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Label: Hang Tag
Definition & Functionality:
A tag is a small piece of paper
or plastic attached to an object,
typically bearing information
about the object or its owner.
In this context, the tag likely
contains the cat’s name,
providing essential information
for potential rescues or
adoptions.
Caption: A yellow, teardrop-
shaped tag with a hole at the
top. The tag has black text that
reads “Tommy” and “Boy”.
This tag is worn on a cat’s
neck as an identifier.

Label: Taxi
Definition & Functionality:
A taxi, also known as a yellow
cab, is a vehicle designed for
transporting passengers. In
this context, the taxi is captured
in motion on a city street, likely
serving its primary purpose of
providing transportation to
individuals in need.
Caption: A yellow taxi with a
visible front windshield. The
taxi has a sleek, modern design
with a slightly curved hood. It
appears blurry, in motion, likely
captured at high speed.

Label: Aluminum alloy ladder
Definition & Functionality:
An aluminum alloy ladder is a
lightweight, durable ladder
made from aluminum alloy,
often used for various tasks
that require reaching heights.
In this context, the aluminum
alloy worker ladder is being
used by a man to access the
window of a building, likely for
cleaning or repair work.
Caption: A white aluminum
extension ladder with
cylindrical rungs and parallel
side rails, featuring a slight
taper towards the top.

Promptable Video Caption: The boy is wearing a blue hooded top, seating at a wooden table. In the video, he is holding a dark-colored
plaything, which he appears pretending to shoot something or is very focused on an object in that direction. He is looking remain fairly
consistent, with movements of his head and body as if tracking a target or adjusting his aim. He then hid behind a chair.

Promptable Video Caption: The large house in the center of the background is cartoon-style building. The main structure and roof appear to
be predominantly blue; It is set in a colorful environment with what looks like a grassy or sandy foreground, surrounded by stylized trees or
tall plants and other smaller objects or structures.

Promptable
Streaming :

The female is actively presenting, with changes in her
hand gestures and facial expressions. She has dark hair.

She is not visually present within these scenes of the game. At the
video's end, she reappears in the studio, apparently to discuss the
soccer match.
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Figure 1: Perceive Anything Model (PAM): PAM accepts various visual prompts (such as clicks,
boxes, and masks) to produce region-specific information for images and videos, including masks,
category, label definition, contextual function, and detailed captions. The model also handles
demanding region-level streaming video captioning.

Abstract

We present Perceive Anything Model (PAM), a conceptually straightforward and
efficient framework for comprehensive region-level visual understanding in im-
ages and videos. Our approach extends the powerful segmentation model SAM
2 by integrating Large Language Models (LLMs), enabling simultaneous object
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segmentation with the generation of diverse, region-specific semantic outputs, in-
cluding categories, label definition, functional explanations, and detailed captions.
A key component, Semantic Perceiver, is introduced to efficiently transform SAM
2’s rich visual features, which inherently carry general vision, localization, and
semantic priors into multi-modal tokens for LLM comprehension. To support ro-
bust multi-granularity understanding, we also develop a dedicated data refinement
and augmentation pipeline, yielding a high-quality dataset of 1.5M image and
0.6M video region-semantic annotations, including novel region-level streaming
video caption data. PAM is designed for lightweightness and efficiency, while
also demonstrates strong performance across a diverse range of region under-
standing tasks. It runs 1.2−2.4× faster and consumes less GPU memory than
prior approaches, offering a practical solution for real-world applications. We
believe that our effective approach will serve as a strong baseline for future re-
search in region-level visual understanding. Code, model and data are available at:
https://Perceive-Anything.github.io

1 Introduction

The vision community has rapidly witnessed advances in vision foundation models, such as SAM [34]
and SAM 2 [52], which have dramatically improved interactive object segmentation performance in
images and videos. These models offer remarkable precision in localizing arbitrary objects based on
various visual prompts. However, they typically lack deep semantic understanding of the segmented
regions, elucidating what these regions mean or how they function in context remains a challenging
problem.

Recent studies seek to endow Vision–Language Models (VLMs) with region-level understanding
capability through visual prompts. As illustrated in Fig. 2, current methods can be grouped into three
paradigms: (1) textual encoding [63, 78, 86, 44], which encode 2-D bounding-box coordinates as
natural-language strings inside the prompt, thereby supplying no explicit region prior; (2) visual-
prompt encoding (VPE) [41, 51], which introduce extra module to embed regional image features
and positional features; (3) RoI/segmentation-based encoding [38, 77, 83, 80, 29], which utilize
an external mask generator to concatenate image embedding and mask embedding. While these
methods show promise, they often present several limitations: (i) they usually generate only limited
semantic outputs—often just category labels or short captions [26, 88, 69, 67]; (ii) their designs
are modality-specificl, focusing on one single visual modality (image or video), offering limited
generality [63, 78, 77, 80, 81]. (iii) they rely on external segmentation models to supply masks, a
serial design that adds computational overhead and makes overall performance sensitive to mask
quality [80, 81, 38].

To address these challenges, we introduce the Perceive Anything Model (PAM), an end-to-end
region-level vision-language model designed for fast and comprehensive fine-grained visual under-
standing across both images and videos, encompassing capabilities such as predicting categories,
explaining the definition and contextual function of identified regional elements, and generating
detailed descriptions of specific regions. Rather than redesigning model architecture from scratch, our
approach efficiently extends the SAM 2 framework with Large Language Models (LLMs) to support
semantic understanding. Specifically, we introduce a Semantic Perceiver that acts as a essential
bridge, effectively leveraging rich intermediate visual features from the SAM 2 backbone to integrate
general vision, localization, and semantic priors into visual tokens. These tokens are subsequently
processed by the LLM to generate a diverse semantic outputs. Furthermore, PAM features a parallel
design for its mask and semantic decoders, enabling simultaneous generation of region masks and
semantic content, thereby improving computational efficiency.

To ensure PAM’s robustness in understanding region-level multi-dimensional semantic granularity,
high-quality training data is an essential component. While multiple existing datasets [6, 32, 36, 43,
29, 68] provide region-semantics annotations, we noticed that they are often overly coarse, limiting
their utility for fine-grained understanding tasks. Therefore, to construct high-quality training data,
we develop an advanced data refinement and augmentation pipeline that leverages leading VLMs
(e.g., GPT-4o [27]) and human expert validation to refine and augment existing region-level annotated
datasets. For images, we generate annotations at multiple distinct semantic granularities for each
specific region: a fine-grained category label, a context-aware definition that clarifies the region’s role
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Figure 2: Previous Paradigms vs. Our Paradigm (PAM). (a & b) Textual/VPE methods provide
region understanding using positional embeddings but typically lack simultaneous object masks.
(c) RoI/Segmentation-based methods use external segmenter for object masks, subsequently fusing
image and mask embeddings. (d) In contrast to previous paradigms, our method directly treats the
Seg. model as vision encoder. It effectively leverages the rich visual embeddings from the robust
segmentation model and features a parallel design for its mask and semantic decoders.

or function within the scene, and detailed descriptions. For videos, we refined original coarse-level
annotations from referring video detection and segmentation dataset [64, 58, 18, 71, 17] into detailed,
temporally-aware region-level captions. Furthermore, we pioneered the development of event-based,
region-level streaming video caption data. To the best of our knowledge, this is the first work to
construct such a dataset, enabling the model to support streaming video region captioning. Notably,
we also generate bilingual (English and Chinese) versions of each data annotation to equip the model
with multilingual response capabilities. This process yields a final high-quality dataset comprising
1.5M image-region-semantics triples and 0.6M video-region-semantics triples.

Our experimental results demonstrate that PAM delivers robust performance across a diverse range
of regional understanding tasks for both images and videos, while operating 1.2−2.4× faster and
consuming less GPU memory compared to prior models. We believe our model, dataset, and insights
will significantly advance research in this domain and broadly benefit the vision-language community.

2 Related Work

Interactive Image and Video Object Segmentation. Interactive object segmentation has pro-
gressed rapidly in recent years. Early methods—such as Graph Cut [5] and Active Contours
[9]—relied on manual annotations (e.g., foreground/background clicks). Inspired by the paradigm of
pre-training autoregressive Transformer architectures on large-scale data in language modeling, the
Segment Anything Model (SAM) [34] revolutionized user–model interaction by ingesting multiple
visual prompts and segmenting arbitrary objects in a class-agnostic manner. SAM 2 [52] extended
this capability to video, enabling real-time processing of arbitrarily long sequences with strong
generalization. Subsequent research [33, 82, 87, 54, 13, 74], while retaining the core architecture,
has further improved the accuracy and efficiency of this model family.

Region-level Vision-Language Models (VLMs). Region-level understanding tasks, such as region
classification and captioning, are fundamental in computer vision. Regarding image-based VLMs,
recent researches [46, 12, 70, 84, 77, 80, 8, 41, 1] have demonstrated a notable trend towards enabling
region-level understanding capabilities through spatial visual prompts. Furthermore, research has
extended regional understanding to the video domain [78, 63, 81, 48], focusing on identifying and
interpreting user-specified regions across temporal intervals. However, these approaches typically
operate within a single modality (either image or video), and more complex tasks, such as region-level
streaming video captioning—which requires continuously generating textual descriptions for specific
regions as a video progresses—remain largely unaddressed.

Streaming Video Captioning. Streaming video captioning demands per-frame processing and rapid
response times. Recent online video understanding models [16, 20] aim to identify the current action
at each timestamp. Streaming video caption [89] propose to incorporate memory modules and develop
specialized streaming decoding algorithms to support streaming captioning. VideoLLM online [11]
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Figure 3: Overall Architecture of PAM.

further pioneered the use of LLMs to achieve free-form dialogue synchronized with the online video
stream. However, these approaches predominantly focus on general event comprehension, leaving
the continuous tracking and description of specific regions within a video stream as a significant
unresolved challenge.

3 Perceive Anything Model (PAM)

Given visual prompts such as points, boxes, or masks to specify a region of interest, Perceive
Anything Model (PAM) can simultaneously: (1) Segment: Generate precise segmentation masks for
the indicated region within an image or throughout a video. (2) Recognize: Identify the category of
the designated region or object. (3) Explain: Provide clear explanations of the region’s or object’s
definition, attributes, and functionality within its given context. (4) Caption: Generate concise or
detailed captions for the region within images, videos, and video streams.

3.1 Model Architecture

As illustrated in Fig. 3, our PAM can be divided into two parts. The first part is the SAM 2 framework,
which comprises an image encoder, a prompt encoder, memory modules, and a mask decoder. This
framework provides robust spatio-temporal visual feature extraction and segmentation capabilities.
The second part is a semantic decoder, which is based on a large language model (LLM). Crucially,
our proposed Semantic Perceiver acts as a bridge, effectively leverages intermediate visual features
from the SAM 2 backbone and results in visual tokens. These tokens are subsequently processed by
the LLM to generate diverse semantic outputs. For decoding, PAM features a parallel design for its
mask and semantic decoders, enabling the simultaneous segmentation of objects while generating
diverse semantic outputs of them. The design of components and training process are detailed below.

Semantic Perceiver. As shown in Fig. 3(b) and Fig. 4, the architecture of Semantic Perceiver
mirrors the SAM 2 Feature Fusing module (S2-FFM), employing a lightweight two-layer transformer
with self-attention, cross-attention, and a point-wise MLP. Specifically, it receives two primary inputs:
enhanced mask tokens from S2-FFM, which incorporate IoU and prompt tokens information and
serve as unique identifiers for precise mask generation; and updated image embeddings after S2-FFM,
capturing general visual context and implicit features enriched through interaction with mask tokens.
Next, following [26, 28], we concatenate Ns learnable semantic tokens with the enhanced mask
tokens. Finally, through further attention mechanisms within the Semantic Perceiver, we can fetch
visual tokens rich in both general visual and object-level localization information. Given an input of
N frames (where N=1 for a single image), Semantic Perceiver outputs two sets of 256-dimensional
vectors: 642 ×N visual tokens and Ns ×N semantic tokens (Ns = 16 by default).

Projector. The projector preceding the LLM comprises two layers: a pixel shuffle operation and
an MLP projector. For image inputs, we apply the pixel shuffle operation over adjacent 2×2 feature
patches to downsample the number of visual tokens. For video inputs, the prompted frame is
processed similarly with single image, while the remaining frames in the video clip undergo a more
aggressive 4×4 pixel shuffle operation to significantly reduce visual tokens and further improve
processing efficiency for semantic decoder. Subsequently, we use two distinct MLPs [45] to project
visual and semantic tokens separately.
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Figure 4: Detailed illustration of our PAM workflow. Semantic Perceiver first receives enhanced
image embeddings and mask tokens from the S2-FFM and outputs enriched visual tokens and
semantic tokens. These are subsequently fed into the semantic decoder for decoding.

Semantic Decoder. We adopt the pre-trained Qwen2.5 LLM [72] as our semantic decoder, lever-
aging its strong language processing capabilities. This decoder is responsible for interpreting the
processed visual tokens and semantic tokens alongside task instructions to generate the desired
semantic outputs.

Streaming Video Encode and Decode. Building upon the progressive introduction of historical
information per frame via memory modules in SAM 2, we propose a straightforward strategy for
region-level streaming video captioning without adding complex components. Specifically, an
additional 2×2 pixel shuffle operation is applied to the last frame of each video clip. This leads to a
greater density of visual tokens, improving the preservation of historical visual information. These
tokens subsequently act as the initial frame for the next video clip and are processed by the LLM
together with the remaining frames of that clip. This approach ensures that each clip is processed
consistently and effectively passes crucial historical information from the previous clip into the
next video clip. Additionally, we incorporate the previous textual description into the prompt to
further augment contextual history, enhancing the model’s comprehension and descriptive accuracy
for ongoing events. In practice, our framework allows users to flexibly specify decode timestamps.
Upon reaching a designated timestamp, the model describes the specified region within the temporal
interval between the current timestamp and the previous one.

Training Strategies. We structure our training process using a three-stage curriculum learning
approach, progressively enhancing the PAM’s region-level visual understanding capabilities from
images to video. In all training stage, the parameters of SAM 2 are frozen. The hyper-parameters for
each training stage are summarized in Appendix A.

• Stage 1: Image Pretraining and Alignment. The initial training stage focuses on establishing robust
alignment among visual tokens, semantic tokens and the language model’s embedding space. The
primary objective is to enable the model to effectively understand region-level image content. To this
end, we utilize a large dataset of region-level image classification and captioning. During this stage,
only the semantic perceiver and the projector are trained.

• Stage 1.5: Video-Enhanced Pretraining and Alignment. In this stage, we extend the initial image-
based training by incorporating region-level video captions. This inclusion enables the model to
comprehend dynamic scenes through the integration of spatio-temporal visual information. The
trainable modules are the same as in Stage 1.

• Stage 2: Multimodal Fine-Tuning. The final stage employs supervised fine-tuning (SFT) to enable
the model to perform diverse tasks and generate desired responses. This stage utilizes a high-quality
dataset, which has been refined and augmented via our pipeline (Sec. 4). Training in this phase jointly
involves the semantic perceiver, the projector, and the semantic decoder.

4 Data

To enhance PAM’s comprehensive visual perception capabilities, we develop a robust data refinement
and augmentation pipeline to curate a high-quality training dataset. This dataset is distinguished by
three key features: (1) Broad-ranging Semantic Granularities. It provides diverse visual semantic
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Label: Bottle
Definition & Function: A bottle is a container, typically
used to hold liquids, making it convenient for carrying
and storage. In this context, the bottle appears to
contain mouthwash. It is usually swished around the
mouth or gargled and then spat out.
Caption: It is a translucent green plastic bottle. It has a
relatively simple, slightly tapered cylindrical shape. The
bottle appears to contain a clear liquid, and a label is
visible on its front. The bottle is positioned upright.

..., then the dog in the striped
outfit moves towards the pink-
clad dog for a closer interaction,
with its garment's wear and
damage in view.

The golden retriever, adorned in
a patterned outfit, maintains a
relaxed pose on a fluffy surface
while slightly turning its head
more to the left.

A black Cat The green bottle

Orig. Ann. : The dog is playing with another dog.  
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Figure 5: Illustrative examples of our dataset construction pipeline. The left panel displays image
annotations; the right panel details annotations for non-streaming and streaming video.

annotations spanning from coarse-level (categories, definitions, contextual functionalities) to fine-
grained (detailed descriptions) (Sec. 4.1). (2) Regional Streaming Caption Annotations. The first
dataset to curate annotations specifically for streaming video region captioning (Sec. 4.2). (3)
Bilingual Annotations, supporting both English and Chinese (App. B.2). The pipeline is detailed
below, and additional information are available in Appendix B.

4.1 Image Dataset

Regional Recognition, Explanation, and Caption. For regional recognition, we utilize multiple
instance detection and segmentation datasets [55, 35, 40, 23, 50, 66], along with scene text recognition
datasets [56, 31, 30, 19, 24, 14, 76, 57, 4]. In this context, the bounding box or mask serves as the
visual prompt input, and the label is treated as the output.

To achieve deep, fine-grained visual understanding beyond simple classification, we propose an
enhanced pipeline that generates: clear conceptual explanations, contextual functional roles, and
detailed descriptions for each specific region. This multi-dimensional information aims to significantly
improve user comprehension, particularly for uncommon terms or unfamiliar subjects. To implement
this, we utilize the latest VLMs for their extensive world knowledge and powerful visual understanding
capabilities to assist refinement. Specifically, we apply the Set of Mask (SoM) method [75] to identify
regions of interest, and use original annotations as context to guide models to produce desired
responses, which then undergo manual quality assurance. An illustrative example is presented in
Fig. 5(left). We present more details in Appendix B.1.

4.2 Video Dataset

Region-level Video Caption. To extend the model’s regional captioning capabilities to video, we
collected and analyzed several existing video datasets, including referring detection and segmentation
datasets [71, 47, 18, 62, 58, 17, 85, 64], as well as the recent Sa2VA [79] annotations for the SA-
V [53] dataset. These datasets, designed for detecting, segmenting, and captioning specific objects
in videos based on textual descriptions, often contain descriptions that are overly coarse, simplistic,
inaccurate, or predominantly static, neglecting essential temporal details such as object motion,
interactions, and state changes throughout the video.

To address the existing limitations, we propose the storyboard-driven caption expansion method.
This process involves several key stages: (1) Keyframe Sampling: Six keyframes are uniformly
extracted from each video. (2) Storyboard Synthesis: These extracted keyframes are combined
to form a high-resolution composite image, presented in a storyboard format (as illustrated in
Fig. 5). (3) Object-Centric Highlighting: Within this composite image, each individual frame
specifically highlights the target object using a colored bounding box or mask, implemented by
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Model Classification OCR

LVIS PACO COCO Text Total-Text

Semantic Sim. Semantic IoU Semantic Sim. Semantic IoU Acc.(%) Acc.(%)

Shikra-7B [12] 49.7 19.8 43.6 11.4 – –
GPT4RoI-7B [84] 51.3 12.0 48.0 12.1 – –
Osprey-7B [80] 65.2 38.2 73.1 52.7 – –
Ferret-13B [77] 65.0 37.8 – – – –
VP-LLAVA-8B [41] 86.7 61.5 75.7 50.0 44.8 46.9
VP-SPHINX-13B [41] 87.1 62.9 76.8 51.3 45.4 48.8
DAM-8B [38] 89.0 77.7 84.2 73.2 – –
PAM-1.5B (Ours) 87.4 76.5 85.1 73.5 39.4 48.6
PAM-3B (Ours) 88.6 78.3 87.4 74.9 42.2 52.3

Table 1: Results of region-level image recognition on LVIS, PACO, COCO Text, and Total-Text.

Model VG Refcocog Ref-L4 Ferret Bench MDVP Bench

METEOR CIDEr METEOR CIDEr ROUGE-L METEOR CIDEr Refer. Desc. Avg.

GLaMM-7B [51] 17.0 127.0 15.7 104.0 23.8 10.1 51.1 - -
Osprey-7B [80] - - 16.6 108.3 - - - 72.2 44.3
Ferret-7B [77] - - - - 22.3 10.7 39.7 68.7 47.6
VP-LLaVA-8B [41] - - 22.4 153.6 - - - 75.2 70.6
VP-SPHINX-13B [41] 20.6 141.8 23.9 162.5 22.6 10.7 32.4 77.4 74.3
Omni-RGPT-7B [25] 17.0 139.3 17.0 109.7 - - - - -
RegionGPT-7B [21] 17.0 145.6 16.9 109.9 25.3 12.2 42.0 - -
DAM-8B [38] - - - - 37.1 19.4 70.0 - -
PAM-1.5B (Ours) 19.2 132.9 24.7 135.0 29.6 15.9 55.8 75.4 69.4
PAM-3B (Ours) 20.8 142.3 26.9 143.1 31.3 17.2 59.7 78.3 72.2

Table 2: Performance comparison on region-level image captioning across multiple benchmarks.

SoM. (4) LLM-Powered Elaboration: Then, using the original annotations as condition, we prompt
GPT-4o to generate descriptions that are both refined, detailed and temporally aware. This multi-
frame consolidation is critical as it enhances GPT-4o’s contextual comprehension, yielding superior
descriptions compared to individual frame analysis.

Region-level Streaming Video Caption. Beyond describing the entire video, we aim to extend the
model’s capabilities to a streaming manner. To achieve this, we perform additional augmentation on
our refined region-level video caption data. Specifically, we first employ the TRACE-Uni model [22]
to segment the input video into multiple distinct events, each demarcated by its temporal boundaries.
Subsequently, for each segmented video clip, we apply the same ‘storyboard-driven’ processing
method. To generate precise and continuous event descriptions, the GPT-4o input prompt was
redesigned to iteratively incorporate the description from the preceding video clip as contextual
information for processing the current clip. The entire workflow is illustrated in Fig. 5(right).

5 Experiments

5.1 Implementation Details

We employ Qwen2.5-1.5B/3B [72] as our semantic decoder, and utilize the pre-trained hierarchical
SAM 2-Large3 as the base vision foundation model. By default, we use 16 learnable semantic tokens
and uniformly sample 16 frames per video clip. All training is conducted on 8 NVIDIA A100 GPUs
with 80GB. For all evaluation experiments, we adopt a zero-shot test manner without fine-tuning on
specific datasets. The best and the second best results are indicated in bold and with underline

5.2 Image Benchmarks

Regional Recognition and Explanation. This task requires the model to identify either the object
category or scene text within a specified image region. Recognition performance is assessed on
the validation sets of the LVIS (object-level) [23] and PACO (part-level) [50] datasets, alongside
the test sets of COCO-Text [61] and Total-Text [14]. Standard evaluation metrics include Semantic
Similarity [80], Semantic Intersection over Union (Sem. IoU) [15], and accuracy.

3https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt
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Face Mask

Label Definition & Functionality

A face mask is a loose-fitting disposable cover that
protects the wearer’s mouth and nose from the
surrounding environment. In this image, the person is
likely wearing it for reducing the spread of droplets.
⼝罩是⼀种用于遮盖⼝鼻的⼀次性防护用品。在这张
图片里，这位正在练习书法的⼈佩戴⼝罩，很可能是
出于卫⽣目的，以减少飞沫的传播。

⼝罩

Caption

The blue mask is worn by the person as he concentrate
on the art work. It offers a layer of protection, ensuring
that the person can immerse themselves in the detailed
brushwork.

Pianist

Label Definition & Functionality

A pianist is a musician who plays the piano. In the
context, the pianist is performing with a full orchestra
in what appears to be a concert hall or large venue.
His functionality is to execute the piano part of a
musical piece, captivating the audience.
钢琴家是演奏钢琴的音乐家。这位钢琴家似乎正在⼀个
⼤型场馆里，与整个乐团合作演出。他的主要任务是负
责演奏乐曲中的钢琴部分，其表演深深地吸引观众。

钢琴家

Caption

The pianist, positioned at the center of stage, under
the bright stage lights, serves as the central figure
in this performance. His skilled playing creates a
professional and immersive atmosphere.

这是⼀个蓝⾊的⼝罩，练习书法的⼈正戴着这个⼝罩，
专注于他的艺术创作。这层⼝罩提供了保护，让他能够
安⼼地沉浸在对笔墨细节的精⼼处理之中。

这是⼀位钢琴家，正处于舞台的正中央，明亮的聚光
灯打在他的身上，他是整场演出的核⼼⼈物。他的⼿
在钢琴上飞舞，技艺娴熟的演奏给整个现场营造出⼀
种既专业、又让观众沉浸其中的氛围。

Figure 6: PAM provides various semantic granularities informantion and support bilingual outputs.

As shown in Table 1, both our PAM-1.5B and PAM-3B demonstrate strong performance. Notably,
PAM-3B significantly outperforms other competing methods. It achieves optimal performance on the
PACO benchmark, exceeding the previous best model by over 3.2%, and surpasses the current SOTA
model, DAM-8B, on the LVIS benchmark in terms of semantic IoU. Furthermore, as indicated in the
right column of Table 1, our PAM-3B outperforms VP-SPHINX-13B by over 3.5% on Total-Text
and achieves comparable performance on COCO-Text. These results demonstrate its promising
capabilities in scene text recognition. We further showcase qualitative visualizations in Fig. 6,
illustrating PAM’s effectiveness in generating insightful explanations that cover both the general
definition and the contextual role of prompted objects.

Regional Caption. We evaluate the model’s capability to generate both concise and detailed
region descriptions on multiple benchmarks. For concise region captioning, we evaluate on the
validation splits of RefCOCOg [32] and Visual Genome (VG)[36]. For more expressive descriptions,
assessments are conducted on the challenging Ref-L4[10] dataset. Caption quality is measured using
ROUGE-L [39], METEOR [3], and CIDEr [60]. Additionally, we benchmark referring descriptions
via Ferret-Bench [77] and MDVP-Bench [41], where GPT-4o is employed to gauge the quality of the
generated responses.

As the results shown in Table 2, PAM-3B surpasses existing methods on the VG, RefCOCOg,
and Ferret benchmarks. On MDVP-Bench, it achieves performance comparable to the current
SOTA method, VP-SPHINX-13B. Furthermore, on the Ref-L4 benchmark, PAM-3B demonstrates
outstanding performance, surpassing all models except the top-performing DAM-8B. Notably, these
competitive results are achieved with fewer parameters and reduced computational cost, highlighting
PAM’s excellent balance of performance and efficiency.

5.3 Video Benchmarks

Model Elysium BensMOT HC-STVG VideoRefer-Bench-D

METEOR METEOR CIDEr SC AD TD HD Avg.

Elysium-7B [63] 19.1 1.1 – – 2.35 0.30 0.02 3.59 1.57
Merlin-7B [78] – – 11.3 10.5 – – – – –
Omni-RGPT-7B [25] 9.3 14.6 – – – – – – –
Artemis-7B [49] – – 18.0 53.2 3.42 1.34 1.39 2.90 2.26
VideoRefer-7B [81] – – 18.7 68.6 4.44 3.27 3.10 3.04 3.46
DAM-8B [38] - – 21.0 91.0 4.69 3.61 3.34 3.09 3.68
PAM-1.5B (ours) 22.7 20.1 19.8 65.9 3.73 2.75 2.77 2.89 3.03
PAM-3B (ours) 24.3 21.6 23.3 70.3 3.92 2.84 2.88 2.94 3.14

Table 3: Performance comparison on video region captioning.

Model ActivityNet

CIDEr METEOR G-STDC

VideoRefer-7B [81] 22.1 14.7 1.73
DAM-3B [38] 11.3 14.8 0.94
GIT∗ [65] 29.8 7.8 –
Vid2Seq∗ [73] 30.2 8.5 –
Streaming Vid2Seq∗ [73] 37.8 10.0 –
PAM-1.5B (ours) 28.6 24.8 2.43
PAM-3B (ours) 30.1 27.3 2.67

Table 4: Performance for streaming
region captioning on ActivityNet.

Video Region Caption. This task requires the model to generate an accurate and temporally-aware
description for a prompted region within the video’s context. We primarily evaluate on four public
benchmarks: Elysium [63], BensMOT [37], HC-STVG [59], and VideoRefer-Bench-D [81]. As
shown in Table 3, our PAM-1.5B and PAM-3B achieve the SOTA performance on both the Elysium
and BensMOT benchmarks. Furthermore, our PAM-3B surpasses the current SOTA method, DAM-
8B, by 2.3% in terms of METEOR on the HC-STVG benchmark. On the VideoRefer-Bench, our
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The smartphone remains stationary on the blue surface. It is positioned to the right of a black camera on the surface. The phone’s screen is on, displaying what
appears to be a home screen. In the video, a hand holding a small tool appear, but the phone itself is not moved.N
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这部⿊⾊的⼿机⼀直放在浅蓝⾊的桌面上。它的位置在⼀个⿊⾊相机和⼀条蓝⾊线的旁边，这两样东西也都在同⼀个表面上。⼿机的屏幕是亮着的，上面显示着各种应用程
序的图标。在视频中，有⼀只拿着小⼯具的⼿在镜头前面，但⼿机本身⼀直没有被触碰。

A man in a white t-shirt and black shorts stands as the
central figure on the court. Initially, he holds a
basketball, he then transitions into dynamic movement.

He is now seen actively practicing dribbling. He
started from the baseline of the field to the center of
the field and then back into the penalty area.

The man is now positioned on the court. He starts by
holding the basketball, then he brings the ball up, and
shoots it towards the hoop.

⼀位身穿白⾊T恤和⿊⾊短裤的男⼦站在球场上。⼀开始，
他⼿里拿着篮球，随后开始进⾏运球动作。

现在，他正投⼊地练习运球。他从球场的右底线开始，
移动到中场区域，接着回到罚球区里面。

他现在在空旷的球场上，面前有⼀个篮筐。他拿着篮球，
接做出投篮动作，球被投⼊筐中。

Figure 7: Qualitative visualization examples of PAM for region-level non-streaming and streaming
video caption.

models exhibit marginally lower performance compared to VideoRefer-7B and DAM-8B, indicating
potential for further improvement.

Streaming Video Region Caption. This task requires the model to generate continuous descriptions
for a prompted region in a streaming manner. For evaluation, we primarily utilize the validation
set of the ActivityNet dataset [7]. To ensure a fair comparison and to accurately assess region-level
streaming captioning capabilities, we manually curated a subset of 400 samples. This selection
process adhered to two key criteria:
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Figure 8: Comparison of GPU memory usage and inference
efficiency on an A6000 GPU.

(1) each annotated event within a
given video is temporally continu-
ous and non-overlapping, and (2)
all annotated event descriptions
for that video pertain to the same
subject. Subsequently, we manu-
ally annotated bounding boxes for
the target subject in each selected
video. We initially employ two
standard dense captioning metrics
for evaluation: CIDEr and ME-
TEOR. To further assess the con-
tinuity and entity consistency of
descriptions for sequential events,
we propose a new metric: the
GPT-4o-evaluated Spatio-Temporal Description Continuity Score (G-STDC), which ranges from 0 to
5. (Details in App. C). The results in Table 4 indicate that recent region-level video caption models,
including VideoRefer and DAM, exhibit limited capability in the streaming caption task. Compared
to general streaming caption approaches such as Streaming Vid2Seq, our PAM-3B outperforms it on
the METEOR metric. Furthermore, PAM-3B achieves optimal performance on G-STDC, indicating
its excellent spatio-temporal continuity and ability to maintain consistent subject descriptions.

5.4 Efficiency

As shown in Fig. 8, compared to existing works, our PAM demonstrates superior inference efficiency
and requires less GPU memory for both image and video processing, highlighting its suitability for
efficient deployment in real-world applications.

5.5 Ablations

We study the effectiveness of the proposed key techniques as below.
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Method LVIS RefCOCOg HC-STVG time
(S.IoU) (METEOR) (METEOR) (ms/it)

+ 4 sem.T 78.9 26.1 22.5 972
+ 16 sem.T 79.6 26.9 23.3 980
+ 64 sem.T 80.0 27.0 23.5 1143
+ w/o sem.T 77.6 24.6 21.3 967

Table 5: Number of Sem.T.

Method LVIS RefCOCOg HC-STVG
(S.IoU) (METEOR) (METEOR)

All in one 78.7 25.8 21.6
S1→2 79.7 26.7 22.4
S1→1.5 →2 79.6 26.9 23.3

Table 6: Different training stage.

Method LVIS RefCOCOg HC-STVG
(S.IoU) (METEOR) (METEOR)

I.E. pre S2-FFM 78.4 25.0 21.9
I.E. after S2-FFM 79.6 26.9 23.3
all T. + sem.T 79.9 26.8 23.3
mask T. + sem.T 79.6 26.9 23.3

Table 7: Impact of different in-
termediate embeddings.

• In Table 5, we present the impact of adjusting the number of learnable semantic tokens (sem.T). It is
observed that using an insufficient number of sem.T leads to a drop in performance. Conversely, using
an excessive number of sem.T results in diminishing gains, while also increasing the computational
cost. Therefore, we select 16 sem.T to achieve a favorable performance-efficiency trade-off.

• In Table 6, we compare different training strategies. It is seen that initialization from the image-
video model checkpoint (from Stage 1.5) consistently leads to enhanced performance compared to
either initializing directly from a Stage 1 model checkpoint or training directly in an all-in-one stage.

• Table 7 compares the impact of different intermediate features from SAM 2. The results show that
embeddings updated by S2-FFM enhance our model’s performance, which further underscore the
critical role of the feature selection approach.

6 Conclusion

We present Perceive Anything Model (PAM), a region-level vision-language model extended from
SAM 2, designed for simultaneous segmentation of objects while generating diverse semantic
outputs of them across both images and videos. PAM demonstrates robust performance on multiple
region-level understanding tasks while achieving high computational efficiency. The simplicity and
efficiency of our approach make it well-suitable for real-world applications, enabling a fine-grained,
multi-dimensional understanding of visual content from a single interaction.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of the paper are included in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations section is included in the appendix (Section D)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There is no theoretical result in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the details of the experiment, such as the information on hardware,
in the implementation detail section (Section 5.1) and Appendix (Section A)

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details of the experimental settings, such as the data split,
optimizer, etc., in the Table.8

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of compute resources in the implementation section
(Section 5.1) and efficiency analysis section (Section 5.4)

Guidelines:

• The answer NA means that the paper does not include experiments.

19



• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive impacts that our method will bring in the
Introduction section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: There is no risk of misuse of the proposed method.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper or attached the link to the existing assets used
in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Configuration for Each Training Stage

Table 8 details the configurations for each training stage of the Perceive Anything Model (PAM). It
outlines the vision parameters, dataset characteristics, model specifications, and training hyperparam-
eters throughout the curriculum learning stages. The maximum number of visual tokens varies by
input modality: single images are represented using 1024 tokens, while for videos, we sample up
to 16 frames, leading to a maximum of 4864 visual tokens. A global batch size of 1024 is used for
stages 1 and 1.5, and 256 for stage 2.

Stage 1 Stage 1.5 Stage 2
Visual Tokens 1024 1024 + N×256 1024 + N×256

MAX 1024 + 15×256 = 4864 MAX 1024 + 15×256 = 4864

Sem. Tokens 16 N×16 (MAX 256) N×16 (MAX 256)

Dataset image classification
image caption

image classification
image caption
video caption

image classification
image explanation

video caption
streaming video caption

Trainable components Sem. Perceiver + Projector Sem. Perceiver + Projector Sem. Perceiver, Projector, LLM
# 1.5B 7.6M 7.6M 1.6B
# 3B 7.7M 7.7M 3.1B

Batch Size 1024 1024 256
Learning Rate 1×10−4 4×10−5 1×10−5

Epoch 1 1 1
Warmup Ratio 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW

Table 8: Detailed configuration for each training stage of the PAM.

B Dataset

8M

Region Recognition & Explanation (35%)

OpenImages Object365 LVIS MSCOCO V3Det
PACO SynText LSVT ReCTs

ICDAR 13/15/17
ArT

TotalTextTextOCR

Region Image Caption (40%)

AS-100M ChatRex VG Refcoco
Refcoco+ Refcocog

Ref-Text

Region Video Caption & Streaming (25%)

VidSTG HC-STVG Youtube-VOS Mevis

Elysium A2D DAVIS17 LV-VIS

SA2VA

MDVP-Data Osprey-724K gRefcoco

Figure 9: All Public Dataset Collection. Datasets highlighted in bold are selected for further
refinement and augmentation pipeline, aimed at generating a high-quality training dataset.

B.1 More Details of Image Data Construction

This section details our image data construction process. To generate data encompassing clear
conceptual explanations, contextual functional roles, and detailed descriptions of specific regional
capabilities, we primarily leveraged the extensive world knowledge of leading VLMs.

Our approach involved several stages. Initially, we collected data from public referring object
detection, segmentation, and captioning datasets [32, 6, 43, 36, 29, 68]. While these sources provide
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Image DAM-3B VP-SPHINX-13B PAM-3B

A white cat sitting upright with
its front paws slightly apart.
The cat has a black patch on its
left side of its face and another
black patch on its right side of
its body. Its ears are pointed
and upright, and its eyes are
wide and alert.

A camel with a slender, elongated
neck and a small, rounded head.
Its body is covered in a smooth,
black-tinted coat, with a slightly
darker shade along the spine. The
camel's legs are long and thin,
with visible joints and a slight
bend at the knees. The tail is
short and hangs down between
the hind legs.

A vertical, pole featuring a smooth
surface. The pole is equipped with
a series of evenly spaced,
horizontal bands that encircle it,
which could serve as grip points or
decorative elements. At the top, the
pole extends into a perpendicular,
flat-topped element that appears to
be a cap or fixture.

The little cat has black and
white parts. It is sitting down
upright and looking forward. It
seems to be a toy cat, maybe
made of plastic. The cat has
some darker black spots or
patches on its back, head, and
on its sides. Its ears are
sticking up, like it's listening

The camel is standing still, its
head is held up a little, and it
has a long, curved neck. There
is a large hump on its back. Its
body looks strong and sturdy. It
has long legs that are planted
on the ground.

This is a cylindrical post,
appears to be made of wood.
likely from being exposed to
the elements over time, giving
it a somewhat rough surface.
The pole is set upright, sticking
straight out of the ground.

The cat has a predominantly white
body with distinct black patches.
The black patch covers the top of its
head and extends down its back. Its
tail, which is curled around its right
side. The cat has small, alert ears。 

The eyes are not clearly detailed but
are looking forward. The fur texture
suggests a sleek, short coat.

The camel on the left is tall and
has a single hump. Its sturdy body
is covered in dark brown fur. All
four of its long, slender legs are
visible. These legs end in broad,
padded feet, good for walking on
sand. A short tail hangs down at its
back. This camel is part of a larger
group and seems to be moving
along with them.

The pole is wooden and looks a bit
dried out by the wind. Much of its
surface, particularly the lower
section, is faded, giving it a rough
and dry appearance. A band is
wrapped around this pole. This
wooden post is shorter than the
white ring, while helping to hold the
large circular structure in place.

Figure 10: Qualitative comparison between PAM and prior models.

unique descriptions for each region, they often lack comprehensive semantic details. Therefore,
our work focused on refining and augmenting these data to achieve richer semantic granularity.
Specifically, the Set-of-Mark (SoM) prompting method [75] was initially employed to identify
regions of interest within the images. To generate high-quality conceptual explanations and contextual
functionalities for these identified regions, we manually refined the prompts and then utilized strong
closed-sourced model, GPT-4o [27], to produce the desired textual responses. For crafting detailed
descriptions of these regions, a powerful open-sourced model, Qwen2.5-VL-72B [2], was employed
to expand and supplement existing textual information. Following this automated expansion, a
two-stage cleaning process was implemented. First, rule-based methods were applied for preliminary
filtering, addressing issues such as output format inconsistencies. Subsequently, manual review
was conducted to identify and isolate remaining inaccurate or low-quality data, which were then
re-annotated.

B.2 Bilingual Annotations

To support bilingual (English and Chinese) output, we extended our refined datasets by generating
corresponding Chinese versions. For the majority of these datasets, Chinese annotations were directly
created using Chinese prompts. In cases where data was initially generated with GPT-4o, the existing
English content was translated into Chinese utilizing the DeepSeek-V3 model [42].

C Implement Details of G-STDC

In Sec. 5.3, we introduce the GPT-4o-evaluated Spatio-Temporal Description Continuity Score
(G-STDC) to assess the continuity and entity consistency of descriptions for sequential events. Specif-
ically, for a given video, the predicted descriptions and the corresponding ground truth descriptions
for its multiple events are first sorted chronologically. Both sequences are then provided to GPT-4o
for evaluation. During this process, GPT-4o assesses the predicted descriptions based on temporal
continuity and entity consistency (in relation to the ground truths), assigning a G-STDC score on
a scale of 0 to 5, where 5 represents the optimal score and 0 the poorest. Results are presented in
Table 4.
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D More Analysis of PAM

D.1 Performance for Background

This is a straight path with a smooth, paved
surface, likely concrete. It starts in the
foreground and leads off to the right, into the
distance. The path itself appears clean and has
no lines.

The sea surface looks relatively calm overall. It's
covered in a pattern of many small, choppy
ripples, giving the dark blue water a textured
appearance as they reflect light. There are no
large waves or significant turbulence.

This section of grey wall has a somewhat rough
surface, characteristic of the building‘s unique
facade. This wall surrounds a rectangular window
with a dark frame.

Figure 11: PAM can accurately describe specific background areas, such as roads, ground surfaces,
sea, walls, the sky, and more.

D.2 Failure Cases

This is a small, spherical container holding coffee,
and it glows with a metallic rose-red color. Its glossy
surface brightly reflects the light. The letters 'E' and
'L' are delicately inscribed on its polished roundness,
possibly indicating it is handmade.

The orange slice, positioned third
from the left, has translucent, juicy 
flesh. Its rind is a soft, light yellow.
It rests closely against the other
slices on the white plate, offering a
gentle contrast in color.

The circular sign is red and white. Its large, round
surface is primarily red, making the white lettering
stand out clearly. The central letters are 'Tcct', with
other white text curving around the sign's edge. The
sign juts out from the building on a sturdy bracket,
acting as a clear marker above the sidewalk.

Figure 12: Failure Cases of PAM in Images.

Fig. 12 illustrates several of PAM’s failure cases. As these examples show, PAM sometimes makes
errors in its descriptions: (1) For instance, in the first image, the orange slice is the second one, but
PAM describes it as the third. (2) In the third image, the actual text is ’Tack’, but PAM reads it
as ’Tcct’. (3) PAM occasionally describes elements not present in the image, such as describing
engraved letters in the second image, which has no such features.

As shown in Fig. 13, PAM also exhibits certain limitations in video contexts. Specifically, if a
user-specified object occupies a minor portion of the frame and temporarily disappears from view,
PAM may default to describing the most salient object in the scene instead. We attribute this behavior
to potential biases in the training data: the GPT-assisted method employed for annotation during
data construction might favor describing the most salient object over the specific region, thereby
introducing label inaccuracies. Additionally, in streaming captioning, PAM might be influenced by
historical descriptions, leading its output for the current video clip to be overly similar to that of the
preceding clip.

We expect these errors to be mitigated by broader data coverage and further reinforcement training.
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A woman walking down a relatively empty street while holding her phone. She is wearing a blue jacket and appears to
be taking a selfie or recording a video with her phone, as her head turns from time to time. Her expression is quite calm.

Figure 13: Failure Cases of PAM in Videos.

D.3 Performance on Long Videos

PAM’s performance on long videos depends on the number of video frames processed. A larger
number of frames enables PAM to generate more information-rich descriptions, but this incurs an
exponential increase in computational cost. With its default setting of sampling 16 frames, PAM
can only provide broad and coarse descriptions of the states and changes of specific subjects in long
videos. However, PAM features a region-level streaming captioning capability that can improve its
handling of long videos. This method involves segmenting a long video into multiple shorter clips;
descriptions are then generated for each clip sequentially and subsequently merged to create a single,
detailed description of the entire video.

E Potential Limitations and Discussions

Limited Capability for General Understanding Tasks. PAM is currently trained for a specific set
of four region-level understanding tasks: category prediction, brief and detailed regional captioning,
video captioning, and streaming region captioning. Therefore, it presently lacks support for other
general vision-language tasks, such as Visual Question Answering (VQA). However, the architecture
and training strategy of PAM are inherently well-suited to accommodate these broader functionalities.
Looking ahead, we plan to develop additional high-quality conversational datasets to extend PAM’s
capabilities to encompass both region-level image and video dialogue.

Limitations in Real-Time Streaming Video Region Captioning. Despite being 1.2–2.4× faster
than existing models, PAM’s capability for real-time streaming video region captioning is currently
hindered by the excessive number of visual tokens requiring processing by the LLM. In the future,
we aim to further identify methods for substantially reducing the number of visual tokens, with the
goal of achieving real-time efficiency while maintain the robust understanding performance.
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