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ABSTRACT

Vision-Language Models (VLMs) are becoming increasingly vulnerable to adver-
sarial attacks as various novel attack strategies are being proposed against these
models. While existing defenses excel in unimodal contexts, they currently fall
short in safeguarding VLMs against adversarial threats. To mitigate this vulnera-
bility, we propose a novel, yet elegantly simple approach for detecting adversarial
samples in VLMs. Our method leverages Text-to-Image (T2I) models to generate
images based on captions produced by target VLMs. Subsequently, we calculate
the similarities of the embeddings of both input and generated images in the feature
space to identify adversarial samples. Empirical evaluations conducted on different
datasets validate the efficacy of our approach, outperforming baseline methods
adapted from image classification domains. Furthermore, we extend our methodol-
ogy to classification tasks, showcasing its adaptability and model-agnostic nature.
Empirical findings also show the resilience of our approach against adaptive attacks,
positioning it as an excellent defense mechanism for real-world deployment against
adversarial threats.

1 INTRODUCTION

Vision-Language Models (VLMs) have emerged as transformative tools at the intersection of computer
vision (CV) and natural language processing (NLP), revolutionizing the landscape of multimodal
understanding. These models hold immense importance due to their unparalleled capacity to bridge
the semantic gap between visual and textual modalities (Bao et al., 2023a;b; Li et al., 2022; 2023b;
Guo et al., 2023; Zhu et al., 2023; Liu et al., 2023; Li et al., 2023a), enabling machines to comprehend
and generate content across modalities with human-like fluency.

However, while VLMs have demonstrated remarkable capabilities across various tasks, their robust-
ness against adversarial attacks remains a critical concern. Recent studies (Xu et al., 2018; Li et al.,
2019a; Zhang et al., 2022a; Zhou et al., 2022; Zhao et al., 2023; Yin et al., 2023; Wang et al., 2024b)
have highlighted the susceptibility of VLMs to subtle variations in their input data, particularly in
scenarios involving multimodal interactions. Adversaries can exploit weaknesses in VLMs by crafting
imperceptible modifications to the input data that yield erroneous outputs. The interactive nature
of VLMs, especially in image-grounded text generation tasks, further amplifies their vulnerability,
raising concerns about their deployment in safety-critical environments (Vemprala et al., 2023; Park
et al., 2023). Therefore, the need for effective defense mechanisms to safeguard against such threats
is paramount.

To counter these threats in neural networks, advances have emerged in several major forms: (i)
Detectors (Metzen et al., 2017b; Grosse et al., 2017; Feinman et al., 2017; Roth et al., 2019; Xu
et al., 2017; Meng & Chen, 2017; Metzen et al., 2017a; Deng et al., 2021), designed to discern
adversarial examples from natural images, (ii) Purifiers (Nie et al., 2022; Samangouei et al., 2018; Ho
& Vasconcelos, 2022; Das et al., 2018; Hwang et al., 2019), which aim to remove adversarial features
from samples, and (iii) Ensembles combining both detection and purification methods (Meng & Chen,
2017; Tramèr et al., 2017). Other defense mechanisms include (iv) Adversarial Training Methods
(Goodfellow et al., 2015; Kurakin et al., 2016; Tramèr et al., 2018; Madry et al., 2018), and (v)
Certified Robustness (Cohen et al., 2019; Salman et al., 2020; Carlini et al., 2023). However, while
sophisticated detectors, purifiers, and ensemble approaches can be circumvented by knowledgeable
attackers who exploit weaknesses in these defense mechanisms (adaptive attacks) Athalye et al.
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Figure 1: MirrorCheck approach. At inference time, to check if an input image has been adversarially
attacked, our framework follows this procedure: (1) generates the text description for the image. (2) use this
caption to regenerate the image with a text-to-image model. (3) extract and compare embeddings from both the
original and regenerated images using a feature extractor. If the embeddings significantly differ, the original
image likely suffered an attack. The intuition behind our method is that if the input was attacked, the image and
the caption would not be semantically consistent. Therefore, using the predicted caption as a prompt for image
generation would result in an image that is significantly semantically different.

(2018a), adversarial training and certified robustness approaches are computationally expensive,
though they provide better and stronger guarantees. Moreover, these popular defense strategies have
predominantly been optimized for image classification tasks, and while a few adversarial training
methods (Schlarmann et al., 2024; Mao et al., 2023; Wang et al., 2024a) have been proposed for
VLMs, there is a gap in efficient and robust detection defenses tailored specifically for VLMs.

To address this challenge, we introduce a novel method and the first of its kind, MirrorCheck,
for detecting adversarial samples in VLMs and demonstrate the effectiveness of this method on
different VL tasks. MirrorCheck leverages a Text-to-Image (T2I) model to generate an image
based on the caption produced by the victim model, as illustrated in Figure 1. Subsequently, it
extracts and compares the embeddings of the input image and the generated image using cosine
similarity, for which a low score indicates a potential attack. This approach not only addresses the
limitations of existing methods but also provides a robust solution for detecting adversarial samples
in VLMs. Through empirical evaluation, we show that our approach outperforms recent methods in
detecting adversarial samples and resisting adaptive attacks. Further ablations prove the robustness
of MirrorCheck to the choice of T2I models and image encoders. We also adapt our approach to
detecting adversarial samples in image classification tasks and demonstrate its superior performance.

In summary, our work contributes to a novel model-agnostic approach for detecting adversarial
attacks on VLMs. The proposed MirrorCheck does not require training and achieves excellent
results in zero-shot settings. We evaluate our method for attacks on image captioning (IC), image
description (ID), and visual-question answering (VQA) tasks, and also extend it to classification
tasks, and observe significant improvements compared to the state-of-the-art.

2 BACKGROUND

2.1 ADVERSARIAL ATTACKS ON VLMS

The vulnerability of VLMs arises from the potential for perturbations to impact both visual and textual
modalities. Initial efforts focused on specific tasks such as visual question answering (Xu et al.,
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2018; Bartolo et al., 2021; Cao et al., 2022; Kaushik et al., 2021; Kovatchev et al., 2022; Li et al.,
2021c; Sheng et al., 2021; Zhang et al., 2022b) and image captioning (Aafaq et al., 2021; Li et al.,
2019a; 2021a; Chen et al., 2017; Xu et al., 2019), typically in white-box settings where attackers
have access to model parameters. Recently, AttackVLM (Zhao et al., 2023) has addressed black-
box scenarios, where adversaries manipulate models to generate targeted responses using surrogate
models like CLIP (Radford et al., 2021) and BLIP (Li et al., 2022). Similarly, VLATTACK (Yin
et al., 2023) and Attack-Bard (Dong et al., 2023b) generate adversarial samples by combining image
and text perturbations, targeting black-box fine-tuned models. These findings highlight significant
vulnerabilities in VLM deployment. Our study evaluates the efficacy of our defense method against
various VLM and classification attacks, with details on classification attacks provided in Appendix
A.3.

AttackVLM Transfer Strategy (ADV-Transfer). Given that the victim models are VLMs, Attack-
VLM Zhao et al. (2023) employs an image encoder Ĩϕ(x) → z, along with a publicly available T2I
generative model Gψ(t; η) → x (e.g., Stable Diffusion Rombach et al. (2022)), to generate a target
image corresponding to target caption t∗ (target caption the adversary expects the victim models to
return). The objective is as follows:

argmin
δ:∥δ∥∞≤ε

d(Ĩϕ(xadv), Ĩϕ(Gψ(t
∗; η))), (1)

where xadv = x+ δ. Note that the gradient information of Gψ is not necessary when optimizing the
equation above using the Project Gradient Descent (PGD) attack Madry et al. (2018).

AttackVLM Query Strategy (ADV-Query). The success of transfer-based attacks heavily relies on
how closely the victim and surrogate models align. When a victim model can be repeatedly queried
with input images to receive text outputs, adversaries can use a query-based attacking strategy to
estimate gradients by maximizing the text similarity as

argmin
δ:∥δ∥∞≤ε

d(Tπ(Fθ(xadv;p)), Tπ(t∗)), (2)

where Tπ(t) → z is the text encoder, Fθ(·) is the victim model. Since AttackVLM Zhao et al. (2023)
assumes black-box access to the victim models and cannot perform backpropagation, the random
gradient-free (RGF) method Nesterov & Spokoiny (2017) is employed to estimate the gradients.
Transfer attack-generated adversarial examples were employed as an initialization step to enhance
the efficacy of query-based attacks.

2.2 ADVERSARIAL DEFENSES

Defense Strategies for Image Classification Tasks. Adversarial defenses in machine learning aim
to protect models from malicious inputs designed to deceive them. These defenses are crucial for
maintaining model integrity and reliability, especially in security-sensitive applications. Several
methods have been employed to defend against adversaries in classification tasks. For example,
Defensive Distillation Papernot et al. (2016b) trains a secondary model to mimic the probability
output of the original model, often with softened labels. While this approach reduces sensitivity
to adversarial noise, it does not entirely eliminate attack risks. Detectors (Roth et al., 2019; Xu
et al., 2017; Meng & Chen, 2017; Metzen et al., 2017a; Deng et al., 2021) identify and filter out
adversarial samples, though attackers can develop strategies to circumvent these defenses. Purification
methods (Nie et al., 2022; Samangouei et al., 2018; Ho & Vasconcelos, 2022; Das et al., 2018; Hwang
et al., 2019) remove adversarial perturbations from input data using techniques like autoencoders or
denoising filters, but may also alter legitimate inputs, affecting performance. Adversarial Training
Methods (Kurakin et al., 2017; Madry et al., 2018; Tramèr et al., 2018; Shafahi et al., 2019; Wong
et al., 2020; de Jorge et al., 2022; Andriushchenko & Flammarion, 2020; Zhang et al., 2019; Dong
et al., 2023a) augment training datasets with adversarial examples, allowing models to learn from
these perturbations, while Certified Defense Methods Cohen et al. (2019); Salman et al. (2020);
Carlini et al. (2023) provide mathematical guarantees of robustness. Both approaches, however, can
be computationally intensive and may struggle to generalize to novel attack strategies.

Safeguarding VLMs. Recent studies (Zhao et al., 2023; Yin et al., 2023) reveal a surge in novel
adversarial attack strategies targeting VLMs. Despite extensive exploration of adversarial defense
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Figure 2: An example using our MirrorCheck framework. For both Clean and adversarial (Adv) cases,
we use the BLIP model to generate captions for the given images. Stable Diffusion then generates images based
on these captions. For the clean image, different image encoders show high similarity between the input image
and the generated one. Conversely, when the input image is adversarial, different image encoders show low
similarity.

strategies in the literature, these strategies have primarily been developed for unimodal tasks, such as
image or text classification, and are not optimized to effectively safeguard VLMs. The unique chal-
lenges presented by VLMs arise from their ability to process and integrate multimodal data—visual
and textual inputs—making traditional defense methods less effective. Existing defense methods
often focus on a single modality and fail to account for the complex interactions between visual and
linguistic data, which can be exploited by adversaries. To the best of our knowledge, a tailored defense
strategy explicitly designed for VLMs remains absent. Hence, we propose MirrorCheck, an ap-
proach which aims to detect such samples without necessitating alterations to the model architecture
or jeopardizing its performance.

3 METHOD

Let Fθ(xin; p) → t be the victim VLM model, where xin is the input image which may be clean
(xclean) or adversarial (xadv), p is the input prompt, and t is the resulting output caption. In certain
tasks, such as image captioning or text retrieval, the input prompt p may remain empty. Let Iϕ(x) → z
be a pretrained image encoder and let Gψ(t; η) → xgen denote a pretrained text-conditioned image
generation model producing image xgen.

3.1 THREAT MODEL

We operate under the assumption that the attacker holds only black-box access of the victim VLM
model Fθ(xin; p). This includes no understanding of its architecture, parameters, and training
methodologies. Similarly, the detection mechanism remains oblivious or indifferent to the specific
methods employed by the attacker in generating adversarial examples. The attacker’s main objectives
are: to execute targeted attacks that cause the generated caption t to match a predefined target response
and to adhere to an adversarial constraint defined by the l-norm which limits the distance between
xclean and xadv. In other cases, the attacker may choose to execute untargeted attacks against the
victim models. The defender’s objective is to accurately identify and flag images as either adversarial
or clean.

3.2 MIRRORCHECK PIPELINE

Illustrated in Figures 1 and 2, our algorithm is designed to identify adversarial images within VLMs.
These images are specifically crafted to deceive the underlying victim VLM model Fθ(xin; p) → t,
by adding adversarial perturbation δ to obtain xadv from xclean, while keeping the perturbation within
a perturbation bound ε. The key observation lies in the deviation of captions generated by adversarial
images from the content of the input image, which is the primary objective of the attack. To tackle this,
we propose a pipeline where the generated caption undergoes scrutiny by a separate generative model
Gψ(t; η) → xgen, where t denotes the caption generated by the victim model, and xgen represents
the newly generated image. Leveraging a pretrained image encoder Iθ(x) → z, we evaluate the
similarity between xin and xgen. In scenarios involving clean images, we anticipate a high similarity,
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as the generated caption accurately reflects the image content. Conversely, in cases of adversarial
images, the similarity tends to be low.

Subsequently, we employ an adversarial detector D(x) → [0, 1], which categorizes the image into
either the "adversarial" class (1) or the "clean" class (0), with τ serving as the decision threshold
parameter, i.e.

D(x) =

{
1, if sim(Iϕ(x), Iϕ(Gψ(Fθ(x; p); η))) < τ,

0, otherwise
.

The optimal value of τ is determined using the Receiver Operating Characteristic (ROC) curve
analysis. Specifically, we identify the point on the ROC curve where the difference between the true
positive rate (TPR) and the false positive rate (FPR) is maximized. This approach ensures a balanced
trade-off between detection sensitivity and robustness, making τ an effective decision threshold for
identifying adversarial samples. However, the choice of τ may vary based on the characteristics of
the specific text-to-image models or pretrained image encoders used, and we recommend calibrating
τ accordingly to account for variations in model behavior.

Intuition behind image-image similarity. Instead of directly comparing xin (the input image) with
the generated caption t, we opted to calculate the similarity between xin and xgen (the newly generated
image). This decision is based on evidence in the literature indicating that these models struggle with
positional relationships and variations in verb usage within sentences. This suggests that VLMs may
function more like bags-of-words and, consequently, which could limit their reliability for optimizing
cross-modality similarity Yuksekgonul et al. (2022).

Furthermore, we selected this embedding-based similarity metric over conventional metrics like
SSIM or FID because those methods may fail to capture semantic equivalence in cases where the
T2I model generates a visually different image that is still semantically similar. By utilizing vector
embeddings, we aim to maintain high similarity scores in such scenarios, ensuring robustness and
reliability even when T2I outputs exhibit variability in their visual representation.

Recognizing the potential issue introduced by a single image encoder used for similarity assessment
(i.e., if it was used to generate the adversarial samples), we propose two complementary strategies to
combat this issue. One is to employ an ensemble of pretrained image encoders, the similarity will
be calculated as follows: 1

N

∑N
i=1 sim(Iϕi(x), Iϕi(Gψ(Fθ(x; p); η))) i.e., calculates the average

output across multiple image encoders (Iϕ1, Iϕ2, ..., IϕN ).

Alternatively, we suggest perturbing the weights ϕ of the employed image encoder Iϕ with noise γ to
create a One-Time-Use Image Encoder (OTU) so in this case ϕ̂ = ϕ+ γ. This process must ensure
that despite the introduced noise, the encoder’s weights remain conducive to similarity evaluation.
Otherwise, the weights may become corrupted, impairing the encoder’s ability to assess image
similarity. This strategy allows for the creation of a modified image encoder with perturbed weights,
enabling one-time use for similarity evaluation while maintaining the encoder’s functionality.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of MirrorCheck at detecting adversarial samples
across VLM-reliant tasks. Additionally, we ablate our method in image classification tasks and explore
its performances when using different T2I models and image encoders, as detailed in Appendix C.
Note that all models used for our experiments are open-source to enable reproducibility. All our code
and models will become publicly available.

4.1 IMPLEMENTATION DETAILS

We use validation images sourced from ImageNet-1K Deng et al. (2009) as the basis for clean images,
which are then used to generate adversarial examples and quantitatively assess the robustness of large
VLMs, following the methodology outlined in AttackVLM Zhao et al. (2023) and also described in
Section 2. For each experiment conducted, we randomly selected 100 or 1000 images. The targeted
text descriptions that were used for this purpose are also randomly chosen from MS-COCO captions
Lin et al. (2014), ensuring that each clean image is paired with a corresponding descriptive prompt.
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Adversarial Setting Description. As mentioned earlier, we followed the settings from Zhao et al.
(2023). Specifically, we set the perturbation bound to 8 and used the l∞ constraint, where the pixel
values are in the range [0, 255]. For transfer-based attacks, we used 100-step PGD for optimization.
Each step involved 100 query times for query-based attacks, and the adversarial images were updated
using 8-step PGD with the estimated gradient. To further demonstrate the robustness of our method,
we additionally employed the experimental setups from Attack-Bard (Dong et al., 2023b) and Attack-
MMFM (Schlarmann & Hein, 2023). Detailed discussions of these two settings can be found in
Appendix A.2.

Victim models (Fθ(xin; p)). UniDiffuser Bao et al. (2023b), BLIP Li et al. (2022), Img2Prompt
Guo et al. (2023), BLIP-2 Li et al. (2023b), LLaVa Liu et al. (2023), OpenFlamingo Awadalla et al.
(2023), and MiniGPT-4 Zhu et al. (2023) serve as our victim models.

T2I models (Gψ(t)). Our primary T2I model is Stable Diffusion (SD) Rombach et al. (2022),
predominantly employing the CompVis SD-v1.4 weights. In our ablation studies, we also test the
UniDiffuser T2I model Bao et al. (2023b) and the ControlNet model Zhang et al. (2023) with the
RunwayML SD-v1.5 weights. We run image generation for 50 time steps and generate images of
512× 512 pixels in all our experiments.

Pretrained image encoders (Iϕ(xin, xgen)). We use CLIP Radford et al. (2021), pretrained on
OpenAI’s dataset, as our primary image encoder. For the ablations, we employed OpenCLIP
Ilharco et al. (2021), pretrained on the LAION-2B Schuhmann et al. (2022) dataset, and ImageNet-
Pretrained Classifiers (VGG16 Simonyan & Zisserman (2014) and ResNet-50 He et al. (2016), loaded
from PyTorch). Both the input images xin and generated images xgen were preprocessed using the
transforms specific to these models.

Table 1: Average Similarity Scores using CLIP’s image encoders to calculate the similarities between input
images (Clean or Adversarial) and generated images (using Stable Diffusion). The tasks used are image
captioning (IC), image description (ID), and visual question answering (VQA). Key Takeaway: Our method
consistently observes higher similarities for clean settings than adversarial settings.

Victim Model Task Setting CLIP Image Encoders
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser IC
Clean 0.718 0.811 0.755 0.751 0.713 0.750
ADV-Transfer 0.414 0.624 0.518 0.804 0.509 0.574
ADV-Query 0.408 0.667 0.537 0.517 0.533 0.532

BLIP IC
Clean 0.701 0.805 0.742 0.728 0.698 0.735
ADV-Transfer 0.385 0.619 0.517 0.479 0.497 0.499
ADV-Query 0.440 0.675 0.561 0.531 0.550 0.551

BLIP-2 IC
Clean 0.720 0.817 0.762 0.750 0.720 0.754
ADV-Transfer 0.430 0.637 0.543 0.499 0.526 0.527
ADV-Query 0.408 0.667 0.546 0.528 0.533 0.536

ID Attack-Bard 0.483 0.672 0.520 0.218 0.413 0.461

Img2Prompt VQA
Clean 0.661 0.780 0.712 0.695 0.670 0.703
ADV-Transfer 0.380 0.621 0.508 0.478 0.501 0.498
ADV-Query 0.446 0.681 0.565 0.538 0.563 0.559

LLaVA VQA Clean 0.680 0.823 0.755 0.733 0.714 0.741
Attack-MMFM 0.539 0.724 0.626 0.599 0.596 0.617

OpenFlamingo VQA Clean 0.690 0.817 0.756 0.728 0.723 0.743
Attack-MMFM 0.535 0.714 0.618 0.584 0.609 0.612

MiniGPT-4 VQA Clean 0.624 0.754 0.681 0.672 0.647 0.678
ADV-Transfer 0.530 0.693 0.599 0.578 0.558 0.591

4.2 BASELINE METHODS

To our knowledge, no publicly available defense methods exist for adversarial attacks on VLMs. For
comparison, we adapt existing detection approaches Meng & Chen (2017); Pu et al. (2016); Xu et al.
(2017) developed for image classification. MagNet Meng & Chen (2017) uses a detector to identify
adversarial inputs by evaluating their proximity to the manifold of clean images via reconstruction
errors from autoencoders. Similarly, PuVAE Pu et al. (2016) employs a variational autoencoder
(VAE) to project adversarial examples onto the data manifold, selecting the closest projection as the
purified sample. At inference, PuVAE projects inputs to latent spaces of different class labels and
uses root mean square error to identify the closest projection, thus removing adversarial perturbations.
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We adapt MagNet and PuVAE for VLM attack detection by training autoencoders and VAEs on the
ImageNet dataset to learn the manifold of clean images. Feature Squeeze Xu et al. (2017) creates
"squeezed" versions of the input and compares model predictions on the original and squeezed
inputs; significant discrepancies indicate adversarial examples. For VLMs, we adapt this by creating
"squeezed" inputs and comparing the captions generated from the original and squeezed versions.

4.3 RESULTS
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Figure 3: Effect of our ensemble
approach on a victim model (Case
study: UniDiffuser).

Similarity Scores using Stable Diffusion and CLIP image en-
coders. Table 1 and 6 present the average similarity scores obtained
by using CLIP image encoders to extract the embeddings of input im-
ages in different settings and generate images using Stable Diffusion.
The results presented in Tables 1 and 6 are based on evaluations
conducted on three tasks: image captioning (IC), image description
(ID), and visual question answering (VQA). Across different victim
models, higher average similarity scores are consistently observed
for clean images compared to adversarial ones, showing the effec-
tiveness of our approach in adversarial sample detection. However,
variations in performance among victim models reveal the differ-
ences in susceptibility to multimodal adversarial attacks. Notably, in
the case of UniDiffuser, there is an instance (using ViT-B/32) where the average similarity score for
transfer-based adversarial samples exceeds that of clean ones. This phenomenon occurs when the
image encoder used for similarity calculation matches the one employed for generating adversarial
samples for that victim model. However, our ensemble approach effectively mitigates such events by
leveraging various image encoders, as shown in Figure 3, ensuring robustness against the adversarial
attack strategy used.

Table 2: We compare our method’s detection accuracies with baseline methods; FeatureSqueeze (FS), MagNet
(MN), PuVAE (PV); which were originally proposed for classification tasks. Key Takeaway: In the VLM
domain, our method outperforms the baselines in detecting adversarial samples.

Victim Model Setting CLIP Image Encoders Baseline Detection Methods
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ens. FS MN PV

UniDiffuser ADV-Transfer 0.94 0.96 0.95 0.39 0.91 0.92 0.56 0.74 0.51
ADV-Query 0.98 0.95 0.94 0.93 0.88 0.97 0.65 0.85 0.70

BLIP
ADV-Transfer 0.90 0.88 0.84 0.86 0.80 0.89 0.52 0.60 0.50
ADV-Query 0.89 0.85 0.75 0.81 0.73 0.81 0.57 0.65 0.80

BLIP-2
ADV-Transfer 0.89 0.93 0.84 0.90 0.80 0.90 0.61 0.73 0.52
ADV-Query 0.92 0.85 0.83 0.86 0.78 0.89 0.61 0.85 0.72
Attack-Bard 0.85 0.84 0.89 0.98 0.91 0.89 - - -

Img2Prompt ADV-Transfer 0.79 0.75 0.69 0.74 0.69 0.74 0.51 0.56 0.50
ADV-Query 0.73 0.70 0.67 0.67 0.60 0.68 - 0.65 0.78

LLaVA Attack-MMFM 0.80 0.82 0.79 0.78 0.75 0.79 - - -

OpenFlamingo Attack-MMFM 0.76 0.78 0.79 0.76 0.75 0.81 - - -

MiniGPT-4 ADV-Transfer 0.63 0.65 0.65 0.66 0.66 0.64 0.54 0.51 0.53

Comparing MirrorCheck detection accuracies with baseline methods. Using the similarity
scores observed in Table 1 and 6, we compute the detection accuracies of our method under different
settings. We selected the value of τ based on the validation set to maximize the difference between the
true positive rate TPR (the proportion of actual adversarial images correctly identified) and the false
positive rate FPR (the proportion of clean images incorrectly identified as adversarial), using various
image encoders. Subsequently, we compared the performance of our method with baseline methods
(FeatureSqueeze Xu et al. (2017), MagNet Meng & Chen (2017), PuVAE Hwang et al. (2019)). As
illustrated in Tables 2 and 7 on both 100 and 1000 samples, our method consistently outperforms
baselines in detecting both transfer-based and query-based adversarial samples. Particularly note-
worthy is the performance of our CLIP-based RN50 image encoder, which outshines others across
all victim models used, achieving detection accuracies ranging from 73% to 98%. Furthermore, we
compared our results to a similar architecture built towards purification (DiffPure) Nie et al. (2022),
and results are in the appendix (Table 5). We also provide some visualizations in Appendix D.
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4.4 ABLATIONS

Generalization to alternative image encoders and image generation methods. We demonstrate
the versatility of MirrorCheck by testing it with different Text-to-Image (T2I) models, namely
UniDiffuser Bao et al. (2023a) and ControlNet Zhang et al. (2023). For this, we replace the Stable
Diffusion T2I model in our framework with UniDiffuser’s T2I model and ControlNet, respectively.
After computing similarity scores for all configurations and victim models, we employ these scores
to determine detection accuracies. Our analysis reveals an overall performance enhancement, with
ControlNet delivering the most promising outcomes, as seen in Figure 4. These findings prove that
MirrorCheck is agnostic to the T2I model and can seamlessly be combined with various generative
models for image generation. We also substitute our primary image encoder, CLIP Radford et al.
(2021), with alternatives from OpenCLIP Ilharco et al. (2021) and ImageNet-Pretrained Classifiers
(VGG16 and ResNet-50) Simonyan & Zisserman (2014); He et al. (2016). Subsequently, we calculate
similarity scores using these image models and determine detection accuracies. Refer to Appendices
C.3, C.4, and C.5 for detailed results, from Tables 9 - 19.

UniDiffuser BLIP Img2Prompt BLIP-2

( I I )  A DV- Q U E RY  U S I N G  U D + C L I P

MC FS MN PV

UniDiffuser BLIP Img2Prompt BLIP-2

( I I I )  A DV- T R A N S F E R  U S I N G  C N + C L I P

MC FS MN PV

UniDiffuser BLIP Img2Prompt BLIP-2

( I V )  A DV- Q U E RY  U S I N G  C N + C L I P

MC FS MN PV

0

0.5

1

UniDiffuser BLIP Img2Prompt BLIP-2

( I )  A DV- T R A N S F E R  U S I N G  U D + C L I P

MC FS MN PV

Figure 4: We carry out ablations to observe the performance of our approach, MirrorCheck, when we replace
our baseline T2I Model (Stable Diffusion) with UniDiffuser (UD) and ControlNet (CN). We then compare our
detection accuracies with baselines (Feature Squeezing (FS Xu et al. (2017)), MagNet (MN) Meng & Chen
(2017), PuVAE (PV) Hwang et al. (2019)). Detailed results can be found in Appendices C.3, C.4, and C.5. Key
Takeaway: Across different T2I models, MirrorCheck consistently surpasses all baseline methods.

Figure 5: Attack Strength vs De-
tection Accuracy.

Attack Strength vs Detection Accuracy. MirrorCheck is de-
signed to be effective regardless of the attack performance of the
adversarial method used. If the attack method exhibits low perfor-
mance, it may fail to generate adversarial examples that meaningfully
alter the model’s behavior. In such cases, the robustness of our de-
fense may not be tested to its fullest extent, but our approach will still
function as intended. Specifically, our defense mechanism is built to
detect discrepancies between the input and generated representations,
providing reliable protection even when the adversarial perturbations
are less effective. MirrorCheck maintains its robustness across
varying levels of attack strength. As seen in Figure 5, with a very
weak attack, the attack fails to generate adversarial examples that
effectively alter the model’s behavior. As ϵ increases, the detection accuracy improves because the
adversarial perturbations become more noticeable. However, with very high values (e.g., ϵ = 32), the
images are almost destroyed, making them detectable even by humans.

Figure 6: Attack Strength vs De-
tection Accuracy.

Impact of Clean Ratio on Detection Accuracy. We present a
confusion matrix that illustrates the detection performance across
different ratios of clean and adversarial examples. We observe that,
as the clean ratio increases from 50% to 99.9%, the performance
generally improves. This trend is particularly pronounced for the
RN50 encoder, which achieves the highest ROC AUC scores, even
at lower clean ratios. In contrast, encoders such as ViT-L/14 show
greater sensitivity to lower clean ratios, with a notable decline in per-
formance as the clean ratio decreases, particularly at the 99% level.
This highlights that certain encoders are more robust to imbalances
in clean and adversarial examples. This issue is easily solved by our
ensemble approach which combines the strengths of all encoders for
a well rounded performance. Interestingly, the performance stabi-
lizes at the highest clean ratio (99.9%), where all encoders exhibit their best or near-best performances.
In summary, the detection performances are stable and high regardless of the distribution of clean or
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adversarial images, suggesting that our method is highly effective, even in scenarios with minimal
adversarial interference.

One-Time-Use Image Encoder Results. By carefully applying noise to the weights, we ensure that
the resulting encoder remains suitable for its intended purpose, facilitating accurate image similarity
assessments even in the presence of perturbations. This method is particularly effective in restraining
adaptive attacks, especially when the attacker has knowledge of the original weights. We demonstrate
the effectiveness of our One-Time Use (OTU) approach using the CLIP ViT-B/32 image encoder.
Detailed results, key observations, and conclusions from our experiments are presented in Appendix
C.7 (from Tables 24-28).

Table 3: Robustness of MirrorCheck on adversarial samples generated through adaptive attacks carried out
based on the attacker’s knowledge of image encoders used in MirrorCheck pipeline. The defender employs
between one and five pretrained CLIP image encoders with backbones RN50, RN101, ViT-B/16, ViT-B/32, and
ViT-L/14. The attacker has knowledge of all, all but one, or all but two of these encoders, and randomly uses the
remaining unknown encoders from OpenCLIP encoders.

Attacked Image Encoder MirrorCheck MirrorCheck (OTU approach)
ALL ALL but ONE ALL but TWO ALL ALL but ONE ALL but TWO

ViT-B/32 0.55 0.90 - 0.50 0.90 -
RN50 and ViT-B/32 0.60 0.70 0.90 0.70 0.80 0.90
RN50, ViT-B/32, and ViT-L/14 0.65 0.65 0.80 0.75 0.75 0.80
RN50, ViT-B/16, ViT-B/32, and ViT-L/14 0.65 0.65 0.85 0.75 0.80 0.85
RN50, RN101, ViT-B/16, ViT-B/32, and ViT-L/14 0.75 0.75 0.85 0.85 0.90 0.80

Robustness to Adaptive Attacks. Adaptive attacks serve as a critical tool for evaluating defenses
against adversarial examples, providing a dynamic and realistic assessment of a model’s robustness
by analyzing how attackers adapt their strategies to bypass the proposed defense. MirrorCheck
effectively shatters the continuous gradients. Then, an attacker’s objective is to generate an adversarial
image (xadv = xin + δ) by minimizing the discrepancy between its features and the target caption
t∗, as outlined in the original attack pipeline (Adv-Transfer) Zhao et al. (2023). Moreover, the
attacker aims to reduce the disparity between the features of xadv and the image generated from this
target caption xgen, striving for high similarity when our detection method is applied. Furthermore,
the attacker will try to maintain a continuous pipeline for the entire attack, ensuring it remains
differentiable. To achieve this, they can initiate the following process: starting with the victim VLM,
responsible for generating the target caption t∗, the text embeddings of this caption obtained from
the victim model text encoder F̂θ(x; p) → z are directly fed into the image generator of the attacker
generative model Ĝϕ(z, η) → xgen. This conditioned input generates an image closely resembling
the second step of our defense mechanism. To align the text embeddings between the VLM and the
generative model, the attacker must train an adapter network (MLP) capable of learning this mapping.
With the entire pipeline now continuous, the attacker can perturb the input image by backpropagating
through the entire process. This allows them to maximize the similarity between the adversarial
image xadv and both the target caption t∗ and the generated image xgen. This adaptive attack is
illustrated in Figure 7 and Algorithm 1, where the attacker objective function is as follows:

argmin
δ:∥δ∥∞≤ε

d(Ĩϕ(xadv), Ĩϕ(Gψ(t∗; η))) + 1
N

∑N
j=1d(Iϕj,ξ(xadv), Iϕj,ξ(Ĝψ(A(F̂θ(xadv; p)); η))). (3)

Given that the attacker lacks knowledge about the specific image encoder Iϕ utilized, randomized functions and
Expectation over Transformation (EOT) Athalye et al. (2018b) techniques can be employed to obtain gradients
effectively. Therefore, in the adaptive part, the attacker employs multiple random image encoders, Iϕj,ξ, in
an attempt to avoid detection, where ξ denotes the internal randomness of the image encoder. To execute the
adaptive attack technique, we vary the assumptions about the attacker’s knowledge of the image encoders used
in the defense pipeline. The defender employs between one and five pretrained CLIP image encoders from the
following backbones: RN50, RN101, ViT-B/16, ViT-B/32, and ViT-L/14. The attacker may have knowledge
of all, all but one, or all but two of these image encoders. When the defender uses more encoders than the
attacker knows, the remaining unknown encoders are substituted with OpenCLIP encoders (see Appendix C.8).
Additionally, we conduct experiments to show the performance of MirrorCheck when the defender employs
the OTU approach by introducing noise into these encoders. Table 3 presents the detection accuracy for these
experiments, indicating an improvement in detection accuracy when incorporating noise. The results show that
using more encoders complicates the attacker’s efforts to evade detection. In summary, employing multiple
encoders and integrating noise both enhance robustness against adaptive attacks by increasing the difficulty of
generating undetectable adversarial samples.

In our adaptive attack scenario, we consider the most challenging condition, where the attacker has full access to
both the victim model and the generative model. Additionally, we explored a simpler approach for the adaptive
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attack by directly using the target caption t∗ to construct xgen and search for an adversarial image xadv . This
image is optimized to simultaneously minimize the discrepancy between its features and the target caption t∗,
as outlined in the original attack pipeline and the disparity between the features of xadv and xgen. By adding
the similarity measure between the adv and gen images to the original attack using the same encoder as the
attack, we observed that the attack was effective, and the similarity was indeed high between the xadv and xgen.
However, the adversarial image was still detected by other encoders. When we employed a different encoder for
optimizing the similarity between the xadv and xgen, the similarity score decreased in the original attack. This
led to a compromise in the main objective of the attack. We tried averaging the similarity scores across multiple
encoders. However, we found that while clean images maintained high similarity scores across all encoders, the
adversarial images showed variability.

Table 4: Adapting MirrorCheck (MC) to
detect adversarial samples in image classifi-
cation settings.

Dataset Classifier MC FS MN

CIFAR10 DenseNet 0.93 0.21 -

CNN-9 0.89 - 0.53

ImageNet MobileNet 0.77 0.43 -

Performance of MirrorCheck for Attacks on Image Clas-
sification. Although our primary focus is on Vision-Language
Models (VLMs), we adapted MirrorCheck (MC) to match the
configurations used in the baseline methods (Feature Squeezing
(FS) Xu et al. (2017) and MagNet (MN) Meng & Chen (2017)),
ensuring consistency in the evaluation process. Specifically,
when evaluating MirrorCheck against Feature Squeezing, we
utilized the same models (DenseNet - CIFAR10 and MobileNet
- ImageNet) and adversarial attack methods (FGSM and BIM)
as reported in Tables 1 and 4 of Xu et al. (2017) to maintain a
fair comparison. We chose to compare MirrorCheck’s per-
formance using these two attack strategies because FS reported
much lower performance on them compared to other utilized attacks. We hypothesize that this is due to the fact
that FGSM and BIM are weaker attack strategies, making it more difficult for FS to detect adversarial features.

However, MirrorCheck achieved significantly better detection accuracy in both adversarial settings. We
followed the same process to compare MirrorCheck with MN. The results for the FGSM setting (ϵ = 0.002
for FS and ϵ = 0.01 for MN) of both baselines, summarized in Table 4, show a significant improvement
over these baselines, demonstrating the versatility of MirrorCheck in the detection of adversarial samples
in various domains. Note that the empty cells in Table 4 correspond to methods for which results were not
reported in the referenced papers. For instance, CNN-9 was only evaluated on CIFAR10 by MN, while MN did
not provide results for DenseNet and MobileNet. Comprehensive reports and additional details are available
in Appendix C.6, with detailed evaluations for Feature Squeezing and MagNet in Sections C.6.1 and C.6.2,
respectively.

5 DISCUSSION

The development of Vision-Language Models (VLMs) has introduced a novel paradigm that mimics human learn-
ing from everyday sensory data. Despite their perceived robustness compared to unimodal architectures, recent
literature reveals that VLMs are significantly vulnerable to new attack strategies. Recognizing this vulnerability,
we introduce MirrorCheck, the first approach specifically tailored to detect adversarial samples in VLMs.
Our extensive experiments demonstrate its efficacy across various VLM architectures and attack scenarios.
Through quantitative evaluations on datasets such as ImageNet and CIFAR10, we show that MirrorCheck
outperforms in detecting both transfer-based and query-based adversarial samples. Additionally, our method
showcases robustness and adaptability, effectively functioning across different Text-to-Image (T2I) models and
image encoders, underscoring its real-time practical applicability in real-world scenarios.

Broader Impacts. The adaptability of MirrorCheck extends beyond VLMs to image classification tasks,
where it achieves superior detection accuracies compared to well-established methods like FeatureSqueezing.
These results highlight the versatility and effectiveness of our approach in safeguarding against adversarial
attacks across various machine learning tasks. By enhancing the security and robustness of VLMs and other
machine learning models, MirrorCheck contributes to the broader field of AI safety and reliability. Its ability
to detect adversarial samples in real time opens new avenues for deploying secure and resilient AI systems in
diverse applications, from autonomous driving to healthcare.

Limitations. While MirrorCheck demonstrates strong performance, its effectiveness is influenced by the
quality of the pretrained generative model used to generate images from the extracted captions. Any shortcomings
in the generative model can directly impact the effectiveness of MirrorCheck in detecting adversarial samples.
Future research should focus on this limitation.
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A RELATED WORK

A.1 VISUAL-LANGUAGE MODELS (VLMS)

Humans possess the remarkable ability to seamlessly integrate information from various sources concurrently.
For instance, in conversations, we adeptly interpret verbal cues, body language, facial expressions, and intona-
tion. Similarly, VLMs demonstrate proficiency in processing such multimodal signals, allowing machines to
comprehend and generate image-related content that seamlessly merges visual and textual components. Contem-
porary VLM architectures such as CLIP Radford et al. (2021) predominantly leverage transformer-based models
Vaswani et al. (2023); Dosovitskiy et al. (2021) for processing both images and text due to their effectiveness in
capturing long-range dependencies. At the heart of the transformers lies the multi-head attention mechanism,
which plays a pivotal role in these models’ functionality.

To enable multimodal comprehension, VLMs typically comprise three key components: (i) an Image Model
responsible for extracting meaningful visual features from visual data, (ii) a Text Model designed to process
natural language, and (iii) a Fusion Mechanism to integrate representations from both modalities. Encoders
in VLMs can be categorized based on their fusion mechanisms into Fusion encoders Li et al. (2020; 2021b;
2019b); Su et al. (2019), which directly combine image and text embeddings, Dual encoders Radford et al.
(2021); Li et al. (2022; 2023b); Jia et al. (2021), which process modalities separately before interaction, and
Hybrid methods Singh et al. (2021); Bao et al. (2022) that leverage both approaches. Furthermore, fusion
schemes for cross-modal interaction can be classified into single-stream Li et al. (2020; 2019b); Su et al. (2019);
Bao et al. (2022); Singh et al. (2021) and dual-stream Li et al. (2021b) architectures. The recent surge in
multimodal development, driven by advances in vision-language pretraining (VLP) methods, has led to diverse
vision-language applications falling into three main categories: (i) Image-text tasks (such as image captioning,
retrieval, and visual question answering), (ii) Core computer vision tasks (including image classification, object
detection, and image segmentation), and (iii) Video-text tasks (such as video captioning, video-text retrieval, and
video question-answering).

A.2 OTHER ADVERSARIAL ATTACKS USED AGAINST VLMS

Attack-Bard (Dong et al., 2023b). For a victim model that is a Multimodal Large Language Model (MLLM),
adversarial examples that effectively perturb the image embeddings of Bard (Team et al., 2023) will consequently
impact the text generation process. Let x represent a natural image and Ĩiϕ() be a set of surrogate image
encoders. The image embedding attack is defined as solving the following optimization problem:

argmax
δ:∥δ∥∞≤ε

N∑
i=1

∥Ĩiϕ(xadv)− Ĩiϕ(x)∥22, (4)

where xadv = x + δ and the goal is to maximize the difference between the embeddings of the adversarial
image xadv and the natural image x while ensuring that the perturbation δ remains within a specified threshold ϵ.
To address the optimization problem in equation 4, Dong et al. (2023b) employed the SSA-CWA approach, as
introduced in Chen et al. (2023).

Attack-MMFM (Schlarmann & Hein, 2023). An untargeted attack proposed against multimodal foundation
models. To introduce minor perturbations to the visual inputs of a VLM, the authors propose a white-box
untargeted attack. Specifically, given a natural image x, a ground truth caption t, along with context images c
and context text z, the objective is to design an attack that increases the negative log-likelihood of the target text
t∗ within the constraints of the threat model:
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max
δx,δc

−
m∑
i=1

log p(t∗i | t∗<i, z, x+ δx, c+ δc) (5)

s.t. ∥δx∥∞ ≤ ϵx, ∥δc∥∞ ≤ ϵc

In equation 5 above, δx is the perturbation to the input image and δc is the perturbation to the context images. In
the setting where only the input images are attacked, optimization is performed only on δx and ϵc = 0.

A.3 ADVERSARIAL ATTACKS USED FOR CLASSIFICATION

An adversarial example, within the scope of machine learning, is a sample intentionally manipulated by an
adversary to provoke an incorrect output from a target classifier. Typically, in image classification tasks,
where the ground truth is based on human perception, defining adversarial examples involves perturbing a
correctly classified sample (referred to as the seed example) by a limited amount to generate a misclassified
sample (denoted as xadv). Existing research on adversarial example generation predominantly centers on
image classification models, reflecting the prominence and vulnerability of such models to adversarial attacks.
Numerous methodologies have been introduced to craft adversarial examples, encompassing fast gradient-based
techniques Goodfellow et al. (2015); Liu et al. (2016), optimization-based strategies Szegedy et al. (2013);
Carlini & Wagner (2017), and other innovative approaches Nguyen et al. (2015); Papernot et al. (2016a). Notably,
Carlini & Wagner (2017) introduced state-of-the-art attacks that impose constraints on L0, L2, and L∞ norms,
highlighting the versatility and effectiveness of adversarial attacks across various norm spaces.

Adversarial examples can be categorized as targeted or untargeted depending on the adversary’s objective. In
targeted attacks, the adversary aims for the perturbed sample xadv to be classified as a specific class, while in
untargeted attacks, the objective is for xadv to be classified as any class other than its correct class.

Formally, a targeted adversary seeks to find an xadv such that the target classifier assigns it to the target class y
while remaining within a certain distance ϵ from the original sample xclean. Conversely, an untargeted adversary
aims to find an xadv which is misclassified compared to the original xclean within the same distance threshold ϵ.
The adversary’s strength, denoted as ϵ, restricts the allowable transformations applied to the seed example. In
contrast, the distance metric ∆(xclean, xadv) and the threshold ϵ model how close an adversarial example needs
to be to the original to deceive a human observer. As specified in Section 2, we will introduce some attack
strategies used in classification tasks. We also leverage these attacks to test the efficacy of MirrorCheck in
this setting;

• Fast Gradient Sign Method (FGSM, L∞, Untargeted): The Fast Gradient Sign Method (FGSM) is
an adversarial attack technique proposed by Goodfellow et al. Goodfellow et al. (2015) that efficiently
generates adversarial examples for deep neural networks (DNNs). The objective of the FGSM attack is
to perturb input data in such a way that it induces misclassification by the target model while ensuring
the perturbations are imperceptible to human observers. The main idea behind FGSM is to compute
the gradient of the loss function with respect to the input data, and then perturb the input data in the
direction that maximizes the loss. Specifically, FGSM calculates the gradient of the loss function
with respect to the input data, and then scales the gradient by a small constant ϵ to determine the
perturbation direction. This perturbation is added to the original input data to create the adversarial
example. Mathematically, the FGSM perturbation is defined as:

xadv = xclean + ϵ · sign(∇xJ(w
Txclean), y))

where ϵ is a small constant controlling the magnitude of the perturbation, and sign denotes the sign
function. The objective function of the FGSM attack is typically the cross-entropy loss between the
predicted and true labels, as it aims to maximize the model’s prediction error for the given input.

• Basic Iterative Method (BIM, L∞, Untargeted): The Basic Iterative Method (BIM) attack Feinman
et al. (2017), also known as the Iterative Fast Gradient Sign Method (IFGSM), is an iterative variant
of the FGSM attack designed to generate stronger adversarial examples. Like FGSM, the objective
of the BIM attack is to craft adversarial perturbations that lead to misclassification by the target
model while remaining imperceptible to human observers. In the BIM attack, instead of generating a
single perturbation in one step, multiple small perturbations are iteratively applied to the input data.
This iterative approach allows for finer control over the perturbation process, resulting in adversarial
examples that are more effective and harder for the target model to defend against. The BIM attack
starts with the original input data and applies small perturbations in the direction of the gradient of the
loss function with respect to the input data. After each iteration, the perturbed input data is clipped to
ensure it remains within a small ϵ-ball around the original input. This process is repeated for a fixed
number of iterations or until a stopping criterion is met. Mathematically, the perturbed input at each
iteration s of the BIM attack is given by:
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xsadv = clipϵ(x
s−1
adv + α · sign(∇xJ(w

Txclean), y))

where Clipϵ denotes element-wise clipping to ensure the perturbation magnitude does not exceed ϵ,
and α is a small step size controlling the magnitude of each perturbation. The BIM attack aims to
maximize the loss function while ensuring the perturbations remain bounded within the ϵ-ball around
the original input.

• DeepFool (L2, Untargeted): The DeepFool attack Moosavi-Dezfooli et al. (2016) is an iterative and
computationally efficient method for crafting adversarial examples. It operates by iteratively perturbing
an input image in a direction that minimally changes the model’s prediction. The objective of the
DeepFool attack is to find the smallest perturbation that causes a misclassification while ensuring that
the adversarial example remains close to the original input in terms of the L2-norm. The DeepFool
attack starts with the original input image and iteratively computes the perturbation required to push
the image across the decision boundary of the model. It computes the gradient of the decision function
with respect to the input and then finds the direction in which the decision boundary moves the most.
By iteratively applying small perturbations in this direction, the DeepFool attack gradually moves the
input image towards the decision boundary until it crosses it. Mathematically, the perturbed input at
each iteration of the DeepFool attack is computed as follows:

xsadv = xs−1
adv + α · ∇f(xclean)

∥∇f(xclean)∥ 2

where xs−1
adv is the input image at the current iteration s, α is a small step size, and ∇f(x) is the gradient

of the decision function with respect to the input image xclean. The process continues until the model
misclassifies the perturbed input or until a maximum number of iterations is reached.

• Projected Gradient Descent (PGD, L2, Untargeted): The Projected Gradient Descent (PGD) attack
Madry et al. (2018) is an advanced iterative method used for crafting adversarial examples. It builds
upon the Basic Iterative Method (BIM), extending it by continuing the perturbation process until
reaching a specified maximum perturbation magnitude. The objective of the PGD attack is to find
the smallest perturbation that leads to misclassification while constraining the perturbed example to
remain within a specified Lp-norm distance from the original input. The PGD attack starts with the
original input image and iteratively computes the perturbation required to induce misclassification. At
each iteration, it calculates the gradient of the loss function with respect to the input and applies a small
step in the direction that maximizes the loss while ensuring the perturbed example remains within
the specified Lp-norm ball around the original input. This process continues for a predetermined
number of iterations or until a misclassification is achieved. Mathematically, the perturbed input at
each iteration of the PGD attack is computed as follows:

xsadv = clip(xs−1
adv + α · sign(∇xJ(w

Txclean), y), xadv − ϵ, xadv + ϵ)

where xt−1
adv is the input image at the current iteration t, α is the step size, ∇xJ(w

Txclean, y) is the
gradient of the loss function with respect to the input image xclean, and clip function ensures that the
perturbed image remains within a specified range defined by the lower and upper bounds.

• Carlini-Wagner (C&W, L2, Untargeted): The Carlini-Wagner (C&W) attack Carlini & Wagner
(2017), introduced by Carlini and Wagner in 2017, is a powerful optimization-based method for
crafting adversarial examples. Unlike many other attack methods that focus on adding imperceptible
perturbations to input data, the C&W attack formulates the attack as an optimization problem aimed at
finding the smallest perturbation that leads to misclassification while satisfying certain constraints.
The objective of the C&W attack is to find a perturbation δ that minimizes a combination of the
perturbation magnitude and a loss function, subject to various constraints. The loss function is typically
designed to encourage misclassification while penalizing large perturbations. The constraints ensure
that the perturbed example remains within a specified Lp-norm distance from the original input and
maintains perceptual similarity. The objective function of the C&W attack can be formulated as
follows:

min ∥δ∥l + c · f(xclean + δ)

where ∥δ∥l represents the Ll-norm of the perturbation, f(xclean + δ) is the loss function represent-
ing misclassification, and c is a regularization parameter that balances the trade-off between the
perturbation magnitude and the loss function.
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B MIRRORCHECK AS AN AUTOENCODER

In the auto-encoder literature, reconstruction error has been shown to be a reliable indicator of whether a sample
is in or out of the training distribution Zhou (2022); Durasov et al. (2024a;b). We now cast MirrorCheck as a
particular kind of auto-encoder to leverage these results and justify our approach. MirrorCheck can be con-
ceptualized within the structure of regular Hinton & Salakhutdinov (2006); Vincent et al. (2010); Makhzani et al.
(2016) and Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Burda et al., 2015; Higgins et al., 2017),
which typically encode input data into a continuous latent space through an encoder and reconstruct the input
using a decoder. Unlike typical variational-autoencoders, MirrorCheck relies on a discrete, categorical latent
space comprising textual descriptions generated from images. In this respect, it is in line with recent VAEs that
incorporate categorical latent variables through mechanisms such as the Gumbel-Softmax distribution Maddison
et al. (2016); Jang et al. (2017); Baevski et al. (2020); Sadhu et al. (2021); Gangloff et al. (2022).

The Image-to-Text phase of MirrorCheck acts as the encoder, mapping high-dimensional visual data into a
discrete latent space represented by text. This process can be mathematically expressed as

qϕ(z|x) = Cat(z;π(x)) , (6)

where x is the input image, z represents the latent textual description, Cat denotes the categorical distribution,
and π(x) is the distribution over the discrete latent variables conditioned on the input image, parameterized by
ϕ.

The Text-to-Image phase serves as the decoder. It reconstructs the visual data from these textual descriptions. It
can be written as

pθ(x|z) = Bernoulli(x;σ(z)), (7)
where σ(z) models the probability of generating an image x from the latent description z, parameterized by θ.
When sampling caption text with a non-zero softmax temperature, these steps resemble the Gumbel-Softmax
reparameterization trick, typically used in Variational Autoencoders (VAEs) to sample from the latent Maddison
et al. (2016); Jang et al. (2017).

Thus, using the reconstruction error as an indication of whether an input has been compromised via an adversarial
attack is as justified as using it to determine if a sample is out-of-distribution when employing a VAE. This
aligns with earlier work Meng & Chen (2017); Pu et al. (2016) that showed that this metric is good at detecting
adversarial attacks. It is also in the same spirit as approaches to detecting anomalies through segmentation and
reconstruction Lis et al. (2019; 2024).

Computational Efficiency. Our experiments were carried out on a machine equipped with 80 CPUs and one
NVIDIA Quadro RTX A6000 48GB GPU. The entire defense pipeline takes approximately 15 seconds per image.
Within this process, obtaining a caption from the victim VLM model takes around 0.2 seconds, generating an
image takes about 5 seconds, and calculating similarity requires approximately 10 seconds. However, this is the
worst case scenario and there are multiple methods to improve this time i.e., reducing timesteps for generation
from 50 to 10 allows the pipeline process an image in just 1.2 seconds with a little compromise in detection
performance.

C ADDITIONAL EMPIRICAL RESULTS

C.1 COMPARISON WITH DIFFPURE

Table 5: Detection accuracies of DiffPure and MirrorCheck. MirrorCheck demonstrates superior performance
and adaptability.

Defense RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

DiffPure 0.65 0.61 0.64 0.62 0.76 0.65

MirrorCheck (t=50) 0.89 0.93 0.84 0.90 0.80 0.90

MirrorCheck (t=10) 0.87 0.85 0.83 0.89 0.78 0.84

As suggested, we conducted experiments on BLIP-2 as the victim model, with DiffPure (results shown in Table
5) and demonstrated that our method, MirrorCheck, achieves superior detection performance. Below, we outline
the key differences between DiffPure and MirrorCheck, along with the results of our comparative analysis:

• Detection vs. Purification: DiffPure was originally designed for purification, not detection. To use
DiffPure as a detection pipeline in our experiments, we passed each image through its purification
pipeline and compared the embedding of the purified image to that of the original image. As shown in
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Table 5, MirrorCheck consistently outperforms DiffPure in terms of detection accuracy across various
model architectures.

• Efficiency: In our experiments, DiffPure required approximately 8 seconds per image on an RTX
A6000 GPU, compared to MirrorCheck’s 15 seconds per image at 50 timesteps. However, we
optimized MirrorCheck by reducing the number of timesteps to 10, enabling it to process 100 images
in 2 minutes (1.2 seconds per image) while maintaining a higher detection accuracy than DiffPure.
This demonstrates MirrorCheck’s potential for further optimization to significantly reduce processing
times without substantial performance degradation.

• Model-Agnostic Nature: MirrorCheck is model-agnostic, meaning it is not tied to specific architec-
tures or datasets. This flexibility makes it more difficult for attackers to create adaptive attacks against
our method. Furthermore, the adaptable nature of MirrorCheck has been leveraged in other research
(details withheld for blind review) to defend against jailbreaking threats. Additionally, optimizing
MirrorCheck for faster performance is straightforward, as reducing the number of timesteps in the T2I
model directly reduces processing time while maintaining competitive detection accuracy.

While DiffPure and MirrorCheck have different design motivations (purification vs. detection), our results
show that MirrorCheck offers significant advantages in terms of detection performance and adaptability, while
optimizations could boost efficiency.

C.2 SIMILARITY SCORES AND DETECTION ACCURACIES USING 1000 IMAGES

To validate the consistency of our results on 100 images, we ran extra experiments on 1000 images. Tables 6 and
7 proves that we could get generalizable results using just 100 images.

Table 6: Similarity scores using 1000 samples for each setting. We observed similar results when using 100
images. The Min and Max similarity scores show the ranges observed on all samples used for the experiment.
The average shows that MirrorCheck is able to maximize the difference between clean and adversarial images
for all victim models.

Victim Model Setting RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14
Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max

UniDiffuser
Clean 0.720 0.241 0.931 0.818 0.512 0.963 0.758 0.320 0.975 0.750 0.344 0.973 0.723 0.244 0.952
ADV-Transfer 0.414 0.118 0.872 0.628 0.434 0.938 0.515 0.222 0.852 0.807 0.426 0.958 0.516 0.130 0.820
ADV-Query 0.421 0.165 0.742 0.676 0.539 0.780 0.551 0.330 0.759 0.528 0.274 0.725 0.547 0.280 0.735

BLIP
Clean 0.699 0.162 0.911 0.804 0.434 0.953 0.741 0.247 0.948 0.723 0.222 0.945 0.705 0.126 0.944
ADV-Transfer 0.395 0.077 0.823 0.627 0.455 0.858 0.522 0.239 0.847 0.487 0.173 0.798 0.512 0.070 0.828
ADV-Query 0.443 0.165 0.694 0.679 0.522 0.81 0.563 0.276 0.740 0.534 0.212 0.750 0.561 0.277 0.757

BLIP-2
Clean 0.712 0.151 0.936 0.813 0.422 0.965 0.757 0.248 0.961 0.737 0.213 0.946 0.725 0.189 0.948
ADV-Transfer 0.439 0.045 0.827 0.644 0.417 0.884 0.543 0.218 0.864 0.498 0.175 0.844 0.544 0.140 0.822
ADV-Query 0.409 0.124 0.684 0.668 0.488 0.791 0.538 0.316 0.746 0.519 0.301 0.721 0.530 0.249 0.734

Img2Prompt
Clean 0.652 0.212 0.912 0.775 0.454 0.946 0.699 0.297 0.949 0.684 0.236 0.93 0.667 0.151 0.939
ADV-Transfer 0.389 0.097 0.798 0.626 0.426 0.866 0.517 0.214 0.822 0.481 0.161 0.797 0.508 0.129 0.794
ADV-Query 0.448 0.116 0.698 0.683 0.501 0.820 0.564 0.316 0.731 0.536 0.240 0.761 0.563 0.270 0.801

Table 7: Detection accuracies using 1000 samples for each setting. TPR is the proportion of actual adversarial
images that are correctly identified. FPR is the proportion of clean images incorrectly identified as adversarial.
Accuracy is the proportion of correctly identified images (both clean and adversarial).

Victim Model Setting RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble
TPR FPR ACC TPR FPR ACC TPR FPR ACC TPR FPR ACC TPR FPR ACC TPR FPR ACC

UniDiffuser ADV-Transfer 0.917 0.085 0.916 0.912 0.088 0.912 0.902 0.098 0.902 0.368 0.636 0.366 0.874 0.127 0.874 0.87 0.13 0.87
ADV-Query 0.925 0.075 0.925 0.871 0.129 0.871 0.874 0.125 0.875 0.889 0.113 0.888 0.825 0.174 0.826 0.895 0.105 0.895

BLIP ADV-Transfer 0.905 0.096 0.905 0.894 0.108 0.893 0.876 0.126 0.875 0.887 0.114 0.887 0.84 0.159 0.841 0.898 0.103 0.898
ADV-Query 0.896 0.104 0.896 0.855 0.144 0.856 0.838 0.162 0.838 0.854 0.144 0.855 0.792 0.213 0.790 0.865 0.136 0.865

BLIP-2 ADV-Transfer 0.882 0.119 0.882 0.883 0.117 0.883 0.873 0.128 0.873 0.898 0.102 0.898 0.835 0.166 0.835 0.891 0.111 0.890
ADV-Query 0.921 0.082 0.920 0.885 0.117 0.884 0.886 0.114 0.886 0.896 0.104 0.896 0.856 0.144 0.856 0.912 0.090 0.911

Img2Prompt ADV-Transfer 0.841 0.160 0.841 0.833 0.170 0.832 0.815 0.185 0.815 0.838 0.164 0.837 0.783 0.216 0.784 0.834 0.167 0.8335
ADV-Query 0.809 0.195 0.807 0.759 0.242 0.7585 0.767 0.235 0.766 0.789 0.213 0.788 0.708 0.295 0.707 0.782 0.220 0.781

C.3 SIMILARITY SCORES AND DETECTION ACCURACIES USING CLIP IMAGE ENCODERS

Rather than using Stable Diffusion in MirrorCheck, we leverage UniDiffuser T2I model Bao et al. (2023a)
and ControlNet Zhang et al. (2023). Key Takeaway: We observe better accuracies using UniDiffuser, compared
to using Stable Diffusion. We also observe better accuracies using ControlNet, compared to using Stable
Diffusion, and slightly better overall accuracies compared to UniDiffuser. Tables 8 and 10 show the similarities
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when using UniDiffuser-T2I Bao et al. (2023a) and ControlNet Zhang et al. (2023) for image generation and the
CLIP models for evaluation, while Tables 9 and 11 show the detection accuracies.

Table 8: Similarity: UniDiffuser + CLIP.

Victim Model Setting CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b)
Clean 0.737 0.826 0.769 0.764 0.721 0.763
ADV-Transfer 0.408 0.617 0.501 0.765 0.486 0.555
ADV-Query 0.396 0.659 0.526 0.508 0.520 0.522

BLIP Li et al. (2022)
Clean 0.713 0.806 0.742 0.730 0.685 0.735
ADV-Transfer 0.375 0.609 0.500 0.466 0.480 0.486
ADV-Query 0.417 0.656 0.529 0.503 0.526 0.526

BLIP-2 Li et al. (2023b)
Clean 0.732 0.823 0.764 0.759 0.720 0.760
ADV-Transfer 0.425 0.627 0.533 0.491 0.517 0.519
ADV-Query 0.390 0.652 0.511 0.506 0.510 0.514

Img2Prompt Guo et al. (2023)
Clean 0.663 0.780 0.703 0.689 0.660 0.699
ADV-Transfer 0.369 0.607 0.494 0.457 0.474 0.480
ADV-Query 0.417 0.656 0.522 0.502 0.525 0.525

MiniGPT-4 Zhu et al. (2023) Clean 0.599 0.737 0.646 0.641 0.610 0.646
ADV-Transfer 0.507 0.678 0.570 0.540 0.524 0.564

Table 9: Detection: UniDiffuser + CLIP.

Victim Model Setting CLIP Image Encoders
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b) ADV-Transfer 0.935 0.910 0.910 0.470 0.910 0.827
ADV-Query 0.960 0.905 0.900 0.920 0.865 0.909

BLIP Li et al. (2022) ADV-Transfer 0.915 0.910 0.915 0.920 0.845 0.901
ADV-Query 0.920 0.880 0.900 0.915 0.820 0.887

BLIP-2 Li et al. (2023b) ADV-Transfer 0.915 0.930 0.885 0.935 0.860 0.905
ADV-Query 0.950 0.910 0.920 0.930 0.860 0.914

Img2Prompt Guo et al. (2023) ADV-Transfer 0.885 0.870 0.830 0.885 0.810 0.856
ADV-Query 0.845 0.810 0.805 0.830 0.775 0.813

Table 10: Similarity: ControlNet + CLIP.

Victim Model Setting CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b)
Clean Image 0.747 0.839 0.768 0.758 0.731 0.769
ADV-Transfer 0.410 0.621 0.514 0.554 0.514 0.523
ADV-Query 0.440 0.663 0.555 0.522 0.519 0.540

BLIP Li et al. (2022)
Clean Image 0.747 0.840 0.770 0.769 0.728 0.770
ADV-Transfer 0.398 0.625 0.526 0.494 0.511 0.511
ADV-Query 0.466 0.689 0.575 0.527 0.565 0.564

BLIP-2 Li et al. (2023b)
Clean Image 0.751 0.844 0.774 0.766 0.735 0.774
ADV-Transfer 0.388 0.623 0.526 0.493 0.512 0.508
ADV-Query 0.463 0.684 0.571 0.522 0.565 0.561

Img2Prompt Guo et al. (2023)
Clean Image 0.661 0.780 0.712 0.695 0.670 0.703
ADV-Transfer 0.400 0.626 0.532 0.497 0.514 0.514
ADV-Query 0.463 0.685 0.569 0.534 0.569 0.564
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Table 11: Detection: ControlNet + CLIP.

Victim Model Setting CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuse Bao et al. (2023b) ADV-Transfer 0.935 0.980 0.925 0.895 0.920 0.931
ADV-Query 0.945 0.965 0.880 0.920 0.880 0.918

BLIP Li et al. (2022) ADV-Transfer 0.955 0.965 0.880 0.945 0.880 0.925
ADV-Query 0.940 0.905 0.870 0.925 0.830 0.894

BLIP-2 Li et al. (2023b) ADV-Transfer 0.935 0.950 0.905 0.930 0.900 0.924
ADV-Query 0.915 0.910 0.880 0.890 0.850 0.889

Img2Prompt Guo et al. (2023) ADV-Transfer 0.965 0.940 0.900 0.950 0.890 0.929
ADV-Query 0.950 0.895 0.860 0.915 0.800 0.884

C.4 SIMILARITY SCORES AND DETECTION ACCURACIES USING IMAGENET-PRETRAINED
CLASSIFIERS

We calculated detection accuracies (Table 13 using similarity scores (Table 12) gotten from different T2I models
(Stable Diffusion Rombach et al. (2022), UniDiffuser-T2I Bao et al. (2023a), and ControlNet Zhang et al.
(2023)) and ImageNet-Pretrained Classifiers for evaluation. Key Takeaway: MirrorCheck maintains the best
performances compared to baselines in Table 2.

Table 12: Similarity: (Stable Diffusion, UniDiffuser, ControlNet) + ImageNet-Pretrained Classifiers.

Victim Model Setting Stable Diffusion Rombach et al. (2022) UniDiffuser Bao et al. (2023a) ControlNet Zhang et al. (2023)
ResNet-50 VGG16 ResNet-50 VGG16 ResNet-50 VGG16

UniDiffuser Bao et al. (2023b)
Clean 0.595 0.666 0.618 0.689 0.561 0.604
ADV-Transfer 0.155 0.174 0.140 0.161 0.134 0.143
ADV-Query 0.207 0.190 0.192 0.185 0.222 0.178

BLIP Li et al. (2022)
Clean 0.574 0.647 0.591 0.661 0.552 0.601
ADV-Transfer 0.138 0.146 0.116 0.135 0.137 0.124
ADV-Query 0.178 0.152 0.150 0.135 0.187 0.173

BLIP-2 Li et al. (2023b)
Clean Image 0.608 0.677 0.633 0.695 0.563 0.601
ADV-Transfer 0.155 0.179 0.156 0.184 0.112 0.128
ADV-Query 0.226 0.156 0.193 0.148 0.197 0.148

Img2Prompt Guo et al. (2023)
Clean 0.538 0.597 0.535 0.605 0.528 0.575
ADV-Transfer 0.117 0.124 0.124 0.128 0.137 0.150
ADV-Query 0.188 0.157 0.162 0.146 0.179 0.138

Table 13: Detection: (Stable Diffusion, UniDiffuser, ControlNet) + ImageNet-Pretrained Classifiers.

Victim Model Setting Stable Diffusion Rombach et al. (2022) UniDiffuser Bao et al. (2023a) ControlNet Zhang et al. (2023)
ResNet-50 VGG16 ResNet-50 VGG16 ResNet-50 VGG16

UniDiffuser Bao et al. (2023b)
ADV-Transfer 0.830 0.835 0.885 0.855 0.855 0.850
ADV-Query 0.870 0.910 0.875 0.920 0.835 0.855

BLIP Li et al. (2022)
ADV-Transfer 0.870 0.870 0.865 0.850 0.840 0.825
ADV-Query 0.860 0.895 0.865 0.915 0.845 0.860

BLIP-2 Li et al. (2023b)
ADV-Transfer 0.865 0.865 0.895 0.880 0.870 0.845
ADV-Query 0.855 0.915 0.910 0.940 0.830 0.855

Img2Prompt Guo et al. (2023)
ADV-Transfer 0.825 0.835 0.865 0.875 0.850 0.815
ADV-Query 0.820 0.870 0.840 0.850 0.825 0.865

C.5 SIMILARITY SCORES USING OPENCLIP IMAGE ENCODERS

We calculate detection accuracies for Stable Diffusion (Table 15), UniDiffuser (Table 17), and ControlNet (Table
19) using their respective similarity scores (Tables 14, 16, 18) and the OpenCLIP Ilharco et al. (2021) Image
Encoders. Key Takeaway: We observe better overall detection accuracies on query-based adversarial samples,
compared to when using ControlNet+CLIP (Table 11). Generally, MirrorCheck maintains its SOTA detection
performance, proving that our approach is agnostic to the choice of T2I models and Image Encoders.
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Table 14: Similarity: Stable Diffusion + OpenCLIP.

Victim Model Setting OpenCLIP Image Encoders
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b)
Clean Image 0.525 0.537 0.618 0.641 0.579 0.580
ADV-Transfer 0.218 0.232 0.296 0.377 0.253 0.275
ADV-Query 0.193 0.177 0.226 0.296 0.111 0.200

BLIP Li et al. (2022)
Clean Image 0.505 0.518 0.598 0.620 0.551 0.558
ADV-Transfer 0.209 0.216 0.272 0.330 0.235 0.252
ADV-Query 0.215 0.196 0.237 0.311 0.142 0.220

BLIP-2 Li et al. (2023b)
Clean Image 0.512 0.534 0.628 0.649 0.591 0.583
ADV-Transfer 0.221 0.231 0.294 0.350 0.265 0.272
ADV-Query 0.199 0.175 0.227 0.309 0.122 0.207

Img2Prompt Guo et al. (2023)
Clean Image 0.450 0.468 0.543 0.578 0.494 0.507
ADV-Transfer 0.201 0.209 0.266 0.328 0.226 0.246
ADV-Query 0.217 0.199 0.227 0.306 0.130 0.216

Table 15: Detection: Stable Diffusion + OpenCLIP.

Victim Model Setting OpenCLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b) ADV-Transfer 0.925 0.920 0.925 0.910 0.900 0.916
ADV-Query 0.940 0.950 0.980 0.970 0.990 0.966

BLIP Li et al. (2022) ADV-Transfer 0.905 0.925 0.930 0.895 0.890 0.909
ADV-Query 0.905 0.940 0.955 0.920 0.975 0.939

BLIP-2 Li et al. (2023b) ADV-Transfer 0.915 0.915 0.920 0.915 0.920 0.917
ADV-Query 0.935 0.960 0.970 0.960 0.970 0.959

Img2Prompt Guo et al. (2023) ADV-Transfer 0.830 0.820 0.885 0.890 0.810 0.847
ADV-Query 0.815 0.835 0.900 0.880 0.930 0.872

Table 16: Similarity: UniDiffuser + OpenCLIP.

Victim Model Setting OpenCLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b)
Clean 0.531 0.547 0.636 0.659 0.578 0.590
ADV-Transfer 0.202 0.209 0.290 0.371 0.250 0.264
ADV-Query 0.190 0.183 0.228 0.297 0.104 0.200

BLIP Li et al. (2022)

Clean 0.512 0.522 0.596 0.627 0.539 0.559
ADV-Transfer 0.189 0.203 0.271 0.326 0.232 0.244
ADV-Query 0.194 0.183 0.229 0.293 0.130 0.206

BLIP 2 Li et al. (2023b)
Clean 0.529 0.539 0.625 0.652 0.577 0.584
ADV-Transfer 0.196 0.208 0.299 0.353 0.264 0.264
ADV-Query 0.178 0.172 0.223 0.300 0.112 0.197

Img2Prompt Guo et al. (2023)
Clean 0.447 0.464 0.532 0.563 0.469 0.495
ADV-Transfer 0.185 0.194 0.252 0.316 0.207 0.231
ADV-Query 0.198 0.189 0.226 0.293 0.124 0.206

Table 17: Detection: UniDiffuser + OpenCLIP.

Victim Model Setting OpenCLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b) ADV-Transfer 0.925 0.940 0.920 0.900 0.910 0.919
ADV-Query 0.940 0.940 0.975 0.990 0.980 0.965

BLIP Li et al. (2022) ADV-Transfer 0.935 0.960 0.930 0.945 0.900 0.934
ADV-Query 0.960 0.965 0.965 0.950 0.970 0.962

BLIP-2 Li et al. (2023b) ADV-Transfer 0.930 0.930 0.945 0.930 0.910 0.929
ADV-Query 0.950 0.960 0.965 0.965 0.995 0.967

Img2Prompt Guo et al. (2023) ADV-Transfer 0.870 0.855 0.885 0.840 0.875 0.865
ADV-Query 0.865 0.875 0.890 0.875 0.935 0.888
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Table 18: Similarity: ControlNet + OpenCLIP.

Victim Model Setting OpenCLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b)
Clean 0.531 0.542 0.623 0.647 0.583 0.585
ADV-Transfer 0.221 0.237 0.303 0.382 0.251 0.279
ADV-Query 0.203 0.183 0.235 0.304 0.225 0.230

BLIP Li et al. (2022)
Clean 0.512 0.519 0.601 0.615 0.555 0.560
ADV-Transfer 0.215 0.221 0.274 0.327 0.235 0.254
ADV-Query 0.213 0.121 0.231 0.318 0.203 0.233

BLIP-2 Li et al. (2023b)
Clean 0.531 0.544 0.646 0.660 0.606 0.597
ADV-Transfer 0.231 0.237 0.303 0.358 0.285 0.283
ADV-Query 0.208 0.184 0.233 0.313 0.194 0.226

Img2Prompt Guo et al. (2023)
Clean 0.467 0.475 0.573 0.604 0.519 0.528
ADV-Transfer 0.203 0.210 0.278 0.321 0.243 0.251
ADV-Query 0.212 0.196 0.228 0.301 0.193 0.226

Table 19: Detection: ControlNet + OpenCLIP.

Victim Model Setting OpenClip Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser Bao et al. (2023b) ADV-Transfer 0.900 0.825 0.930 0.845 0.935 0.893
ADV-Query 0.930 0.940 0.955 0.900 0.960 0.937

BLIP Li et al. (2022) ADV-Transfer 0.920 0.960 0.955 0.945 0.985 0.953
ADV-Query 0.925 0.965 0.970 0.970 0.980 0.962

BLIP-2 Li et al. (2023b) ADV-Transfer 0.975 0.990 0.990 0.985 0.965 0.981
ADV-Query 0.995 0.995 0.990 0.990 0.980 0.990

Img2Prompt Guo et al. (2023) ADV-Transfer 0.950 0.910 0.935 0.995 0.945 0.947
ADV-Query 0.955 0.925 0.935 0.995 0.995 0.961
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C.6 ADAPTING MIRRORCHECK FOR CLASSIFICATION TASKS

C.6.1 MIRRORCHECK VS FEATURESQUEEZING

We implement MirrorCheck on DenseNet Iandola et al. (2014) trained on CIFAR10 and MobileNet Sandler
et al. (2018) trained on ImageNet datasets, following the configurations and hyperparameters outlined in
FeatureSqueeze Xu et al. (2017). The classifiers are subjected to adversarial attacks using FGSM Huang et al.
(2017) and BIM Kurakin et al. (2018) strategies. To adapt MirrorCheck for comparison with FeatureSqueeze,
we input xin into the classifier fθ(·), extract the predicted class name using argmax, and generate an image
using either Stable Diffusion or ControlNet. Subsequently, we compute similarity scores and detection results.
Table 20 shows classification similarities using Stable Diffusion and ControlNet for image generation and the
CLIP Image Encoders for evaluation. Comparing our results in Table 21 with the best reported outcomes from
various FeatureSqueezing configurations—Bit Depth, Median Smoothing, Non-Local Mean, and Best Joint
Detection—we observe significant improvements. On CIFAR10 with DenseNet, our best setting achieves a
detection accuracy of 91.5% against FGSM adversarial samples, compared to FeatureSqueeze’s 20.8%. Similarly,
for BIM samples, our approach achieves an accuracy of 87% compared to FeatureSqueeze’s 55%. For ImageNet
with MobileNet, our approach also outperforms FeatureSqueeze. Against FGSM samples, our best setting
achieves a detection accuracy of 76.5% compared to FeatureSqueeze’s 43.4%, and for BIM samples, it achieves
79.5% compared to FeatureSqueeze’s 64.4%.

Table 20: Classification Similarity: (Stable Diffusion and ControlNet) + CLIP Image Encoders.

Classifier Setting CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

DenseNet-CIFAR10

Clean-CN 0.607 0.761 0.729 0.697 0.690 0.697
ADV-FGSM-CN 0.571 0.729 0.650 0.625 0.594 0.634
ADV-BIM-CN 0.614 0.750 0.652 0.649 0.606 0.654

Clean Image-SD 0.543 0.740 0.705 0.671 0.674 0.667
ADV-FGSM-SD 0.444 0.666 0.572 0.537 0.548 0.553
ADV-BIM-SD 0.507 0.713 0.593 0.554 0.532 0.579

MobileNet-ImageNet

Clean-CN 0.659 0.786 0.731 0.715 0.711 0.720
ADV-FGSM-CN 0.578 0.744 0.632 0.634 0.599 0.617
ADV-BIM-CN 0.540 0.718 0.595 0.601 0.558 0.602

Clean Image-SD 0.668 0.790 0.729 0.704 0.705 0.719
ADV-FGSM-SD 0.520 0.712 0.606 0.612 0.585 0.607
ADV-BIM-SD 0.503 0.693 0.581 0.565 0.538 0.576

Table 21: Detection Accuracy: MirrorCheck vs FeatureSqueezing.

Classifier Dataset Defense Method Configuration Attack Setting
FGSM BIM

DenseNet CIFAR10

FeatureSqueezing

Bit Depth 0.125 0.250
Median Smoothing 0.188 0.550
Non-Local Mean 0.167 0.525
Joint Detection 0.208 0.550

MirrorCheck (Using SD)

RN50 0.795 0.620
RN101 0.825 0.595
ViT-B/16 0.860 0.845
ViT-B/32 0.915 0.850
ViT-L/14 0.850 0.870
Ensemble 0.925 0.810

MirrorCheck (Using CN)

RN50 0.630 0.450
RN101 0.650 0.550
ViT-B/16 0.750 0.725
ViT-B/32 0.740 0.660
ViT-L/14 0.800 0.760
Ensemble 0.760 0.685

MobileNet ImageNet

FeatureSqueezing

Bit Depth 0.151 0.556
Median Smoothing 0.358 0.444
Non-Local Mean 0.226 0.467
Joint Detection 0.434 0.644

MirrorCheck (Using SD)

RN50 0.745 0.755
RN101 0.680 0.720
ViT-B/16 0.715 0.775
ViT-B/32 0.710 0.755
ViT-L/14 0.765 0.785
Ensemble 0.725 0.800

MirrorCheck (Using CN)

RN50 0.685 0.700
RN101 0.600 0.690
ViT-B/16 0.725 0.780
ViT-B/32 0.650 0.725
ViT-L/14 0.750 0.795
Ensemble 0.700 0.735
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C.6.2 MIRRORCHECK VS MAGNET

We also implement and compare MirrorCheck with MagNet Meng & Chen (2017). Table 22 show the
classification similarities using Stable Diffusion Rombach et al. (2022) for image generation and the CLIP Image
Encoders for evaluation. Subsequently, we compare MirrorCheck with MagNet Meng & Chen (2017) using
the same settings as reported in Meng & Chen (2017). Our approach demonstrate a superior performance over
MagNet. Key Takeaway: From experiments performed on CIFAR-10, using the classifier specified in Meng &
Chen (2017), MirrorCheck outperforms MagNet in detecting adversarial samples in classification settings,
proving the efficacy of our approach in multiple scenarios. Table 23 shows the comparison with MagNet.

Table 22: Classification Similarity: Stable Diffusion + CLIP Image Encoders.

Setting Eps (ϵ) CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

Clean 0.554 0.734 0.695 0.664 0.641 0.658
FGSM ϵ = 0.01 0.456 0.685 0.574 0.542 0.532 0.558
FGSM ϵ = 0.1 0.408 0.633 0.484 0.475 0.519 0.504
L2-PGD ϵ = 0.01 0.488 0.691 0.613 0.580 0.563 0.587
L2-PGD ϵ = 0.5 0.494 0.687 0.601 0.573 0.551 0.581
DeepFool ϵ = 0.1 0.482 0.689 0.606 0.574 0.560 0.582
C&W ϵ = 0.1 0.506 0.699 0.620 0.587 0.569 0.596

Table 23: Detection Accuracy: MirrorCheck vs MagNet (MN) Meng & Chen (2017).

Setting Eps (ϵ) CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble MN Meng & Chen (2017)

FGSM ϵ = 0.01 0.660 0.655 0.770 0.790 0.750 0.750 0.525
FGSM ϵ = 0.1 0.750 0.785 0.890 0.880 0.755 0.845 0.885
L2-PGD ϵ = 0.01 0.635 0.645 0.730 0.750 0.715 0.735 0.490
L2-PGD ϵ = 0.5 0.600 0.655 0.720 0.730 0.710 0.710 0.485
DeepFool ϵ = 0.1 0.625 0.665 0.710 0.735 0.685 0.730 0.525
C&W ϵ = 0.1 0.590 0.615 0.725 0.705 0.685 0.705 0.530

C.7 MIRRORCHECK : ONE-TIME-USE (OTU) IMAGE ENCODER APPROACH

In this section, we show results from different applications of our OTU approach on the CLIP ViT-B/32 Image
Encoder. Tables 24, 25, 26, 27, and 28 show the detailed descriptions of each of our experiments, along with our
key observations and conclusions.

Table 24: We started by adding different pertubation values η to the CLIP ViT-B/32 Image Encoder weights.
Key Takeaway: Very small η (i.e., η ≤ 10−4) doesn’t change the model, and large η (i.e., η ≥ 10−2) destroys
the model’s usage. This sets our optimal η at 10−4 ≤ η < 10−2.

Victim Model Setting One-Time-Use (OTU) ViT-B/32 Image Encoder
η = 5 · 10−6 η = 3 · 10−4 η = 10−3 η = 10−2 η = 10−1

UniDiffuser Clean 0.751 0.752 0.755 0.867 0.721
ADV-Transfer 0.804 0.803 0.778 0.872 0.717

BLIP Clean 0.728 0.731 0.741 0.871 0.715
ADV-Transfer 0.478 0.486 0.506 0.866 0.706

BLIP-2 Clean 0.750 0.751 0.758 0.870 0.722
ADV-Transfer 0.499 0.505 0.524 0.865 0.706

Img2Prompt Clean 0.695 0.696 0.708 0.862 0.716
ADV-Transfer 0.478 0.484 0.506 0.859 0.706

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 25: To prove our conclusion in Table 24, we investigated with more perturbation values. Key Takeaway:
Larger η values destroy the usefulness of the encoder. Therefore, η should be low enough.

Victim Model Setting One-Time-Use (OTU) ViT-B/32 Image Encoder
η = 10−3 η = 5 · 10−3 η = 10−1 η = 5 · 10−1

UniDiffuser Clean 0.755 0.799 0.721 0.859
ADV-Transfer 0.778 0.789 0.717 0.855

BLIP Clean 0.741 0.800 0.715 0.860
ADV-Transfer 0.506 0.506 0.706 0.857

Table 26: We then investigate which layer carries the most importance for perturbing, to get to our goal of
having an OTU encoder. We started by adding different pertubation values η to the weights of the first layer
(conv1) of CLIP ViT-B/32 Image Encoder. Key Takeaway: We observe similar trends in this case, as compared
to Table 24. Our optimal η sits at 10−4 ≤ η < 10−2.

Victim Model Setting One-Time-Use (OTU) ViT-B/32 Image Encoder
η = 5 · 10−6 η = 3 · 10−4 η = 10−3 η = 10−2 η = 10−1

UniDiffuser Bao et al. (2023b) Clean 0.751 0.752 0.749 0.882 0.881
ADV-Transfer 0.804 0.802 0.785 0.865 0.894

Blip Li et al. (2022) Clean 0.728 0.728 0.725 0.881 0.887
ADV-Transfer 0.478 0.482 0.490 0.843 0.877

Blip-2 Li et al. (2023b) Clean 0.750 0.749 0.744 0.881 0.888
ADV-Transfer 0.499 0.502 0.511 0.852 0.883

Img2Prompt Guo et al. (2023) Clean 0.695 0.694 0.692 0.875 0.881
ADV-Transfer 0.478 0.479 0.489 0.845 0.876

Table 27: We also investigate the model’s performance when perturbing the pre-weight layer
(visual.ln_pre.weight) of the used encoder. Key Takeaway: We observe a slightly different trend in this case.
Very small η (i.e., η ≤ 10−4) still doesn’t change the model; however, larger η (i.e., 10−4) produced good
results. This implies that for any attack, our OTU approach could create a totally new encoder to be used in
MirrorCheck by perturbing one or more of the mid-layers.

Victim Model Setting One-Time-Use (OTU) ViT-B/32 Image Encoder
η = 5 · 10−6 η = 3 · 10−4 η = 10−3 η = 10−2 η = 10−1

UniDiffuser Clean 0.751 0.751 0.751 0.752 0.785
ADV-Transfer 0.804 0. 804 0.804 0.806 0.698

BLIP Clean 0.728 0.728 0.728 0.730 0.775
ADV-Transfer 0.478 0.478 0.478 0.481 0.587

BLIP-2 Clean 0.750 0.750 0.750 0.752 0.791
ADV-Transfer 0.499 0.499 0.499 0.501 0.615

Img2Prompt Clean 0.695 0.695 0.695 0.697 0.767
ADV-Transfer 0.478 0.478 0.478 0.480 0.589

Table 28: Finally, we investigate the model’s performance when perturbing the last layers
(visual.ln_post.weight). Key Takeaway: This trend was the total opposite of what was observed when
perturbing the first layer and when perturbing all weights. We observed good performances even when using
large η (up to 5 ·10−1), which implies that there is a good range of encoders that can be created from a pretrained
evaluator using our OTU approach. Furthermore, using this approach means that an attacker will find it difficult
to create adversarial samples when carrying out an adaptive attack approach against our defense method.

Victim Model Setting One-Time-Use (OTU) ViT-B/32 Image Encoder
η = 5 · 10−6 η = 3 · 10−4 η = 10−3 η = 10−2 η = 10−1 η = 5 · 10−1

UniDiffuser Bao et al. (2023b) Clean 0.751 0.751 0.751 0.751 0.748 0.723
ADV-Transfer 0.804 0.804 0.804 0.804 0.801 0.781

Blip Li et al. (2022) Clean 0.728 0.728 0.728 0.728 0.724 0.696
ADV-Transfer 0.478 0.479 0.479 0.479 0.473 0.433

Blip-2 Li et al. (2023b) Clean 0.750 0.750 0.750 0.750 0.746 0.720
ADV-Transfer 0.499 0.499 0.499 0.498 0.492 0.450

Img2Prompt Guo et al. (2023) Clean 0.695 0.695 0.695 0.695 0.689 0.656
ADV-Transfer 0.478 0.478 0.478 0.478 0.472 0.429
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C.8 ADAPTIVE ATTACK

Algorithm 1 Adaptive Attack to Bypass Defense Mechanisms (Figure 7)
1: Input: Original image xin , target caption t
2: Output: Adversarial image xadv
3: Initialize: δ ← 0
4: VLM Model: Fθ(xin; p)→ t ▷ Victim model generates caption
5: VLM Model Text Encoder: F̂θ(xin)→ z ▷ Victim model text encoder generates embedding
6: T2I Model Image Generator: Ĝψ(z)→ xgen ▷ Generate image from text embedding

7: Adapter Network Training: Train adapterA
8: repeat
9: Encode Input and Generated Images:
10: xin + δ → xadv
11: F̂θ(xadv)→ z

12: A(z)→ z

13: Ĝψ(z)→ xgen

14: for j = 1 to k do
15: Iϕj,ξ(xadv)
16: Iϕj,ξ(xgen)
17: end for
18: Compute Loss:
19: loss← d(Ĩϕ(xadv), Ĩϕ(Gψ(t∗; η))) + 1

N

∑N
j=1d(Iϕj,ξ(xadv), Iϕj,ξ(Ĝψ(A(F̂θ(xadv ; p)); η)))

20: Update δ:
21: δ ← δ − γ · ∇loss
22: until Convergence
23: xadv ← xin + δ

24: return xadv
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Figure 7: Illustration of the adaptive attack pipeline: (1.) Rather than use the discrete output of the Victim Model (I2T), the attacker seamlessly integrates the
embedding layer for the text decoder (2.) with the decoding module of the generative model (T2I), using an Adapter for semantics alignment. The goal of the adapter is
to (3.) craft adversarial images xadv such that its distance d from target caption t and generated images xgen is minimized.

We assessed the success of the adaptive attack relative to the standard attack, as the attacker’s primary objective
is to maximize the attack’s effectiveness. To accomplish this, we computed the similarity between the target
caption and the captions of the adversarial images generated by the adaptive attack. Subsequently, we compared
these results with the similarity between the target caption and the captions of adversarial images generated by
the standard attack (ADV-Transfer). As illustrated in Table 29, our findings indicate that the adaptive attack
yields lower similarity, indicating a less successful attack.

Table 29: Text embedding similarity between the target captions and the captions produced by the victim model
attacked using transfer attack (ADV-Transfer) and different adaptive settings.

Victim Model Setting CLIP Image Encoder
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser

ADV-Transfer 0.76 0.71 0.74 0.77 0.68 0.73
Adaptive (ViT-B/32) 0.59 0.61 0.60 0.64 0.53 0.60
Adaptive (RN50 + ViT-B/32) 0.63 0.60 0.63 0.66 0.55 0.61
Adaptive (RN50 + ViT-B/32 + ViT-L/14) 0.70 0.64 0.68 0.70 0.60 0.66
Adaptive (RN50 +ViT-B/16 + ViT-B/32 + ViT-L/14 ) 0.69 0.64 0.68 0.71 0.62 0.67
Adaptive (RN50 + RN101 + ViT-B/16 + ViT-B/32 + ViT-L/14 ) 0.63 0.64 0.66 0.67 0.58 0.64
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D SOME VISUALIZATION

“a little 
girl holding 
a ball on a 

tennis 
court.”

“several 
large round 
bales of hay 
in a field.”

“a group of 
people play 
soccer at 
night.”

“a dog is 
standing 

with a leash 
around its 
neck.”

“a man in 
white shirt 
and hat 
standing 
next to a 
machine.”

“a bird that 
is sitting 
on a rock.”

“two men in 
tuxedos 

writing on 
sheets in 
front of a 
group of 
people.”

“there are 
two bears 
swimming in 
a stream.”

“a man is 
standing on 
the grass 
with a 
kite.”

“a gold 
sports car 
parked on 
the side of 
the road.”

“two 
vehicles 

that are on 
the street 
with a 
broken 
front.”

“a roll of 
toilet paper 
on top of a 
toilet in a 
bathroom.”

“two 
giraffes 
that are 
touching 

their heads 
together.”

“an up close
image of a 
purple 
flower.”

“the young 
man is skate 
boarding
down the 
stairs.”

“the pancake 
is cooking 
on the grill 

with a 
spatula.”

“a horse 
that is 
jumping a 
fence and 
holding the 
leg down.”

“a leopard 
laying down 
on a rock 
next to a 
field.”

Figure 8: Visual results using BLIP (Victim Model) and Stable Diffusion (T2I Model).
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