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ABSTRACT

Inference-time scaling has attracted much attention which significantly enhance
the performance of Large Language Models (LLMs) in complex reasoning tasks
by increasing the length of Chain-of-Thought. These longer intermediate reason-
ing rationales embody various meta-reasoning skills in human cognition such as
reflection and decomposition, being difficult to create and acquire. In this work,
we introduce Self-Reasoning Language Model (SRLM), where the model itself
can synthesize longer CoT data and iteratively improve performance through self-
training. By incorporating a few demonstration examples (i.e., 1,000 samples) on
how to unfold hidden reasoning chains from existing responses, which act as a rea-
soning catalyst, we demonstrate that SRLM not only enhances the model’s initial
performance but also ensures more stable and consistent improvements in subse-
quent iterations. Our proposed SRLM achieves an average absolute improvement
of more than +2.5 points across five reasoning tasks: MMLU, GSM8K, ARC-C,
HellaSwag, and BBH on two backbone models. Moreover, it brings more im-
provements with more times of sampling during inference, such as absolute +7.89
average improvement with 64 sampling times, revealing the in-depth, diverse and
creative reasoning paths in SRLM against the strong baseline.

1 INTRODUCTION

Recent studies have demonstrated that inference-time scaling (OpenAI, 2024) effectively improves
performance of Large Language Models (LLMs) in various reasoning tasks (Wang et al., 2023a),
such as mathematics and complex question answering, by extending the length of Chain-of-Thought
(CoT) (Wei et al., 2022; Wang et al., 2023b) reasoning rationales (Qwen, 2024; DeepSeek-AI et al.,
2025). With longer CoTs during inference, these LLMs could explore more creative and diverse
reasoning rationales while assembling various meta-reasoning skills observed in human cognition
(Gigerenzer, 1991; Johnson-Laird, 1988; Dye, 2011; Wang et al., 2024a), such as reflection and
decomposition (Wu et al., 2024; Wang et al., 2025), resulting in better performance. However, the
scarcity of these longer CoT data remains a significant obstacle to advancing inference-time scaling,
especially for instructions without verifiable answers in the general instruction-tuning data.

Several prior studies have explored various approaches to get better CoT tuning datasets, where most
of them utilize either the LLM itself (Wang et al., 2023d; Huang et al., 2023; Xue et al., 2025) or
external reasoning models (Li et al., 2024a; Hu et al., 2024a) to generate (or refine) new (or existing)
responses in the instruction-tuning dataset, leading to great improvements at various downstream
tasks. Despite the effectiveness of these proposed methods, they still face several limitations. On
the one hand, most of them focus on questions with verifiable answer such as math and code (Huang
et al., 2023; DeepSeek-AI et al., 2025), being infeasible for general instruction-tuning dataset. On
the other hand, another line of work typically assumes access to more powerful models to refine
each sample iteratively (Xu et al., 2023; Li et al., 2024a). Such methods suffer from performance
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plateaus or even degradation (Ding et al., 2024) and are inherently constrained by the capability
ceiling of the powerful model.

To this end, we present Self-Reasoning Language Models (SRLM), which is capable to self-
unfolding its own reasoning rationales and iteratively optimize itself, leading to enhanced overall
capability. Specifically, we first create only few reasoning catalyst data that compose the demon-
strations of how to enrich shorter CoT rationales into more longer and comprehensive CoT with the
augmentation of various meta-reasoning skills. After incorporating the reasoning catalyst data with
the original instruction-tuning data, the tuned model not only inherit the basic reasoning capabilities
from the instruction-tuning dataset, but also learn how to refine reasoning simultaneously, resulting
in Self-Reasoning Language Models. Consequently, the SRLM can refine its own reasoning ratio-
nales at each iteration with the processing of reasoning expansion and selection. During this process,
the model generates enriched reasoning rationale candidates for the same instructions in the original
instruction-tuning dataset. These rationale pairs are then filtered and selected using three proposed
selectors without any prior assumption about the instruction and answer. Finally, the newly selected
instruction-tuning dataset is combined with the reasoning catalyst data to create the training data
for the next iteration of SRLM, which is initialized from the same base model. To conclude, our
contributions can be summarized as follows:

• We introduce Self-Reasoning Language Models (SRLM), which is capable to act as both:
1) a response generation model (i.e., learn to reason); and 2) reasoning models to refine its
own reasoning rationales (i.e., how to reason).

• We present reasoning catalyst data, function as demonstrations to guide the LLM to unfold
all hidden reasoning chains with the augmentation of various meta-reasoning skills such as
reflection and decomposition.

• Our experiments demonstrate that incorporating a small portion of reasoning catalyst data
(less than 0.02%) enables small-size SRLMs to generate higher-quality instruction-tuning
datasets compared to those generated by GPT-4o, while also achieving better performance
and more stable improvements across iterations on various reasoning benchmarks.

2 RELATED WORK

Synthetic Instruction-tuning Data. Previous research on instruction tuning has primarily utilized
human-annotated data to create large, high-quality datasets (Wang et al., 2022; 2023b), being both
time-consuming and labor-intensive. Therefore, recent studies turn to leverage more advanced mod-
els to automatically generate instruction-tuning datasets (Wang et al., 2023d; Peng et al., 2023; Li
et al., 2024a; Wang et al., 2024b). For instance, Magpie (Xu et al., 2024) leverage open-source
models to generate more diverse user queries and responses by only feeding the left-side templates
up to the position reserved for user messages as input. Moreover, there is another line of works
focused on refining existing instruction-tuning data using powerful models, such as WizardLM (Xu
et al., 2023) and Reflection-tuning (Li et al., 2024a) and NILE (Hu et al., 2024a). In detail, Li et al.
(2024a) utilize GPT-3.5 to reflect on existing instructions and responses while Hu et al. (2024a) use
GPT4 to capture the knowledge gap between internal parametric knowledge in LLMs and external
world knowledge in instruction-tuning data.

Self-Improved LLMs. Recent studies have demonstrated that LLMs can refine themselves using
self-generated data, leading to enhanced performance and efficiency without human intervention,
resulting in self-improving LLMs (Huang et al., 2023). It is crucial to select high-quality samples
from the vast amounts of generated data. There are different ways to acquire the quality signals
of data samples: 1) LLMs (Yuan et al., 2024); 2) ranking or reward models (Dong et al., 2023;
Lu et al., 2024; Hu et al., 2024b); and 3) some automatic methods such as execution feedback
(Haluptzok et al., 2022) or self-consistency in multiple reasoning paths (Wang et al., 2023c). One
distinct aspect of our work is that we are working on general instruction-following data optimization
iteratively, where the answers are not verifiable like math and coding problems, making most of
previous studies infeasible and unaffordable (Huang et al., 2023; Li et al., 2024a).
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Figure 1: The framework of our proposed Self-Reasoning Language Models, which consists of two
phrases.

3 METHOD

3.1 TASK FORMULATION

Given a large language model M and the original instruction-tuning dataset D0 = {(xi, r
0
i , yi)} at

time step 0, where xi is the instruction, ri is the chain-of-thought rationale Wei et al. (2022) 1 and yi
represents the final answer in the ith sample. The goal of self-improved LLMs is to iteratively refine
the instruction-tuning dataset from the time step 0, leading to better dataset Dt = {(xi, r

t
i , yi)} at

time step t, ultimately resulting in enhanced performance at downstream tasks.

3.2 FRAMEWORK

As shown in Figure 1, there are two main phases in our method. In phase 1, we leverage existing
LLMs to acquire seed data of reasoning augmentation, and function as reasoning catalyst to enlight
the models to enrich existing reasoning rationales ($3.2.1). In phase 2, the model then is fine-tuned
using both original instruction-tuning data and reasoning catalyst data, and iteratively refined using
self-generated new rationales, resulting in self-improved models ($3.2.2).

3.2.1 REASONING CATALYST ACQUISITION

There is a Chinese proverb: “It’s better to teach a man to fish than to give him fish." Similarly, in
the context of LLMs, rather than directly copying reasoning capabilities from existing instruction-
tuning datasets, it is crucial to teach LLMs how to reason and refine their reasoning based on specific
problems and existing reasoning rationales. To achieve this goal, we first carefully design meta-
reasoning prompt 2, which is composed of different meta-reasoning skills such as reflection, detail,
and alternative-thinking, inspired by meta-reasoning theory in cognitive science Zhou et al. (2024).
Then we leverage these meta-reasoning skills to unfold hidden reasoning chains based on given
instruction and previously reasoning rationales r0j , resulting in enriched reasoning rationales r∗j as
follows:

r∗j = Mmeta(xj , r
0
j ) (1)

Here the Mmeta could be human experts or any off-the-shelf models. Therefore, it can effec-
tively fill in missing details within existing rationales while preserving their core semantic meaning.
Moreover, it is desirable to introduce new rationales (i.e., using alternative-thinking), correct errors
in previous rationales (i.e., using reflection), and other hidden reasoning chains with different skills.
Thus, this process provides exceptional flexibility and robustness to address errors, misleading rea-
soning paths, and unclear solutions in the previous reasoning rationale. Since we aim to teach the

1Note this is optional, take it as yi if it does not exist.
2The prompt can be found in Table 6.
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model how to reason instead of directly telling them the correct reasoning paths for all instructions.
Therefore, we only incorporate a few samples (only 0.02% in the main experiment) as reasoning
catalyst data to enforce the models’ generalization to other unseen instructions.

3.2.2 SELF-IMPROVED LLMS
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Figure 2: Three different types of rea-
soning selectors.

Given the original instruction-tuning dataset Dt =
{(xi, r

t
i , yi)} (t = 0 at the beginning) and fixed few rea-

soning catalyst data R = {(xj , r
t
j , r

∗
j )}, the original base

LLM M 3 is then tuned using both types of data to lean
reasoning and how to reason simultaneously, resulting in
new LLM Mt. Then we enrich the reasoning rationales
in original instruction-tuning datasets (i.e., iterative rea-
soning expansion) and select better rationales to form the
instruction-tuning dataset in the next step t + 1 (i.e., it-
erative reasoning selection), which completes the whole
iteration.

Iterative Reasoning Expansion. We directly prompt
the Mt model to generate enriched reasoning rationales
given previous reasoning rtj and xj for each sample in the
instruction-tuning dataset, distinguishing from reasoning
catalyst acquisition.

rt+1
i,m = Mt(xi, r

t
i), ∀m ∈ {1, 2, . . . , N}. (2)

where N represents the number of sampling attempts, designed to enhance diversity and produce
higher-quality output.

Iterative Reasoning Selection. It is important to determine which rationale is better for current
instruction given the pair of (xi, r

t
i , yi) and (xi, r

t+1
i , yi). Thus we carefully design three different

selectors to investigate corresponding effects as shown in Figure 2:

• Length Selector. We consider a longer rationale to be better because it provides more detailed
insights into the previous reasoning. Even if it contains errors or irrelevant information, it can be
refined and corrected in subsequent iterations.

• Off-policy Selector. We leverage the original base model to calculate the the probability of the
answer yi given the instruction xi and different rationales, and then choose the rationale that has
a higher chance of leading to the final answer.

r∗ = arg max
j∈{t,t+1}

P (yi|xi, r
j
i ) (3)

• On-policy Selector. Similar with off-policy selector, but we use the Self-Reasoning Language
Model at last iteration to calculate the probability.

4 EXPERIMENTS

4.1 SET UP

Models. We mainly use two different base models: Llama3.1-8B (Grattafiori et al., 2024) and
Mistral-7B-V0.3 (Jiang et al., 2023) since both of them are open-sourced and support longer context.

3We note we always finetune the model start from base models instead of continual tuning.
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Figure 3: The performance of Self-Reasoning Language Models (SRLM) across five different
benchmarks, along with the average performance (Avg.). We report the best performance during
the five iterations for each selector, and the detailed experimental logs can be referred to at Table 7.

Data. There are two different parts of data used in our experiments: 1) instruction-tuning data:
we first randomly sample 50k instances from Magpie-reasoning-150k (Xu et al., 2024) and then
adopt reflection-tuning (Li et al., 2024a) to reflect its instruction and the responses using GPT-4o
model; 2) reasoning catalyst data: we use the GPT-4o model to generate only additional 1k samples
(only 0.02% of whole training dataset) to enrich the original rationales with various meta-reasoning
skills. We compare the performance of various models fine-tuned using our method against two
above instruction-tuning datasets 50k Magpie data and 50k Reflection-tuning data.

Evaluation and Metrics. We choose several existing benchmarks to validate the effectiveness and
generalization of our proposed method. Specifically, we mainly focus on tasks necessniate complex
reasoning such as general reasoning benchmarks: MMLU (Hendrycks et al., 2021), mathematical
reasoning: GSM8K (Cobbe et al., 2021), commonsense reasoning: ARC-C (Clark et al., 2018),
HellaSwag (Zellers et al., 2019) and other challenging tasks: BBH (Suzgun et al., 2022). We choose
Accuracy as the evaluation metric and use the zero-shot prompting method to evaluate the perfor-
mance of fine-tuned models, following lots of previous works (Grattafiori et al., 2024).

Implementation Details. We train 1,000 steps on 16 A100 80G GPUs for each method to ensure
a fair comparison, considering the slightly different sizes of the dataset. During the training, we set
the learning rate as 1e-05, batch size as 4, and gradient accumulation steps as 2 following Zheng
et al. (2024). After obtaining the SRLM, we set the sample times N in Eq 2 as 5, and the max-
imum iteration times as 5 for all selectors. During the inference, we adopt the same setting with
temperature as 0.2, top p as 0.9, and max tokens as 8192 to make a fair comparison.

4.2 MAIN RESULTS

The main results are shown in Figure 3. Based on that, we have the following key observations.

Incorporating additional reasoning expansion samples into the instruction-tuning dataset acts
as a catalyst, leading to improved performance. As we can find in the Avg. and most bench-
marks, SRLM (M0) achieves better performance than Reflection-tuning and Magpie in both mod-
els. The only two exceptions are GSM8K and HellaSwag, due to the relatively smaller number of
instances of mathematical and commonsense reasoning in the reasoning expansion data.

Small Self-Reasoning Language Models can generate high-quality rationales iteratively. It is
evident that SRLM with different selectors at various iterations all leads to improvement compared
with the initial SRLM (M0). Since the only difference between these SRLMs is the used instruction-
tuning dataset, it strongly demonstrates that the SRLM with a small size (7B or 8B) can generate
better instruction-tuning samples than GPT-4o (a.k.a., the instruction-tuning data at the 0th step).
It is encouraging to find that synthesized data by small language models still can provide stronger
supervision signals than the latest powerful models. In addition, we find that Llama3.1-8B achieves
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Figure 4: The performance of the baseline and our proposed SRLM with different sampling times
ranging from 1 to 64 (i.e., 1, 2, 4, 8, 16, 32, 64) on five various benchmarks and the Avg. perfor-
mance.

more consistent and higher improvement than Mistral-7B since it generates better samples due to
more strong base capabilities.

All types of selectors outperform SRLM (M0), with the on-policy selector excelling in MMLU,
while the length selector performs better on HellaSwag and BBH. Generally, Length selector
achieves the best performance at Avg. for both models, revealing the excellence of this simple
strategy in SRLM. In detail, we observe a seesaw phenomenon across different datasets and models.
For example, with the same Mistral-7B model, the on-policy selector performs better on ARC-C but
worse on HellaSwag. However, the on-policy selector on the Llama3.1-8B model performs worse
compared to the other selectors on ARC-C. This can be attributed to the interaction effects between
the models and datasets, highlighting the challenges in evaluating self-improving LLMs.

5 ANALYSIS

5.1 EFFECTS OF SAMPLING TIMES.

In the main experiment, we mainly consider the best-of-1 performance of different methods. Alter-
natively, the best-of-N performance has been proved to be an effective way to showcase the depth
and creativity of the model’s problem-solving potential in terms of reasoning Chow et al. (2024). In
this way, we conduct the multiple sampling ranging from 1 to 64, aiming to investigate the perfor-
mance under the best-of-N setting. Figure 4 shows the performance of our proposed SRLM (M3

with length selector) and the baseline. The full experimental results can be found in Table 11 and
fitting functions can be found in Appendix. First of all, it is worth noting that SRLM achieves much
better performance with more sampling times on all benchmarks, as the gains get bigger and bigger.
This is further supported by the larger coefficient of the logarithmic term in the fitted function of
SRLM. Secondly, we can observe that MMLU achieves the highest growth rate and then followed by
ARC-C and HellaSwag. As shown in Table 11, SRLM achieves 94.24% on the Avg. performance
with 64 sampling times with MMLU (96.15% (+11.35)), ARC-C (98.72% (+9.56)), HellaSwag
(97.62% (+8.38)). Based on above observations, it is believed that our proposed SRLM can ex-
plore more depth, diverse and creative reasoning paths toward the final correct solution, revealing
its promising potential.

5.2 EFFECTS OF DIFFERENT NUMBER OF ITERATIONS

Figure 5 presents the Avg. Performance under different iterations with three types of selectors.
There are several key findings. On the one hand, on-policy methods typically perform poorly at the
beginning of the iteration process. This can be attributed to the limited number of samples - only
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a few hundred - selected during the initial iteration. Moreover, as the process progresses from the
first to the third iteration, the number of selected samples increases with the upward trend of the
performance observed for both models in the figure. After the third iteration, performance diverges:
the number of selected samples decreases for Mistral-7B, leading to a performance decline, while it
remains constant for Llama3.1-8B, resulting in stable and saturated performance.
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Figure 5: The effects of different number of itera-
tions in Self-Reasoning Language Models.

On the other hand, the length selector mostly
leads to the best performance of the three se-
lectors, and we also observe model degrada-
tion no matter which selector is chosen. Af-
ter checking the number of selected numbers at
each iteration, we find that the off-policy selec-
tor selects the most samples in the first itera-
tion, nearly matching the original dataset size,
but drops sharply to around 10k and continues
decreasing. In contrast, the length-based selec-
tor also decreases, but at a slower and steadier
rate. The last thing we want to emphasize is that
it is evident that SRLM is capable of correcting
previous rationales considering that there may be errors in the enriched rationales in previous steps,
as we can find that length and off-policy selector achieve the best performance at 5th iteration with
the worst performance at 4th.

5.3 EFFECTS OF REASONING CATALYST DATA
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Figure 6: The ablation study by remov-
ing the reasoning catalyst data at each
iteration. We report the Avg. perfor-
mance here and the detailed results can
be found in Table 8.

We also investigate several factors of reasoning catalyst
data that may have serious effects on the final perfor-
mance of SRLM, including the ablation study, different
sizes, and sources of the data.

Ablation Study. We first directly remove the catalyst
data from each iteration and train the model indepen-
dently following the same setting in the main experi-
ments. Figure 6 presents the final results at different it-
erations. Two obvious observations can be drawn from
the results. First of all, the performance at later iterations
mostly outperforms the performance at the initial itera-
tion (iteration at t = 0) no matter incorporates a reason-
ing catalyst or not. This provides additional direct evidence that the newly generated instruction-
tuning datasets at iterations (t > 1) are better than the GPT-4o generated dataset at iteration t = 0.
Secondly, when incorporating reasoning catalyst data, the improvements become more stable and
consistent. We can find that IT + Catalyst mostly achieves better performance than only instruction-
tuning data, and it brings consistent improvement while the performance using instruction-tuning
data only may fluctuate.

Size of Catalyst. We additionally random sample 5,000 and 10,000 from the original instruction-
tuning dataset and build corresponding catalyst data. We also train the SRLM with 1,000 optimiza-
tion steps to make a fair comparison following the same setting in the main experiments. Table 1
shows the final results. Generally, adding more reasoning catalyst data does not significantly im-
prove average performance. However, it can lead to noticeable gains on specific datasets.

In detail, SRLM (M0) with 10,000 reasoning catalyst data achieves best performance at MMLU,
GSM8K and BBH. Moreover, it continues to show superior results on MMLU with additional train-
ing iterations. This evidence suggests that incorporating more catalyst reasoning data benefits gen-
eral reasoning tasks that require comprehensive evaluation, rather than domain-specific reasoning
tasks. Furthermore, we can find that it offers limited benefits for commonsense reasoning tasks like
ARC-C and HellaSwag, as the SRLM with just 1,000 data points consistently achieves peak perfor-
mance across all iterations. We attribute this to relatively smaller ratio of commonsense reasoning
samples in the sampled dataset.
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Data MMLU GSM8K ARC-C HellaSwag BBH Avg.
Reflection-tuning 57.08 66.49 67.32 50.34 30.09 54.26
SRLM – M0

Cat. = 1k 57.60 64.59 70.14 49.23 31.46 54.60
Cat. = 5k 57.46 66.26 67.15 47.87 25.23 52.79
Cat. = 10k 58.81 67.63 67.41 46.30 32.29 54.49

SRLM – M1

Cat. = 1k 58.31 65.73 72.87 48.05 34.08 55.81
Cat. = 5k 58.03 67.85 74.23 46.54 32.51 55.83
Cat. = 10k 58.55 67.63 73.29 45.27 31.78 55.30

SRLM – M2

Cat. = 1k 58.27 69.22 72.70 51.99 32.03 56.84
Cat. = 5k 56.96 67.17 71.16 47.11 28.58 54.20
Cat. = 10k 58.34 67.40 73.38 51.06 33.18 56.67

SRLM – M3

Cat. = 1k 57.91 67.25 72.70 52.88 34.06 56.96
Cat. = 5k 57.30 65.73 70.73 46.97 30.61 54.27
Cat. = 10k 58.24 67.17 70.56 50.87 32.83 55.93

Table 1: The results using different size of reasoning catalyst data based on Llama3.1-8B model
with 1,000 steps optimization on three iterations (M0,1,2,3). We bold the best performance at each
iteration.

Data MMLU GSM8K ARC-C HellaSwag BBH Avg.
Reflection-tuning 57.08 66.49 67.32 50.34 30.09 54.26
IT0 + New Cat 57.69 66.34 70.90 49.32 32.22 55.30
IT1 + New Cat 56.77 68.31 69.28 45.53 33.40 54.66
IT2 + New Cat 58.17 67.40 70.31 48.10 31.28 55.05
IT3 + New Cat 56.45 66.49 69.62 46.47 30.27 53.86

Table 2: The performance of SRLM with length selector on Llama3.1-8B using New 1k reasoning
catalyst data with 1,000 steps optimization.
New Catalyst. We also investigate the effects of applying out-of-distribution reasoning catalysts.
To achieve this, we construct the catalyst using a separate randomly sampled 1,000 instruction-
tuning dataset that has no overlap with the existing datasets. Table 2 shows the performance at each
iteration. It is shown that incorporating additional out-of-distribution reasoning catalyst data also
brings improvement compared with the only 4o-generated instruction-tuning data. However, con-
sistent improvement in later iterations is not guaranteed as we observe only partial gains in certain
benchmarks rather than a significant increase in overall average performance. We consider this due
to difficulty in refining the rationale for existing instructions given out-of-distribution demonstra-
tions.

Update Catalyst. Until now, we only update the instruction-tuning data set as shown in Figure 1.
Alternatively, we can also update reasoning catalyst data by utilizing the newly generated rationales
rtj . In detail, we can update the r∗j only with rt+1

j or update r0j and r∗j with rtj and rt+1
j at the same

time with simple length selector. However, we find that both of these two updating mechanisms
can not bring significant improvement and even downgrade the performance at the later iterations as
shown in Table 10. We consider the primary reason may be that LLMs tend to become constrained
by their own outputs, limiting exploration of diverse solutions when more self-generated rationales
are included. Moreover, the reasoning catalyst data introduced at the initial stage may be nearly
optimal, thus being difficult to beat with only length selector.

6 DISCUSSION

6.1 LLM-AS-A-JUDGE EVALUATION

Besides the exact match evaluation of five various reasoning benchmarks, we also conduct LLM-as-
a-judge evaluation on two popular benchmarks: Arena-Hard Li et al. (2024b) and Alpaca Eval V2 Li
et al. (2023). Following the default setting, we utilize gpt-4-1106-preview to compare the responses
generated by different methods (i.e., Reflection-tuning and SRLM - M3 with length selector) against
the response generated by the reference model (i.e., gpt-4-0314 in Arena-Hard, gpt-4-turbo in Al-
paca Eval). Table 3 shows the win rate of response pairs. It is clear that our proposed SRLM achieves
higher win rates at both datasets, leading to relatively 34% and 56% improvement on Arena-Hard
and Alpaca Eval V2 respectively.
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Method Arena-Hard Alpaca Eval V2
Alpaca-7B - 2.59
Reflection-tuning 6.40 5.92
SRLM (Ours) 8.60 9.21

Table 3: The win rate of SRLM and Reflection-tuning

Data MMLU GSM8K ARC-C HellaSwag BBH Avg.
Reflection-tuning 51.44 48.07 66.64 37.24 31.71 47.02
SRLM (Ours)

IT0 + Cat. 55.34 49.81 69.28 42.88 30.57 49.58
IT1 + Cat. 53.85 51.78 67.58 44.93 34.07 50.44
IT2 + Cat. 52.81 49.81 68.17 47.35 31.21 49.87
IT3 + Cat. 52.31 47.08 66.47 45.03 28.53 47.89

Table 4: The results of Llama3.1-8B on instruction-tuning dataset (collected by length selector) of
each iteration for Alpaca Taori et al. (2023) dataset with 2,000 optimization steps.

6.2 EFFECTS OF INSTRUCTION-TUNING DATA

To further validate the robustness of our proposed SRLM, we also conduct our experiments on an-
other popular instruction-tuning dataset: Alpaca Taori et al. (2023). Following the same procedure,
we finetuned our models for all datasets in 2,000 steps with batch size at 2 due to more longer re-
sponses in original Alpaca dataset. Table 4 shows the final results. It is clear that our method still
outperforms the competitive 4o-generated data by reflection-tuning, and achieves best performance
at the first iteration with the absolute +3.42 improvement on average performance of five different
benchmarks. This result evidences the robustness and generalization of our proposed method on
different datasets.

6.3 INFERENCE ANALYSIS
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Figure 7: The distribution of various meta-
reasoning skills employed at the training and in-
ference of SRLM.

We also study the distribution of various meta-
reasoning skills employed during training and
inference stage of SRLM. Figure 7 shows the
results. On the one hand, it is obvious that de-
tail is the dominant reasoning skills used to un-
fold hidden reasoning rationales, and then fol-
lowed by decomposition, reflection, no matter
in training and inference stage. On the other
hand, the striking similarity in reasoning skill
distribution patterns between training and infer-
ence phases strongly suggests that instruction-
tuning data construction critically influences
model behavior. The distribution of various rea-
soning skills across different benchmarks dur-
ing inferences also shows similar trends (as
shown in Figure 8).

7 CONCLUSION

In this paper, we present Self-Reasoning Language Models (SRLM), which is capable to generate
responses and unfold hidden reasoning chains at the same time, leading to self-evolved models that
enhance performance across various reasoning benchmarks. By incorporating additional reasoning
catalyst data with original instruction-tuning dataset to learn how to reason, SRLM can enrich previ-
ous reasoning rationales with the augmentation of many meta-reasoning skills in each iteration, i.e.,
detail, decomposition and reflection. Therefore, SRLM can iteratively refine its own rationales and
evolves with better instruction-tuning dataset at each iteration. While there are many avenues left
unexplored, we believe this is exciting and promising because SRLM is better able to self-discover
diverse and creative reasoning paths, leading to more scalable ways to self-improve.
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Figure 8: The distribution of meta-reasoning skills on five various benchmarks and the global distri-
bution during inference.

A APPENDIX

A.1 PROMPT DETAILS

Table 5 and Table 6 show the instruction and system prompt respectively used to instruct LLMs to
unfold the hidden reasoning chains with the augmentation of various meta-reasoning skills.

Here is the given question: {ins}

Here is the original reasoning: {ans}

Table 5: The instruction used to prompt LLM to generate the enriched rationales.

A.2 EXPERIMENTAL LOGS

Reflection-tuning. MMLU: y = 6.4535 ∗ log(x) + 60.5418; GSM8K: y = 6.0944 ∗ log(x) +
69.6957; ARC-C: y = 4.8088 ∗ log(x) + 71.8375; HellaSwag: y = 9.2765 ∗ log(x) + 54.6557;
BBH: y = 11.1345 ∗ log(x) + 34.2507; Avg.: y = 7.5551 ∗ log(x) + 58.1925

SRLM. MMLU: y = 9.0256 ∗ log(x) + 62.8932 GSM8K: y = 6.5905 ∗ log(x) + 71.4682
ARC-C: y = 5.9295 ∗ log(x) + 78.0043 HellaSwag: y = 10.9284 ∗ log(x) + 57.7607 BBH:
y = 11.9599 ∗ log(x) + 38.7086 Avg.: y = 8.8870 ∗ log(x) + 61.7671

A.3 CASE STUDY

Table 12 shows the non-cherry pick test examples of MATH. It is obvious that our proposed SRLM
can take advantages of different meta-reasoning skills such as decomposition, detail, check, reflec-
tion and summary to get the correct answer.
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You are an expert at meta reasoning theory from cognitive science. Given the question, corresponding summarized
reasoning and answer, you can always uncover hidden or unspoken reasoning, even when it isn’t explicitly stated.
You need to add any missing reasoning thoughts that you think it is helpful or may occurs to understand and solve this
question based on given summarized reasoning result. Your new reasoning should be more comprehensive, detailed
and clear. Your answer should follow the format like <thoughts> your new reasoning here </thoughts>
Inside <thoughts> </thoughts>, you need to explicitly indicate which meta reasoning skill is used, some of them are
shown below, but note you can use anything else if you think it is helpful or it naturally occurs when you solve this
question.

<decomposition>: breaking down a complex problem into smaller, more manageable parts. Making sure that you also
provide answers for all decomposed problems in this section. You can decompose iterativelly but should not contain
same problem or exceed the max iteration depth which is three.

<backward>: starting with the desired observations at any previous reasoning step and working backward to identify
the new reasoning directions.

<detail>: any details including but not limited to logic and reasons for your reasoning in this way, you are encouraged
to add this at every unclear or unnatural reasoning step.

<summary>: summarize your reasoning to help future thinking.

<alternatives>: directly thinking in other ways, try to explore different solutions as much as possible to solve given
problem.

<reflection>: you are encouraged to regularly reflect on your past reasoning in current response at various levels of
detail, from sentence down to individual word. This will help you better understand and think through problems. It’s
okay to make mistakes; use them as opportunities to learn and improve.

<analogy>: you are encouraged to regularly consider other analogous problems with the problem you’ve encountered
at various reasoning steps, along with their solutions. Reference existing theories or methods that guided your approach
to solving these problems. These similar problems can be at various levels of detail - from larger overarching issues
down to smaller sub-problems you encountered along the way. The key is to demonstrate a diverse range of problems
and solutions, to show how you have approached and resolved challenges that are analogous to the current situation.

<check>: consider different edge cases or test cases carefully.

<other>: other meta reasoning skills you think is helpful or worthy to try to solve the task.

Notice:

1. All tags must be properly invoked and closed, using the format like <reflection> and </reflection>.

2. You should always use first-person perspective.

3. You can add any new meta reasoning skill at any positions except <reflection>. Note <reflection> can not be invoked
without any reasoning in current response and it can be invoked at any positions when you already have some reasoning
results.

4. You cannot change the original reasoning. However, if you identify any errors or improvements in the reasoning,
you can add new reasoning steps using above meta-reasoning skills afterwards to correct or clarify the path, ensuring a
better understanding and solution.

5. You can apply the same reasoning skills multiple times or use different skills simultaneously.

6. Your answer should start with <thoughts>, and end with </thoughts>.

Table 6: The system prompt used to initialize LLM to unfold all hidden reasoning chains.
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Models Methods MMLU GSM8K ARC-C HellaSwag BBH Avg.

Mistral-7B

Magpie 44.35 41.02 55.72 37.61 27.13 41.17
Reflection-tuning 49.85 56.56 61.69 45.15 27.29 48.11

IT0 + Cat. (k = 0) 51.63 56.03 63.05 40.82 29.97 48.30
Length Selector

IT1 + Cat. (k = 1) 49.50 58.91 62.37 45.91 31.33 49.60
IT2 + Cat. (k = 2) 50.01 59.59 64.85 42.16 29.82 49.29
IT3 + Cat. (k = 3) 50.56 56.41 64.59 46.88 32.11 50.11
IT4 + Cat. (k = 4) 49.07 58.45 60.41 42.03 29.35 47.86
IT5 + Cat. (k = 5) 50.66 56.79 66.13 47.30 31.87 50.55

Off-policy Selector
IT1 + Cat. (k = 1) 49.55 58.07 65.02 41.02 32.82 49.30
IT2 + Cat. (k = 2) 50.63 57.92 62.12 41.98 32.49 49.03
IT3 + Cat. (k = 3) 49.74 55.95 65.02 42.28 32.12 49.02
IT4 + Cat. (k = 4) 50.19 56.56 60.24 42.55 31.48 48.20
IT5 + Cat. (k = 5) 50.79 57.77 64.25 45.66 32.00 50.09

On-policy Selector
IT1 + Cat. (k = 1) 50.00 58.68 64.59 41.27 29.64 48.84
IT2 + Cat. (k = 2) 51.69 57.47 66.30 42.29 30.77 49.70
IT3 + Cat. (k = 3) 50.28 56.33 64.59 46.44 30.36 49.60
IT4 + Cat. (k = 4) 51.66 55.34 65.36 44.55 29.07 49.20
IT5 + Cat. (k = 5) 49.54 55.57 62.63 43.00 32.00 48.55

Llama3.1-8B

Magpie 54.34 44.81 68.77 44.05 25.10 47.41
Reflection-tuning 57.08 66.49 67.32 50.34 30.09 54.26

IT0 + Cat. (k = 0) 57.60 64.59 70.14 49.23 31.46 54.60
Length Selector

IT1 + Cat. (k = 1) 58.31 65.73 72.87 48.05 34.08 55.81
IT2 + Cat. (k = 2) 58.27 69.22 72.70 51.99 32.03 56.84
IT3 + Cat. (k = 3) 57.91 67.25 72.70 52.88 34.06 56.96
IT4 + Cat. (k = 4) 57.27 67.17 72.87 49.83 33.44 56.12
IT5 + Cat. (k = 5) 56.17 65.73 69.45 50.27 33.75 55.07

Off-policy Selector
IT1 + Cat. (k = 1) 58.26 67.70 74.23 46.11 32.14 55.69
IT2 + Cat. (k = 2) 58.50 67.25 73.46 48.03 31.28 55.70
IT3 + Cat. (k = 3) 58.30 65.43 73.04 46.93 30.37 54.81
IT4 + Cat. (k = 4) 58.57 67.40 74.15 46.93 30.03 55.42
IT5 + Cat. (k = 5) 57.72 66.79 75.51 47.40 31.12 55.71

On-policy Selector
IT1 + Cat. (k = 1) 57.96 65.20 70.05 45.07 29.69 53.59
IT2 + Cat. (k = 2) 58.53 64.67 69.20 48.41 31.32 54.43
IT3 + Cat. (k = 3) 58.26 66.41 72.35 50.43 32.89 56.07
IT4 + Cat. (k = 4) 58.45 68.76 70.14 46.54 33.37 55.45
IT5 + Cat. (k = 5) 59.17 66.19 69.88 50.76 33.01 55.80

Table 7: The detailed experimental results of each iteration.

Data MMLU GSM8K ARC-C HellaSwag BBH Avg.
Reflection-tuning 57.08 66.49 67.32 50.34 30.09 54.26
IT1 57.74 67.93 74.06 49.22 32.94 56.38
IT2 57.87 66.87 72.53 48.63 30.46 55.27
IT3 57.51 68.46 73.21 51.59 31.61 56.48

Table 8: The results of Llama3.1-8B on instruction-tuning dataset (collected by length selector) of
each iteration.
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Data MMLU GSM8K ARC-C HellaSwag BBH Avg.
SRLM – M0

Cat. = 5k 58.47 67.10 69.54 47.13 27.98 54.04
Cat. = 10k 59.22 66.26 67.58 46.68 30.78 54.10

SRLM – M1

Cat. = 5k 58.04 66.41 75.17 45.71 31.47 55.36
Cat. = 10k 58.56 66.72 75.00 48.00 30.02 55.66

SRLM – M2

Cat. = 5k 58.05 68.46 72.70 44.76 29.28 54.65
Cat. = 10k 57.84 67.70 73.04 50.79 28.70 55.61

SRLM – M3

Cat. = 5k 57.35 65.96 73.04 45.52 30.73 54.52
Cat. = 10k 57.29 67.32 73.38 48.65 29.23 55.17

Table 9: The results using different size of reasoning catalyst data based on Llama3.1-8B model
with 3 epochs optimization on three iterations (M0,1,2,3). We bold the best performance at each
iteration.

Data MMLU GSM8K ARC-C HellaSwag BBH Avg.
IT0 + Cat. 57.60 64.59 70.14 49.23 31.46 54.60
Update r∗j with rt+1

j

IT1 + Up. Cat.1 59.27 66.03 74.15 49.84 31.29 56.12
IT2 + Up. Cat.2 57.42 65.81 71.08 47.57 29.45 54.27
IT3 + Up. Cat.3 55.52 65.13 69.28 49.25 30.92 54.02
Update both r0j , r

∗
j with rtj , r

t+1
j

IT1 + Up. Cat.1 56.99 64.75 72.87 47.94 33.83 55.28
IT2 + Up. Cat.2 57.18 63.99 67.92 49.78 33.11 54.40
IT3 + Up. Cat.3 55.09 65.13 68.17 49.42 32.57 54.08

Table 10: The performance of SRLM with length selector on Llama3.1-8B using Update 1k reason-
ing catalyst data with 1000 steps optimization.

# Sampling Methods MMLU GSM8K ARC-C HellaSwag BBH Avg.

1 Reflection-tuning 57.08 66.49 67.32 50.34 30.09 54.26
SRLM 57.91 67.25 72.70 52.88 34.06 56.96

2 Reflection-tuning 65.50 74.07 76.02 60.88 41.55 63.60
SRLM 69.56 75.89 83.02 64.25 46.61 67.87

4 Reflection-tuning 71.66 80.52 82.00 70.33 52.48 71.40
SRLM 78.44 83.85 89.51 76.11 57.74 77.13

8 Reflection-tuning 76.42 84.38 84.56 77.81 61.09 76.85
SRLM 85.41 88.32 93.94 85.46 68.23 84.27

16 Reflection-tuning 79.79 88.10 85.75 82.61 67.56 80.76
SRLM 90.31 91.89 96.33 91.67 74.87 89.01

32 Reflection-tuning 82.48 90.75 88.05 86.41 72.79 84.10
SRLM 93.85 93.63 98.12 95.41 80.23 92.25

64 Reflection-tuning 84.80 92.27 89.16 89.24 76.27 86.35
SRLM 96.15 95.38 98.72 97.62 83.31 94.24

Table 11: The detailed experimental results with multiple sampling for baseline and SRLM.
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Question: Suppose a and b are positive integers, neither of which is a multiple of 3. Find the least possible remainder
when a2 + b2 is divided by 3.

Reflection-tuning Answer: To solve this problem, we need to find the remainder of a2 + b2 when divided by 3, given
that a and b are integers not divisible by 3.
First, consider the properties of numbers modulo 3. Any integer n can be expressed as n = 3k + r where r is the
remainder when n is divided by 3. Since a and b are not multiples of 3, r ̸= 0.
Now, let’s express a and b in terms of their remainders when divided by 3: a = 3m + r1 and b = 3n + r2, where
r1, r2 ̸= 0.
Substitute these into a2 + b2: a2 + b2 = (3m+ r1)

2 + (3n+ r2)
2 = 9m2 + 6mr1 + r21 + 9n2 + 6nr2 + r22.

Notice that all terms containing m and n are multiples of 3, and thus their sum is also a multiple of 3. The only terms
not divisible by 3 are r21 and r22 .
Since r1 and r2 are not zero, r21 and r22 can each be 1 or 2 (since they are squares of non-zero remainders when divided
by 3). The smallest possible value for r21 + r22 is 1 (when both r1 and r2 are 1 or both are 2) and the largest possible
value is 4 (when one is 1 and the other is 2).Thus, the remainder of a2 + b2 when divided by 3 can only be 1 or 2. , the
possible remainders when a2 + b2 is divided by 3 are 1, 2 .

SRLM: <thoughts><decomposition> Let’s break down the problem into smaller parts to ensure clarity and accuracy in
our reasoning. First, we need to understand the behavior of squares modulo 3. Next, we’ll examine the possible values
of a and b under the constraint that they’re not multiples of 3. Finally, we’ll compute ( a2 + b2 mod 3 ) for these
values and determine the remainder. </decomposition>
<detail> Understanding the behavior of numbers under modulo 3 involves recognizing that any integer n can be ex-
pressed as n = 3q + r, where q is the quotient and r is the remainder. For n2, we have n2 = (3q+r)2 = 9q2+6qr+r2.
Simplifying gives us n2 ≡ r2 (mod 3). Thus, the possible remainders for n2 are 0, 1, or 2 depending on r. </detail>
<detail> Since neither a nor b is a multiple of 3, they can take values of 1 or 2 modulo 3. This means a ≡ 1or2
(mod 3) and similarly for b. We need to evaluate a2 + b2 for these possibilities. </detail>
<check> Let’s verify each case:- Case 1: a ≡ 1 (mod 3), b ≡ 1 (mod 3)- Then a2 ≡ 12 ≡ 1 (mod 3)- b2 ≡ 12 ≡ 1
(mod 3)- So, a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3)
- Case 2: a ≡ 1 (mod 3), b ≡ 2 (mod 3)- Then a2 ≡ 12 ≡ 1 (mod 3)- b2 ≡ 22 ≡ 4 ≡ 1 (mod 3)- So,
a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3)
- Case 3: a ≡ 2 (mod 3), b ≡ 1 (mod 3)- Then a2 ≡ 22 ≡ 4 ≡ 1 (mod 3)- b2 ≡ 12 ≡ 1 (mod 3)- So,
a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3)
- Case 4: a ≡ 2 (mod 3), b ≡ 2 (mod 3)- Then a2 ≡ 22 ≡ 4 ≡ 1 (mod 3)- b2 ≡ 22 ≡ 4 ≡ 1 (mod 3)- So,
a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3)</check>
<summary> In all cases, the remainder when a2 + b2 is divided by 3 is consistently 2. There were no overlooked
scenarios or computational errors, confirming the correctness of the result. </summary>
<reflection> By systematically evaluating each case and cross-verifying calculations, I ensured that the solution aligns
with the conditions provided. The consistency in outcomes confirms the robustness of the method applied. </reflection>
Therefore, the least possible remainder when a2 + b2 is divided by 3 is 2 .</thoughts>
Based on the above processing, the key reasoning steps can be summarized clearly, followed by the concise answer.solve
this problem, we need to understand the behavior of squares modulo 3. Any integer n can be expressed as n = 3q + r,
where q is the quotient and r is the remainder when n is divided by 3. Squaring both sides gives n2 = (3q + r)2 =
9q2+6qr+r2. This simplifies to n2 ≡ r2 (mod 3). Therefore, the possible remainders for n2 are 0, 1, or 2 depending
on r.
Since neither a nor b is a multiple of 3, they can be either 1 or 2 modulo 3. We need to calculate a2+ b2 for these cases:
1. If a ≡ 1 (mod 3) and b ≡ 1 (mod 3), then a2 ≡ 12 ≡ 1 (mod 3) and b2 ≡ 12 ≡ 1 (mod 3). So, a2 + b2 ≡
1 + 1 ≡ 2 (mod 3).2. If a ≡ 1 (mod 3) and b ≡ 2 (mod 3), then a2 ≡ 12 ≡ 1 (mod 3) and b2 ≡ 22 ≡ 1
(mod 3). So, a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3).3. If a ≡ 2 (mod 3) and b ≡ 1 (mod 3), then a2 ≡ 22 ≡ 1 (mod 3)
and b2 ≡ 12 ≡ 1 (mod 3). So, a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3).4. If a ≡ 2 (mod 3) and b ≡ 2 (mod 3), then
a2 ≡ 22 ≡ 1 (mod 3) and b2 ≡ 22 ≡ 1 (mod 3). So, a2 + b2 ≡ 1 + 1 ≡ 2 (mod 3).all cases, the remainder when
a2 + b2 is divided by 3 is 2. Therefore, the least possible remainder is 2 .

Table 12: The (non-cherry-pick) test instance from MATH.
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