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Abstract

Unraveling the co-expression of genes across studies enhances the understanding
of cellular processes. Inferring gene co-expression networks from transcriptome
data presents many challenges, including the high-dimensionality of the data rel-
ative to the number of samples, sample correlations, and batch effects. To address
these complexities, we introduce a robust method for high-dimensional graph in-
ference from multiple independent studies. We base our approach on the premise
that each dataset is essentially a noisy linear mixture of gene loadings that fol-
low a multivariate t-distribution with a sparse precision matrix, which is shared
across studies. This allows us to show that we can identify the co-expression ma-
trix up to a scaling factor among other model parameters. Our method employs an
Expectation-Maximization procedure for parameter estimation. Empirical evalu-
ation on synthetic and gene expression data demonstrates our method’s improved
ability to learn the underlying graph structure compared to baseline methods.

1 Introduction
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Figure 1: Two variations of the gene regulation
of genes X,Y, Z (A) colored in purple and their
corresponding co-expression network illustrated
in (B) in yellow. In (A) (left), genes X,Y, Z are
regulated by a common latent factor, such as an-
other gene. The example in (A) (right) shows that
gene X regulates both Y and Z. In addition, a
bi-directional dashed line indicates potential con-
founding between genes Y and Z.

Over the past decades, advances in DNA se-
quencing technologies have led to significant
advances in gene regulation research. These
developments have provided deep insights into
biological functions and disease processes.
One notable example, which we will revisit
later, is the comprehensive study of the bac-
terium Bacillus subtilis. This Gram-positive
bacterium serves as a model organism for
studying bacterial chromosome replication and
cell differentiation. A substantial research en-
deavor has led to a continuous manual collec-
tion of biological findings about Bacillus sub-
tilis regulation and gene functionality on the
online platform SubtiWiki [24], providing a
clearer and more precise understanding of its
cellular processes. This underscores the impor-
tance of developing methods that facilitate this
process by robustly identifying such gene-gene interactions in a vast collection of experimental data
from multiple sources, such as different technologies and laboratories.

Biologically relevant gene-gene interactions are often represented by a gene co-expression network
(GCN), which is an undirected graph where each node corresponds to a gene. Genes that are con-
nected or positioned closely within the GCN belong to the same functional modules, indicating that
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they work together to perform coordinated cellular activities. Therefore, constructing a GCN facili-
tates the understanding of gene regulation mechanisms. In this work, we aim to construct a GCN that
closely resembles a gene regulatory network, considering only links that connect genes within the
same regulatory network, such as regulator-regulated gene pairs or co-regulated genes (see Figure 1).

Inferring GCNs from data poses several challenges. First, the number of genes typically far ex-
ceeds the number of samples (p� n), making the problem high-dimensional. Second, experiments
often provide only a small number of replicates per condition, sometimes as few as two, limiting
the effectiveness of causal discovery algorithms in identifying gene regulatory relationships without
external prior knowledge. Third, correlations exist not only between genes but also between sam-
ples, due to overlapping experimental designs and batch effects introduced by non-biological factors
such as differences in technology or laboratory equipment. In response, current research in gene co-
expression analysis often makes specific assumptions about the data generation model to deal with
this complexity. This is typically represented by a noisy decomposition model: X = SA+E,where
X ∈ Rp×n is a gene expression matrix describing the activity of p genes across n different samples
(experiments, patients, tissues, etc.), S ∈ Rp×k is the gene loading matrix, A is the sample loading
matrix, and E is the additive noise. A common assumption is that GCNs can be reconstructed from
the gene loadings, where gene clusters are identified from each latent vector, a column in the gene
loadings matrix S (e.g. [20, 12, 27]).

This paper presents a novel probabilistic method for inferring complex network structures from
high-dimensional data across multiple views. Unlike traditional approaches that rely primarily on
clustering techniques or Gaussian models (e.g. [20, 12, 10, 15, 5, 11]), our method employs a matrix-
variate t-distribution framework that extends TLASSO by Finegold and Drton [7]. We refer to this
extended model as MVTLASSO, which captures the covariance at both the sample and variable
levels in the multi-view setting. Key contributions of this work, besides the proposed model, include
the formulation of identifiability guarantees for the model parameters, such as the sparse precision
matrix, which we can identify up to a scalar multiple (see Section 2.1). For model estimation,
we implement an Expectation-Maximization (EM) procedure, which is described in Section 3. We
apply MVTLASSO to both synthetic datasets and real-world gene expression data to validate its
effectiveness. Our empirical results in Section 4 show that MVTLASSO consistently demonstrates
improved accuracy in reconstructing the underlying graph structures compared to baseline methods.

2 Robust Co-Expression Inference from non-i.i.d Samples

In this section, we introduce and justify our chosen generative model, which we will refer to as
MVTLASSO, placing it within the broader context of known GCN inference methods. In Sec-
tion 2.1, we present theoretical guarantees for recovering the true model parameters.

Our approach can be seen as an instance of ICA, where the latent components, or gene loadings, are
divided into two categories: those used to construct the GCN, denoted by S, and those considered
noise, denoted by Z, which do not contribute to the GCN inference. We infer the GCN from the
sparse precision matrix Θ estimated from all “useful” gene loadings S across datasets (or views)
that follow a multivariate t-distribution similar to [7]. More specifically, we make the following
assumptions regarding the data generation process:

Definition 2.1. Consider the scenario where we are givenD different data sets Xd ∈ Rp×nd , which
may come from different sources and follow the representation:

Xd = SdAd + ZdBd

where for each d = 1, . . . , D it holds

1. (A>d |B>d )> ∈ R(kd+rd)×nd have full row rank with rank(Ad) = kd and
rank(Bd) = nd − kd =: rd,

2. the columns of Sd ∈ Rp×kd are mutually independent and follow a multivariate t-
distribution, i.e. Sd:,i

∼ tp(ν, µd,Σ) with ν > 2 degrees of freedom and a sparse inverse
dispersion matrix Θ := (Σ)−1 that has a prior distribution pλ(Θ) with λ > 0 defined as

pλ(Θ) ∝ exp (−λ‖Θ‖1) with ‖Θ‖1 =
∑
i,j

|Θij |,
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3. the columns of Zd ∈ Rp×rd are noise random variables and are i.i.d multivariate t-
distributed tp(ν, 0, σ2

dIp), such that there is no λ ∈ R with σ2
dIp = λΣ,

4. the latents Sd and noise matrix Zd are independent.

This perspective on Θ as a representation of the GCN closely aligns our work with that proposed by
Stegle et al. [29] for the single view case. Compared to [29], we shift from a multivariate normal
distribution to a multivariate t-distribution with sparse Θ. Although this moves away from the the-
oretical guarantees of conditional independence to a more relaxed condition of conditional uncorre-
lation, as outlined by Finegold and Drton [7], this approach provides more robust inference for un-
known parameters, in this case, Ad, Bd, µd,Θ. This robustness is particularly beneficial in the pres-
ence of data contamination, a common challenge in the analysis of transcriptome data.

Finally, our model is reminiscent of dimensionality reduction methods, similar to the application of
PCA, aiming to identify kd components per dataset (or view) that capture the most significant signals
from the data. The remaining components are considered as i.i.d. noise, following a multivariate t-
distribution, which does not play a role in estimating the network structure, represented by Θ. A
similar decomposition is proposed by Parsana et al. [23], where the authors show that removing the
noise components after applying PCA improves the GCN inference of several algorithms.

2.1 Identifiability Guarantees

Next, we will present our theoretical guarantees for identifying model parameters from Defini-
tion 2.1, i.e {Ad, Bd, µd, σ2

d}, d = 1, . . . , D, and Σ. We will show that the location µd and disper-
sion matrix Σ of the gene loadings, as well as the sample loadings Ad are identifiable up to the same
constant across all views:
Proposition 2.1. Let X1, . . . ,XD with Xd ∈ Rp×nd be random matrices with the following two
representations:

S
(1)
d A

(1)
d + Z

(1)
d B

(1)
d = Xd = S

(2)
d A

(2)
d + Z

(2)
d B

(2)
d ,

where for d = 1, . . . , D, both representations A(1)
d ∈ Rk

(1)
d ×nd , B

(1)
d ∈ R(nd−k(1)

d )×nd ,S
(1)
d ∈

Rp×k
(1)
d ,Z

(1)
d ∈ Rp×(nd−k(1)

d ) andA(2)
d ∈ Rk

(2)
d ×nd , B

(2)
d ∈ R(nd−k(2)

d )×nd ,S
(2)
d ∈ Rp×k

(2)
d ,Z

(2)
d ∈

Rp×(nd−k(2)
d ) satisfy the properties of Definition 2.1. Then, for d = 1, . . . , D, k(1)

d = k
(2)
d =: kd.

Furthermore, there exist permutation matrices PA1
, . . . , PAD , PB1

, . . . , PBD and constants
c, c1, . . . , cD > 0 such that:

A
(2)
d = cPAdA

(1)
d , Σ

(2)
S =

Σ
(1)
S

c2
, µ

(2)
Sd

=
µ

(1)
Sd

c
,

B
(2)
d = cdPBdB

(1)
d , Σ

(2)
Zd

=
Σ

(1)
Zd

c2d
, µ

(2)
Zd

=
µ

(1)
Zd

cd
.

In contrast to well-established results in the ICA literature [4, 14], which provide identifiability
for the univariate case, we extend these results to multivariate elliptic distributions, as shown in
Corollary B.1. Proposition 2.1 is a special case and a direct consequence of our more general
results. Unlike in the single-view case, the multi-view setting allows us to achieve identifiability of
the sample matrices Ad across views, up to a common scaling factor c.

3 Parameter Estimation

We begin by deriving the data likelihood, drawing inspiration from the ICA literature, e.g. the works
of [13, 1]. Instead of making derivations with respect to Ad and Bd, we proceed in terms of the
inverse of the concatenated matrix, denoted as Wd = (Ad | Bd)−1. Consequently, the “unmixed”
signal Yd := XdWd represents the estimates for the latent vectors Sd:,i

for i = 1, . . . , kd, and Zd:,i

for i = 1, . . . , nd − kd, up to some scaling and permutation as described in Proposition 2.11. These

1Specifically, the first kd columns of Yd correspond to the estimates of Sd, while the remaining n − kd
columns correspond to the estimates of Zd.
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signals follow a multivariate t-distribution. Thus, the likelihood for all views X1, . . . ,XD is:

p(X1, . . . ,XD | {Wd, µd, σd }Dd=1,Σ) =

D∏
d=1

p(Xd) =

D∏
d=1

|detWd| p(Xd ·Wd) (1)

=

D∏
d=1

|detWd|
nd∏
i=1

tp
(
Yd:,i

| ν, ρdi ,Φdi
)
,

where Φdi = 1{i≤kd}Σ + 1{i>kd}σ
2
dIp and ρdi = 1{i≤kd}µd. Thus, the data likelihood is propor-

tional to the product of the probabilities of
∑D
d=1 nd independent multivariate t-distributed vectors.

3.1 The Expectation-Maximization Procedure

Unfortunately, directly estimating the unknown parameters from (1) is infeasible. However, we can
leverage the alternative representation of the multivariate t-distribution described in Theorem C.1,
which is central to the EM procedure proposed by Liu and Rubin [18], Finegold and Drton [7]. For
each random vector Yd:,i

, the corresponding generative process can equivalently be represented as:

τdi ∼ Γ
(ν

2
,
ν

2

)
, Yd:,i ∼ N (ρdi ,Φdi/τdi),

where the variables τdi are unobserved. Thus, the complete data log-likelihood with unknown
parameters γ := {Wd, µd, σd}Dd=1 ∪ {Σ} and random variables X1, . . . ,XD and τ1, . . . τD with
τd := (τd1

, . . . , τdnd ) is given by

l
(
γ; {Xd, τd}Dd=1

)
∝
∑
d

{
ln |detWd|+

nd∑
i=1

1

2
ln det Φ−1

di
− τdi

2
tr
(

Φ−1
di

Yd:,iY
>
d:,i

)
(2)

+ τdiρ
>
diΦ
−1
di

Yd:,i −
τdi
2
ρ>diΦ

−1
di
ρdi

}
,

where Φ−1
di

= 1{i≤kd}Θ + 1{i>kd}
1
σ2
d
Ip with Θ = (Σ)−1. The right side of (2) is linear in the la-

tent variables τdi . Thus, for the E-step it suffices to compute E[τdi | Xd] for every d = 1, . . . , D
and i = 1, . . . , nd. This can be derived directly by observing that the conditional distribution
p(τdi | Xd) = p(τdi | Yd:,i

) is given by

τdi | Yd:,i
∼ Γ

(
ν + p

2
,
ν + δ(Yd:,i , ρdi ,Φdi)

2

)
with

δ(Yd:,i , ρdi ,Φdi) = (Yd:,i − ρdi)>Φ−1
di

(Yd:,i − ρdi).

Consequently, for the conditional expectation we get: E[τdi | Yd:,i ] =
ν + p

ν + δ(Yd:,i , ρdi ,Φdi)
.

Hence, the EM procedure iterates through two main steps for each view d: 1) the estimation of τdi
while keeping ρdi , Φdi , and Wd fixed; and 2) the estimation of ρdi , Φdi , Wd, and Θ := (Σ)−1,
where Θ is determined by solving the graphical lasso (GLASSO) problem as described by [8]. This
method is designed to estimate sparse precision matrices in a multi-view setting. The EM procedure
at step t ≥ 1 is performed as follows:

E-step: For fixed estimated µ(t−1)
d ,Σ(t−1), σ

(t−1)
d and W (t−1)

d compute E[τdi | Xd], i.e.

Y
(t−1)
d = XdW

(t−1)
d , τ

(t)
di

=
ν + p

ν + δ(Y
(t−1)
d:,i

, ρ
(t−1)
di

,Φ
(t−1)
di

)
.

M-step: Solve the optimization problem:

γ(t) ∈ arg max
γ

l
(
γ; {Xd, τ

(t)
d }

D
d=1

)
,

with γ(t) = {W (t)
d , µ

(t)
d , σ

(t)
d }Dd=1 ∪ {Σ(t)} that leads to the following steps for all d = 1, . . . , D:
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Figure 2: ROC curves summarizing the benchmark experiment on the data generated as described
in Section 4.1 with a total of 100 sample loadings. Each curve represents the average result of 100
experiments. The number of signal loadings k varies in each experiment, as indicated in the subplot
titles. The results show that MVTLASSO outperforms TLASSO and GLASSO.

1. Calculate µ(t)
d ,Σ(t) and σ(t)

d for fixed τ (t)
di

and Y
(t)
d

µ
(t)
d =

∑kd
i=1 τ

(t)
di

Y
(t−1)
d:,i∑kd

i=1 τ
(t)
di

, Σ(t) =
1∑
d kd

∑
d

kd∑
i=1

τ
(t)
di

(
Y

(t−1)
d:,i

− µ(t)
d

)(
Y

(t−1)
d:,i

− µ(t)
d

)>
,

σ
(t)
d =

√√√√ 1

p(n− kd)

n∑
i=kd+1

p∑
l=1

τ
(t)
di

(Y
(t−1)
dl,i

)2

2. Estimate Θ via solving the GLASSO optimization problem for Σ(t) with penalty parameter
λ > 0 given by:

Θ(t) ∈ arg min
Θ�0

− ln det(Θ) + tr(Σ(t)Θ) + λ‖Θ‖1 (3)

3. Estimate W (t)
d for fixed µ(t)

d ,Σ(t), σ
(t)
d and τ (t)

di
:

W
(t)
d ∈ arg min

W

{
tr

((
XdW − µ

(t)
d

)>
Θ(t)

(
XdW − µ

(t)
d

)
T (t)

1

)
(4)

+
1

(σ
(t)
d )2

tr
(
W>X>d XdWT (t)

2

)
− ln |detW |

}
,

where µ
(t)
d := (µ

(t)
d , . . . , µ

(t)
d︸ ︷︷ ︸

kd

, 0 . . . , 0) ∈ Rp×nd , and T (t)
1 , T (t)

2 ∈ Rnd×nd

are diagonal matrices defined as T (t)
1 = diag(τ

(t)
d1
, . . . , τ

(t)
dkd

, 0, . . . , 0) and

T (t)
2 = diag(0, . . . , 0, τ

(t)
dkd+1

, . . . , τ
(t)
dnd

)

Details on the implementation of the EM procedure can be found in Appendix E.1. Code is available
at https://github.com/tpandeva/mvtlasso-code.

4 Results

4.1 Simulated Data

We benchmark our method against GLASSO [8] and TLASSO [7] using simulated data whose
generative model aligns with Definition 2.1 and follows a similar setup to that proposed by Finegold
and Drton [7], with 200 variables and 100 samples. The sparse precision matrix Θ is generated
as follows 1) off-diagonal entries Θij with i 6= j are sampled from {−1, 0, 1} with probabilities
{0.01, 0.98, 0.01} 2) the diagonal entries are set to 1 plus the number of edges connected with the
node, i.e. Θii = 1 +

∑
j 1{Θij 6=0}. Additionally, we set µ = 0 and σ = 1 in all experiments. The

sample loading matrices A and B have entries sampled according to standard normal distribution.
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Figure 3: We set both k = 50 and
r = 50 and varied D = 2, 5, 10. For
each case, we ran 100 synthetic experi-
ments while varying the sparsity param-
eter. The averaged ROC curves show
that increasing the number of views (D)
improves performance.

In the single view case (D = 1), we evaluated our
model and several baselines on datasets with varying ra-
tios of k signal loadings (S) to r noise loadings (Z):
100 : 0, 90 : 10, 80 : 20, 70 : 30, 60 : 40, and 50 : 50. We
ran 100 experiments for each method for 50 sparsity pa-
rameters λ. For each experiment, we calculated the true
positive and false positive rates individually and then av-
eraged these for each sparsity parameter.

The aggregated results are shown in Figure 2. Across all
scenarios indicated by the subplot titles, MVTLASSO, as
expected, consistently outperforms the baselines. How-
ever, it is evident that the performance of all methods de-
creases as the proportion of noise loadings increases. Fig-
ure 3 illustrates that with an increasing number of views
D, where the ratio of signal loadings k to noise loadings r
is 50 : 50, the performance of MVTLASSO improves sig-
nificantly. Specifically, the aggregated true positive rate
from 100 experiments increases relative to the false posi-
tive rate.

4.2 Gene Co-Expression Inference for Bacillus
Subtilis

Figure 4: True positive vs. possibly
false positive edges obtained via stabil-
ity selection for various penalty parame-
ters. The results demonstrate that MVT-
LASSO consistently infers more true
positive edges across all settings.

We revisit the motivational example of the GCN infer-
ence from B. Subtilis gene expression data. For this pur-
pose, we use two well-controlled transcriptome data com-
pendia. These datasets were collected using the B. sub-
tilis strain BSB1, which contains 269 samples from 104
different experimental conditions [21], and the closely re-
lated strain PY79, which contains data from 38 unique ex-
perimental designs [3]. The B. Subtilis genome contains
approximately 4100 genes, and for every transcriptome
experiment, gene expressions from 3994 genes were ob-
tained. Both datasets include a wide range of conditions,
including growth in different media, competence, biofilm
formation, swarming, different stress conditions, sporula-
tion, and knockout experiments. The data were prepro-
cessed as outlined in Appendix E.2. We further split each
dataset into two approximately equal subsets of samples,
ensuring they are as distinct as possible in their experi-
mental design.

We then used these four views to benchmark MVT-
LASSO against two other methods: GLASSO+ICA and
GLASSO+Standardization, described in Appendix E.1.
Unfortunately, the correct number of gene loadings kd re-
mains unknown. We estimated kd following the approach in [23] prior to fitting the models. The fit-
ting process for all methods includes stability selection as described by Meinshausen and Bühlmann
[19] and detailed in Appendix E.1. In this approach, for each of 15 penalty parameters,“stable”
edges are selected from 100 precision matrices, each estimated from bootstrapped samples contain-
ing 90% of all data. For each penalty parameter, we count the true positive edges, as verified against
the ground truth data from SubtiWiki, as well as potential false positives from all selected edges. The
true positive vs false positive counts for each method are shown in Figure 4. These results indicate
that MVTLASSO consistently identifies more true positive edges across most penalty parameters
compared to the other two methods.
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5 Discussion

We introduced MVTLASSO, a robust method for inferring gene co-expression networks from high-
dimensional gene expression data across multiple independent studies. Our approach effectively ad-
dresses the inherent complexity of gene expression data, including gene and sample correlations as
well as batch effects, by modeling each dataset as a noisy linear mixture of gene loadings governed
by a multivariate t-distribution with a sparse precision matrix. We employ an EM procedure for pa-
rameter estimation, supported by theoretical guarantees that ensure the identifiability of the model
parameters. Empirical evaluations on both synthetic and real gene expression data have demon-
strated the superior performance of MVTLASSO compared to baseline methods. Our method con-
sistently shows improved accuracy in learning the underlying graph structures, underscoring its ro-
bustness and reliability.

A promising direction for future work is to develop a more efficient and reliable hyperparameter
selection procedure. The selection of sample dimensions and noise loadings can be challenging
and time-consuming due to the implemented EM procedure. In addition, incorporating available
experimental metadata into the modeling process could provide further refinement and improve the
overall performance of MVTLASSO.
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[21] P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc, N. Pigeonneau, E. Bidnenko, E. Mar-
chadier, M. Hoebeke, S. Aymerich, et al. Condition-dependent transcriptome reveals high-
level regulatory architecture in Bacillus subtilis. Science, 335(6072):1103–1106, 2012.
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A Related Work

Inferring GCNs from data can be very challenging, mainly due to hidden confounders and batch ef-
fects associated with the different data sources. In response, current research in gene co-expression
analysis often makes specific assumptions about the data generation model to deal with this com-
plexity. This is typically represented by a noisy decomposition model: X = SA + E, where
X ∈ Rp×n is a gene expression matrix describing the activity of p genes across n different samples
(experiments, patients, tissues, etc.), S ∈ Rp×k is the gene loading matrix, A is the sample loading
matrix, and E is the additive noise. These approaches can be broadly categorized into decomposi-
tion methods and their refinements, biclustering algorithms.

Decomposition methods, including Independent Component Analysis (ICA), Principal Component
Analysis (PCA), and other variations of factor analysis, have shown remarkable effectiveness in
identifying clusters of genes connected in the GCN. These methods are used to analyze single data
sets [26, 25] as well as to integrate data from multiple studies [17, 28, 16, 22]. A common assump-
tion is that GCNs can be reconstructed from the gene loadings, where gene clusters are identified
from each latent vector, a column in the gene loadings matrix S, usually by thresholding. Often,
these clusters are assumed to represent sets of genes connected within the GCN and mapped to gene
modules with a common function.

Biclustering algorithms aim to cluster genes and samples simultaneously by applying sparsity con-
straints to both gene and sample loadings, e.g., [20, 12, 10, 15], providing a principled approach for
a two-fold clustering. This approach assumes that the sample loading matrix A will have a sparse
pattern, i.e., only a small group of genes will deviate within a small subset of samples. These meth-
ods are particularly useful for subgroup analyses, such as classifying patients into different subtypes
based on gene expression levels.

Despite their ability to cluster, all these methods do not model the relationships between clusters
and thus do not provide a comprehensive strategy for inferring gene co-expression graphs. One
exception is the Kronecker graphical LASSO approach by [29], which constructs a sparse graph
structure while modeling sample covariance. However, this method has not been extended to handle
multiple datasets collected from different labs and may lack robustness against data contamination.
On the other hand, existing methods that use the graphical LASSO to infer GCNs from various data
sources [5, 11] do not address the confounding variables in the experiments and assume that the data
are independent and identically distributed.

B Identifiability

In our analysis, we will make use of the multivariate elliptical distributions, denoted by Ep(µ,Σ),
whose density f(x;µ,Σ) is proportional to f(x;µ,Σ) ∝ g((x−µ)>Σ(x−µ)) for some measurable
function g and a positive semi-definite dispersion matrix Σ and median µ. An example of such
elliptical distributions is the Gaussian and multivariate t-distribution. First, we show that the sample
loadings are identifiable up to scaling and permutation, provided that none of the gene loadings have
Gaussian marginals. This result is an extension of Theorem 10.3 in [14] for the multivariate case:

Lemma B.1. Let X ∈ Rp×n be a random matrix. Assume the following two representations of X

S(1)A(1) = X = S(2)A(2),

with the following properties for i = 1, 2 :

1. A(i) ∈ Rk(i)×n is a (non-random) matrix with a full row rank

2. S(i) ∈ Rp×k(i)

is a random matrix such that the columns of S(i) are mutually independent.

If the i-th row ofA(1) is not proportional to any row ofA(2) then the i-th column of S(1) has Gaussian
distributed marginals. Additionally, if the i-th column of S(1) follows an elliptical distribution, then
it is multivariate Gaussian.

Proof of Lemma B.1
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Proof. W.l.o.g. let i = 1. According to [14, Lemma 10.2.2] there exists a n× 2 matrix H such that
the matrices C1 = A(1)H and C2 = A(2)H of orders k(1) × 2 and k(2) × 2 respectively have the
following property; the first row of C1 is not proportional to any of the other rows of C1 or to any
of the rows of C2.

Now consider the following algebraic relationship for Y = XH:

S(1)C1 = Y = S(2)C2,

where Y ∈ Rp×2. For each row r = 1, . . . p of Y we have the two equivalent representations

S(1)
r,: C1 = Yr,: = S(2)

r,: C2.

Thus, by [14, Lemma 10.2.4], it follows that S
(1)
r,1 is Gaussian distributed because the first row of

C1 is not proportional to any of the other rows of C1 or to the one of C2. Consequently, this implies
that the marginal distributions of S

(1)
:,1 are Gaussians. Given that S

(1)
:,1 is elliptical with the previous

argument it follows that it is Gaussian [6].

Theorem B.1. Let X ∈ Rp×n be a random matrix. Assume the following two representations of X

S(1)A(1) = X = S(2)A(2)

with the following properties for i = 1, 2 :

1. A(i) ∈ Rk(i)×n is a (non-random) matrix with full row rank, i.e. rank(A(i)) = k(i)

2. S(i) ∈ Rp×k(i)

is a random matrix such that

(a) The columns of S(i) are mutually independent,

(b) For k = 1, . . . , k(i) the vectors S
(i)
:,k are distributed according to a non-Gaussian

elliptical distribution Ep(µ(i),Σ(i)) with mean µ(i) and a dispersion matrix Σ(i).

(c) Additionally, S
(i)
:,k the random vectors do not have Gaussian components.

Then k(1) = k(2) = k and there exist a permutation matrix P = P (ρ) ∈ Rk×k given by Pej = eρ(j)
and a constant c > 0 such that:

A(2) = cPA(1), Σ(2) =
Σ(1)

c2
µ(2) =

µ(1)

c
.

Proof. Lemma B.1 establishes that each row of matrix A(1) is proportional to a row of A(2). Now if
we assume that k(1) > k(2) then there must be at least two distinct rows inA(1) that are proportional
to the same row of A(2). This contradicts the assumption that both A(1) and A(2) have full row
rank. Thus, it follows that k(1) = k(2) =: k and there exist a permutation matrix P ∈ Rk×k and an
invertible diagonal matrix Λ = diag(λ1, . . . , λk) ∈ Rk×k such that A(2) = ΛPA(1).

Note that for the characteristic function of a matrix S that fulfills 2a) to c) for some mean µ and
dispersion matrix Σ holds

χS(t) = E
[
exp(i tr(t>S))

]
= E

exp

i∑
j

t>:,jS:,j)


=
∏
j

χS:,j
(t:,j) =

∏
j

χS:,1
(t:,j)

=
∏
j

exp
(
it>:,jµ

)
ψ
(
t>:,jΣt:,j

)
,

where ψ is the characteristic generator and t ∈ Rp×k.

10



Let S̃(2) = S(2)P . Then we get for the characteristic functions of S̃(2) and S(1) for all t ∈ Rp×k
χS(1)(t) = χS̃(2)Λ(t) ∏

j

exp
(
it>:,jµ

(1)
)
ψ1

(
t>:,jΣ

(1)t:,j

)
=
∏
j

exp
(
iλjt

>
:,jµ

(2)
)
ψ2

(
λ2
jt
>
:,jΣ

(2)t:,j

)
,

where ψi is the characteristic generator corresponding to the i−the representation. Consequently,
for each j with t:,j = t ∈ Rp and otherwise t:,r = 0 for all r 6= j we get

exp
(
it>µ(1)

)
ψ1

(
t>Σ(1)t

)
= exp

(
iλjt

>µ(2)
)
ψ2

(
λ2
j t
>Σ(2)t

)
It follows that λ1 = . . . = λk = c and µ(1) = cµ(2), and Σ(1) = c2Σ(2).

Next, we show that by imposing additional constraints on the gene loadings - in particular, requiring
that they come from the same elliptic non-Gaussian multivariate distribution - it becomes possible
to determine that the sample matrix, along with its locations and dispersion matrix, are identifiable
up to a scalar:

Theorem B.2. Let X ∈ Rp×n be a random matrix. Assume the following two representations of X

S(1)A(1) + Z(1)B(1) = X = S(2)A(2) + Z(2)B(2)

with the following properties for i = 1, 2 :

1. (A(i)>|B(i)>)> ∈ R(k(i)+l(i))×n is a (non-random) matrix with full row rank with
rank(A(i)) = k(i) and rank(B(i)) = l(i) ≤ n− k(i)

2. S(i) ∈ Rp×k(i)

and Z(i) ∈ Rp×l(i) are random matrices such that for i = 1, 2 and V(i) ∈
{S(i),Z(i)}

(a) The columns of V(i) are mutually independent,

(b) The column vectors V
(i)
:,k are distributed according to a non-Gaussian elliptical dis-

tribution Ep(µ
(i)
V ,Σ

(i)
V ) with location µ(i)

V and a dispersion matrix Σ
(i)
V .

(c) Additionally, the random column vectors of Sd and Zd do not have Gaussian compo-
nents.

3. the latents S(i) and noise matrix Z(i) are independent and there exist no λ ∈ R such that
µ

(i)
Z = λµ

(i)
S ,Σ

(i)
Z = λ2Σ

(i)
S .

Then k(1) = k(2) = k and l(1) = l(2) = l and exist permutation matrices PA, PB ∈ Rk×k and
constants cA, cB > 0 such that:

A(2) = cAPAA
(1), B(2) = cBPBB

(1),

Σ
(2)
S =

Σ
(1)
S

c2A
, µ

(2)
S =

µ
(1)
S

cA
,

Σ
(2)
Z =

Σ
(1)
Z

c2B
, µ

(2)
Z =

µ
(1)
Z

cB
.

Proof of Theorem B.2

Proof. According to Lemma B.1 each row of (A(1)>|B(1)>)> is proportional to a row of
(A(2)>|B(2)>)>. With similar arguments as above it holds that k(1) + l(1) = k(2) + l(2).
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Suppose that the j−th row of A(1) is proportional to the r−th row of B(1). It follows that that there
exist a constant λ such that for all t ∈ Rp :

exp
(
it>µ

(1)
S

)
ψ1

(
t>Σ

(1)
S t
)

= exp
(
iλt>µ

(2)
Z

)
ψ2

(
λ2t>Σ

(2)
Z t
)
,

i.e., µ(1)
S = λµ

(2)
Z and Σ

(1)
S = λ2Σ

(2)
Z . Thus, k(1) = k(2) and l(1) = l(2). The rest follows from

Theorem B.1.

Corollary B.1. Let X1, . . . ,XD with Xd ∈ Rp×nd be random matrices with the following two
representations

S
(1)
d A

(1)
d + Z

(1)
d B

(1)
d = Xd = S

(2)
d A

(2)
d + Z

(2)
d B

(2)
d

with the following properties for i = 1, 2 and d = 1, . . . , D :

1. (A
(i)>
d |B(i)>

d )> ∈ R(k
(i)
d +l

(i)
d )×nd is a (non-random) matrix with full row rank:

rank(A
(i)
d ) = k

(i)
d , rank(B

(i)
d ) = l

(i)
d ≤ nd − k

(i)
d ,

2. the columns of S
(i)
d are independent and are distributed according to a non-

Gaussian elliptical distribution Ep(µ
(i)
Sd
,Σ

(i)
Sd

) with location µ(i)
Sd

and a dispersion matrix

Σ
(i)
S := Σ

(i)
S1

= . . . = Σ
(i)
SD

.

3. the columns of Z
(i)
d are noise random variables and are i.i.d non-Gaussian elliptical dis-

tributed Ep(µ
(i)
Zd
,Σ

(i)
Zd

) with location µ(i)
Zd

and a dispersion matrix Σ
(i)
Zd

. Furthermore, for

each d there exist no λ ∈ R such that µ(i)
Zd

= λµ
(i)
S ,Σ

(i)
Zd

= λ2Σ
(i)
S .

4. the latents S
(i)
d and noise matrix Z

(i)
d are mutually independent.

5. Additionally, the random column vectors of Sd and Zd do not have Gaussian components.

Then, for d = 1, . . . , D, k(1)
d = k

(2)
d = kd and l(1)

d = l
(2)
d = ld. Furthermore, there exist permuta-

tion matrices PA1 , . . . , PAD , PB1 , . . . , PBD and constants cA, cB1 , . . . , cBD > 0 such that:

A
(2)
d = cAPAdA

(1)
d , B

(2)
d = cBdPBdB

(1)
d ,

Σ
(2)
S =

Σ
(1)
S

c2A
, µ

(2)
Sd

=
µ

(1)
Sd

cA
,

Σ
(2)
Zd

=
Σ

(1)
Zd

c2Bd
, µ

(2)
Zd

=
µ

(1)
Zd

cBd
.

Proof of Corollary B.1 Theorem B.2 guarantees the identifiability results for each view separately,
i.e. for each d = 1, . . . , D there exist permutation matrices PAd , PBd and constants cAd , cBd > 0
such that:

A
(2)
d = cAdPAdA

(1)
d , B

(2)
d = cBdPBdB

(1)
d ,

Σ
(2)
S =

Σ
(1)
S

c2Ad
, µ

(2)
Sd

=
µ

(1)
Sd

cAd
,

Σ
(2)
Zd

=
Σ

(1)
Zd

c2Bd
, µ

(2)
Zd

=
µ

(1)
Zd

cBd
.

It follows that for all d = 1, . . . , D :

Σ
(2)
S =

Σ
(1)
S

c2Ad
.

Thus, cA := cA1
= . . . = cAD .
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C Dependence Structure and Properties of the Multivariate t-Distribution

C.1 Alternative Generative Model for the Multivariate t-Distribution

The probability density function of the multivariate t-distribution with ν degrees of freedom, mean
vector µ, and scale matrix Σ in p dimensions is given by:

f(x) =
Γ
(
ν+p

2

)
Γ
(
ν
2

)
(νπ)p/2|Σ|1/2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)− ν+p
2

where:

• x is the variable vector,
• µ is the mean vector,
• Σ is the scale matrix,
• ν is the degrees of freedom,
• Γ is the gamma function.

The following result is central to the EM procedure and is shows that the multivariate t-distribution
can be expressed by means of the multivariate normal distributed random variable and Gamma
distributed random variable:
Theorem C.1 ([2]). Let S ∼ tp(ν, µ,Σ) for some mean µ and positive semi-definite matrix Σ. Then,
there exist random variables τ and N that follow Gamma distribution Γ(ν2 ,

ν
2 ) and a Gaussian

distribution N (0,Σ), respectively, such that S ∼ µ+N/
√
τ .

C.2 Dependence Relationship between the Genes in the GCN

As previously discussed, we use the precision matrix Θ to construct the GCN. Specifically, consider
a graph G = (V,E), where V = {1, . . . , p} represents the set of observed genes and E is a
collection of edges between pair of nodes (or genes) i and j for which the corresponding entry Θij

is non-zero.

An interesting aspect is understanding the types of (in)dependencies encoded by this graph struc-
ture. For context, in Gaussian models, the absence of an edge between two nodes i and j implies
conditional independence between them, given the remaining nodes. However, this direct implica-
tion does not translate to multivariate t-distributions. Instead, a weaker concept of dependence, con-
ditional uncorrelation, applies, as discussed in [7] for the single view case:
Theorem C.2 ([7]). Let S ∼ tp(ν, µ,Σ).Σ is a positive definite matrix with (Σ−1)ij = 0 for indices
i 6= j corresponding to the non-edges in the graph G. If two nodes i and j are separated by a set of
nodes C in G, then Si and Sj are conditionally uncorrelated given SC .

While Theorem C.2 shows that conditional uncorrelation can be derived from the graph structure,
it leaves open the question of whether multivariate t-distributions can be factorized according to
any Bayesian network. The following result addresses this issue by showing that the only Bayesian
network compatible with the multivariate t-distribution is a fully connected DAG:
Lemma C.1. Let G = (V,E) be a DAG with vertices V = {1, . . . , p}. Furthermore, the joint
distribution of the corresponding variables S1, . . . , Sp is multivariate t-distribution tp(ν, µ,Σ) with
0 < ν < ∞. Let pa(k) ⊆ V \ {k} denote the set of parents of node k. Then, the following
holds P (S1, . . . , Sp) =

∏p
k=1 P (Sk | Spa(k)) iff there exists an ordering Sτ(1), . . . , Sτ(p) such that

pa(τ(k)) = {τ(1), . . . , τ(k − 1)}, i.e. the graph is fully connected.
Remark C.1. (a) Lemma C.1 suggests that from the estimated Θ, we can infer only conditional

uncorrelation between the genes, not conditional independence. However, this result does not
contradict the GCN definition used in this work, as detailed in Section 1, which is based on
correlation rather than statistical independence.

(b) According to Theorem C.2, the reconstructed GCN should exclude edges between genes that
are conditionally uncorrelated given rest of the genes. This implies that co-regulated genes
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will not be connected in the GCN, as they become conditionally uncorrelated when conditioned
on their regulators. However, this holds only in the absence of confounding factors—whether
observed or unobserved—such as external stimuli that might influence gene regulation as part
of the experimental design. Our current approach does not account for these elements of the
experimental design, which could potentially refine the GCN. We leave this consideration for
future work.

Proof of Lemma C.1

Proof. “⇐ ” This direction follows directly from the chain rule of probabilities.

“⇒ ” Assume that the DAG is not fully connected, i.e. there exist setsA,B,C ⊂ V, A 6= ∅, B 6= ∅
such that the random variables SA and SB are d-separated given SC (SA ⊥G SB |SC). Thus, it
follows that SA ⊥⊥ SB | SC which implies that p(SA | SB , SC) = p(SA|SC).

According to [2] the joint distribution of SA, SB , SC , their conditionals and marginals follow a mul-
tivariate t-distribution. More precisely, let d = |A| + |B| + |C|, µd = (µ>A, µ

>
B , µ

>
C)>, Σ =

Σ(A,B,C),(A,B,C), then Sd = (SA, SB , SC) ∼ td(ν, µd,Σ). Furthermore, for the conditional distri-
butions we have

SA | SB , SC ∼ t|A|
(
ν + |B|+ |C|, µA|B,C ,

ν + dB,C
ν + |B|+ |C|

ΣA|B,C

)
(5)

SA | SC ∼ t|A|
(
ν + |C|, µA|C ,

ν + dC
ν + |C|

ΣA|C

)
Then, it follows that ν + |B|+ |C| = ν + |B|+ |C| which implies that |B| = 0.

D Parameter Inference: Background

D.1 Graphical LASSO

The Graphical lasso (GLASSO) is a maximum likelihood estimator for inferring graph structure
within high-dimensional multivariate normal distributed data through estimating a sparse precision
matrix [8]. More precisely, let X = (X1,X2, . . . ,Xn) be a collection of n i.i.d. samples distributed
according to the multivariate normal distribution N (0,Θ−1), where Θ−1 ∈ Rp×p is the covariance
matrix and its inverse Θ known as the precision matrix. The underlying undirected graph structure
among the variables can be inferred directly from the precision matrix: a non-zero entry Θij indi-
cates an undirected edge between the i-th and j-the variables in the multivariate vector. GLASSO
estimates Θ by maximizing the posterior distribution of X given Θ := Σ−1 which is proportional to

p(X,Θ) = pλ(Θ)

n∏
i=1

N (Xi|µ,Θ−1) where Θ � 0.

The prior pλ(Θ) on the positive-definite matrices Θ parametrized by λ > 0 is defined as

pλ(Θ) ∝ exp (−λ‖Θ‖1) with ‖Θ‖1 =
∑
i,j

|Θij |.

Thus, the MLE problem that GLASSO solves can be formalized as follows

max
Θ�0

ln p(X,Θ) ≡ min
Θ�0
− ln det(Θ) + tr(Σ̂Θ) + λ‖Θ‖1, (6)

where S is the empirical covariance matrix, Σ̂ = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)>, and X̄ is the

empirical mean. Intuitively, the parameter λ controls the sparsity level of the precision matrix Θ.
Specifically, selecting a higher value for λ leads to sparser precision matrix estimates.

D.2 Student’s t-Lasso

The accuracy of graph inference can be significantly compromised by deviations from the normal
distribution assumption. To address this robustness issue, [7] propose an alternative to GLASSO for
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inferring graph structure of multivariate Student’s t-distribution which we call TGLASSO. Consider
the setting from above, where we are given a collection of n i.i.d samples X = (X1,X2, . . . ,Xn).
Then the joint distribution of the data X and precision matrix Θ is given by

p(X,Θ) = pλ(Θ)

n∏
i=1

tν,p(Xi|µ,Θ−1) where Θ � 0,

where the density function of the Student’s t-distribution tν,p(µ,Θ−1) is given by

Γ ((ν + p)/2) det Θ1/2

(πν)p/2Γ(ν/2) (1 + δ (x;µ,Θ) /ν)
(ν+p)/2

with

δ (x;µ,Θ) = (x− µ)>Θ(x− µ), x ∈ Rp.

Estimating the precision matrix in this setting is not tractable, and [7] propose an Expectation-
Maximization procedure for estimating Θ by exploiting the following generative model with latent
variables Zi and τi for each sample Xi

Zi ∼ N (0,Θ−1)

τi ∼ Γ(ν/2, ν/2)

Xi := µ+ Zi/
√
τ i ∼ tν,p(µ,Θ−1).

The proposed EM procedure operates under the assumption that τi’s are latent variables and that
Xi|τi ∼ N (µ, (τiΘ)−1). This process iterates through two main steps: 1) Estimating the τi for
fixed µ and Θ−1 and 2) Estimating µ and Θ−1, where Θ is a solution to the GLASSO problem in
Equation (6) for an empirical covariance matrix of the estimated Z. More precisely, at step t ≥ 0
the EM procedure becomes

E-step: For fixed estimated µ(t−1) and Θ(t−1) compute

τ
(t)
i =

ν + p

ν + δ
(
Xi;µ(t−1),Θ(t−1)

)
M-step: Calculate µ(t) and Σ(t)

µ(t) =

∑n
i=1 τ

(t)
i Xi∑n

i=1 τ
(t)
i

Σ(t) =
1

n

n∑
i=1

τ
(t)
i

(
Xi − µ(t)

)(
Xi − µ(t)

)>
(7)

Estimate Θ(t) via solving the GLASSO optimization problem

Θ(t) ∈ arg min
Θ�0

− ln det(Θ) + tr(Σ(t)Θ) + λ‖Θ‖1

E Experiments

E.1 Implementation

Implementation of MVTLASSO

1. The optimization problem in step 3 is convex if {Wd}Dd=1 are positive semidefinite matri-
ces. In the general case, however, we only require {Wd}Dd=1 to be invertible, which in-
creases the complexity of solving equation 4 . By treating the datasets X1, . . . ,XD as in-
stances of Independent Component Analysis (ICA), we can reformulate the original opti-
mization problem equation 4 . Using FastICA [13] or a similar ICA algorithm, we obtain
transformed datasets X̃1, . . . , X̃D, which serve as estimates of Y1, . . . ,YD, up to permu-
tation matrices P1, . . . , PD and scaling factors. Consequently, replacing the raw data with
X̃1, . . . , X̃D transforms the original optimization problem equation 4 into estimating each
permutation matrix Pd. In our implementation, we optimize for Pd with an additional re-
laxation, allowing Pd to be orthogonal, which accelerates the computation.
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2. We initialize the parameter W0 as detailed in the previous remark (a), and the parameters
µd, σd and Θ using a few iterations (not necessarily to convergence) of TLASSO by Fine-
gold and Drton [7].

3. The steps in the M-step are interdependent, i.e., steps 1 and 2 are based on the inverse
sample matrix Wd. Therefore, it is possible to iterate steps 1 to 3 multiple times. In our
implementation, however, we perform only a single iteration.

4. Our model relies on several hyperparameters, including the number of multivariate t-
distributed vectors kd used for graph inference and the penalty parameters λ and γ. Ideally,
these parameters could be determined by cross-validation. However, our EM procedure in-
volves a GLASSO step in each iteration, which is computationally intensive. Therefore, we
preselect the number of components prior to the parameter estimation process as described
by Parsana et al. [23].

Implementation of baselines For GLASSO, we used the implementation available in the R pack-
age [9]. The variants GLASSO+Standardization and GLASSO+ICA include preliminary steps
where the samples are subjected to standardization and ICA, respectively, before GLASSO is ap-
plied for precision matrix estimation. It is important to note that neither baseline includes a dimen-
sionality reduction step.

Stability Selection The fitting procedure for all GLASSO-based methods makes use of stability
selection by Meinshausen and Bühlmann [19] with a predefined range of penalty parameters. The
steps of the procedure are outlined as follows:

1. The data is repeatedly subsampled by selecting 90% of all samples per view N = 100
times. For each subsample, the selected GCN inference method is applied using the prede-
fined set of penalty parameters, Λ.

2. The outcomes for each penalty parameter are gathered in the selection probability matrix
Πλ, where (Πλ)ij represents the proportion of the N precision matrices Θ̂(1), . . . , Θ̂(N)

indicating a nonzero edge between nodes i and j, i.e. (Πλ)ij =

∑
l 1{Θ̂

(l)
ij

6=0}

N .
3. We select the edges whose selection probability exceeds 50% for each penalty parameter.
4. The final graph can be constructed by collecting all edges inferred from the range of penalty

parameters. This step is not conducted in our analysis.

The primary benefit of stability selection, as outlined by [19], is that it can reduce the risk of false
positives, i.e., incorrectly identifying edges in the network. By requiring that an edge be consistently
identified across many subsamples of the data, stability selection ensures that the edges selected are
robust and not the result of random variations in the data.

E.2 Data Preprocessing

The dataset BSB1 is preprocessed following the method suggested by Rychel et al. [25]. Specifi-
cally, three samples (S3 3, G+S 1, and Mt0 2) were removed to ensure that the Pearson correlation
between biological replicates was at least 0.9. Furthermore, we centered the data by subtracting the
mean gene values in the M9 exponential growth condition. We used the preprocessed PY79 dataset
by Arrieta-Ortiz et al. [3]. BSB1 and PY79 samples are then centered and rescaled before applying
any graph inference procedures. We selected genes that are present in both datasets. In addition, we
have split both datasets into two subsets of samples with experimental designs that are as different
as possible to simulate four views instead of two. A link to the datasets will be provided after sub-
mission.
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