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Abstract

Single-cell TCR sequencing enables high-
resolution analysis of T Cell Receptor (TCR) di-
versity and clonality, offering valuable insights
into immune responses and disease mechanisms.
However, identifying cognate epitopes for indi-
vidual TCRs requires complex and costly func-
tional assays. We address this challenge with Epi-
topeGen, a large-scale transformer model based
on the GPT-2 architecture that generates poten-
tial cognate epitope sequences directly from TCR
sequences. To overcome the scarcity of TCR-
epitope binding pairs (= 100, 000), EpitopeGen
uses a semi-supervised learning method, termed
BINDSEARCH, which searches over 70 billion
potential pairs and incorporates high binding
affinity predictions as pseudo-labels. To incor-
porate CD8™ T cell biology into the model as
an inductive bias, EpitopeGen employs a novel
data balancing method, termed Antigen Cate-
gory Filter, that carefully controls antigen cate-
gory ratios in its training dataset. EpitopeGen
significantly outperforms baseline approaches,
generating epitopes with high binding affinity,
diversity, naturalness, and biophysical stability.
Code is available at https://github.com/
Ding-Group/EpitopeGen.

1. Introduction

The adaptive immune system is a specialized defense mech-
anism in vertebrates that provides long-lasting protection
against pathogens by recognizing and memorizing specific
antigens. T cells play a vital role in identifying and elimi-
nating infected cells through their unique T cell receptors
(TCRs). CD8™ T cells, in particular, inspect endogenous
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peptides displayed on class I Major Histocompatibility Com-
plex (MHC) molecules, expressed ubiquitously across hu-
man cells (Chaplin, 2010). Upon recognition of abnormal
peptides, such as those of viral or tumoral origin, cyto-
toxic CD8™ T cells can initiate apoptosis in the target cells,
given appropriate co-stimulatory signals (Andersen et al.,
2006). The specific antigen fragment recognized by the
immune system is termed an epitope. The Complementar-
ity Determining Region 3 (CDR3) of the TCR is primarily
responsible for epitope binding, with the interaction affin-
ity determined by the physicochemical properties of both
protein sequences. The extreme polymorphism of CDR3, re-
sulting from VDJ recombination (Tonegawa, 1983; Parham
& Ohta, 1996), enables a diverse range of immune responses
but presents challenges for quantitative modeling due to the
vast sequence diversity at the TCR-pMHC (peptide-loaded
MHC) interface.

Prior works in computational TCR analysis can be broadly
grouped into three categories: TCR diversity metrics, TCR
clustering methods, and TCR-pMHC binding affinity pre-
diction models. To quantify the focused nature of immune
responses, previous works (Vujovié et al., 2023a; Shirasawa
etal., 2025; Reuben et al., 2020; Porciello et al., 2022; Amor-
iello et al., 2021; Twyman-Saint Victor et al., 2015) used
diversity indices such as Shannon entropy (Shannon, 1948),
Simpson’s diversity index (Simpson, 1949), and Rényi di-
versity (Rényi, 1961; Greiff et al., 2015). However, they
provide limited insight into antigen specificity. Analysis of
TCR repertoire data has been facilitated by various TCR
clustering methods (Huang et al., 2020; Mayer-Blackwell
etal., 2021; Sidhom et al., 2021; Zhang et al., 2021a). These
methods aim to group TCRs with potentially similar antigen
specificity. However, these clustering approaches, while
valuable for repertoire analysis and motif discovery, TCRs
within the same cluster may not share antigen specificity. Re-
cent machine learning advances have enabled TCR-pMHC
binding affinity prediction (Lu et al., 2021; Gao et al., 2023;
Chronister et al., 2021; Weber et al., 2021; Jokinen et al.,
2021; Montemurro et al., 2021; Zhang et al., 2021b; Tong
et al., 2020; Springer et al., 2020; Zhang et al., 2023; Peng
et al., 2023; Cai et al., 2022; Moris et al., 2020). However,
these binding affinity prediction models have limited utility
in analyzing TCR repertoires, as repertoire data typically


https://github.com/Ding-Group/EpitopeGen
https://github.com/Ding-Group/EpitopeGen

Submission and Formatting Instructions for ICML 2025 GenBio Workshop

lack corresponding epitope information.

Recent works have attempted to generate TCR sequences
from given epitopes (Yang et al., 2023; Zhou et al., 2025).
While these works may benefit TCR design, a critical gap
exists in analyzing TCR repertoires. We can observe im-
mune responses (TCRs) through repertoire sequencing but
cannot easily identify what triggered them (epitopes). For
instance, tumor-infiltrating lymphocytes contain TCRs that
potentially recognize tumor antigens, but the specific epi-
topes remain unknown. Similarly, immune monitoring after
vaccination reveals activated TCR repertoires without direct
information about cognate epitopes.

To address these limitations, we explore the generative mod-
eling of epitope sequences, inspired by the success of large
language models in open-ended text generation (Radford
et al., 2019; Lewis et al., 2020; Raffel et al., 2020). By
developing an efficient algorithm to identify cognate epi-
topes, we aim to bridge the gap between TCR repertoire
data and functional analysis. Accurately identifying patient
T cell epitopes will help better categorize T cells and deepen
our understanding of T cell biology. Thus, this approach
can provide valuable insights for advancing personalized
medicine and enhancing patient outcomes. For example,
identifying tumor-specific TCRs can improve the precision
of cancer therapies, allowing better targeting of cancer cells
(Hudson et al., 2023). Furthermore, accurately identifying
TCRs that respond to viral epitopes can help in the design of
more effective, customized vaccines (Grifoni et al., 2020).

We introduce EpitopeGen, a large-scale generative trans-
former model that predicts cognate epitope sequences from
TCR sequences. We train a decoder-only transformer to
learn the conditional probability distribution of epitope
sequences given TCR inputs. The self-attention mecha-
nism captures the relationships between TCR tokens and
generated epitopes. We propose BINDSEARCH, a semi-
supervised learning method that evaluated over 70 billion
TCR-epitope pairs and selected high-confidence interactions
based on predicted binding affinity. A key innovation in our
approach is the Antigen Category Filter (ACF), a novel data
balancing method that calibrates the distribution of anti-
gen categories in the training set based on established im-
munological principles of CD8™ T cell recognition. These
distributional constraints were essential for establishing an
appropriate prior in the generative model, ensuring biologi-
cal plausibility when applied to repertoire-level analysis.

To the best of our knowledge, EpitopeGen represents the
first sequence-to-sequence generative model for predict-
ing epitopes from TCRs. We evaluate the generated epi-
topes across multiple dimensions, including binding affinity,
chemical properties, and naturalness. The results show that
the generated epitopes exhibit high binding affinity to the
input TCRs and possess chemical properties similar to those

of natural epitopes. In repertoire-level evaluations, Epi-
topeGen generates diverse epitopes that conform to natural
antigen category distributions. As an orthogonal validation,
the generated epitopes led to energetically stable complexes
when evaluated using Rosetta (Leaver-Fay et al., 2011) sim-
ulation.

2. Related Work
2.1. TCR Diversity and Clustering

Janarthanam et al (Janarthanam et al., 2023) employ D50,
the minimum number of unique clonotypes constituting
50% of the total, to track clonality changes in pediatric
eosinophilic esophagitis patients during dietary interven-
tions. TCRDivER (Vujovi¢ et al., 2023b) introduces a
similarity-sensitive diversity measure that jointly consid-
ers clone size and sequence similarity. GLIPH2 (Huang
et al., 2020) uses a statistical method to identify TCR motifs
that are overrepresented in query sets compared to back-
ground TCR repertoires. DeepTCR (Sidhom et al., 2021)
leverages deep learning-based autoencoders to learn latent
TCR representations that facilitate clustering of similar se-
quences. While these methods effectively capture T cell
clonal expansion patterns, they provide limited insight into
antigen recognition.

2.2. TCR-pMHC Binding Affinity Prediction

Recent advances in deep learning have significantly im-
proved TCR-pMHC binding affinity prediction. Early ap-
proaches introduced novel feature representations, with
ImRex (Moris et al., 2020) using physicochemical prop-
erties of amino acid residues and TCRMatch (Chronister
et al., 2021) developing k-mer-based similarity matching
for TCR identification. To address data scarcity, several
methods employed transfer learning (pMTnet (Lu et al.,
2021)) and probabilistic modeling (TCRGP (Jokinen et al.,
2021)), while NetTCR-2.0 (Montemurro et al., 2021) fo-
cused on high-frequency TCR-epitope pairs using shallow
CNNs. Neural architectures have been developed to capture
sequence dependencies, including LSTM networks (ERGO
(Springer et al., 2020)), bimodal attention networks (TI-
TAN (Weber et al., 2021)), and dual-stream self-attention
(ATM-TCR (Cai et al., 2022)). Recent approaches incorpo-
rate pre-training and structural information. TABR-BERT
(Zhang et al., 2023) applies self-supervised learning with
transformer encoders, TEIM (Peng et al., 2023) leverages
structural data for residue-level interaction prediction, and
PanPep (Gao et al., 2023) employs meta-learning for im-
proved generalization to novel epitopes. Despite these ad-
vances, current models remain limited by their dependence
on paired TCR-epitope data and focus on classification/re-
gression rather than generative tasks, restricting their utility
for analyzing unpaired repertoire data.
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Figure 1. Overall architecture of EpitopeGen. The model employs

Data Balancing with
Antigen Category Filter

Training EpitopeGen

a decoder-only transformer architecture to generate epitope sequences

from TCR inputs, incorporating the Antigen Category Filter (ACF) to ensure biologically plausible distributions of predicted epitopes.

3. Method

Figure 1 shows our two-phase approach. In the first phase,
we train a state-of-the-art binding affinity predictor (RAP).
The performance benchmark of RAP can be found in Ap-
pendix A. Using RAP, in the second phase, we construct
a large-scale pseudo-labeled dataset and train EpitopeGen.
Training datasets for binding affinity predictors were com-
piled from four public sources: VDJdb, IEDB, PIRD, and
MCcPAS-TCR. More details on datasets can be found in
Appendix B.

3.1. Robust Affinity Predictor (RAP) training

Robust Affinity Predictor, our binding affinity predictor for
pseudo-labeling, was developed by modifying TABR-BERT
with three architectural changes: implementing a Softmax
layer in the head architecture, removing MHC-related archi-
tectures, and utilizing PyTorch’s CrossEntropyLoss instead
of Contrastive loss. For the second modification, we re-
trained the BERT model (Devlin et al., 2019) solely on
epitope sequences, a process that took two days using two
NVIDIA L40S GPUs. The final model combined the predic-
tions of five independently trained models through ensemble
averaging.

A key challenge in training TCR-epitope binding predictors
is the lack of confirmed non-binding pairs (negative pairs) in
public datasets. To overcome this limitation, we developed

Triple Negative Sampling (TNS), which generates diverse
negative training examples through three complementary
strategies. First, we pair known epitopes with TCRs from a
large external pool. Second, we generate negative samples
by pairing known TCRs with epitopes from a large external
pool. Third, we randomly pair TCRs and epitopes within the
dataset, based on the assumption that random TCR-epitope
pairs are unlikely to bind. This diversified negative sampling
approach helps reduce potential biases arising from relying
on any single sampling strategy.

3.2. Semi-supervised learning method

The BINDSEARCH algorithm (Algorithm 1) generates a
pseudo-labeled dataset of TCR-epitope pairs. Given sets
of unpaired TCR sequences {t;}!_; and epitope sequences
{pj}7_,, the algorithm uses a binding affinity predictor
function R (implemented as RAP) to estimate the binding
affinity between TCRs and epitopes (/ = 6,831,478, J =
20,000, 000 were used). For each unpaired TCR ¢;, the al-
gorithm randomly samples $ = 10, 000 candidate epitopes
from {p;}7_,. The binding affinity a is computed for each
TCR-epitope pair (¢;, p) using R. Subsequently, the top
Nmaxter = 92 pairs with the highest binding affinities are
retained for each TCR. To mitigate redundancy in the result-
ing dataset, a filtering step is applied. Epitopes that occur
more than nmax epi = 100 times in all pairs of TCR-epitopes
are excluded. The value of nmax_epi Was determined based
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on the ratio of TCR to epitope observed in public datasets
(specifically 116,057 epitopes to 1,141 TCR, resulting in
a ratio of approximately 102). This process resulted in a
pseudo-labeled dataset comprising |D|= 16,909, 219 TCR-
epitope pairs. The algorithm took four days to run on ten
NVIDIA L40S GPUs.

Algorithm 1 BINDSEARCH

Require:

: {t:}1_;: Set of unpaired TCR sequences

: {pj }5]:1: Set of unpaired epitope sequences

: R: Binding affinity predictor function (RAP)

: B: Number of epitopes to check for each TCR (10000)

Nmax_ter: Maximum number of epitopes per TCR (32)

Nmax_epi: Maximum occurrences of an epitope (100)

Ensure: D: A dictionary of TCR-epitope pairs with bind-
ing affinities

0: function BINDSEARCH({t;}_,, {p, 3-]:1, R, )

0 D+ {}

0 fort; € {t;}!_, do

0 Qi + RandomSample({p;}7_,, )

0 for p € ; do

0 a < R(t;,p)

0 Az «— Al @] (p, a)

0 end for

0 D[tz} — TOpK(Ai7 nmax,lcr)

0: end for

0

0

0

0

0

0

0

0

0

0

=]

coc oo

=4

D < FilterRedundancy (D, nmax_epi)
return D
. end function
: function FILTERREDUNDANCY (D, nimax_epi)
C' <+ CountEpitopeOccurrences(D)
for ¢;, pairs € D.items() do
Dlt;] + (p, a) € pairs : C[p] < Nmax_epi
end for
return D
. end function=0

3.3. Antigen Category Filter

The intermediate dataset D was biased towards Eukaryotic
species, a consequence of the peptide collection methods
used by NetMHCPanv4.0 (Jurtz et al., 2017), MHCflur-
ryv2.0 (O’Donnell et al., 2020), and SysteMHC (Huang
et al., 2023). This bias likely reflects research priorities and
funding rather than the biological distribution of antigens
potentially recognized by CD8™ T cells. To correct this
discrepancy, we implemented the Antigen Category Filter
(ACF) algorithm (Algorithm 2). ACF takes as input a set
of redundancy-removed pseudo-labeled TCR-epitope pairs
{(t;,p1)}£, and a set of antigen categories with their target
ratios {(cy,7,)}._. The Antigen Category Filter begins
by identifying species for each epitope. Then, it counts the

number of pivot category and determines the target numbers
to choose from all categories. Based on the target numbers,
the samples are randomly drawn, which effectively adjusts
the antigen category distribution in the dataset.

To determine the target antigen ratios, we considered five
immunological insights: (1) Viral Dominance (Masopust
et al., 2007; Moutaftsi et al., 2006; Addo et al., 2003), (2)
Limited Bacteria (Friot et al., 2023; Shepherd & McLaren,
2020), (3) Endogenous Presence (Pittet et al., 1999; Riz-
zuto et al., 2009; Nelson et al., 2019; Kenison et al., 2024),
(4) Rare Fungi and Parasites (Mittal et al., 2019; Stuckey
Peter V. & Santiago-Tirado Felipe H., 2023; Walker et al.,
2013; Morrison, 2009; Stuart et al., 2008), and (5) No Re-
ported Pathogenic Archaea (Cavicchioli et al., 2003; Gill &
Brinkman, 2011). In-depth discussion of target ratio ranges
was provided in Appendix C. We call the resultant balanced
dataset by Corpus or C.

Algorithm 2 Antigen Category Filter (ACF)
Require:
0: D = {(t, )}, Set of redundancy-removed pseudo-
labeled TCR-epitope pairs
0: {(cn,mn)}_;: Setof antigen categories and their target
ratios, where anl r, =1, N =9, and r; is the ratio
for the pivot
Ensure: C: Corpus, or TCR-epitope pairs with balanced
antigen category
0: function ACF({(t;, p1) -y, {(cn,rn) 1)
0:  {(tipi, )}, < SearchCategory({(ti,p)}-,)
0 M + CountPivotCategory({(t;, pi, ) }H-1)
0 { YN« {M -, /ri})_, // Target numbers
0 C+{}
0: fornel,...,Ndo
0: Sn < (ti,m) = (ti,p1,¢1) € (tl,pl,cz)le and ¢; = ¢,
0
0
0
0
0
0

C < C URandomSample(S,,, c,)
end for
return C
: end function
: function SEARCHCATEGORY({ (¢, p1) }1,)
/I Use blastp and NCBI database queries to deter-
mine species and categories
// Return {(t;, pr, )} £, where ¢; is the category
for each pair
end function
function COUNTPIVOTCATEGORY (1, pr, ¢1)1-,)
return |(tlypl7 Cl) S {(thpla Cl)}lel : ¢ = “Virus
end function=0

e

”‘

e

3.4. EpitopeGen architecture and training

EpitopeGen is a decoder-only transformer model specifi-
cally designed to generate epitope sequences while adhering
to specific distributional constraints, including epitope di-



Submission and Formatting Instructions for ICML 2025 GenBio Workshop

versity and biologically plausible antigen distributions.The
model architecture is based on GPT-2, with amino acid se-
quences encoded using a BPE tokenizer (Sennrich et al.,
2016) trained specifically on our amino acid corpus.

The Byte-Pair Encoding (BPE) algorithm iteratively merges
the most frequent pairs of tokens, capturing the recurring
subsequences as single tokens. This tokenization method
allows for the representation of single amino acids or groups
of amino acids as individual tokens, potentially capturing
meaningful biological motifs. For a TCR-epitope pair (¢, p),
the input sequence is tokenized as:

x = [BPE(t); [SEP]; BPE(p); [EOS]] (1)

where BPE(-) denotes the BPE tokenization function, ‘;’
represents concatenation, [SEP] delineates the boundary be-
tween TCR and epitope sequences, and [EOS] marks the
end of each sequence. The tokenized sequences were pro-
cessed using positional embeddings, where position-specific
vectors are added to the token embeddings to maintain se-
quence order information.

The model defines a probability distribution pg(x) over a
sequence of tokens x of length n, which can be factorized
as:

po(x) = [ po(x-x<7) 2
T=1

where 6 represents the model parameters, x, is the 7-th
token in the sequence, and x., denotes all tokens before
7. This autoregressive formulation allows the model to
generate epitope sequences token by token, conditioned on
the input TCR sequence. The objective function for training
is the negative log-likelihood:

L£(O) =~ ) logpe(x). 3)

(t.p)eC

Given the narrow length distribution of the TCR and epitope
sequences compared to natural language paragraphs, each
batch contained a single TCR-epitope pair. The AdamW
optimizer (Loshchilov & Hutter, 2017) was used with pa-
rameters: initial learning rate (o« = 1 X 107%), 81 = 0.9,
B2 =0.999, ¢ =1 X 1078, and weight decay (A = 0.01).
Training took four hours for EpitopeGen and four days for
EpitopeGenNoACF using four NVIDIA L40S GPUs.

4. EpitopeGen generates high-affinity, diverse,
and biologically sane epitopes

We evaluated the binding affinities between the input TCRs
and the generated epitopes across multiple test scenarios.
We partitioned the test set of Corpus C into four subsets
based on TCR and epitope exposure during training: Un-
seenEpi (TCRs seen, epitopes unseen), UnseenTCR (epi-
topes seen, TCRs unseen), SeenBoth (both seen, but not as

a pair), and UnseenBoth (neither seen). EpitopeGen gener-
ated epitope sequences for each TCR in the test sets, and
the binding affinity was measured using RAP. For compari-
son, we also measured the binding affinities between each
TCR and 100 randomly sampled epitopes and calculated the
percentile ranks. Table 1 shows the average percentile rank
of binding affinity values of the generated epitopes. The
percentile ranks for UnseenEpi, UnseenTCR, SeenBoth,
and UnseenBoth were 81.5, 81.3, 81.9, and 81.2, respec-
tively. These results indicated that EpitopeGen can generate
epitopes with high binding affinities for both previously
encountered and novel TCRs.

Table 1. Average percentile rank of binding affinity (£ 95% CI)
for EpitopeGen across different test set splits

UnseenEpi UnseenTCR  SeenBoth  UnseenBoth
81.46 £0.90 81.35£0.20 81.91+0.44 81.25+0.43

We evaluated EpitopeGen using test sets of VDJdb, IEDB,
PIRD, and McPAS-TCR. Two baseline methods were imple-
mented for comparison: RandGen, which generates random
amino acid sequences based on the training set’s epitope
length distribution, and BLOSUMGen, which assigns epi-
topes from the training set based on TCR sequence sim-
ilarity using BLOSUMSG62 substitution matrix alignment.
EpitopeGen-generated epitopes demonstrated consistently
high binding affinities across multiple test sets, with mean
percentile ranks exceeding 80%. In evaluations using VD-
Jdb, PIRD, and McPAS-TCR test sets, EpitopeGen outper-
formed both RandGen and BLOSUMGen while maintain-
ing comparable performance on IEDB (Table 2). External
validation using independent experimental datasets from
Glanville et al. (Glanville et al., 2017) and Nolan et al.
(Nolan et al., 2020) further confirmed EpitopeGen’s robust-
ness, achieving mean percentile ranks of 85.8 and 84.1,
respectively.

To demonstrate EpitopeGen’s predictive capabilities, we
analyzed TCR sequences associated with NLVPMVATYV,
the most frequently occurring epitope in the VDJdb dataset.
In Figure 2, we compared TCRs that generated this epi-
tope against experimentally validated TCRs using Logo-
maker (Tareen & Kinney, 2020). The generated sequences
exhibited characteristic amino acid patterns with notable
variability in their central regions. Both the generated and
experimentally validated sequences displayed conserved mo-
tifs: an N-terminal ‘CASS’ pattern, a central ‘LGGGGYE’
sequence, and a C-terminal ‘QFF’ motif. This consistent
pattern alignment demonstrates EpitopeGen’s ability to gen-
erate epitope sequences from TCRs that are similar to ex-
perimentally validated ones.

We further evaluated EpitopeGen’s performance using
repertoire-level test sets, specifically the 10x dataset (10x
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Table 2. Average percentile rank of binding affinity (£ 95% CI) between generated epitopes and TCRs across benchmark datasets. Higher

values indicate stronger binding.

Method VDJdb IEDB PIRD MCcPAS-TCR Glanville MIRA

RandGen 61.20+2.30 59.86£0.56 62.54+239 63.22+£158 61.55£1.26 59.92+1.30
BLOSUMGen | 47.50£2.56 88.79+0.53 47.76+£2.86 50.31+£1.97 48.07+1.49 90.19£0.93
EpitopeGen 79.86+1.71 88.18+0.34 8342+169 81.51+1.19 84.80+0.83 82.36=£0.92

TCRs that generated NLVPMVATV
R
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Figure 2. Sequence motif comparison for TCRs recognizing the
NLVPMVATYV epitope. (Top) Logomaker plot of TCRs generated
by EpitopeGen. (Bottom) Logomaker plot of reference TCRs
from experimental data. The similar motif patterns indicate that
EpitopeGen successfully captures the key sequence features of
TCRs recognizing this epitope.

Genomics, 2022) released by 10x Genomics, Inc. This
evaluation closely mirrors real-world application scenarios
in which EpitopeGen is used to infer epitopes for an indi-
vidual’s entire TCR repertoire. For comparative analysis,
we fine-tuned ProGen2 (Nijkamp et al., 2023), a leading
protein language model, on the publicly available training
set. We also developed three variants of EpitopeGen. Epi-
topeGenNoACF was trained on the intermediate dataset D
without applying Antigen Category Filter, thus lacking in-
ductive bias on the proper distribution of antigen categories.
EpitopeGenNoACFFinetune was derived by fine-tuning Epi-
topeGenNoACF using C. EpitopeGenMHC incorporated
both TCR and MHC information for epitope sequence gen-
eration.

The generated epitopes by EpitopeGen predominantly origi-
nated from viruses (Figure 3), with smaller proportions from
tumoral, self, and bacterial sources. This distribution aligns
with the immunological principles of Viral Dominance, Lim-
ited Bacterial Presence, and Endogenous Epitope Presence.
In contrast, all other models (ProGen2Finetuned, Epitope-
GenNoACEF, and EpitopeGenNoACFFinetune) generated
approximately 37.7% and 30% of epitopes from ‘Other’
(mostly Eukaryotic) and ‘Bacteria’ with notably fewer viral
antigens. These skewed antigen category distributions of
generated epitopes reflect the initial bias in the dataset D

before the application of Antigen Category Filter.

Bacteria Virus

Virus 2.7%) i
o } Emm Bacteria
; Self — Self
9
‘ ‘ (7.2 /n)~ Virus ™ Tumor
| \ \ - | (5.7%) W Parasite
\ Others ~ Fungi Fungi
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Bacteria (5.7%) (356%)
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i ProGen2
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Bacteria Bacteria
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a1 7%)‘ a1 7%)
Fungi Fungi
(132%) 13.4%
Others Others

(37.7%) (37.3%)

EpitopeGenNoACF
Finetune

EpitopeGenNoACF
Figure 3. Source antigen distribution of predicted epitopes from
EpitopeGen, ProGen2 Finetuned, EpitopeGenNoACF, and Epi-
topeGenNoACFFinetune. The Antigen Category Filter (ACF) in
EpitopeGen helps maintain biologically realistic distributions.

To assess epitope diversity, we employed six diversity in-
dices: Shannon diversity (Shannon, 1948; Greiff et al.,
2015), Rényi diversity (a=2) (Rényi, 1961), Simpson’s di-
versity index (Simpson, 1949), the Epi-to-TCR ratio (unique
epitopes/number of TCRs), avg_repetition_top_1_percent,
and top_10_concentration (proportion of epitopes in most
frequent 10%). Figure 4 shows that EpitopeGen generated
epitopes showed superior diversity, achieving an epitope-to-
TCR ratio of 0.5. In contrast, EpitopeGenMHC showed sig-
nificantly lower diversity indices, indicating the generation
of redundant epitopes for different TCRs. This limitation
stems from the lack of (TCR, epitope, MHC) triplets in the
currently available datasets.

To prove the effectiveness of semi-supervised learning, we
evaluated models trained with different proportions of unla-
beled data. The Pseudo-labeling 0% model, trained solely
on the public paired dataset, showed considerable redun-
dancy, with the top 1% epitopes repeating approximately
2,000 times on average and a top_10_concentration exceed-
ing 0.95 (Figure 4, right). In contrast, Pseudo-labeling 100%
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Figure 4. Diversity metrics comparison. Radar plots comparing six diversity indices of generated epitopes using EpitopeGen versus
EpitopeGenMHC, with model variants trained with different proportions of pseudo-labeled data (0%, 33%, 66%, and 100%).

TopK Generation Redudancy Comparison

—e— EpitopeGen

15 EpitopeGenMHC

Num of uniquely generated epitopes

5 10 15 20
Number of generation

TopK Generation Redudancy Comparison

—e— Pseudo-labeling 100%
15 | —e— Pseudo-labeling 66%
—e— Pseudo-labeling 33%
Pseudo-labeling 0%

10

Num of uniquely generated epitopes

5 10 15 20

Number of generation

* Al cases include 100% of
publicly available train set

Figure 5. Redundancy in Top K generations. a, between Epitope-
Gen and EpitopeGenMHC, b, by the proportion of pseudo-labeled
data.

achieved much greater diversity with a top_10_concentration
below 0.50. Epitope diversity improved progressively with
increasing proportions of pseudo-labeled data, highlighting
the advantage of incorporating unlabeled data in ensuring
the generation of diverse epitopes.

Figure 5 shows the number of uniquely generated epitopes
by the number of generation attempts. EpitopeGen showed
lower redundancy in its top-20 generations compared to
EpitopeGenMHC (Figure 5a). Additionally, redundancy in
the top-k generations decreased progressively as the propor-
tion of pseudo-labeled training data increased (Figure 5b).
These results show that EpitopeGen produces more diverse
epitopes in its top-k predictions compared to the baselines.

5. EpitopeGen generates natural epitopes

We next examined the naturalness of the generated epitopes
by comparing their various properties with those of natu-
rally occurring epitopes collected from the test sets. The
generated epitopes had an average length of 10.08, which
aligns well with the typical length range (Trolle et al., 2016)
(8 to 12 amino acids) of the epitopes loaded onto MHC
class I molecules (Figure 6, left). Additionally, the amino
acid usage patterns of the generated epitopes closely resem-
bled those of natural epitopes (Pearson correlation = 0.911;
Figure 7, blue).
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Figure 6. Length distribution of generated epitopes.

Recent protein language models, such as ProtGPT2 (Ferruz
et al., 2022), ProGen (Madani et al., 2023), and ProGen2
(Nijkamp et al., 2023), demonstrated protein sequence gen-
eration capabilities, but lack precise control mechanisms
for specialized tasks such as the generation of CD8™ T cell
epitopes. To evaluate the utility of pre-trained models, we
fine-tuned ProGen2 on public training data. Our experi-
ments revealed that the fine-tuned model often generated
epitopes exceeding the biological length constraints, exhibit-
ing a long-tailed length distribution (Figure 6). This behav-
ior stems from ProGen2’s pre-training on general protein
sequences, which are typically longer than T-cell epitopes.
Specifically, 4.41% of the generated sequences were longer
than 12, while 1.47% were shorter than 8 amino acids. The
model also showed different amino acid usage patterns com-
pared to natural epitopes (Figure 7, yellow). When tested
on the 10x dataset, the fine-tuned ProGen2 model exhibited
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severe bias, with 83.80% of generated sequences starting
with ‘G’. These findings suggest that strongly conditional
generation tasks, where a single amino acid difference can
significantly impact binding properties, require enhanced su-
pervision through carefully curated training data that satisfy
biological constraints.

To assess the chemical feasibility of the generated epi-
topes, we analyzed their several key properties using the
ProtParam package (Wilkins et al., 1999). Table 3
shows that the distributions of these chemical properties
in EpitopeGen-generated epitopes closely mirrored those of
natural epitopes, while randomly generated epitopes showed
significantly different distributions.

Hydrophobic Polar Positive Negative  Special

Natural
20.0 EpitopeGen
ProGen2

Frequency (%)

A F I L M V WNQ S T Y H K R D E C G P

Figure 7. Amino acid usage comparison between natural epi-
topes, EpitopeGen-generated epitopes, and ProGen2 (Finetuned)-
generated epitopes. EpitopeGen-generated epitopes share a more
similar amino acid distribution to natural epitopes.

Source Extinction Aromaticity Secondary
Coefficient Structure
Natural 0.00 0.09 0.44
EpitopeGen 0.00 0.09 0.40
p-value (1.00) (1.00) 0.19)
RandGen 1490.00 0.11 0.33
p-value (1.9e-7) (4.3e-3) (5.5e-5)

Table 3. Chemical properties of natural and generated epitopes p-
values represent statistical comparison with natural epitopes. Bold
p-values indicate properties where generated epitopes cannot be
statistically distinguished from natural epitopes (p > 0.05).

6. EpitopeGen generates biophysically stable
epitopes

We use Molecular Dynamics (MD) simulations (McCam-
mon et al., 1977) to measure biophysical properties at the
interface of TCR-pMHC, which provides orthogonal infor-
mation compared to deep learning methods. Specifically,
we utilized InterfaceAnalyzer (Stranges & Kuhlman,
2012), from the Rosetta suite (Leaver-Fay et al., 2011),
to measure free energy and hydrophobicity. Gibbs free en-
ergy (dG_separated) quantifies the energy difference before

and after TCR-pMHC binding (Alford et al., 2017). Hy-
drophobic interaction was measured due to its importance
in protein folding and docking (Dill, 1990). For comparison,
we sampled 20 random epitopes from the VDIdb test set as
controls. Table 4 shows that EpitopeGen-generated epitopes
showed lower Gibbs free energy compared to randomly sam-
pled epitopes, with a median percentile rank of 22.5%. This
suggests that EpitopeGen-generated epitopes form more en-
ergetically stable complexes compared to randomly sampled
ones. Furthermore, these epitopes exhibited pronounced
hydrophobic interactions, with a mean percentile rank of
82.5%. This observation supports the idea that the generated
epitopes form stronger hydrophobic interactions with the
CDR3p region, potentially burying hydrophobic regions
and contributing to binding stability.

Source Percentile Rank
Binding | Hydrophobic T
(dG_sep) (dSASA hp)
Random 50.00 50.00
VDIJdb 30.00 70.00
EpitopeGen 22.50 82.50

Table 4. Percentile ranks compared against randomly sampled pep-
tides with identical TCRs. Lower binding energy (dG_sep |) and
higher hydrophobic interface area (dSASA _hp 1) are favorable.

7. Conclusion

Precise identification of T-cell binding partners is crucial for
understanding human adaptive immunity and developing
targeted therapies, including immunotherapies and person-
alized vaccines. We introduced EpitopeGen, a large-scale
generative transformer designed to predict potential epitope
sequences from TCR data, thereby enhancing the utility of
single-cell TCR sequencing analysis. To address the fun-
damental challenge of limited paired TCR-epitope training
data, we proposed a semi-supervised learning method that
incorporates a large number of unpaired data, complemented
by a novel Antigen Category Filter algorithm that ensures
biologically plausible antigen category distributions in the
data used to train EpitopeGen.

Our key innovations include the Robust Affinity Predictor
for reliable binding prediction, BINDSEARCH for lever-
aging unpaired data, and the Antigen Category Filter for
maintaining biologically appropriate antigen category dis-
tributions. Together, these components enable EpitopeGen
to generate epitopes that simultaneously satisfy multiple
critical criteria: high binding affinity, sequence diversity,
natural amino acid composition, and biophysical stability.
Importantly, when applied to repertoire-scale TCR data,
EpitopeGen produced epitopes with antigen category distri-
butions aligning with established immunological principles.
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A. Performance of RAP
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Figure 8. AUROC and AUPRC of RAP and other leading binding affinity predictors.

Figure 8 presents the performance of RAP compared to several state-of-the-art TCR—peptide binding affinity predictors,
evaluated across three distinct test setups. These test sets differ in how negative (non-binding) TCR—peptide pairs were
constructed. In the first setup, negative samples were generated by randomly shuffling TCR and peptide sequences, under the
assumption that such arbitrary pairs are unlikely to bind. The second setup uses test-set TCRs paired with epitope sequences
not seen during training, mitigating potential overfitting to peptide sequences. In the third setup, peptides from the test
set are paired with previously unseen TCRs, aiming to reduce overfitting to TCR sequences. Each setup was evaluated
using AUROC and AUPRC as performance metrics. RAP consistently outperforms all baselines in the first two setups and
achieves the second-best performance in the third. These results highlight the robustness and competitiveness of RAP across
a range of evaluation scenarios.
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B. Datasets
B.1. Public paired datasets

Four publicly available datasets of VDJdb (Shugay et al., 2018), PIRD (Zhang et al., 2019), IEDB (Vita et al., 2019), and
MCcPAS-TCR (Tickotsky et al., 2017) were used to develop the Robust Affinity Predictor (RAP) and evaluate the generated
epitopes.

VDJdb is a curated database of T-cell receptor (TCR) sequences with known antigen specificities. This resource aggregates
data from previously published studies, providing a comprehensive collection of TCR-antigen interactions. The dataset
contains rich metadata that offers detailed information about each TCR-antigen pair, including TCR information (gene, cdr3,
v.segm, j.segm, v.end, and j.start), antigen information (antigen.epitope, antigen.gene, and antigen.species), MHC context
(mhc.a, mhe.b, mhe.class, and complex.id), quality control and others (species, reference.id, vdjdb.score, and label). Among
these, vdjdb.score is a confidence score (0-3) assigned to each entry, reflecting the reliability of the association between the
TCR and the antigen in that entry.

The Immune Epitope Database (IEDB) is a comprehensive repository of experimentally determined immune epitope data,
encompassing information on both B-cell and T-cell epitopes from human and animal model studies. The database covers
various immunological contexts, including infections, allergies, autoimmune diseases, and transplantations. We utilized
the IEDB database export v3 (https://www.iedb.org/database_export_v3.php), which provides detailed
information on epitope sequences (trimmed_seq, original_seq), immune receptor characteristics (receptor_group), antigen
source details (source_organisms, source_antigens), labels, and epitopes.

The Pan Immune Repertoire Database (PIRD) was developed to provide a structured repository for sequencing data of the
T-cell receptor (TCR) and B-cell receptor (BCR). Within PIRD, the T and B cell Antigen database (TBAdb) is a manually
curated dataset of TCRs and BCRs with known antigen specificity. The dataset contains the following columns:disease
information (ICDname, Disease.name, Category), antigen details (Antigen, Antigen.sequence, HLA), receptor sequences
(Locus, CDR3.alpha.aa, CDR3.beta.aa, CDR3.alpha.nt, CDR3.beta.nt), gene usage (Valpha, Jalpha, Vbeta, Dbeta, Jbeta),
experimental methods (Seq.platform, Species, Origin, Nucleotide.type, Cell.subtype, Prepare.method, Evaluate.method),
study design (Case.num, Control.type, Control.num, Filteration), publication information (Journal, Pubmed.id), data quality
(grade), and label. We used the CDR3.beta.aa and Antigen.sequence columns to collect the binding pairs of TCRs and
epitopes.

MCcPAS-TCR is a manually curated database of TCR sequences associated with various pathological conditions (including
pathogen infections, cancer, and autoimmunity) and their respective antigens in humans and mice. The dataset contains
comprehensive information organized into the following categories: TCR sequence data (CDR3.alpha.aa, CDR3.beta.aa,
CDR3.alpha.nt, CDR3.beta.nt, TRAV, TRAJ, TRBV, TRBD, TRBJ, Reconstructed.J.annotation), study characteristics
(Species, Category, Pathology, Pathology.Mesh.ID, Additional.study.details, Antigen.identification.method, Single.cell,
NGS, PubMed.ID), antigen and epitope information (Antigen.protein, Protein.ID, Epitope.epitope, Epitope.ID, MHC), T
cell properties (Tissue, T.Cell.Type, T.cell.characteristics), and additional information (Mouse.strain, Remarks, label).

B.2. Unpaired datasets

Four unpaired datasets (TCRdb (Chen et al., 2021), NetMHCPan v4.0 (Jurtz et al., 2017), MHCFlurry v2.0 (O’Donnell et al.,
2020), and SysteMHC (Huang et al., 2023)) were utilized to collect large-scale unpaired CDR3/ sequences and epitope
sequences for semi-supervised learning. A subset of these datasets was also used for Triple Negative Sampling (TNS) to
construct diverse negative samples for the training and testing of the Robust Affinity Predictor (RAP).

TCRdb, a comprehensive structured collection of TCR sequencing experiments, contains 131 TCR-seq projects, 8,265
TCR-seq samples, and 277,439,349 TCR CDR3 sequences as of August 2024. From the downloadable dataset (https:
//guolab.wchscu.cn/TCRdb/#/download), we obtained 7,331,478 unique CDR3/ sequences after preprocessing.
The dataset was split into TCRNetSet for training the Robust Affinity Predictor and TCRCandidateSet for BINDSEARCH.

NetMHCPan v4.0 is a predictive model for interactions between class I MHC alleles (represented as MHC pseudo se-
quences) and epitopes. The project’s dataset (https://services.healthtech.dtu.dk/suppl/immunology/
NetMHCpan-4.0) comprises two components: Binding Affinity (BA) and Eluted Ligand (EL) data. BA data, derived
from in vitro binding assays, provide quantitative IC50 values that measure the binding strength between epitopes and MHC
molecules. EL data, obtained through mass spectrometry (MS) experiments, provide information on naturally processed and
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presented epitopes, capturing aspects of antigen processing and presentation beyond binding affinity.

MHCFlurry v2.0 is another predictive model for epitope-MHC interactions, which divided the task into antigen presentation
prediction and binding affinity prediction. The study compiled datasets from affinity measurements and mass spectrometry
experiments, establishing several benchmarks as detailed in the Methods section of the original paper (O’Donnell et al.,
2020).

SysteMHC is an archive of MS-based immunopeptidomics data. Regarding the class I MHC interaction, the atlas includes
more than 4,680 MS raw files, 154 allele types, 1 million epitopes, and 457,360 HLA-bound epitopes. The per-allele data in
SpectraST format were downloaded from https://systemhc.sjtu.edu.cn/download.

The epitopes from NetMHCPan v4.0, MHCFlurry v2.0, and SysteMHC were merged and split into EpiNegSet for training
the Robust Affinity Predictor and EpiCandidateSet for BINDSEARCH.

B.3. Pseudo-labeled datasets

These datasets were constructed by evaluating the binding affinities between TCRs from TCRCandidateSet (I = 6,831, 478)
and epitopes from EpiCandidateSet (J = 20, 000, 000). For each TCR, 8 = 10,000 epitopes were randomly sampled
without replacement from EpiCandidateSet and ranked by binding affinity. The top npmax_or = 32 epitopes with the highest
binding affinities were selected for each TCR, yielding I X npaxr = 218,607,296 pairs. Pairs containing redundant
epitopes occurring more than nmax epi = 100 times in the dataset were excluded. While the application of the Antigen
Category Filter decreased the size of the pseudo-labeled dataset, it was a necessary quality control step for applying
EpitopeGen to repertoire-level datasets.

B.4. External test sets

The dataset released by Glanville et al. (Glanville et al., 2017) comprises TCR sequences from antigen-specific T cells
isolated from multiple individuals. Their training set, which we used as an external test set, includes 2,068 unique TCRs of
known specificity, derived from T cells sorted using eight different epitope-MHC tetramers in 33 donors.

The dataset released by Nolan et al. (Nolan et al., 2020) provides a large-scale collection of T-cell receptor beta (TCR/3)
sequences and their binding associations to the SARS-CoV-2 epitopes. We specifically used their Multiplex Identification of
Antigen-Specific T-Cell Receptors Assay (MIRA) dataset, which contains over 135,000 high-confidence SARS-CoV-2-
specific TCRs. This dataset maps TCRs binding to SARS-CoV-2 virus epitopes from exposed subjects and naive controls, of-
fering a comprehensive view of TCR-epitope interactions in the context of COVID-19. We constructed a test set by sampling
2,000 pairs of TCR and epitope by processing peptide-detail-ci.csv of ImmuneCODE-MIRA-Release002.1.

B.5.10x CD8™ datasets

10x Genomics Inc. published many single-cell sequencing datasets using their platforms. We used a dataset containing
CD8™ T cells from a healthy donor (10x Genomics, 2022), obtained using the Single Cell Immune Profiling platform and
analyzed using Cell Ranger 3.0.2. This dataset serves as a test set to simulate a real-world application scenario, distinct from
those used in EpitopeGen’s training. The model is challenged to generate epitopes for CD8™ T cells based on single-cell
TCR sequencing data from an individual patient with specific MHC alleles. This approach assesses the model’s ability to
generate diverse epitopes with a natural antigen distribution.
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C. Justification for antigen target ratios in Antigen Category Filter

The distribution of antigen categories in Antigen Category Filter (ACF) significantly influences EpitopeGen’s characteristics.
Although the exact ratio of antigens recognized by CD8% T cells in vivo remains undefined, we can estimate this distribution
based on the current immunological understanding.

CD8* T cells respond primarily to endogenous antigens presented via MHC class I molecules, with viruses representing the
predominant category due to their intracellular replication cycle. This intracellular lifecycle leads to extensive endogenous
epitope generation and presentation, making viruses the primary targets for CD8* T cell surveillance. Several studies support
this viral dominance: Masopust et al. (Masopust et al., 2007) demonstrated that approximately 80% of splenic CD8* T
cells recognized lymphocytic choriomeningitis virus (LCMYV)-derived epitopes during peak primary infection. Moutaftsi et
al. (Moutaftsi et al., 2006) found that 29.6% of CD8™ T cells produced IFN-v when exposed to vaccinia virus Western
Reserve strain (VACV-WR)-infected cells. Furthermore, Addo et al. (Addo et al., 2003) reported robust responses of 10,640
spot-forming cells per million PBMC in untreated chronically infected individuals. Based on these references, we set the
proportion of viral antigens to be P(virus) > 50%.

Bacteria primarily elicit CD4™ T cell and B cell responses due to their predominantly extracellular nature. However,
certain bacterial species have evolved intracellular survival strategies. As Shepherd et al. (Shepherd & McLaren, 2020)
documented, bacteria such as Listeria monocytogenes and Shigella flexneri directly target the host cell cytosol, while
Mycobacterium tuberculosis and Salmonella persist in vacuolar compartments. Even traditional ‘extracellular pathogens
such as Staphylococcus aureus can invade intracellular spaces (Friot et al., 2023), although they represent a smaller
proportion of targets of CD8™ T cells compared to viruses. We set bacterial antigens to P(bacteria) < P(virus) x 0.2.

CD8™ T cells that respond to self-antigens and tumor-associated antigens occur at significantly lower frequencies compared
to those that target external pathogens, mainly due to thymic selection mechanisms that maintain immune tolerance (Kenison
et al., 2024). Rizzuto et al. (Rizzuto et al., 2009) demonstrated that self- / tumor antigen-specific T cells exist at frequencies
significantly lower than those specific for foreign antigens, attributing this difference to negative selection in the thymus, a
crucial process for preventing autoimmunity. Nelson et al. (Nelson et al., 2019) reported that initial self-reactive T cells are
exceptionally rare and difficult to detect prior to antigenic boost, contrasting with the robust responses generated against
viral antigens. In quantitative terms, Pittet et al. (Pittet et al., 1999) determined that approximately 1 in 2,500 naive CD8* T
cells recognize tumor (melanoma) antigens, with remarkably similar proportions observed in healthy donors, suggesting that
this may represent a baseline frequency for self-antigen recognition. We therefore constrained the self-antigen ratio in the
range of 0.03-0.15 and the tumor antigen ratio in the range of 0.01-0.05.

Fungi and protozoa constitute a more limited set of potential antigens, despite some species causing intracellular infections.
Mittal et al. (Mittal et al., 2019) described how Histoplasma capsulatum can infect human cells, while Stuckey et al.
(Stuckey Peter V. & Santiago-Tirado Felipe H., 2023) estimated that among the 3—5 million fungal species thought to exist,
only a few dozen regularly cause human infections. This led us to restrict their combined proportion to P(fungi + parasites)
< P(virus) x 0.1.

Notably, archaea, despite their presence as human commensals, have not demonstrated pathogenic capabilities and generally
do not trigger CD8™ T cell responses (Cavicchioli et al., 2003; Gill & Brinkman, 2011). We kept the proportion of archaeal
antigens in our dataset very low (P(archaea)<0.01).

This evidence supports five key immunological principles that govern ACF design: (1) Viral Dominance, (2) Limited
Bacterial Presence, (3) Endogenous Epitope Presence (Self-Antigen and Tumor-Associated Antigen), (4) Rare Fungi and
Parasites, and (5) Absence of Pathogenic Archaea.
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