigating local memorization
in diffusion models. Moreover, each inference takes only a few seconds on a consumer-grade GPU,
making the process practical for real-world applications (elaborated in Sec. 8.2). While existing tasks
are well-studied with established evaluation criteria, future work could explore how to evaluate the
performance of the newly proposed local memorization region extraction task. Our current approach
uses an extrinsic evaluation method that demonstrates improvements by incorporating the mask into
existing strategies. Future research could also consider an intrinsic evaluation by directly comparing
the extracted mask with ground truth masks. Another future direction could involve developing more
advanced evaluation metrics for local memorization. In our work, we employed a straightforward
approach by combining a masked version of the L2 distance with the widely adopted SSCD to
compute similarity. Future research could focus on creating methods similar to SSCD, trained in a
self-supervised manner but specifically tailored for more accurate localized copy detection.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Andrej Risteski, and Yi Zhang. Do gans learn the distribution? some theory and
empirics. In International Conference on Learning Representations, 2018.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In USENIX Security Symposium, 2021.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In
USENIX Security Symposium, pp. 5253–5270, 2023.

Chen Chen, Daochang Liu, and Chang Xu. Towards memorization-free diffusion models. In CVPR,
2024.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alexandros G Dimakis, and Adam
Klivans. Ambient diffusion: Learning clean distributions from corrupted data. In Advances in
Neural Information Processing Systems, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
volume 33, pp. 6840–6851, 2020.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. arXiv preprint arXiv:2211.08411, 2022a.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, 2022b.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
Proceedings of the Association for Computational Linguistics, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), 2015.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In ICML,
2021.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing, pp. 722–729, 2008.

Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-
supervised descriptor for image copy detection. In CVPR, pp. 14532–14542, 2022.

Jie Ren, Yaxin Li, Shenglai Zeng, Han Xu, Lingjuan Lyu, Yue Xing, and Jiliang Tang. Unveiling and
mitigating memorization in text-to-image diffusion models through cross attention. arXiv preprint
arXiv:2403.11052, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Joseph Saveri and Butterick Matthew. Stable diffusion litigation, 2023. 2023. URL https:
//stablediffusionlitigation.com/.

11

https://stablediffusionlitigation.com/
https://stablediffusionlitigation.com/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models. 2022.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In CVPR, pp. 6048–6058,
2023a.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
standing and mitigating copying in diffusion models. In NeurIPS, 2023b.

Patrick Tinsley, Adam Czajka, and Patrick Flynn. This face does not exist... but it might be yours!
identity leakage in generative models. In IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021.

Ryan Webster. A reproducible extraction of training images from diffusion models. arXiv preprint
arXiv:2305.08694, 2023. URL https://arxiv.org/abs/2305.08694.

Yuxin Wen, Yuchen Liu, Chen Chen, and Lingjuan Lyu. Detecting, explaining, and mitigating
memorization in diffusion models. In ICLR, 2024.

12

https://arxiv.org/abs/2305.08694


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

8 APPENDIX

8.1 ILLUSTRATION OF THE LABELING PROCESS

As discussed in Sec. 5.2, current metrics often fail to accurately identify memorized cases, as shown
in Fig. 2. Therefore, thresholding their reported similarity scores is not reliable for categorizing
generations into memorized and non-memorized cases to establish the ground truth for evaluating
detection strategies. To address this limitation, we manually label the ground truth for each gener-
ated image. This section provides additional details about the manual labeling process to ensure
reproducibility.

First, we download all ground truth images from Wen et al. (2024)’s official GitHub repository,
where the data is systematically organized according to the memorization prompt dataset introduced
by Webster (2023). Specifically, for each memorized prompt, the repository includes sub-folders
containing training images prone to memorization. This may include a single image when the prompt
consistently generates a unique replicate, or multiple images when the prompt leads to variations of
replicated outputs.

We then compare each generated image conditioned on a memorized prompt with the corresponding
training images in the sub-folder. Each generation is labeled as one of three categories: global
memorization, local memorization, or non-memorization. Examples of such training-generation
image pairs used for labeling are shown in Fig. ??. The straightforward nature of this process enables
quick and accurate labeling.

8.2 EFFICIENCY OF THE BRIGHT ENDING (BE) APPROACH

The Bright Ending (BE) method demonstrates significant efficiency in its dual capabilities: localiza-
tion of memorization regions and integration into existing memorization strategies.
Localization Efficiency. BE is the first method to accurately localize memorization regions in
generated images without requiring access to training data or conducting computationally expensive
nearest-neighbor searches over large datasets. Instead, it uses a single inference pass, which takes
only a few seconds on consumer-grade GPUs. This streamlined approach ensures practicality for
real-world applications and scalability for various scenarios.

Integration into Existing Strategies. In addition to its standalone capabilities, BE integrates
seamlessly into existing memorization detection, mitigation, and evaluation frameworks, enabling
state-of-the-art performance improvements. While this integration does require an additional inference
pass (e.g., 50 denoising steps, approximately 2 seconds on an RTX-4090) to extract the BE mask, the
trade-off is well justified by the method’s significant contributions to addressing local memorization
challenges.

Insight into BE’s Efficiency. The BE phenomenon is rooted in the distinct behavior of the end
token’s cross-attention map during the denoising process. Non-memorized generations typically
exhibit low-attention patterns at the end token in later steps, reflecting a shift from semantic focus to
fine-detail refinement. In contrast, memorized generations follow an overfitted trajectory, resulting in
a distinct anomaly: the ‘bright ending’, which can be easily identified.

While the final-step BE is currently used for its robustness and clear anomaly distinction, leveraging
BE at earlier inference steps is also feasible. Earlier-step BE could potentially reduce computational
costs further, as the anomaly is observable throughout the denoising process, albeit less pronounced.
Future work could explore the use of earlier-step BE to optimize the efficiency of the approach further.

Justification for Final-Step BE. The decision to focus on the final-step BE is supported by its
demonstrated practical contributions and significant improvements in the detection, mitigation, and
evaluation of local memorization. Despite the marginal increase in computational cost, the benefits
in accuracy and utility outweigh the overhead. The final-step BE ensures that the method remains
robust and effective while providing a reliable foundation for further advancements.
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Figure 9: Examples of training-generation image pairs used for labeling memorization types.
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