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Abstract
Citation count of a paper is a commonly used001
proxy for evaluating the significance of a pa-002
per in the scientific community. Yet citation003
measures are widely criticized for failing to ac-004
curately reflect the true impact of a paper. Thus,005
we propose CAUSALCITE, a new way to mea-006
sure the significance of a paper by assessing the007
causal impact of the paper on its follow-up pa-008
pers. CAUSALCITE is based on a novel causal009
inference method, TEXTMATCH, which adapts010
the traditional matching framework to high-011
dimensional text embeddings. TEXTMATCH012
encodes each paper using text embeddings from013
large language models (LLMs), extracts similar014
samples by cosine similarity, and synthesizes a015
counterfactual sample as the weighted average016
of similar papers according to their similarity017
values. We demonstrate the effectiveness of018
CAUSALCITE on various criteria, such as high019
correlation with paper impact as reported by020
scientific experts on a previous dataset of 1K021
papers, (test-of-time) awards for past papers,022
and its stability across various subfields of AI.023
We also provide a set of findings that can serve024
as suggested ways for future researchers to use025
our metric for a better understanding of the026
quality of a paper.1027

1 Introduction028

Recent years have seen explosive growth in the number029
of scientific publications, making it increasingly chal-030
lenging for scientists to navigate the vast landscape of031
scientific literature. Therefore, identifying a good paper032
has become a crucial challenge for the scientific commu-033
nity, not only for technical research purposes, but also034
for making decisions, such as funding allocation (Carls-035
son, 2009), research evaluation (Moed, 2006), recruit-036
ment (Gary Holden and Barker, 2005), and university037
ranking and evaluation (Piro and Sivertsen, 2016).038

A traditional approach to recognize paper quality is039
peer review, a mechanism that requires large efforts,040
and yet has inherent randomness and flaws (Cortes041

1Our code and data are uploaded to the submission system
and will be open-sourced upon acceptance.
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Figure 1: An overview of our research question.

and Lawrence, 2021; Rogers et al., 2023; Shah, 2022; 042
Prechelt et al., 2018; Resnik et al., 2008). Moreover, the 043
number of papers after peer review is still overwhelm- 044
ingly large for researchers to read, leaving the challenge 045
of identifying truly impactful research unaddressed. An- 046
other commonly used metric is citations. However, this 047
metric faces criticism for biases, such as a preference 048
for survey, toolkit, and dataset papers (Zhu et al., 2015; 049
Valenzuela-Escarcega et al., 2015). Citations, together 050
with altmetrics (Wilsdon et al., 2015), which incorpo- 051
rates social media attention to a paper, often have biases 052
towards papers with extensive publicity and promotion, 053
or those authored by established figures in the field. 054

To provide a more equitable assessment of paper quality, 055
we employ the causal inference framework (Hernán 056
and Robins, 2010) to quantify a paper’s impact by how 057
much of the academic success in the follow-up papers 058
should be causally attributed to this paper. We introduce 059
CAUSALCITE, an enhanced citation based metric that 060
poses the following counterfactual question (also shown 061
in Figure 1): “had this paper never been published, 062
what would have happened to its follow-up studies?” 063
To compute the causal attribution of each follow-up 064
paper, we contrast its citations (the treatment group) 065
with citations of papers that address a similar topic, but 066
are not built on the paper of interest (the control group). 067

Traditionally, this problem is solved by using the match- 068
ing method (Rosenbaum and Rubin, 1983) in causal 069
inference, which discretizes the value of the confounder 070
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variable, and compares the treatment and control groups071
with regard to each discretized value of the confounder072
variable. However, this approach does not apply when073
the confounder variable is high-dimensional, e.g., text074
data, such as the content of the paper. Thus, we improve075
the matching method to adapt for textual confounders,076
by marrying recent advancement of large language mod-077
els (LLMs) with traditional causal inference. Specif-078
ically, we propose TEXTMATCH, which uses LLMs079
to encode an academic paper as a high-dimensional080
text embedding to represent the confounders, and then,081
instead of iterating over discretized values of the con-082
founder, we match each paper in the treatment group083
with papers from the control group with high cosine084
similarity by the text embeddings.085

TEXTMATCH makes contributions in three different086
aspects: (1) it relaxes the previous constraint that the087
confounder variable should be binned into a limited set088
of intervals, and makes the matching method applicable089
for high-dimensional continuous variable type for the090
confounder; (2) since there are millions of papers, we091
enable efficient matching via a matching-and-reranking092
approach, first using information retrieval (IR) (Man-093
ning et al., 2008) to extract a small set of candidates,094
and then applying semantic textual similarity (STS) (Ma-095
jumder et al., 2016; Chandrasekaran and Mago, 2022)096
for fine-grained reranking; and (3) we enable a more sta-097
ble causal effect estimation by leveraging all the close098
matches to synthesize the counterfactual citation score099
by a weighted average according to the similarity scores100
of the matched papers.101

CAUSALCITE quantifies scientific impact via a causal102
lens, offering an alternative understanding of a paper’s103
impact within the academic community. To test its ef-104
fectiveness, we conduct extensive experiments using105
the Semantic Scholar corpus (Lo et al., 2020; Kinney106
et al., 2023), comprising of 206M papers and 2.4B ci-107
tation links. We empirically validate CAUSALCITE by108
showing higher predictive accuracy of paper impact (as109
judged by scientific experts on a past dataset of 1K pa-110
pers (Zhu et al., 2015)) compared to citations and other111
previous impact assessment metrics. We further show a112
stronger correlation of the metric with the test-of-time113
(ToT) paper awards. We find that, unlike citation counts,114
our metric exhibits a greater balance across various re-115
search domains in AI, e.g., general AI, NLP, and com-116
puter vision (CV). While citation numbers for papers in117
these domains vary significantly – for example, while118
an average CV paper has many more citations than an119
average NLP paper, CAUSALCITE scores papers across120
AI sub-fields more similarly.121

After demonstrating the desirable properties of our met-122
ric, we also present several case studies of its applica-123
tions. Our findings reveal that the quality of conference124
best papers is noisier on average than that of ToT papers125
(Section 5.1). We then showcase and present CAUSAL-126
CITE for several well-known papers (Section 5.3) and127

utilize CAUSALCITE to identify high-quality papers that 128
are less recognized by citation counts (Section 5.4). 129

In conclusion, our contributions are as follows: 130

1. We introduce CAUSALCITE, a counterfactual 131
causal effect-based formulation for paper citations. 132

2. We develop TEXTMATCH, a new method that lever- 133
ages LLMs and causal inference to estimate the 134
counterfactual causal effect of a paper. 135

3. We conduct comprehensive analyses, including var- 136
ious performance evaluations and present new find- 137
ings using our metric. 138

2 Problem Formulation 139

Our problem formulation involves a citation graph and 140
a causal graph. We use lowercase letters for specific 141
papers and uppercase for an arbitrary paper treated as a 142
random variable. 143

Citation Graph In the citation graph G := (P,L), P 144
is a set of papers, and each edge ℓi,j ∈ L indicates 145
that an earlier paper pi influences (i.e., is cited by) a 146
follow-up paper pj . To obtain the citation graph, we use 147
the Semantic Scholar Academic Graph dataset (Kinney 148
et al., 2023) with 206M papers and 2.4B citation edges. 149
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Success of Paper b

What is the causal effect size?
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incl., topic, research

question
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...

...
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Target:
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publicity,  ... Should be
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Should not be
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Y's Ancestors (but not T's)

Paper b's efforts into PR...

Figure 2: The causal graph of our study.

Causal Graph. The causal graph, shown in Figure 2, 150
highlights the contribution of a paper a to a follow-up 151
paper b. We use a binary variable T to indicate if a 152
influences b and an effect variable Y to represent the 153
success of b. We use log10 of citation counts to quantify 154
Y , although other transformations can also be used. We 155
introduce two sets of variables in this causal graph: (i) 156
The set of confounders, which are the common causes 157
of T and Y . For instance, the research area of b im- 158
pacts both the likelihood of a paper citing a and its own 159
citation count. (ii) Descendants of the treatment, com- 160
prising mediators (e.g., paper a influencing the quality 161
of paper b and subsequently influencing its citations) 162
and colliders (e.g., both the influence from a and the 163
citations of b influencing later awards received by b). 164
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2.1 CAUSALCITE Indices165

In this section, we introduce various indices that mea-166
sure the causal impact of a paper.167

Two-Paper Interaction: Pairwise Causal Impact168
(PCI). To examine the causal impact of a paper a on a169
follow-up paper b, we define the pairwise causal impact170
PCI(a, b) by unit-level causal effect:171

PCI(a, b) := yt=1 − yt=0 , (1)172

where we compare the outcomes Y of the paper b had it173
been influenced by paper a or not, denoted as the actual174
yt=1 and the counterfactual yt=0, respectively. Note175
that the counterfactual yt=0 can never be observed, but176
only estimated by statistical methods, as we will discuss177
in Section 3.2.178

Single-Paper Quality Metrics: Total Causal Impact179
(TCI) and Average Causal Impact (ACI). Let S de-180
note the set of all follow-up studies of paper a. We181
define total causal impact TCI(a) as the sum of the pair-182
wise causal impact index PCI(a, b) across all b ∈ S.183
That is,184

TCI(a) :=
∑
b∈S

PCI(a, b) . (2)185

This definition provides an aggregated measure of a186
paper’s influence across all its follow-up papers.187

As the causal inference literature is usually interested188
in the average treatment effect, we further define the189
average causal impact (ACI) index as the average per190
paper PCI:191

ACI(a) :=
TCI(a)

|S|
=

1

|S|
∑
b∈S

(
yt=1 − yt=0

)
. (3)192

We note that ACI(a) is equal to the average treatment193
effect on the treated (ATT) of paper a (Pearl, 2009).194

3 The TEXTMATCH Method195

As illustrated in Figure 1, the objective of our study196
is to quantify the causal effect of the treatment T (i.e.,197
whether paper b is built on paper a) on the effect Y198
(i.e., the outcome of paper b). To approach this, we199
envision a counterfactual scenario: what if paper a had200
never been published, yet certain key characteristics of201
paper b remain unchanged? The critical question then202
becomes: which key characteristics of paper b should203
be controlled for in this hypothetical situation?204

3.1 What Does Causal Inference Tell Us about205
What Variables to Control for, and What Not?206

In causal inference, selecting the appropriate variables207
for control is a delicate and crucial process that affects208
the accuracy of the analysis. Pearl’s seminal work on209
causality guides us in differentiating between various210
types of variables (Pearl, 2009).211

Firstly, we must control for confounders – variables 212
that influence both the treatment and the outcome. Con- 213
founders can create spurious correlations; if not con- 214
trolled, they can lead us to mistakenly attribute the ef- 215
fect of these external factors to the treatment itself. For 216
example, in assessing the impact of one paper on an- 217
other, if both papers are in a trending research area, the 218
apparent influence might be due to the popularity of the 219
topic rather than the papers’ content. 220

However, not all variables warrant control. Mediators 221
and colliders should be explicitly avoided in control. 222
Mediators are part of the causal pathway between the 223
treatment and outcome. By controlling them, we would 224
block the very effect we are trying to measure. Collid- 225
ers, affected by both the treatment and the outcome, can 226
introduce bias when controlled. Controlling a collider 227
can inadvertently create associations that do not natu- 228
rally exist. In general, this also includes not controlling 229
for the descendants of the treatment, as it could obscure 230
the direct impact we intend to study. 231

Lastly, variables that do not share a causal path with 232
both the treatment and outcome, known as unshared 233
ancestors, are less critical in our analysis. They do not 234
contribute to or confound the causal relationship we are 235
exploring, and thus, controlling for them does not add 236
value to our causal understanding. 237

3.2 Can Existing Causal Inference Methods 238
Handle This Control? 239

Several causal inference methods have been proposed 240
to address the problem of estimating treatment effects 241
while controlling for confounders. Next, we will discuss 242
the workings and limitations of three classical methods. 243

Randomized Control Trials (RCTs) Assumes Inter- 244
venability. The ideal way to obtain causal effects is 245
through randomized control trials (RCTs). For example, 246
when testing a drug, we randomly split all patients into 247
two groups, the control group and the treatment group, 248
where the random splitting ensures the same distribu- 249
tion of the confounders across the two groups such as 250
gender and age. However, RCTs are usually not easily 251
achievable, in some cases too expensive (e.g., tracking 252
hundreds of people’s daily lives for 50 years), and in 253
other cases unethical (e.g., forcing a random person to 254
smoke), or infeasible (e.g., getting a time machine to 255
change a past event in history). 256

For our research question on a paper’s impact, utilizing 257
RCTs is impractical as it is infeasible to randomly divide 258
researchers into two groups, instructing one group to 259
base their research on a specific paper a while the other 260
group does not, and then observe the citation count of 261
their papers years later. 262

Ratio Matching Iterates over Discretized Con- 263
founder Values. In the absence of RCTs, matching 264
is as an alternate method for determining causal effects 265
from observational data. In this case, we can let the 266
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treatment assignment happen naturally, such as taking267
the naturally existing set of papers and running causal268
inference by adjusting for the variables that block all269
paths. Given a set of naturally observed papers, one of270
the most commonly used causal inference methods is271
ratio matching (Rosenbaum and Rubin, 1983), whose272
basic idea is to iterate over all possible values x of273
the adjustment variables X and obtain the difference274
between the treatment group T and control group C:275 ‘ACI(a) = ∑

x

P (x)

Ñ
1

|Tx|
∑
i∈Tx

yi −
1

|Cx|
∑
j∈Cx

yj

é
,276

where for each value x, we extract all the units corre-277
sponding to this value in the treatment and control sets,278
compute the average of the effect variable Y for each279
set, and obtain the difference.280

While ratio matching is practical when there is a small281
set of values for the adjustment variables to sum over,282
its applicability dwindles with high-dimensional vari-283
ables like text embeddings in our context. This scenario284
may generate numerous intervals to sum over, present-285
ing numerical challenges and potential breaches of the286
positivity assumption.287

One-to-One Matching Is Susceptible to Variance. To288
handle adjustment variables in the high-dimensional289
space, one possible way is to avoid pre-defining all their290
possible intervals, but, instead, iterating over each unit291
in the treatment group to match for its closest control292
unit. Consider a given follow-up paper b, and a set of293
candidate control papers C, where each paper ci has294
a citation count yi, and vector representation ti of the295
confounders (e.g., research topic). One-to-one matching296
estimates PCI as297 ‘PCI(a, b) = yb − yargmaxci∈C mi

= yb − yargmaxci∈C sim(ty,ti) ,
(4)298

where we approximate the counterfactual sample by the299
paper ci ∈ C which is the most similar to paper b by300
the matching score mi, which is obtained by the cosine301
similarity sim of the confounder vectors. A limitation302
of the one-to-one matching method is that it might in-303
duce large instability in the result, as only taking one304
paper with similar contents may have a large variance305
in citations when the matched paper slightly differs.306

3.3 How Do We Extending Causal Inference to307
Text Variables?308

3.3.1 Theoretical Formulation of TEXTMATCH:309
Stabilizing Text Matching by Synthesis310

To fill in the aforementioned gap in the existing match-311
ing methods, we propose TEXTMATCH, which miti-312
gates the instability issue of one-to-one matching by313
replacing it with a convex combination of a set of314
matched samples to form a synthetic counterfactual sam-315
ple. Specifically, we identify a set of papers ci ∈ C with316

high matching scores mi to the paper b, and synthesize 317
the counterfactual sample by an interpolation of them: 318‘PCI(a, b) = yb −

∑
ci∈C

wiyi = yb −
∑
ci∈C

mi∑
i mi

yi ,

(5)

319

where the weight wi of each paper ci is proportional to 320
the matching score mi and normalized. 321

The contributions of our method are as follows: (1) 322
we adapt the traditional matching methods from low- 323
dimensional covariates to any high-dimensional vari- 324
ables such as text embeddings; (2) different from the 325
ratio matching, we do not stratify the covariates, but 326
synthesize a counterfactual sample for each observed 327
treated units; (3) due to this iteration over each treated 328
unit instead of taking the population-level statistics, we 329
closely control for exogenous variables for the ATT es- 330
timation, which circumvents that need for the structural 331
causal models; (4) we further stabilize the estimand by 332
a convex combination of a set of similar papers. Note 333
that the contribution of Eq. (5) might seem to bear simi- 334
larity with synthetic control (Abadie and Gardeazabal, 335
2003; Abadie et al., 2010), but they are fundamentally 336
different, in that synthetic control runs on time series, 337
and fit for the weights wi by linear regression between 338
the time series of the treated unit and a set of time series 339
from the control units, using each time step’s values in 340
the regression loss function. 341

3.3.2 Overall Algorithm 342

To operationalize our theoretical formulation above, we 343
introduce our overall algorithm in Algorithm 1. We 344
briefly give an overview of the the algorithm with more 345
details to be elaborated in later sections. We use the 346
weighted average of the matched samples following our 347
TEXTMATCH method in Eq. (5) through lines 25 to 34. 348
In our experiments, we use the interpolation of up to top 349
10 matched papers. We encourage future work to ex- 350
plore other hyperparameter settings too. Given the PCI 351
estimation, the main spirit of the GETACIANDTCI(a) 352
function is to average or sum over all the follow-up 353
studies of paper a, following the theoretical formulation 354
in Eqs. (2) and (3) and implemented in our algorithm 355
through lines 7 to 12. 356

3.3.3 Key Challenges and Mitigation Methods 357

We address several technical challenges below. 358

3.3.3.1 Confounders of Various Types 359

First, as we mentioned in the causal graph in Figure 2, 360
the confounder set consists of a text variable (title and 361
abstract concatenated together) and an ordinal variable 362
(publication year). Therefore, the similarity operation 363
Sim between two papers should be customized. For our 364
specific use case, we first filter by the publication year in 365
line 16, as it is not fair to compare the citations of papers 366
published in different years. Then, we apply the cosine 367
similarity method paper embeddings as in line 22. As a 368
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Algorithm 1 Get causal impact indices ACI and TCI

1: Input: Paper a.
2: procedure GETACIANDTCI(a)
3: D ← GetDesc(a) ▷ Get descendants by DFS
4: B ← GetChildren(a)
5: B′ ← SampleSubset(B) ▷ See Section 3.3.3.4
6: C ← EntireSet\{D ∪ {a}} ▷ Get non-descendants
7: ACI← 0
8: for each bi in B′ do
9: Ii ← GETPCI(a, bi,C)

10: ACI← ACI + 1
|B′| · Ii

11: end for
12: TCI← ACI · |B|
13: return ACI and TCI
14: end procedure

15: procedure GETPCI(a, b,C)
16: CsameYear ← FilterByYear(C, byear)
17: for each pi in CsameYear ∪ {b} do
18: ti ← RemoveMediator(TitleAbstracti)
19: end for
20: Ccoarse ← BM25(b,CsameYear, topk = 100)
21: for each ci in Ccoarse do
22: mi ← Sim(tb, ti)
23: end for
24: Ctop10 ← argmax10m(Ccoarse)

25: M ← 0
26: for each ci in Ctop10 do ▷ For the normalization later
27: M ←M +mi

28: end for
29: ŷt=0 ← 0
30: for each ci in Ctop10 do
31: wi ← mi

M

32: ŷt=0 ← ŷt=0 + wi · yi ▷ Apply Eq. (5)
33: end for
34: return yb − ŷt=0

35: end procedure

general solution, we recommend to separate hard logical369
constraints, and soft matching preferences, where the370
hard constraints should be imposed to filter the data first,371
and then all the rest of the variables can be concatenated372
to apply the similarity metric on.373

3.3.3.2 Excluding the Mediators from Confounders374

Another key challenge to highlight is that the text vari-375
able we use for the confounder might accidentally in-376
clude some mediator information. For example, the377
quality or performance of a paper could be expressed378
in the abstract, such as “we achieved 90% accuracy.”379
Therefore, we conduct a specific preprocessing proce-380
dure before feeding the text variable to the similarity381
function. For the RemoveMediator function in line 18,382
we exclude all numerical expressions such as percentage383
numbers, as well as descriptions such as “state-of-the-384
art.” For generalizability, the essence of this step is a385
entanglement action to separate the confounder variable386
(in this case, the research content) and all the descen-387
dants of the treatment variable (in this case, mentions of388
the performance). For more complicated cases in future389
work, we recommend a separate disentanglement model390
to be applied here.391

3.3.3.3 Efficient Matching-and-Reranking Method 392
393Since we use one of the largest available paper databases, 394

the Semantic Scholar dataset (Kinney et al., 2023) con- 395
taining 206M papers, we need to optimize our algorithm 396
for large-scale paper matching. For example, after we 397
filter by the publication year, the number of candidate 398
papers CsameYear could be up to 8.8M. In order to con- 399
duct text matching across millions of papers, we use a 400
matching-and-reranking approach, by combining two 401
NLP tasks, information retrieval (IR) (Manning et al., 402
2008) and semantic textual similarity (STS) (Majumder 403
et al., 2016; Chandrasekaran and Mago, 2022). 404

Specifically, we first run large-scale matching to ob- 405
tain 100 candidates papers (line 20) using the common 406
IR method, BM25 (Robertson and Zaragoza, 2009). 407
Briefly, BM25 is a bag-of-words retrieval function that 408
uses term frequencies and document lengths to estimate 409
relevancy between two text documents. Deploying this 410
method, we can find a set of candidate papers for, for 411
example, two million papers, at a speed 250x faster than 412
the text embedding cosine similarity matching. Then, 413
we conduct a fine-grained reranking using cosine simi- 414
larity (lines 21 to 23). In the cosine similarity matching 415
process, we use the MPNet model (Song et al., 2020) 416
to encode the text of each paper ci into an embedding 417
ti, with which we get the matching score mi according 418
to Eq. (4) in line 22, and the normalized weight wi by 419
Eq. (5) in line 31. 420

3.3.3.4 Numerical Estimation 421

Given the large number of papers, it is numerically 422
challenging to aggregate the TCI from individual PCIs, 423
because the number of follow-up papers for a study can 424
be up to tens of thousands, such as the 57,200 citations 425
by 2023 for the ImageNet paper (Deng et al., 2009). To 426
avoid extensively running PCI for all follow-up papers, 427
we propose a new numerical estimation method using a 428
carefully designed random paper subset. 429

A naive way to achieve this aggregation is Monte Carlo 430
(MC) sampling. However, unfortunately, MC sampling 431
requires very large sample sizes when it comes to esti- 432
mating long-tailed distributions, which is the usual case 433
of citations. Since citations are more likely to be con- 434
centrated in the head part of the distribution, we cannot 435
afford the computational budget for huge sample sizes 436
that cover the tails of the distribution. Instead, we pro- 437
pose a novel numerical estimation method for sampling 438
the follow-up papers, inspired by importance sampling 439
(Singh, 2014; Kloek and van Dijk, 1976). 440

Our numerical estimation method works as follows: 441
First, we propose the formulation that the relation be- 442
tween ACI and TCI is an integral over all possible paper 443
b’s. Then, we formulated the above sampling problem as 444
integral estimation or area-under-the-curve estimation. 445
We draw inspiration from Simpson’s method, which 446
estimates integrals by binning the input variable into 447
small intervals. Analogously, although we cannot run 448
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through all PCIs, we use citations as a proxy, bin the449
large set of follow-up papers according to their citations450
into n equally-sized intervals, and perform random sam-451
pling over each bin, which we then sum over. In this452
way, we make sure that our samples come from all parts453
of the long-tailed distribution and are a more accurate454
numerical estimate for the actual TCI.455

4 Performance Evaluation456

The contribution of a paper is inherently multi-457
dimensional, making it infeasible to encapsulate its rich-458
ness fully through a scalar. Yet the demand for a single,459
comprehensible metric for research impact persists, fuel-460
ing the continued use of traditional citations despite their461
known limitations. In this section, we show how our462
new metrics significantly improve upon traditional cita-463
tions by providing quantitative evaluations comparing464
the effectiveness of citations, Semantic Scholar’s highly465
influential (SSHI) citations (Valenzuela-Escarcega et al.,466
2015), and our CAUSALCITE metric.467

4.1 Experimental Setup468

Dataset We use the Semantic Scholar dataset (Lo et al.,469
2020; Kinney et al., 2023)2 which includes a corpus of470
206M scientific papers, and a citation graph of 2.4B+471
citation edges. For each paper, we obtain the title and472
abstract for the matching process. We list some more473
details of the dataset in Appendix B, such as the number474
of papers reaching 8M per year after 2012.475

Selecting the Text Encoder When projecting the text476
into the vector space, we need a text encoder with a477
strong representation power for scientific publications,478
and is sensitive towards two-paper similarity compar-479
isons regarding their abstracts containing key informa-480
tion such as the research topics. For the representation481
power for scientific publications, instead of general-482
domain models such as BERT (Devlin et al., 2019) and483
RoBERTa (Liu et al., 2019), we consider LLM variants3484
pretrained on large-scale scientific text, such as SciB-485
ERT (Beltagy et al., 2019), SPECTER (Cohan et al.,486
2020), and MPNet (Song et al., 2020).487

To check the quality of two-paper similarity measures,488
we conduct a small-scale empirical study comparing489
human-ranked paper similarity and model-identified se-490
mantic similarity in Appendix A.3, according to which491
MPNet outperforms the other two models.492

Implementation Details We deploy the all-mpnet-base-493
v2 checkpoint of the MPNet using the transformers494
Python package (Wolf et al., 2020), and set the batch495
size to be 32. For the set of matched papers, we consider496
papers with cosine similarity scores higher than 0.81,497
which we optimize empirically on 100 random paper498
pairs. We the top ten most similar papers above the499

2https://api.semanticscholar.org/api-docs/datasets
3Note that we follow the standard notion by Yang et al.

(2023) to refer to BERT and its variants as LLMs.

threshold. In special cases where there is no matched 500
paper above the threshold, it means that no other paper 501
works on the same idea as Paper b, and we make the 502
counterfactual citation number to be zero, which also 503
reflects the quality of Paper b as its novelty is high. 504

To enable efficient operations on the large-scale citation 505
graph, we use the Dask framework,4 which optimizes 506
for data processing and distributed computing. We opti- 507
mize our program to take around 100GB RAM, and on 508
average 25 minutes for each PCI(a, b) after matching 509
against up to millions of candidates. More implemen- 510
tation details are in Appendix A.1. For the estimation 511
of TCI, we empirically select the sample size to be 40, 512
which is a balance between the computational time and 513
performance, as found in Appendix A.2. 514

4.2 Author-Identified Paper Impact 515

In this experiment, we follow the evaluation setup in 516
Valenzuela-Escarcega et al. (2015) to use an annotated 517
dataset (Zhu et al., 2015) comprised of 1,037 papers, 518
annotated according to whether they serve as signifi- 519
cant prior work for a given follow-up study. Although 520
paper quality evaluation can be tricky, this dataset was 521
cleverly annotated by first collecting a set of follow-up 522
studies and letting one of the authors of each paper go 523
through the references they cite and select the ones that 524
significantly impact their work. In other words, for a 525
given paper b, each reference a is annotated as whether 526
a has significantly impacted b or not. 527

Table 1 reports the accuracy of our CAUSALCITE met- 528
ric, together with two existing citation metrics: citations, 529
and SSHI citations (Valenzuela-Escarcega et al., 2015). 530
See the detailed derivation of the accuracy scores in 531
Appendix C.2. From this table, we can see that our 532
CAUSALCITE metric achieves the highest accuracy, 533
80.29%, which is 5 points higher than SSHI, and 9 534
points higher than the traditional citations. 535

4.3 Test-of-Time Paper Analysis 536

The test-of-time (ToT) paper award is a prestigious 537
honor bestowed upon papers that have made substan- 538
tial and enduring impacts in their field. In this section, 539
we collect a dataset of 792 papers, including 72 ToT 540
papers, and a control group of 10 randomly selected 541
non-ToT papers from the same conference and year as 542
each ToT paper. To collect this ToT paper dataset, we 543
look into ten leading AI conferences spanning general 544
AI (NeurIPS, ICLR, ICML, and AAAI), NLP (ACL, 545
EMNLP, and NAACL), and CV (CVPR, ECCV, and 546
ICCV), for which we go through each of their websites 547
to identify all available ToT papers.5 548

In Table 2, we show the correlations of various met- 549
rics with the ToT awards. In this table, CAUSAL- 550

4https://dask.org/
5We get this list by selecting the top conferences on Google

Scholar using the h5-Index ranking in each of the above do-
mains: general AI (link), CV (link), and NLP (link).
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Metric Accuracy
Citations 71.33
SSHI Citations 75.25
CAUSALCITE 80.29

Table 1: Accuracy of all three citation
metrics.

Metric Corr. Coef.
Citations 0.491
SSHI Citations 0.317
TCI 0.640

Table 2: Correlation coefficients of
each metric and ToT paper award by
Point Biserial Correlation (Tate, 1954).
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Figure 3: Distributions of ToT
(mean: 142) and non-ToT pa-
pers (mean: 1,623).
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Figure 4: The CAUSALCITE values of three exam-
ple ToT papers from general AI, NLP, and CV.

CITE achieves the highest correlation of 0.639, which is551
+30.14% better than that of citations. Furthermore, we552
visualize the correspondence of our metric and ToT, and553
observe a substantial difference between the CAUSAL-554
CITE distributions of ToT vs. non-ToT papers in Fig-555
ure 3. We also show three examples of ToT papers in556
Figure 4, where the ToT papers differ from the non-ToT557
papers by one or two orders of magnitude.558

4.4 Topic Invariance of CAUSALCITE559

Research Area ACI Citations SSHI
General AI (n=16) 0.748 2,024 267
CV (n=36) 0.734 7,238 1,088
NLP (n=20) 0.763 1,785 461

Table 3: The average of each metric by research area on our
collected set of 72 ToT papers.
A well-known issue with citations is their inconsistency560
across different fields. What might be considered a561
large number of citations in one field might be seen as562
average in another. In contrast, we show that our ACI563
index does not suffer from this issue. We show this564
using our ToT dataset, where we control for the quality565
of the papers to be ToT but vary the domain by the three566
fields: general AI, CV, and NLP. We observe in Table 3567
that even though some domains have significantly more568
citations (for instance, CV ToT papers have, on average,569
4.05 times more citations than NLP), the ACI remains570
consistent across various fields.571

5 Findings572

Having demonstrated the effectiveness of our metrics,573
we now explore some open-ended questions: (1) Do best574
papers have high causal impact? (Section 5.1) (2) How575
does the CAUSALCITE value distribute across papers?576
(Section 5.2) (3) What is the impact of some famous pa-577
pers evaluated by CAUSALCITE? (Section 5.3) (4) Can578
we use this metric to correct for citations? (Section 5.4).579

5.1 Do Best Papers Have High Causal Impact?580

Selecting best paper awards is an arguably much harder581
task than ToT papers, as it is difficult to predict of the582
impact of a paper when it is just newly published. There-583
fore, we are interested in the actual causal impact of best584

papers. Similar to our study on ToT papers, we collect 585
a dataset of 444 papers including 74 best papers and a 586
control set of random 5 non-best papers from the same 587
conference in the same year, using the same set of the 588
top ten leading AI conferences. We find that the cor- 589
relation of the CAUSALCITE metric with best papers 590
is 0.348, which is very low compared to the 0.639 cor- 591
relation with the ToT papers. This shows that the best 592
papers do not necessarily have a high causal impact. 593
One interpretation can be that the best paper evaluation 594
is a forecasting task, which is much more challenging 595
than the retrospective task of ToT paper selection. 596

5.2 What Is the Nature of the CAUSALCITE 597
Distribution? 598
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Figure 5: The distribution of TCI values by percentile of 100
random papers, which shows a long tail indicating that high
impact is concentrated in a relatively small portion of papers.

We explore how the CAUSALCITE scores are distributed 599
across papers in general. We plot Figure 5 using a 600
random set of 100 papers from the Semantic Scholar 601
dataset, which is a reasonably large size given the com- 602
putation budget mentioned in Section 4.1. From this 603
plot, we can see a power law distribution with a long tail, 604
echoing with the common belief that the paper impact 605
follows the power law, with high impact concentrated 606
in a relatively small portion of papers. 607

5.3 Selected Paper Case Study 608

Paper Name TCI Citations ACI
Transformers 52,507 68,064 0.771
BERT 40,675 59,486 0.683
RoBERTa 6,932 14,434 0.480

Table 4: Case study of some selected NLP papers.
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In addition to the shape of the overall distribution, we609
also look at our metric’s correspondence to some se-610
lected papers shown in Table 4. For example, we know611
that the Transformer paper (Vaswani et al., 2017) is a612
more foundational work than its follow-up work BERT613
(Devlin et al., 2019), and BERT is more foundational614
than its later variant, RoBERTa (Liu et al., 2019). This615
monotonic trend is confirmed in their TCI and ACI val-616
ues too. Again, this is a preliminary case study, and we617
welcome future work to cover more papers.618

5.4 Discovering Quality Papers beyond Citations619

Another important contribution of our metric is that620
it can help discover papers that are traditionally over-621
looked by citations. To achieve the discovery, we for-622
mulate the problem as outlier detection, where we first623
use a linear projection to handle the trivial alignment of624
citations and CAUSALCITE, and then analyze the out-625
liers using the interquartile range (IQR) method (Smiti,626
2020). See the exact calculation in Appendix C.1. We627
show the three subsets of papers in Table 5, where the628
two outlier categories, the overcited and undercited pa-629
pers, correspond to the false positive and false negative630
oversight by citations, respectively. An additional note631
is that, when we look into some characteristics of the632
three categories, we find that the citation frequency in633
result section, i.e., the percentage of times they are cited634
in results section compared to all the citations, corre-635
lates with these categories. Specifically, we find that the636
undercited papers tend to have more of their citations637
concentrated in the results section, which usually indi-638
cates that this paper constitutes an important baseline639
for a follow-up study, while the overcited papers tend to640
be cited out of the results section, which tends to imply641
a less significant citation.642

Paper Category Result Citations Residual
Overcited Papers (7.04%) 1.26 -1.792
Aligned Papers (91.20%) 1.51 0.118
Undercited Papers (1.76%) 1.90 1.047

Table 5: We use our CAUSALCITE metric to discover outlier
papers that are overlooked by citations. For each paper cate-
gory, we include their portion relative to the entire population,
the percentage of citations occurred in the result section (Re-
sult Citations), and average residual value by linear regression.

6 Related Work643

The quantification of scientific impact has a rich his-644
tory and continuously evolves with technology. Bib-645
liometric analysis has been largely influenced by early646
methods that relied on citation counts (Garfield et al.,647
1964; Garfield, 1972, 1964). Hou (2017) investigate the648
evolution of citation analysis, employing reference pub-649
lication year spectroscopy (RPYS) to trace its historical650
development in scientometrics. Donthu et al. (2021)651
provide practical guidelines for conducting bibliometric652
analysis, focusing on robust methodologies to analyze653
scientific data and identify emerging research trends.654

Indices such as the h-index, introduced by Hirsch655

(2005), are established tools for measuring research 656
impact. The more recent Relative Citation Ratio 657
(RCR), developed by Hutchins et al. (2016), provides 658
a field-normalized alternative to traditional metrics. 659
Valenzuela-Escarcega et al. (2015) introduced SSHI, 660
an approach to identify meaningful citations in schol- 661
arly literature. However, these metrics are not without 662
limitations. As Wróblewska (2021) discussed, conven- 663
tional citation-based metrics often fail to capture the 664
multidimensional nature of research impact. In this con- 665
text, Elmore (2018) discussed the Altmetric Attention 666
Score, which evaluates the broader societal and online 667
impact of research. 668

With the increasing availability of large datasets and 669
the advent of digital technologies, new opportunities for 670
bibliometric analysis have emerged. Iqbal et al. (2021) 671
highlighted the role of natural language processing and 672
machine learning in enhancing in-text citation analy- 673
sis. Similarly, Umer et al. (2021) explored the use of 674
textual features and SMOTE resampling techniques in 675
scientific paper citation analysis. Jebari et al. (2021) 676
analyzed citation context to detect research topic evolu- 677
tion, showcasing data analysis for scientific discourse. 678
Chang et al. (2023) explored augmenting citations in 679
scientific papers with historical context, offering a novel 680
perspective on citation analysis. Manghi et al. (2021) 681
introduced scientific knowledge graphs, an innovative 682
method for evaluating research impact. Bittmann et al. 683
(2021) explored statistical matching in bibliometrics, 684
discussing its utility and challenges in post-matching 685
analysis. The use of AI in bibliometric analysis is high- 686
lighted in research by Chubb et al. (2022) and the sys- 687
tematic review of AI in information systems by Collins 688
et al. (2021). Network analysis approaches, as discussed 689
by Chakraborty et al. (2020) in the context of patent cita- 690
tions and by Dawson et al. (2014) in learning analytics, 691
further illustrate the diverse applications of advanced 692
methodologies in understanding citation patterns. 693

7 Conclusion 694

In this study, we propose CAUSALCITE, a novel causal 695
formulation for paper citations. Our method combines 696
traditional causal inference methods with the recent ad- 697
vancement of NLP in LLMs to provide a new causal out- 698
look on paper impact by answering the causal question: 699
”Had this paper never been published, what would be the 700
impact on this paper’s current follow-up studies?”. With 701
extensive experiments and analyses using expert ratings 702
and test-of-time papers as criteria for impact, our new 703
CAUSALCITE metric demonstrates clear improvements 704
over the traditional citation metrics. Finally, we use this 705
metric to investigate several open-ended questions like 706
“Do best papers have high causal impact?”, conduct a 707
case study of famous papers, and suggest future usage of 708
our metric for discovering good papers less recognized 709
by citations for the scientific community. 710
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Limitations and Future Work711

There are several limitations for our work. For example,712
as mentioned previously, our metric has a high compu-713
tational budget. Future work can explore more efficient714
optimization methods.715

As for another limitation, our study is based on data716
provided by the Semantic Scholar corpus. This corpora717
has certain properties such as being more comprehen-718
sive with computer science papers, but less so in other719
disciplines. Its citation data also has a delay compared720
to Google Scholar, so for the newest papers, the citation721
score may not be accurate, making it more difficult to722
calculate our metric.723

Additionally, our study provides a general framework724
for causal inference given a causal graph that involves725
text. It is totally possible that for a more fine-grained726
problem, the causal graph will change, in which case,727
we undersuggest future researchers to derive the new728
backdoor adjustment set, and then adjust the algorithm729
accordingly. An example of such a variable could be the730
author information, which might also be a confounder.731

Finally, since quality evaluation of a paper is a multi-732
faceted task, theoretically, a single number can never733
give more than a rough approximation, because it col-734
lapses multiple dimensions into one and loses informa-735
tion. Our argument in this paper is just to show that736
our formulation is theoretically more accurate than the737
citation formulation. We take one step further, instead738
of solving the quality evaluation problem which is much739
more nuanced. Some intrinsic problems in citations that740
we can also not solve (because our metrics still rely on741
using citations, just contrasting them in the right away)742
include (1) if a paper is newly published, with zero cita-743
tions, there is no way to obtain a positive causal index,744
and (2) we do not solve the fair attribution problem745
when multiple authors share credit of a paper, as our746
metric is not sensitive towards authors.747

Ethical Considerations748

Data Collection and Privacy The data used in this749
work are all from Open Source Semantic Scholar data,750
with no user privacy concerns. The potential use of this751
work is for finding papers that are unique and innovative752
but don’t get enough citations due to loack of popularity753
or awareness of the field. This metric can act as an aid754
when deciding impact of papers, but we do not suggest755
its usage without expert involvement. Through this756
work, we are not trying to demean or criticize anyone’s757
work we only intend to find more papers that have made758
a valuable contribution to the field.759

CS Centric Perspective The authors of this paper work760
in Computer Science (mostly Machine Learning) hence761
a lot of analysis done on the quality of papers that re-762
quired sanity checks are done on ML papers. The con-763
ferences selected for doing the ToT evaluation were also764

CS Top conferences, hence they might have induced 765
some biases. The metric in general has been created 766
generically and should be applicable to other domains 767
as well, the Author Identified Most Influential Papers 768
study is also done on a generalized dataset, but we en- 769
courage readers in other disciplines to try out the metric 770
on papers from their field. 771
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Appendix1083

A Additional Implementation Details1084

A.1 Time and Space Complexity Details1085

For the time cost of running the causal impact indices,1086
each PCI(a, b) takes around 1,500 seconds, or 25 min-1087
utes. Multiplying this by 40 samples per paper a, we1088
spend 16.67 hours to calculate each ACI or TCI for1089
the paper’s overall impact. For a fine-grained division1090
into the time cost, the majority of the time is spend on1091
the BM25 indexing (800s) and the sentence embedding1092
cosine similarities calculation (400s). The rest of the1093
time-consuming steps are the BFS search (150-200s ev-1094
ery time) to identify descendants and non-descendants1095
of a paper.1096

For the space complexity, we loaded the 2.4B edges of1097
the citation graph into a parquet gzip format for faster1098
loading, and use Dask’s lazy load operation to load it1099
part by part to RAM for better parallelization. The pro-1100
gram can fit into different sizes of RAMs by modifying1101
the number of partitions and reducing the number of1102
workers in Dask, at the cost of an increased computa-1103
tion time. On the hard disk, citation graph takes up 19G1104
space, and paper data takes 11G.1105

A.2 Numerical Estimation Method: Finding the1106
Sample Size1107

For our numerical estimation method, we first calculate1108
the ACI on a subset of carefully sampled papers and then1109
aggregate it to TCI. One design choice question is how1110
to decide the size of this random subset. In our case, we1111
need to balance both the computation time (25 minutes1112
per pairwise paper impact) and the estimation accuracy.1113
To identify the best sample size, we conduct a small-1114
scale study, first obtaining the TCI using our upper-1115
bound budget of n = 100 samples and then gradually1116
decreasing the number of samples to see if there is a1117
stable point in the middle which also leads to a result1118
close to that obtained with 100 samples. In Figure 6, we1119
show the trade-off of the two curves, the error curve and1120
time cost, where we can see n = 40 seems to be a good1121
point balancing the two. It is at the elbow of the arrow1122
curve, making it relatively close to the estimation result1123
of n = 100, and also in the meantime vastly saving1124
our computational budget, enabling us to run efficient1125
experiments for more analyses.1126

A.3 Experiment to Select the Best Embedding1127
Method1128

When selecting the text encoder for our TEXTMATCH1129
method, we compare among the three LLMs pre-trained1130
on scientific papers, SciBERT, MPNet, and SPECTER.1131
Specifically, we conduct a small-scale experiment to1132
see how much the similarities scores based on the em-1133
bedding of each model align with human annotations.1134
As for the annotation process, we first collect a set of1135
random papers as pivot papers, and for each pivot paper,1136
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Figure 6: We show the trade-off of two curves: the error curve
(orange), and the time cost curve (blue). For the error curve,
we see an elbow point at around n = 40, when the error starts
to be small. The curve for the computational time is linear,
taking 25 minutes for each paper. Balancing the trade-offs, we
decided to choose the sample size n = 40.

we identify ten papers, from the most similar to the least, 1137
with monotonically decreasing similarity. We collect a 1138
total of 100 papers consisting of ten such collections, 1139
for which we show an example in Table 6. Then we see 1140
how the resulting similarity scores conform to this order 1141
by deducting the percentage of papers that are out of 1142
place in the ranking. 1143

We find that MPNet correlates the best with human 1144
judgments, achieving an accuracy of 82%, which is 10 1145
points better the second best one, SPECTER, which gets 1146
72%, and 18 points better than SciBERT with a score of 1147
64%. It also gives more distinct scores to papers with 1148
different levels of similarity. This capability advantage 1149
may be attributed to its Siamese network objectives 1150
in the training process (Song et al., 2020). We open- 1151
sourced our annotated data in the codebase. 1152

B Dataset Overview 1153

Figure 7: The number of papers published per year from 1684
to 2023. We can see that in recent years since 2010, there are
more than 7 million papers each year.
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Paper Index Title SciBERT SPECTER MPNet
Pivot Paper: GPT-3 (Brown et al., 2020)

1 (Most similar) PaLM (Chowdhery et al., 2022) 0.9787 0.8689 0.7679
2 GPT-2 (Radford et al., 2019) 0.9346 0.9064 0.8196
3 GPT (Radford and Narasimhan, 2018) 0.9488 0.8778 0.7790
4 BERT (Devlin et al., 2019) 0.9430 0.8321 0.6784
5 Transformers (Vaswani et al., 2017) 0.9202 0.8644 0.6385
6 SciBERT (Beltagy et al., 2019) 0.8396 0.8112 0.5667
7 Latent Diffusion Models (Rombach et al., 2021) 0.9586 0.7755 0.4567
8 Sentiment Analysis Using DL (Fang and Zhan, 2015) 0.7775 0.7298 0.2911
9 Sentiment Analysis Using ML (Zainuddin and Selamat, 2014) 0.6462 0.6403 0.2563
10 (Least similar) New High Energy Accelerator (Courant et al., 1952) 0.8033 0.5617 0.0359

Table 6: An example collection of papers with monotonically decreasing similarity to the pivot paper. As can be seen from the
similarities scores produced by the three text embedding methods, MPNet corresponds to the ground truth the most, and also
shows clear score distinctions between less similar and more similar papers.

Figure 8: The year-wise average of the number of references
per paper, also with a sharply increasing trend.

For the Semantic Scholar dataset (Kinney et al., 2023;1154
Lo et al., 2020), we obtain the set of 206M papers using1155
the “Papers” endpoint to get the Paper Id, Title, Ab-1156
stract, Year, Citation Count, Influential Citation Count1157
(Valenzuela et al., 2015),and the Reference Count for1158
each paper. The papers come from a variety of fields1159
such as law, computer science, and linguistics, chem-1160
istry, material science, physics, geology etc. For the1161
citation network with 2.4B edges, we use the Semantic1162
Scholar Citations API to get each edge of the citation1163
graph in a triplet format of (fromPaper, toPaper, isInflu-1164
entialCitations).1165

In general, the number of publications shows an ex-1166
plosive increase in recent years. Figure 7 shows the1167
number of papers publish the per year, which reaches1168
on average 7.5M per year since 2010. Figure 8 shows1169
the number of references each paper cites, which also1170
increases from less than five before 1970s, to around 251171
in recent years. Both statistics support the need of our1172
paper, which helps distinguish the quality of scientific1173
studies given such massive growths of papers.1174

C Additional Analyses 1175

C.1 Citation Outlier Analysis 1176

For the outlier detection, we first visualize the scatter 1177
plot between our CAUSALCITE and citations. Then, we 1178
fit a log-linear regression to learn the line log(TCI) = 1179
1.026 log(Cit)−0.541, as shown in Figure 9, with a root 1180
mean squared error (RMSE) of 0.6807. After fitting the 1181
function, we use the interquartile range (IQR) method 1182
(Smiti, 2020), which identify as outliers any samples 1183
that are either lower than the first quartile by over 1.5 1184
IQR, or higher than the third quartile by more than 1.5 1185
IQR, where IQR is the difference between the first and 1186
third quartile. 1187

We denote as overcited papers the ones that are iden- 1188
tified as outliers by the IQR method due to too many 1189
citations than what it should have deserved given the 1190
CAUSALCITE value. Symmetrically, we denote as un- 1191
dercited papers the ones that are identified as outliers 1192
by the IQR method due to too few citations than what 1193
it should have deserved given the CAUSALCITE value. 1194
And we denote the non-outlier papers as the aligned 1195
ones. 1196

C.2 Additional Information for the 1197
Author-Identified Paper Impact Experiment 1198

As mentioned in the main paper, the dataset is annotated 1199
by pivoting on each paper b, and going through each 1200
of its references a to label whether a has a significant 1201
influence on b or not. We show an example of paper b 1202
and all its 31 references in Table 7. We calculate the 1203
accuracy of each metric with the spirit that each non- 1204
significant paper’s impact value should be lower than a 1205
significant paper’s. Specifically, we go through the score 1206
of each non-significant paper, and count its accuracy as 1207
100% if it is lower than all the significant papers’, or the 1208
more general form nlower/|Sig| of conformity, where 1209
nlower is the number of significant papers which it is 1210
lower than, and |Sig| is the total number of significant 1211
papers. Then we report the overall accuracy for each 1212
score by averaging the accuracy numbers on each non- 1213
significant paper. To illustrate the idea better, we show 1214
the calculated accuracy numbers for all three metrics on 1215
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Figure 9: The scatter plot between our CAUSALCITE and
citations, with the fitted function as log(TCI) = 1.026 ∗
log(Cit)− 0.541, and a non-outlier band width of 0.8809.

our example batch in Table 7.1216

C.3 Step Curve for PCI Values Given a Fixed1217
Paper b1218

Apart from the long-tailed curve shape of TCI in Sec-1219
tion 5.2, we also look into the pairwise paper impacts1220
by PCI. If we fix the paper b, we can see that PCI(·, b)1221
often has a step curve shape in Figure 10. The reason1222
behind it lies in the nature of PCI, which is calculated1223
based on the top K papers that are similar in content1224
with paper b, but do not cite paper a. When we go1225
through different references, e.g., from a1 to a2 of the1226
same paper b, the semantically matched top K papers1227
could still be largely the same pool, and only change1228
when some papers in the pool need to be swapped when1229
releasing the constraint to be that they can cite a1, and1230
adding the constraint that they cannot cite a2.
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Figure 10: We take an example paper b, Sentence BERT
(Reimers and Gurevych, 2019), and plot its PCI values with
all its reference paper a’s. We can see clearly that there is a
plateau in the curve, showing a step function-like nature.
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References of the Paper “Sorting improves word-aligned bitmap
indexes”

Label PCI Citations SSHI

- A Quantitative Analysis and Performance Study for Similarity-
Search Methods in High-Dimensional Spaces

0 3.519 1777 156

- Optimizing bitmap indices with efficient compression 0 3.519 375 40
- Data Warehouses And Olap: Concepts, Architectures And Solu-
tions

0 3.526 187 11

- Histogram-aware sorting for enhanced word-aligned compression
in bitmap indexes

0 3.543 17 1

- CubiST++: Evaluating Ad-Hoc CUBE Queries Using Statistics
Trees

0 3.543 5 1

- Improving Performance of Sparse Matrix-Vector Multiplication 0 3.543 114 11
- Binary Gray Codes with Long Bit Runs 0 3.543 53 4
- Analysis of Basic Data Reordering Techniques 0 3.543 16 1
- Tree Based Indexes Versus Bitmap Indexes: A Performance Study 0 3.543 24 0
- Secondary indexing in one dimension: beyond b-trees and bitmap
indexes

0 3.543 10 1

- A comparison of five probabilistic view-size estimation techniques
in OLAP

0 3.543 24 1

- Compression techniques for fast external sorting 0 3.543 16 0
- A Note on Graph Coloring Extensions and List-Colorings 0 3.543 33 1
- Using Multiset Discrimination to Solve Language Processing Prob-
lems Without Hashing

0 3.543 52 2

- Monotone Gray Codes and the Middle Levels Problem 0 3.543 80 5
- The Art in Computer Programming 0 3.543 9242 678
- An Efficient Multi-Component Indexing Embedded Bitmap Com-
pression for Data Reorganization

0 3.543 8 2

- The LitOLAP Project: Data Warehousing with Literature 0 3.543 8 0
- Multi-resolution bitmap indexes for scientific data 0 3.583 96 3
- Notes on design and implementation of compressed bit vectors 0 3.583 81 12
- Compressing Large Boolean Matrices using Reordering Techniques 0 3.595 88 7
- Compressing bitmap indices by data reorganization 1 3.595 53 4
- Model 204 Architecture and Performance 0 3.635 238 10
- On the performance of bitmap indices for high cardinality
attributes

1 3.654 196 10

- A performance comparison of bitmap indexes 0 3.655 86 9
- Minimizing I/O Costs of Multi-Dimensional Queries with Bitmap
Indices

0 3.692 16 0

- Evaluation Strategies for Bitmap Indices with Binning 0 3.692 69 3
- C-Store: A Column-oriented DBMS 0 3.710 1241 111
- Byte-aligned bitmap compression 0 3.793 209 48
- Bit Transposed Files 0 3.837 84 10
- Space efficient bitmap indexing 0 4.011 96 16

Table 7: All the reference papers for a given study “Sorting improves word-aligned bitmap indexes.” Among all its 31 references,
we boldface the reference papers that are annotated to be significant influencers. For the three metrics, PCI, citations, and SSHI,
we report their impact scores for each reference paper on the given study, where we mark a score in green when it conforms to
the rule that a non-significant paper’s value should be lower than that of a significant paper, and mark a score in dark green if it
conforms to the rule to have a lower score than one of the significant paper, but violates the rule, i.e., having a higher score than
the other significant paper. In this example, our PCI metric has an accuracy score of 79.3%, which is higher than both citations
(68.1%), and SSHI (65.0%).
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