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Abstract

It is important to understand the uncertainty in large language models
(LLMs) explanations because they reveal more information about the rea-
soning process and thus provide insights into the reliability of LLMs’ an-
swers regarding a question. In this work, we propose a novel framework
that quantifies uncertainty in LLM explanations through reasoning topolo-
gies. By designing a structural elicitation strategy, we guide the LLM to
frame the explanations on how it derives the answers into graph topologies.
This strategy first queries knowledge-related sub-question and sub-answer
pairs, and then guides the LLM to connect the pairs through a topologi-
cal reasoning process. Based on the reasoning topologies, we revisit the
Graph Edit Distance and provide a variant that can better quantify the
LLM uncertainty from both semantic and reasoning structure dimensions.
The topology structure further brings convenience to assess redundancy by
extracting and comparing the valid reasoning path to the raw explanation.
Extensive experiments show the effectiveness of the proposed framework,
and interesting findings on reasoning patterns and efficiency are discussed.

1 Introduction

Deep learning models have long been criticized for their lack of trustworthiness due to
the complex network structures and opaque decision-making processes (Li et al., 2022;
Doshi-Velez & Kim, 2017; Samek et al., 2021). This has motivated researchers to investi-
gate methods for understanding and quantifying the uncertainty associated with these
models (Abdar et al., 2021; Loquercio et al., 2020; Maddox et al., 2019). Recently, Large
Language Models (LLMs) have demonstrated significant advancements over traditional
deep learning approaches across a variety of tasks (Zhao et al., 2023; Naveed et al., 2023).
However, concerns about their reliability persist. LLMs often produce outputs that are
difficult to verify, particularly in scenarios requiring complex reasoning (Shi et al., 2024).
This introduces risks in critical applications, such as healthcare or legal contexts (Cascella
et al., 2023; Jayakumar et al., 2023), where incorrect or unreliable reasoning can have severe
consequences. Properly quantifying uncertainty in reasoning is crucial for ensuring safe
and trustworthy reference.

Existing research on Uncertainty Quantification (UQ) for LLMs primarily focuses on analyz-
ing semantic uncertainty (Kuhn et al., 2023; Lin et al., 2023; Qiu & Miikkulainen, 2024; Da
et al., 2024), which involves examining patterns from the meaning of multiple responses
generated for a given question. Although this can provide insights into output-level variabil-
ity, it overlooks the structural characteristics of the reasoning process that give rise to such
uncertainty. In other words, existing UQ methods do not model how uncertainty emerges
and propagates through intermediate reasoning steps, which hinders practitioners’ analyses,
understanding, and potential remedy-based improvement. For instance, in Figure. 1 (right),
when asked the same question, In part ① answer-based UQ can not reveal the vulnerable
parts in the reasoning path, which are contained in the reasoning steps as in part ②.
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Figure 1: The comparison of Answer-based-UQ measures and Proxy (Explanations)-based
UQ measures. The Explanations-based approach reveals more reasoning information.

By quantifying uncertainty at the reasoning dimension, we can effectively detect inconsisten-
cies in intermediate steps, support human-in-the-loop validation in sensitive applications,
and uncover vulnerabilities within the reasoning process itself. This underscores the impor-
tance of reasoning-aware uncertainty quantification. In this paper, we address this challenge
by explicitly modeling reasoning processes as logical topologies. While prior work treats a
single Chain-of-Thought (CoT) sequence as a monolithic response (Wei et al., 2022; Wang
et al., 2023) and measures semantic consistency at the output level, such approaches fail to
capture the structural complexity of real-world reasoning, which frequently involves hierar-
chical dependencies and parallel sub-tasks. To overcome these limitations, we introduce
formal topology that represents reasoning as a logical graph, where nodes correspond to
individual reasoning steps and edges encode their logical dependencies. This graph-based
structure enables finer-grained, more interpretable uncertainty analysis.

Based on the structural representation, we introduce a graph-based measure for assessing
uncertainty, by first encoding the node and edge descriptions into the semantic embeddings,
and then performing a graph-edit-distance comparison, our framework captures the uncer-
tainty from both semantic and topology aspects. Besides, we also propose a redundancy
measure for the valid reasoning path, which helps understand the LLM’s reasoning effec-
tiveness. Extensive experiments on diverse datasets and LLMs demonstrate the utility of
the proposed quantification methods. In summary, the contributions of this paper are:

• We identify limitations in existing answer-based UQ approaches for LLMs and
propose a novel topology-elicitation framework that explicitly models the reasoning
process from explanations as a logical topology.

• We introduce Topo-UQ, a topology-based uncertainty measure from both semantic
meaning and reasoning structure to show granular thinking variance. We also
propose a redundancy metric based on valid reasoning paths and raw explanations.

• We demonstrate the effectiveness of our framework through extensive experiments
across multiple datasets and LLMs. Our results highlight its ability to identify
inconsistencies in reasoning paths, improving trustworthiness and interpretability.
Additionally, we discover three widely adopted reasoning patterns in LLMs and
show the chance of improvement under the redundancy measure.

2 Related Work

In this section, we review the related work in the research domains of uncertainty quan-
tification (UQ) for large language models (LLMs) and methods for explanation-based UQ,
with a focus on reasoning processes.

2.1 UQ for LLM

White-box Approaches A significant body of research has focused on performing UQ for
LLMs by inducing the models to output their uncertainty along with their responses Ka-
davath et al. (2022); Lin et al. (2022); Mielke et al. (2020); Tian et al. (2023). These methods
often rely on token-level probabilities to train or fine-tune models for predicting uncertainty.
While effective, these approaches require full access to the model’s structure and weights,
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which is impractical for black-box or commercial LLMs. For example, supervised methods
such as those in Kadavath et al. (2022) estimate uncertainty using logits and ground truth
labels but are computationally expensive and resource-intensive.

Black-box Approaches Another line of work estimates uncertainty directly at the response
level using semantic entropy Kuhn et al. (2023). While this method avoids token-level
dependencies, it still relies on access to token probabilities, limiting its applicability in
black-box settings. To address these limitations, researchers have proposed lightweight
black-box methods that analyze response inconsistencies. For instance, Lin et al. (2023)
uses graph Laplacian eigenvalues as an uncertainty indicator, while Chen & Mueller (2023)
computes confidence scores from generated outputs to identify speculative or unreliable
answers. However, these approaches primarily focus on semantic-level analysis and neglect
the logical structure underlying reasoning processes. Moreover, methods like Lin et al. (2023)
average entailment probabilities without considering directional information in reasoning
paths.

Our work is agnostic to the white box or black box since it leverages the generated explana-
tions as a proxy to measure the reasoning uncertainty as in Figure. 1. This enables a more
nuanced and interpretable assessment of uncertainty in reasoning processes.

2.2 UQ for LLM Explanation

Explanation-based UQ focuses on assessing the reliability of natural language explanations
(NLEs) generated by LLMs by either prompting models to express confidence in their expla-
nations or analyzing consistency across multiple outputs under varying conditions Tanneru
et al. (2024); Yadkori et al. (2024). While these methods provide insights into explanation
robustness, they treat explanations to a question as unstructured text representation, which
lacks structural information and fails to capture inconsistencies or leaps in logic. In con-
trast, our work explicitly leverages well-structured reasoning topologies to enhance the UQ
process for explanations. This structured representation enables us to assess explanation
uncertainties at a finer granularity within complex reasoning paths.

3 Preliminaries

This section provides the foundations for our study, including the definition of uncertainty
in LLMs and its quantification in natural language explanations (NLE) fashion.

3.1 Uncertainty Quantification of LLMs

Uncertainty, as an inherent attribute of LLMs, can arise from various aspects: training
corpus coverage (Huang et al., 2023), prompt ambiguity (Abbasi Yadkori et al., 2024), the
probabilistic nature of language generation (Lin et al., 2023), and many more. Effectively
modeling and interpreting uncertainty are essential for reliable and trustworthy references;
thus, researchers quantify the uncertainty for better decision-making.

Different from UQ methods in classical machine learning (Lakshminarayanan et al., 2017;
Gal & Ghahramani, 2016; Hernández-Lobato & Adams, 2015; Abdar et al., 2021), UQ in LLM
faces unique challenges such as discrete token-based generation, the large combinatorial
output space, and expression diversities of the same concept, thus, most LLM-UQ methods
focus on analyzing uncertainty from model-generated responses as shown in ① in Figure. 1.
The problem could be defined as follows:

Problem 1 (Uncertainty Quantification for LLMs). The LLM ‘M’ is provided with an input
query xq, the goal of the uncertainty function Ux is to map the generated outputs to a scalar score
that determines the uncertainty of the M, i.e., Ux = U

(
{M(xq

i )}
n
i=1

)
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Here, {M(xq
i )}

n
i=1 denotes a set of n responses1 generated by the model M, and U aggregates

uncertainty across multiple responses. Ux is calculated only on x and is a property of the
predicted distribution, which is estimated by U . For black-box methods that analyze
response variability or semantic consistency (Lin et al., 2023), multiple outputs (n > 1) are
typically required. In contrast, white-box methods that rely on internal model parameters,
such as logits (Kadavath et al., 2022), may only require a single output (n = 1). However,
both current answer-based black-box Lin et al. (2023); Chen et al. (2025); Su et al. (2024) and
white-box methods Margatina et al. (2023); Duan et al. (2024); Kadavath et al. (2022) share
limitations in the quantification of reasoning procedures in that they focus on semantic
variability without capturing deeper uncertainties in reasoning steps.

3.2 Uncertainty of LLM Explanations

To address these issues, researchers try to understand uncertainties in reasoning processes
through the natural language explanations (NLEs) as a proxy, introduced by Camburu et al.
(2018); Tanneru et al. (2024). As shown in the green part (②) of Figure. 1, an NLE is a textual
reasoning sequence generated by a language model M, to justify or explain the derivation
of answer a for a given input question xq. Following the existing work, it is defined as:
Definition 1 (Natural Language Explanation). Given a model M and an input query xq, an
NLE can be represented as:

M(xq + xe) = a + ae (1)
where xe is an explanation-specific prompt, a is the model’s answer to the query xq, and ae is the
generated explanation accompanying the answer. The explanation ae contains a sequence of reasoning
steps, represented as ae = {s1, s2, ..., sm}, which capture the reasoning process or justification for a.

To quantify uncertainty through explanations, we extend Problem 1 to consider n explana-
tions generated for the same query xq. Each explanation ae

i (i ∈ {1, 2, . . . , n}) corresponds to
a set of reasoning steps, assuming m steps, then we denote them as ae

i = {si,1, si,2, ..., si,m}.
The overall uncertainty across all n explanations is captured by aggregating reasoning-level
uncertainties for each explanation. This can be formally defined as:
Problem 2 (Uncertainty Quantification for LLM Explanations). Given an input query xq and
an explanation-specific prompt xe, the model M generates a set of answers ai to the query xq, along
with accompanying explanations ae

i . The uncertainty for the query xq is then defined as:

Uxq = U
(

n⋃
i=1

ae
i

)
= U

(
n⋃

i=1

{si,1, si,2, ..., si,m}
)

(2)

where Uxq represents the overall uncertainty for the query xq, and U aggregates uncertainties across
all reasoning steps from all n explanations.

Unlike prior methods that focus on answer-based output variability (Tanneru et al., 2024),
in this paper, we aim to capture nuanced uncertainties from the reasoning process, which
brings advantages in analyzing the reasoning patterns and logical errors. In the next
section, we will introduce Topo-UQ, including how to model reasoning structures within
explanations, and how this graph-based UQ method works with the extracted structures.

4 Method

In this section, we propose a reasoning Topology-based method for Uncertainty
Quantification of LLMs, named Topo-UQ. To capture the complexity of reasoning paths,
the proposed framework consists of two modules: (1) Reasoning Topology Elicitation, which
constructs a structured reasoning graph from LLM-generated explanations, and (2) Topology-
based UQ, which leverages the constructed graphs for uncertainty quantification using a
variant of graph edit distance. We also present a byproduct - a metric of reasoning path re-
dundancy inspired by the analysis of reasonable reasoning paths and original explanations.

1Answers and responses are used interchangeably in this paper.
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[nodeRaw]: If it is currently Summer in Australia, what season is it in Canada?𝑥!

[nodeResult]: It is Winter in Canada.𝑎

𝒢

① ②

Figure 2: An overview of Topo-UQ. It depends on two modules, ① Topology Elicitation
and ② Uncertainty Quantification. Start from ①, given an input question xq, the LLM
not only generates the answer a but is also elicited to provide reasoning explanations. It
first reflects the necessary knowledge points (kn) as sub-questions and then answers them
as (an), T1 and T2 are the prompt templates. These sub-question and answer sets form the
edge and node sets E , V , creating matched pairs. By inserting a node into an (edge-node)
pair, the LLM constructs the reasoning topology G. When we have L explanations, their
topologies are used to estimate Uncertainty through module ②: we encode the content
from each node and edge into embedding space to capture semantic meanings, and apply a
variant of Graph Edit Distance to measure structural variance, then the final uncertainty
combines both semantic and structural differences. An example is shown at the bottom.

4.1 Reasoning Topology Elicitation

The objective of this step is to derive a structured reasoning topology that captures the
complexity of reasoning paths generated by large language models (LLMs). Existing
approaches by Tanneru et al. (2024) represent reasoning explanation as linear sequences of
steps from Chain-of-Thought (CoT) (Wei et al., 2023). While linear text sequences provide
basic interpretability, they fail to capture complex logical transitions in tasks like comparative
reasoning or multi-faceted conclusive answering. This lack of structural richness limits their
ability to analyze and quantify uncertainty in LLM-generated reasoning processes.

To address these limitations, we propose to elicit reasoning topologies from a question xq to
an answer a as a directed graph G = (V , E), where V is the set of nodes corresponding to
knowledge points or intermediate steps, and E is the set of edges capturing logical dependen-
cies between them. The G includes two advantages: First, it can represent diverse structures,
not limited to the linear sequence CoT. Second, the construction is done by the LLM itself,
thus it can flexibly reflect the thinking process for each answer. For example in Figure. 2,
given the query xq: “ If it is currently Summer in Australia, what season is it in Canada? ”, the
knowledge points might include sub-questions such as k0: ‘Where is Australia located on
Earth?’, k1: ‘Where is Canada located on Earth?’, k2: ‘What is the geographical relationship
between Australia and Canada?’ and k3: ‘How does the tilt of the Earth affect seasons?’. The
corresponding answers A = {a0, a1, a2, a3} demonstrate thoughts of LLM for sub-questions.
These knowledge-answer pairs are then connected based on their logical dependencies
to form the reasoning topology graph G. The connection becomes a step from ai to aj:
S = {[ai, aj, kij] | ai, aj ∈ V , kij ∈ E}

Specifically, the construction of G consists of three steps: (1) Knowledge Point Reflection, where
the LLM identifies sub-questions of knowledge points kn required to address the query as
elicited by the template T1; (2) Self-Answering Module, based on the sub-questions among
kn, the LLM generates answers for them, denoted as an, in this process, template T2 carries
the question variable which can be changed according to different sub-questions; up to
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this point, there is an intermediate set containing pairs2 (kn, an), which will be used for (3)
Reasoning Topology Construction. In this part, the knowledge-answer pairs are connected
into a directed graph that reflects the overall reasoning process. It mainly requires an
insertion from the current node-edge pair to a prior node, which is identified by LLM itself.
The detailed explanations of every module and prompt templates are introduced in the
Appendix. B.

4.2 Topology-based Uncertainty Quantification

With the Topology Elicitation module built, we intend to understand the uncertainty from
the elicited structural explanations. Given a query xq, the model M will be asked L times,
from which reasoning topologies {Gq

i }
L
i=1 will be extracted. We propose a UQ method:

Reasoning Graph Edit Distance, namely Reason-GED, to evaluate the consistencies of
{Gq

i }
L
i=1 from the semantics embeddings of node, edge sentences, and structural topologies.

If we apply the traditional graph distances (Bai et al., 2020; Huang et al., 2024; Guzman-
Pando et al., 2024) that solely quantify the differences in structures, we will lose the node and
edge meaning implied in the structure. To understand the structural variance without loss
of semantic meaning, we first encode the node and edge content into semantic embeddings.

Step1: Semantic Embedding. To measure semantic meanings of reasoning steps, for each
graph G = (V , E) ∈ {Gq

i }
L
i=1 we employ an embedding function L to encode the content of

nodes and edges in graph. Since the content of each node v ∈ V and edge e ∈ E is textual
description, we can derive embeddings:

hv = L(v), he = L(e), ∀v ∈ V , e ∈ E (3)
This paper adopts BERT as the embedding function L, but other embeddings could be
preferred for different domain contexts, e.g, (Rasmy et al., 2021) for medical text. The
encoded graph G ′ is shown in the gradient color of ② in Figure. 2. This obtains the semantics
of nodes and edges while preserving the logical structure of the reasoning process.

Step2: Reasoning Distance from Topology and Semantic. In our setting, we have L
reasoning structures {Gq

i }
L
i=1 generated. To measure the pairwise distance of two reasoning

processes G1 and G2, inspired by the concept of graph edit distance (Gao et al., 2010), we use
the minimum transformations (substitution, deletion, insertion) required to align the two
graphs as their pairwise distance.

A. Substitution Costs: For two corresponding (edge, node) pairs in different topologies G1 =
(V1, E1) and G2 = (V2, E2) we define the semantic substitution cost based on (vi, ei) ∈ V1, E1
and (vj, ej) ∈ V2, E2:

c{(ei, vi), (ej, vj)} =

{
1 − cos(L(ei),L(ej)) = 1 − cos(he

j , he
j ), edge substitute

1 − cos(L(vi),L(vj)) = 1 − cos(hv
i , hv

j ), node substitute
(4)

where cosine similarity measures the semantic alignment of two reasoning edges and nodes.
If c{·, ·} is high, this indicates: either given a similar edge (sub-question), the nodes (sub-
response) are different - there might exist an incorrect sub-answer, or difference starts with
edges, which follow up with different responses - there is a different reasoning path or
jumping step. The examples for these cases are shown in Appendix C.1.

B. Deletion/Insertion Costs: In order to decide which node/edge to delete or insert to align
two reasoning topologies. We define the deletion and insertion costs. For a node vi ∈ V1 in
graph G1 = (V1, E1) relative to target graph G2 = (V2, E2):

cdel.(vi) =
1
2
{max

vj∈V2
cos

(
L(vi),L(vj)

)
︸ ︷︷ ︸
Cross-graph Matching Term

+ 1 − 1
|V1| − 1 ∑

vk∈V1
vk ̸=vi

cos
(
L(vi),L(vk)

)
︸ ︷︷ ︸

Internal Uniqueness Term

}. (5)

2(kn, an) = (edge, node) = (e, v)
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The Eq. 5 jointly considers the cross-graph matching cost and the internal uniqueness
cost when deleting node vi. In the cross-graph matching part, if vi has a very similar
counterpart vj in G2, then deleting vi would lose important alignment information; thus,
a high similarity here leads to a higher deletion cost. In the uniqueness part, if vi is very
similar (i.e., redundant) to many other nodes, the average similarity will be high, making
this term low. In other words, deleting a redundant node is less costly. Otherwise, if vi is
unique, deletion is costly. Since the insert. is a reverse action of delete., they share the
same equation. The above defines the cost function for a node, the same applies to edge ei,
complete Eq. 19 is in Appendix C.2.

Step3: Graph Distance for Reasoning Uncertainty. Based on the above two steps, we
can derive the overall graph edit cost in joint consideration of semantic meaning and
topology variance as: GED(G1,G2) = Csub.(P) + Cdel.(P), the P represents the optimal
matchings for sub-questions (edges Pe) and sub-responses (nodes Pv), using the Hungarian
algorithm (Mills-Tettey et al., 2007), details are explained in the Appendix. H.1. We can
calculate the minimal total cost of transformations by finding:

GEDm(G1,G2) = min
P

GED(G1,G2) (6)

Given this, a higher GED implies a higher difference in the reasoning phase by considering
both embedding and structures. We use this computed reasoning distance and construct a
matrix across L reasoning structures {G1,G2, . . . ,Gl}, we compute pairwise distances using:
dij = GEDm(Gi,Gj), which then forms the overall distance matrix between L reasoning
topologies as shown on the right of Figure. 2: DGn = [dij] = [GEDm(Gi,Gj)]L×L. Now, we
can calculate the Topo-UQ by the variance of the distances in DGn , which reflects instability
of the model’s reasoning behavior. Combining Eq. 2, we have the uncertainty score over
a query xq as: Ustruct(xq) = Var(DGn) A higher variance indicates greater inconsistency in
the model’s reasoning, suggesting that the LLM generates more different structures across
multiple responses to the same query.

4.3 LLM Reasoning Redundancy Measure

It is known that the LLM’s reasoning efficiency varies based on the problem type and
model weights (Plaat et al., 2024), and the reasoning topology provides a good reference to
understand the efficiency by analyzing the valid reasoning path. We find that LLMs do not
necessarily rely on all of the nodes from their reasoning topology for the final conclusion,
which means some of the sub-steps do not contribute to solving a problem, and this causes
the decreased efficiency. Here, we propose a measurement named ‘Reasoning Redundancy’.
Reflect the reasoning steps: S = {[vi, vj, eij] | vi, vj ∈ V , eij ∈ E}, we aim to measure the
redundancy based on the valid path constructed by the steps.
Definition 2 (Redundant Node). A node vk ∈ V is redundant if it does not contribute to the
reasoning path from nodeRaw to nodeResult. Formally, a redundant node satisfies:

vk /∈
⋃

[vi ,vj ,eij ]∈Pvalid

{vi, vj} (7)

where Pvalid represents the set of all valid paths contributing to the final conclusion, nodeRaw and
nodeResult are the initial reasoning question and result, respectively, as in Figure. 2.

Given the definition, it is feasible to detect the redundancy following the criteria in Ap-
pendix H.2, we perform the searching for Pvalid valid paths and ‘Redundancy Rate’ using
traversal algorithm (DFS), then we have the redundancy rate of the reasoning process for ae

i :

rredun.(ae
i ) =

|Vredundant|
|V| (8)

where the |V| is the total number of nodes in the reasoning topology, and |Vredundant| is the
number of redundant nodes (isolated from a valid reasoning path).
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5 Experimental Study

In this section, we conducted extensive experiments covering 5 LLMs: GPT4o-mini,
DeepSeek-R1 (distilled on llama3-70b), Phi4, Llama3-8b, Llama3-70b (v3.3), 3 classic datasets,
and 5 UQ methods. We intend to answer the following research questions:

• RQ1: Can Topo-UQ reveal the actual uncertainty in LLM’s reasoning?

• RQ2: How do LLMs perform in the proposed redundancy measure?

• RQ3: From the proposed topology reasoning elicitation, do LLMs share certain
patterns commonly?

5.1 Experiment Settings

Dataset: In this study, to align with the research community (Mirzadeh et al., 2024; Tosh-
niwal et al., 2024; Zhang et al., 2024), we utilized widely adopted datasets, including
GSM8k (Cobbe et al., 2021) and BoolQ (Clark et al., 2019), which require complex reasoning
rather than simple question-answering. These benchmarks assess LLM’s ability to perform
multi-step inference and logical reasoning. Besides, we also develop a new dataset, GeoQA,
especially for condition-based reasoning tasks. We will explain the details of the GeoQA
dataset in Appendix E and provide a brief introduction of all datasets in Appendix I.1

Baselines: To the best of our knowledge, few works focus on the uncertainty quantification
of natural language explanations (NLE), thus, we included all possible baselines: (1) Chain-
of-Thought Agreement (CoTA) (Tanneru et al., 2024), (2) Embedding distance-based UQ for
NLE (Embed-UQ), (3) Entailment probability-based (Entail-UQ), and (4) NLI-logit based
UQ, as our extra baselines to understand their interpretability of LLM explanations. We
provide a brief introduction here, and for the detailed explanation of baselines, please refer
to Appendix. G.

Evaluation and Metrics: To evaluate the performance of uncertainty quantification methods
in LLM explanation tasks, we follow the standard practice that compares uncertainty results
with actual faithfulness (Tanneru et al., 2024). The ground truth faithfulness score reveals
how much the model relies on its complete reasoning process, which is calculated through a
strategy named ‘Early Answering’ as proposed by (Lanham et al., 2023), We provide details
on how the faithfulness score is derived in Appendix I. Ideally, a UQ method is good in
NLE if, for a higher faithful set, it generates lower uncertainty, and vice versa (Tanneru
et al., 2024). Hence, we employ three robust statistical metrics to quantify the correlation
between the derived uncertainty and faithfulness. Including Pearson Correlation Coefficient
(PCC), which is used to measure the linear correlation between two variables. Given the
relatively small amount of each bootstrap sample, we employ two extra metrics, Spearman
Rank Correlation (SRC) and Kendall Rank Correlation (KR); the calculation of metrics is
also in the Appendix J.

For fair evaluation and to avoid bias, we conduct a bootstrap for a given dataset Dtest
and measure the correlation between uncertainty and faithfulness score at each sub-set D′

level. The sub-set is cut as 20 questions with 10 responses for each question = 200 ae, and
bootstrapping is conducted 1000 times on each dataset.

5.2 Quantitative Evaluation (RQ1)

In order to understand if Topo-UQ can reveal the uncertainty in LLMs’ reasoning, we
perform experiments on GSM8K, BoolQ, and GeoQA datasets. Due to the page limit, GSM8K
and BoolQ are shown in the Table. 1, GeoQA is shown in Appendix, Figure. 4. Our method
reveals a stronger negative correlation between the derived UQ results and the groundtruth
faithfulness across different statistic metrics, the results on GPT4o-mini, Llama3-70b, and
DeepSeek-R1 are more convincing because they have a more stable performance on the
Topology elicitation task as in Figure. 6, which, is a key step for the proposed UQ method,
the performance on Phi4 and Llama3-8b not promising as ranked in the last two positions
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Methods GPT4o-mini DeepSeek-R1 Llama-3.3-70B Llama3-8b Phi4

PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓)
Dataset: BoolQ

CoTA 0.03 0.05 0.03 -0.22 -0.20 -0.13 -0.00 0.05 0.03 -0.07 -0.06 -0.04 0.08 0.07 0.05
Embed-UQ 0.16 0.18 0.12 0.56 0.56 0.39 0.09 0.12 0.08 0.04 0.06 0.04 0.02 0.02 0.01
Entail-UQ -0.12 -0.13 -0.09 0.48 0.46 0.32 -0.04 -0.08 -0.05 -0.08 -0.08 -0.05 -0.09 -0.09 -0.06
NLI-logit 0.19 0.18 0.12 0.56 0.56 0.39 0.07 0.10 0.07 0.03 0.03 0.02 -0.01 -0.01 -0.01
Ours -0.03 -0.05 -0.03 -0.29 -0.26 -0.17 -0.24 -0.20 -0.17 -0.24 -0.23 -0.15 0.01 0.01 0.01

Dataset: GSM8K

CoTA -0.12 -0.10 -0.07 -0.40 -0.39 -0.26 -0.13 -0.13 -0.09 -0.04 -0.03 -0.02 -0.14 -0.13 -0.09
Embed-UQ -0.12 -0.10 -0.07 0.09 0.10 0.07 0.15 0.14 0.10 0.23 0.23 0.15 0.28 0.28 0.19
Entail-UQ 0.14 0.14 0.09 0.68 0.66 0.47 0.15 0.13 0.09 -0.08 -0.07 -0.05 0.07 0.07 0.05
NLI-logit 0.00 0.01 0.01 0.10 0.11 0.07 0.13 0.12 0.08 0.21 0.19 0.13 0.29 0.29 0.20
Ours -0.35 -0.34 -0.23 -0.22 -0.20 -0.14 -0.43 -0.41 -0.28 -0.14 -0.13 -0.08 0.12 0.10 0.06

Table 1: Comparison of our methods with different baselines on various datasets and large
language models. The results show that our results consistently outperform the baseline
methods. The value reflects the correlation between the uncertainty and the ground truth
faithfulness; the more faithful an LLM performs, the less uncertainty it should have, so by
the UQ methods, we would expect a negative correlation for a well-performed UQ method.

in Appendix Figure. 6. This RQ result shows our method is effective in revealing the LLM’s
real faithfulness, yet it is more suitable for LLMs with good instruction-following abilities.

5.3 Redundancy Measure of LLMs (RQ2)

GPT-4ominiLlama3-8bPhi4Llama3-70bDeepSeek

(%)

Dimension 2

Di
m

en
sio

n 
1

0

1

2

3

Topology Clustering 

Figure 3: The left side shows the quantification of the LLM’s reasoning redundancy on
three datasets: GeoQA (Blue), GSM8K (Yellow), BoolQ (Purple); The right side shows the
clustering result of the reasoning topologies.
Benefitting from the topology structure, we are able to extract the reasoning path Pvalid
that successfully connects from nodeRaw to nodeResult. Then, we effectively search the
node that does not contribute to the final answer, which serves as a sign of redundancy
in the reasoning process. Following the Eq. 8, we analyze the redundancy rate for each of
the five LLMs on both the node and edge redundancy. Since the node and edge always
show up together in our setting, their redundancy results are very similar; we just present
redundancy on the ‘node’ level for conciseness in the left part of Figure. 3. We find that,
surprisingly, the GPT-4o-mini shows a significantly high redundancy rate in both the nodes
and edges, which might reveal that the high accuracy of the model comes from a broader
searching space (or generating length) when conducting reasoning and proposing solutions.
However, this also reflects that there would be great potential to optimize the reasoning
process for the GPT-wise models. Comparatively, the DeepSeek (distilled llama version)
is relatively low, which might indicate the model’s training was conducted with a special
design to encourage the ‘valid’ reasoning, which eventually contributes to the final result.
We show more results in the appendix for reference.

5.4 Findings on the Reasoning Patterns from LLMs (RQ3)

Based on the topology representations, we conducted further analysis in structural patterns,
we use Graph2Vec (Narayanan et al., 2017) to embed the graph structure information, such
as node connectivity, and perform K-means clustering on 4 classes and obtained silhouette
score of 0.38, as shown in right part of Figure. 3, we found three major reasoning patterns of
the LLMs (in color - red, green, purple on the right side of Figure. 3), they correspond with:
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① Completion-based: the model has seen the data in the training phase, and completes it
as a ‘cloze question’. For example, given the question that provides a feature of climate
type, and asks for the answer as shown in Figure. 4, then in the sub-question step, the LLM
directly asks ‘Does object A have such a feature?’, it shows a one-step, direct answer which
possibly comes from the training memorization. ② Forward reasoning (actual reasoning):
The model is actually performing reasoning based on the analysis procedure, like human
beings, given a question, it first recalls relevant concepts and knowledge that contain the
necessary information. Then, through a step-by-step narrowing-down process, it refines
its understanding, gradually converging on the most precise answer. ③ Combination
of Memory-based answering, forward reasoning (① + ②) + verify: The model uses two
methods and double-checks to verify the answer. Three modes are shown in Figure. 4. We
hope this could serve as an inspiration for the potential further study in answer topology.

Q: "If a place receives less than 250 mm of precipitation annually, what climate does it likely have?” (nodeRaw)
A: "Arid”

Pattern1: Completion-based Reasoning

Three Types of Reasoning Patterns in LLMs:

Pattern2: Forward Reasoning Pattern3: Combination + Verify

nodeRaw

node1

nodeResult

e0

e1

e0: What is the threshold of annual precipitation for 
arid? [in sub-q, directly ask what the feature the arid 
has, arid is the answer]

node1: Arid or desert climates typically have an annual 
precipitation threshold of less than 250 millimeters [the 
memory got confirmed on feature]

e1: What is the final answer?
nodeResult: Arid

- Given [feature], ask for 
answer?

- Middle step: Directly ask 
if object A has [feature]?

- Conclusion

- Given [feature], ask for 
answer?

- Middle step: recall
relevant knowledge
concept, narrow down, 
and confirm.

- Conclusion

e0: What is the definition and classification of climate types? [ask for 
concept of the a topic – climate types]

node1: arid (less than 250 mm), semi-arid (250-500 mm), humid 
subtropical (1,000-2,000 mm), and tropical wet (over 2,000 mm). 

e1: More characteristics of an arid? [reason by narrowing down,
ask for details like human thinking]
node2: …

e3: What is the final answer?
nodeResult: Arid

nodeRaw

nodeResult

e0

e1

e2

e3

node1

node2

nodeRaw
e0 e1

e2 e2

e3

node1
node2

node3

nodeResult

- Given [feature], ask for 
answer?

- Middle step:
(0) recall concept 
(1) I seen this before, Arid?
(2) both goes Arid, is that 
the answer?

- Conclusion

e0: Definition and classification of climate types? 

node1:…

e1: What are the climate characteristics of arid area?
node2: …

e2: Does arid satisfy the question? [confirm on the answer]
node3: Yes
e3: What is the final answer?
nodeResult: Arid

[(e0, e1) are two distinct steps, e1 directly knows 
answer; e0 try to reflect concept]

The model answers based on memorization (not reasoning) Answer question by actually reflect the knowledge Answer question by memory + reflect the knowledge

Figure 4: The examples of three types of reasoning patterns. As shown in the image, the
first type directly reflects the correct answer in its first reasoning step, and not actually
performing the reasoning, the second type is like humans, try to recall the knowledge points,
and narrow down the range, and find the possible answer in a thought chain, while the
third one is a combination of two, it has the steps to ask for characteristics, but it also try
to reflect if it has seen this question before at the edge 1, which is a direct attempt to use
answer to match the question, the last step is to confirm if the memory of answer matches
the requirement in the question.

6 Conclusion

In this paper, we introduce a novel framework Topo-UQ to quantify the uncertainty of
LLMs’ reasoning through the explanations. By designing a reasoning topology elicitation
module, we tackle the challenge of shaping the structural reasoning process of LLMs. Then,
based on the constructed topologies, the paper provides a ‘graph edit distance’ based un-
certainty measure named Reason-GED. It considers both the semantic meanings of the
reasoning steps and the structural topology variance, by a set of well-designed operation
costs: substitution and deletion (insertion), we can effectively quantify the reasoning un-
certainty. The empirical studies show that this method provides better performance in
revealing the true faithfulness of the natural language models. Besides, this paper also
introduces a redundancy-based method to quantify the conciseness of the LLMs’ reasoning
process, which could potentially serve as a guide for improving reasoning efficiency.

Limitations: Although the Topo-UQ shows an interesting direction (topology structure) to
quantify the LLM reasoning uncertainty, it requires the LLMs to come with good instruction-
following ability. Thus, this method is more applicable to larger models with long-context
reasoning capabilities. Besides, the current method is validated by the faithfulness, but it
does not concern the answer’s correctness from the reasoning path; analyzing the uncertainty
relevant to the correctness would also be beneficial for real-world use-cases.
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Ethics Statement

This paper focuses on the uncertainty quantification of the LLM explanations. The data
adopted are the widely acknowledged public datasets, and contain no ethics sensitive
information, which has no ethics concerns.

Reproducibility Statement

This project will release the codes for the topology elicitation that is used for uncertainty
quantification, and we conducted pre-processing for the three datasets, which will also be
updated to the repository: https://github.com/LongchaoDa/LLM-Topology.
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A Notation Table

In this section, we provide a comprehensive notation table as shown in the Table. 2.

Notation Explanation

Ux Uncertainty function
M Large language model
x Input(query or prompt)
U Aggregation
xq Input prompt
xe Explanation-specific prompt
a LLMs answer
ae Generated explanation accompanying the answer a
si Reasoning step

G = (V , E) Directed reasoning graph
V Set of nodes
|V| Number of nodes
E Set of edges
|E | Number of edges
eij Edge from node i to node j
Kq Knowledge points
T Prompt template
Dm Set of knowledge-answer pairs for reasoning topology

(ki, ai) Knowledge-answer pairs
eF Sampling F amount of edges
F Demonstration set
L(·) Embedding function

h Contextual embedding
cos(·) Cosine similarity
P Optimal matching for sub-questions
dij Graph edit distance between Gi and Gi

rredun. Redundancy rate

Table 2: The notations and explanations in this paper.

B Reasoning Topology Costruction Process in Detail

B.1 Knowledge Point Reflection Module

The first module, the knowledge point reflection module, involves eliciting sufficient infor-
mation that can be used to support the conclusion drawing toward the input xq. The input
to this module is the input query xq along with the prompt template T1 to encourage the
LLM to reflect ‘What knowledge basis (or sub-questions) it should know to draw a final
conclusion?’. And the output of this module is the set of knowledge points Kq extracted as a
series of sub-questions, i.e., Kq = {k1, k2, . . . , kn}. Specifically, we design a prompt template
T1 to guide the model in reflecting on the sub-questions or knowledge points required for
solving xq:

Template T1: Given a question {xq}, reflect and generate the knowledge points as sub-questions
necessary to solve this query. Ensure that the output is both sufficient and concise.

The model generates a set of knowledge points Kq = M(xq, T1) = {k1, k2, . . . , kn}, where
each ki corresponds to a specific sub-question or piece of information identified as necessary
to address the query xq under the guidance of prompt T1. To ensure traceability, we assign
unique identifiers to each knowledge point using a tagging function f (·):

Kq
tag = {id1 : k1, id2 : k2, . . . , idn : kn}. (9)

In the later sections of this paper, we assume the kq always carries its identifier while
performing computing (Kq ⇔ Kq

tag).
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B.2 Self-answering Module

To provide answers for the knowledge points Kq = {k1, k2, . . . , kn} elicited in the previous
module, we design a self-answering module to generate precise answers. For each sub-
question ki ∈ Kq, the model M generates an answer ai using the following prompt T2,
ensuring coherence and sufficiency in addressing each of the knowledge points:

Template T2: Given a sub-question {ki}, provide a precise answer that directly addresses the
query without further discussion.

The model generates answers A = {a1, a2, . . . , an}, where each answer ai = M(ki, T2). So
we have:

A = {a1, a2, . . . , an} = {M{k1, T2}, M{k2, T2}, . . . , M{kn, T2}} (10)

This formulation explicitly links each sub-question ki to its corresponding answer ai, ensur-
ing clarity in the relationship between the elicited knowledge points and their responses.
The resulting set of knowledge-answer pairs forms the basis for constructing the reasoning
topology:

Dm = {(k1, a1), (k2, a2), . . . , (kn, an)} (11)

B.3 Reasoning Topology Construction Module

To construct the reasoning topology graph Gq = (V , E), a critical step would be to connect
the (k, a) pairs in a structured format based on their logical dependencies. Since we are
quantifying the uncertainty of LLM explanations, this connection should be determined by
the model itself to explain. Therefore, in this module, we leverage the few-shot learning
ability of LLMs and guide them in connecting the basis (k, a) pairs following their reasoning
procedure. By sampling F amount of eF as few-shot examples from a demonstration set F
and feeding them to the model, the LLM learns to depict the reasoning path in a structured
way for this task3: D̂m = M(Dm, eF), the transformation from Dm to D̂m follows:

D̂m = M(Dm, eF) = {(ap1 , k1, a1), (ap2 , k2, a2), . . . , (apn , kn, an)} (12)

where each api is an answer node that connects to the corresponding knowledge-answer
pair (ki, ai).

To ensure that the reasoning path forms a structured yet flexible topology that adapts to the
complexity of real-world cases, the specific ordering of pi is not predetermined and depends
on the actual reasoning structure generated by the model. Then for better illustration, we
switch the order in the tuple as below, by applying graph concepts, we have the first two as
the ‘node’ positions and the last as the ‘edge’ position:

(ap1 , k1, a1) ⇒ (ap1 , a1︸ ︷︷ ︸
nodes

, k1︸︷︷︸
edge

) (13)

where the order of two nodes is defined by the reasoning LLM.

Now, we can write a basic reasoning step as:

Stepij = [nodei, edgeij, nodej] (14)

where nodei is the starting node representing either a question, a sub-question, or an
intermediate response, nodej is the resulting node from nodei, and connected by edgeij,
which serves as the reasoning operation or sub-question.

Specifically, for the initial input query xq, we denote the node as nodeRaw; for the final answer
a, we denote as nodeResult. All other steps in the middle are the reasoning process, with a
clearly defined structure. The final graph structure includes all reasoning steps from query

3Please find details of few-shot learning in Appendix.

16



Published as a conference paper at COLM 2025

xq to the final answer a as nodes (vi) and their dependencies as edges (eij): The reasoning
process from query q to the final answer a can be finalized as a directed graph structure

Gq = (V , E), (15)

where
V = {nodeRaw, node1, . . . , nodeResult} = {v0, v1, ...} (16)

and the edges are expressed as:

E = {eij(1), eij(2)...} (17)

where e stands for edge and {eij | edgeij : nodei → nodej}, eij represents reasoning
operations or dependencies between nodes. (start with index ‘1’ since we assume ‘0’ is
the nodeRaw). The graph-based structure captures the full reasoning topology, including
branching, dependencies, and multi-step interactions, which allows for a better reflection of
the relationships between intermediate steps.

Now, from a graph concept, the reasoning steps combined with Eq. 14 are formalized as
below:

S = {Stepij | Stepij = [vi, eij, vj]vi, vj ∈ V , ej ∈ E} (18)

where each triplet represents a logical transition between reasoning steps. Note that for
complex reasoning, the final answer does not necessarily rely on all of the reasoning steps.
For example, when being asked about ”If it is currently summer in Australia, what season
is it in Canada?” in the reasoning chain, some of the LLM might delve into ‘what causes the
season differences, ’ which is a redundant step in concise reasoning.

C More Studies for Reasoning Graph Edit Distance

C.1 The case behind high csub.

Q(e2). Where is Australia located on Earth? Q. Where is Canada located on Earth?

A(v2). Australia is near the Equator. A. Canada is in the Northern Hemisphere.

Q. If one country is near the Equator                     and the  other is far from it, do they have   
different seasons at the same time? A. Not necessary, they could be the same season 

A. Canada is in the Northern Hemisphere.

Q(e1). Where is Australia located on Earth? Q. Where is Canada located on Earth?

A(v1). Australia is in the Southern Hemisphere.
Q. Do opposite hemispheres experience                opposite seasons?

A. Yes, because of Earth’s tilt.
Q. What season is it in Canada      given the reasoning?

A. Therefore, if it’s Summer in Australia, it must be Winter in Canada

If it is currently Summer in Australia, what season is it in Canada?

C{(e1, v1), (e2, v2)} > 0, C{e1, e2} = 0, the cost comes from the divergence of the answers from same sub-question:
C{v1, v2} > 0

Topology 1 Topology 2

Example1: 

…

Figure 5: The example of the cause of substitution cost: same sub-question, divergence
answers.

C.2 The complete equation of deletion/insertion cost

Similarly to Eq. equation 5 for nodes, we define the deletion cost for an edge ei ∈ E1 in
graph G1 = (V1, E1) relative to the target graph G2 = (V2, E2) as:

cdel(ei) =
1
2
{max

ej∈E2
cos

(
L(ei),L(ej)

)
︸ ︷︷ ︸
Cross-graph Matching Term

+ 1 − 1
|E1| − 1 ∑

ek∈E1
ek ̸=ei

cos
(
L(ei),L(ek)

)
︸ ︷︷ ︸

Internal Uniqueness Term

}. (19)

The Eq. equation 19 jointly considers the cross-graph matching cost and the internal unique-
ness cost when deleting edge ei.
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• Cross-graph Matching Term:

max
ej∈E2

cos
(
L(ei),L(ej)

)
measures the highest semantic similarity between the edge ei in G1 and any edge ej
in the target graph G2. If ei has a very similar counterpart in E2, deleting it would
remove important alignment information, leading to a higher deletion cost.

• Internal Uniqueness Term:

1 − 1
|E1| − 1 ∑

ek∈E1
ek ̸=ei

cos
(
L(ei),L(ek)

)
calculates how unique edge ei is within its own graph G1. If ei is very similar (i.e.,
redundant) to many other edges, the average similarity will be high, making this
term low; in other words, deleting a redundant edge is less costly.

Thus, the overall deletion cost for edge ei is the average of these two terms.

D Related Work

In this section, we review the related work in the research domains of uncertainty quan-
tification (UQ) for large language models (LLMs) and methods for explanation-based UQ,
with a focus on reasoning processes.

D.1 UQ for LLM

White-box Approaches A significant body of research has focused on performing UQ for
LLMs by inducing the models to output their uncertainty along with their responses Ka-
davath et al. (2022); Lin et al. (2022); Mielke et al. (2020); Tian et al. (2023). These methods
often rely on token-level probabilities to train or fine-tune models for predicting uncertainty.
While effective, these approaches require full access to the model’s structure and weights,
which is impractical for black-box or commercial LLMs. For example, supervised methods
such as those in Kadavath et al. (2022) estimate uncertainty using logits and ground truth
labels but are computationally expensive and resource-intensive.

Black-box Approaches Another line of work estimates uncertainty directly at the response
level using semantic entropy Kuhn et al. (2023). While this method avoids token-level
dependencies, it still relies on access to token probabilities, limiting its applicability in
black-box settings. To address these limitations, researchers have proposed lightweight
black-box methods that analyze response inconsistencies. For instance, Lin et al. (2023)
uses graph Laplacian eigenvalues as an uncertainty indicator, while Chen & Mueller (2023)
computes confidence scores from generated outputs to identify speculative or unreliable
answers. However, these approaches primarily focus on semantic-level analysis and neglect
the logical structure underlying reasoning processes. Moreover, methods like Lin et al. (2023)
average entailment probabilities without considering directional information in reasoning
paths.

Our work is agnostic to the white box or black box since it leverages the generated explana-
tions as a proxy to measure the reasoning uncertainty as in Figure. 1. This enables a more
nuanced and interpretable assessment of uncertainty in reasoning processes.

D.2 UQ for LLM Explanation

Explanation-based UQ focuses on assessing the reliability of natural language explanations
(NLEs) generated by LLMs by either prompting models to express confidence in their expla-
nations or analyzing consistency across multiple outputs under varying conditions Tanneru
et al. (2024); Yadkori et al. (2024). While these methods provide insights into explanation
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robustness, they treat explanations to a question as unstructured text representation, which
lacks structural information and fails to capture inconsistencies or leaps in logic. In con-
trast, our work explicitly leverages well-structured reasoning topologies to enhance the UQ
process for explanations. This structured representation enables us to assess explanation
uncertainties at a finer granularity within complex reasoning paths.

E Details of the GeoQA Dataset

The GeoQA dataset is designed to evaluate the reasoning capabilities of large language mod-
els (LLMs) on conditional geographical questions, emphasizing the comparative reasoning
topology of their responses. By anchoring specific knowledge within conditional constraints
and requiring models to infer results or solutions, GeoQA enables an in-depth analysis of
the reasoning paths taken by LLMs. The dataset spans 20 categories, covering diverse geo-
graphical topics such as climate, biome, tectonic plates, continental drift, altitude, sea level,
desertification, urbanization, demography, population density, ocean currents, river basin,
watershed, mountain range, volcano, earthquake, glacier, permafrost, and monsoon. Each
question is crafted to test multi-step reasoning, integration of domain-specific knowledge,
and the ability to navigate complex cause-effect relationships, making GeoQA a unique and
challenging benchmark for geographical reasoning.

F Empirical Study on the Choice of Number for Generations

It is a basis setup that we need to query LLM M with a query xq for k times and collect a
set of explanations to perform the NLE uncertainty measure. We have conducted a survey
on related literature and found there is no standard definition or setting, so we conducted
a preliminary study on the number of responses and tried to find the most suitable one
(since the larger the response is, the more computationally expensive it will be for later
evaluation).

G Details of Baseline methods

G.1 CoTA.

Chain-of-Thought Agreement (CoTA) evaluates the agreement between two Chain-of-
Thought (CoT) explanations generated for the same query. Each CoT explanation consists
of a sequence of reasoning steps, denoted as:

CoTa = {sa1, sa2, . . . , saNa}, CoTb = {sb1, sb2, . . . , sbNb
}.

The CoTA metric quantifies agreement between the two CoT explanations by calculating
the maximum semantic alignment for each step in CoTa with steps in CoTb, and vice versa.
Formally, CoTA is defined as:

CoTA(CoTa, CoTb) =
1

Na + Nb

( Na

∑
i=1

max
j=1,...,Nb

E(sai, sbj)

+
Nb

∑
j=1

max
i=1,...,Na

E(sbj, sai)

) (20)

where Na and Nb are the number of steps in CoTa and CoTb, respectively.

The entailment function E(si, sj) measures the semantic agreement between two reasoning
steps using a Natural Language Inference (NLI) model. It is defined as:

E(si, sj) =

{
1, if si entails sj,
0, otherwise.
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Table 3: Examples of GeoQA dataset.

Question Type Type Explain Example Questions Analysis

Glacier
These questions explore

glacial movement, erosion,
and the impact of climate
change on ice dynamics.

① : If glaciers carve striations into bedrock,
what do these scratches indicate about past movements? Striations indicate past movement direction,

requiring cause-and-effect analysis,
while glacier mass loss demands understanding

the imbalance between accumulation and ablation.② : If a glacier loses mass due to melting and sublimation
exceeding accumulation, what process is occurring?

Earthquake
These questions focus on
seismic wave behavior,

fault activity, and
earthquake detection.

① : If seismic waves are recorded by a network
of seismographs, which method is used to pinpoint

the origin of the disturbance? Triangulation requires reasoning through
wave arrival times, while P-wave detection relies on

comparing wave speeds and impact
to explain early warning systems.② : If earthquake early warning systems rely on

detecting the initial P-waves, which characteristic
of these waves makes this feasible?

permafrost
These questions examine

permafrost thawing,
climate feedback loops, and

seasonal variations.

① : If permafrost thaws due to rising temperatures,
releasing trapped methane,

what global issue does this exacerbate? Thawing permafrost and methane release involve
feedback loops, while active layer variations

require analyzing environmental factors
like temperature and insulation.② : If the active layer above permafrost varies in

thickness seasonally, what factors influence its depth?

Monsoon
These questions cover
seasonal wind shifts,

monsoon patterns, and
storm formation.

① : If the East Asian monsoon affects countries
like China and Japan,

what two seasons does it primarily influence? The East Asian monsoon’s impact on seasons
involves reasoning about wind shifts,
while monsoon depressions require

linking low-pressure systems to storm formation.② : If monsoon depressions form in the Bay of Bengal,
what weather events might they trigger upon landfall?

The entailment model employs pre-trained NLI models, such as DeBERTa (He et al., 2020),
fine-tuned for evaluating entailment relationships between statements. This binary scoring
avoids dependency on confidence calibration, and we take the threshold as 0.7 to provide
the binary cut.

G.2 Embed-UQ.

Embed-UQ measures uncertainty by embedding natural language explanations into a
semantic space and computing the variance of pairwise distances. Given a query xq, let
{ae

1, ae
2, . . . , ae

k} represent k explanations generated by the model. Using an embedding
function L(·), each explanation ae

i is mapped to a high-dimensional embedding:

hi = L(ae
i ).

The pairwise distances between embeddings are computed as:

dij = ∥hi − hj∥,

where dij represents the distance between explanations ae
i and ae

j . The uncertainty is then
quantified as the variance of the distance matrix D:

U (xq) = Var(D),

where D = {dij | 1 ≤ i, j ≤ k}.

G.3 Entail-UQ.

Entail-UQ modifies the distance computation in Embed-UQ by using an entailment-based
similarity measure instead of embedding distances. Given the same set of explanations
{ae

1, ae
2, . . . , ae

k}, an entailment model computes the similarity between two explanations ae
i

and ae
j as:

sij = E(ae
i , ae

j ),

where E(·, ·) is the entailment function that outputs a similarity score between 0 and 1. The
dissimilarity is then defined as 1 − sij, and the uncertainty is computed as the variance of
the dissimilarity matrix S:

U (xq) = Var(1 − S),
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Figure 6: The model’s success rate to generate legitimate reasoning topology. It is calculated
by the percentage of LLMs successfully generating the reasoning path from the nodeRaw to
nodeResult following the few-shot prompt. It can be witnessed that, generally the GeoQA
is a harder one to generate due to the conditional question types, which are rarely seen in
the LLM training tasks.

where S = {sij | 1 ≤ i, j ≤ k}. Similarly to CoTA, in our implementation, we adopt
DeBERTa (He et al., 2020) as the model to generate entailment logit and pass through a layer
of softmax to transform it into probabilities.

G.4 NLI-logit-UQ.

NLI-logit-UQ is a variant of Entail-UQ that directly utilizes the raw logits from a Natural
Language Inference (NLI) model to measure uncertainty, without applying the softmax
operation. Given the set of explanations {ae

1, ae
2, . . . , ae

k}, the NLI model computes a raw
logit score for each pair of explanations:

lij = NLI(ae
i , ae

j ),

where NLI(·, ·) outputs a logit value representing the degree of entailment between ae
i and

ae
j .

In contrast to Entail-UQ, where these logits are passed through a softmax layer to obtain
probabilities, the NLI-logit-UQ method uses the raw logits directly. The dissimilarity
between explanations can be defined as:

dij = 1 − lij,

or more generally, the uncertainty is computed as the variance of the raw logit values:

U (xq) = Var({lij | 1 ≤ i, j ≤ k}).

H Research Methods

H.1 Part One

The final full version of the graph edit distance is as below:

GED(G1,G2) = Csub.(P) + Cdel.(V1, E1,P) (21)

where P represents the optimal matchings for nodes (Pv) and edges (Pe), computed using
an algorithm such as the Hungarian algorithm (Hamuda et al., 2018). The term Csub.(P)
accounts for substitution costs, defined as:

Csub.(P) = ∑
(vi ,vj)∈Pv

c(vi, vj) + ∑
(ei ,ej)∈Pe

c(ei, ej), (22)
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where c(vi, vj) and c(ei, ej) represent the node and edge substitution costs, respectively.
The term Cdel.(V1, E1,P) captures the deletion costs for nodes and edges in G1 that are not
matched, given by:

Cdel.(P) = Cdel.(V1, E1,P) = ∑
vi∈V1\Pv

cdel.(vi) + ∑
ei∈E1\Pe

cdel.(ei). (23)

Here, cdel.(vi) and cdel.(ei) denote the deletion costs of unmatched nodes and edges, re-
spectively. This formulation quantifies the total cost required to align the two reasoning
structures by summing the substitution costs of matched components and the deletion costs
of unmatched ones.

H.2 Algorithm for Detection of Redundant Nodes and Dead Branches

To identify redundant nodes and branches of dead nodes in the reasoning topology S =
{[vi, vj, eij] | vi, vj ∈ V , eij ∈ E}, we first define the outgoing edges of a node vk as: Out(vk) =
{vj | [vk, vj, ekj] ∈ S} Then A node vk is considered redundant if it has no outgoing edges
and is not the final node:

Out(vk) = ∅ and vk ̸= NodeResult. (24)

Then, we compute the set of valid paths, Pvalid, connecting NodeRaw to NodeResult using
DFS. A node vk ∈ V is redundant if it does not appear in any valid path:

vk /∈
⋃

[vi ,vj ,eij ]∈Pvalid

{vi, vj}. (25)

In order to more efficiently detect branches of dead nodes (not contributing to the whole
reasoning path), let vk and its parent vp satisfy:

Out(vp) = {vk}, and vp, vk /∈
⋃

[vi ,vj ,eij ]∈Pvalid

{vi, vj}.

In this case, vp and vk form a dead branch, as neither contributes to any reasoning path
leading to NodeResult. And finally, the redundancy rate is computed as:

redun.(ae
i ) =

|Vredundant|
|V| ,

. It allows to systematically identify nodes and branches that do not contribute to the reason-
ing process, providing insights into the inefficiencies in the model’s reasoning topology and
we can analyze to understand where we can improve in the model training or fine-tuning
process.

I Experimental Details

I.1 Details of the dataset

• GSM8K (Cobbe et al., 2021): This dataset contains 8,000 high-quality math word
problems, designed to evaluate LLMs’ ability to perform arithmetic reasoning. It is
a standard benchmark for testing the numerical and reasoning capabilities of LLMs.

• BoolQ (Clark et al., 2019): BoolQ is a yes/no question-answering dataset derived
from naturalistic information-seeking questions. The dataset is used to evaluate
the ability of LLMs to reason logically over textual evidence and produce accurate
binary answers.

• GeoQA: GeoQA is a self-constructed dataset designed to evaluate the reasoning
capabilities of LLMs in conditional questions. With 20 categories, including climate
and tectonic processes, its tasks require inference of specific results from given con-
ditions. GeoQA emphasizes multi-step reasoning and domain-specific integration,
making it a challenging benchmark (details in the Appendix E).
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I.2 The calculation of the faithfulness core

In our experiments, we utilize a strategy called Early Answering to measure the faithful-
ness of the reasoning paths ae = {s1, s2, . . . , sn}, which are generated by the LLM for a
given query xq. This strategy involves truncating the reasoning steps ae progressively and
prompting the model to answer the query xq combined with the partial reasoning path
{s1, s2, . . . , sk}, where k ∈ {1, 2, . . . , n}. For example, instead of providing the entire reason-
ing xq + s1 + s2 + · · ·+ sn, the model is prompted to answer using only xq + s1, xq + s1 + s2,
and so on, until the full reasoning path is reached.

The Early Answering process evaluates how often the LLM’s responses, derived from the
partial reasoning path {s1, s2, . . . , sk}, match the final answer a generated using the complete
reasoning xq + s1 + s2 + · · ·+ sn. This evaluation reflects the faithfulness of the reasoning
path: if the model consistently reaches the correct answer a with partial reasoning, it may
indicate that the reasoning steps are unnecessary (post-hoc). Conversely, a lower match rate
suggests that the intermediate reasoning steps are essential for arriving at the correct final
answer, thereby indicating greater faithfulness.

We quantify the faithfulness Vf aith using the following equation:

Vfaith = 1 − 1
n

n

∑
k=1

I ( f (xq + {s1, s2, . . . , sk}) = a)︸ ︷︷ ︸
un-faithfulness

(26)

where n represents the total number of reasoning steps in ae, f (xq + {s1, s2, . . . , sk}) is
the LLM’s output when prompted with the query xq and the partial reasoning path
{s1, s2, . . . , sk}, a denotes the final answer generated using the complete reasoning path,
and I(·) is an indicator function that equals 1 if the condition is true (i.e., the partial
reasoning output matches the final answer), and 0 otherwise. The Vfaith is calculated by
1 − un-faithfulness, and the unfaithfulness means: how much the model’s final answer a
(Not) depends on the intermediate reasoning steps, since by removing sub-steps, it still
reaches same answer.

A high faithfulness score indicates that the model’s final answer is more dependent on inter-
mediate reasoning steps, suggesting that the reasoning is not post-hoc, and this faithfully
reflects that the logical steps are required to derive the answer, by this high faithfulness, the
UQ measure should align with it, in other words, a UQ method is good if it derives a lower
uncertainty when the faithfulness is high, and vise versa.

J Evaluation Metrics Calculation

Let {(xi, yi)}n
i=1 be a set of paired samples, where xi refers to the uncertainty value and yi

refers to the ground-truth faithfulness. All three correlation metrics produce values in the
range [−1, 1]:

• ρ = 1 means a perfect positive correlation,

• ρ = −1 means a perfect negative correlation,

• ρ = 0 means no correlation at all.

Note: In our setting, a more negative correlation is preferred because we expect higher
uncertainty to correspond to lower faithfulness (and vice versa).

1. Pearson Correlation Coefficient (PCC)

ρX,Y =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

,
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where x̄ =
1
n

n

∑
i=1

xi and ȳ =
1
n

n

∑
i=1

yi are the sample means of X and Y, respectively. This

measures the linear correlation between x and y.

2. Spearman Rank Correlation (SRC)

First, convert each xi and yi into their respective ranks, denoted rank(xi) and rank(yi). Then
define

di = rank(xi)− rank(yi).
The Spearman rank correlation coefficient rs is given by

rs = 1 −
6 ∑n

i=1 d2
i

n(n2 − 1)
.

Spearman’s method captures the monotonic relationship between the two variables, based
on their ranks rather than their absolute values.

3. Kendall Rank Correlation (KRC)

For each pair (i, j) with i < j, define

sgn(xj − xi) =


1 if xj > xi,
−1 if xj < xi,
0 otherwise,

sgn(yj − yi) =


1 if yj > yi,
−1 if yj < yi,
0 otherwise.

Then the Kendall rank correlation τ can be computed as

τ =
2

n(n − 1) ∑
i<j

sgn(xj − xi) sgn(yj − yi).

Equivalently, one may count the number of concordant pairs nc and discordant pairs nd,
yielding

τ =
nc − nd

1
2 n(n − 1)

.

Kendall’s τ also measures the degree of ordinal association between two variables, similar to
Spearman’s rank correlation but with a different counting approach.

Methods GPT4o-mini DeepSeek-R1 Llama-3.3-70B Llama3-8b Phi4

PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓) PCC(↓) SRC(↓) KR(↓)
Dataset: GeoQA

CoTA -0.18 -0.09 -0.12 -0.14 -0.15 0.10 -0.03 -0.04 -0.03 0.01 0.01 0.01 -0.02 -0.04 -0.02
Embed-UQ -0.11 -0.10 -0.10 0.71 0.69 0.50 -0.01 0.01 0.01 0.08 0.09 0.06 -0.01 -0.02 -0.01
Entail-UQ -0.12 -0.05 -0.05 0.65 0.64 0.46 -0.25 -0.23 -0.15 -0.05 -0.06 -0.04 -0.05 -0.04 -0.03
NLI-logit-UQ 0.08 0.12 0.10 0.72 0.70 0.51 -0.05 -0.05 -0.03 0.09 0.10 0.07 -0.01 -0.02 -0.01
Ours -0.22 -0.34 -0.31 -0.29 -0.31 -0.19 -0.11 -0.14 -0.08 -0.19 -0.11 -0.09 -0.03 -0.04 -0.03

Table 4: Comparison of our methods with different baselines on various datasets and large
language models. Cont. for GeoQA dataset.

K Time Complexity Analysis

Below we provide an explanation of the time complexity analysis using our Reason-GED:

Let: G1,G2, . . . ,Gn be the n reasoning graphs generated for a query xq. For each pair of
graphs Gi and Gj, the graph edit distance is computed as: dij = GED(Gi,Gj).

Assume the cost to compute the graph edit distance between two reasoning graphs is TGED.
In our approach, we compute this distance for every pair, the amount of such pairs are:(

n
2

)
=

n(n − 1)
2

. (27)
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Thus, the overall time complexity for computing all pairwise distances is:

O
(

n(n − 1)
2

· TGED

)
= O

(
n2 · TGED

)
. (28)

If each reasoning graph has m nodes and the matching step (e.g., using the Hungarian
algorithm) requires O(m3) time, then: TGED = O(m3), so, the total time complexity for
estimating the uncertainty for one query is: O

(
n2 · m3). If m is bounded or considered a

constant, the complexity simplifies to: O
(
n2)

This concludes the mathematical analysis of the time complexity for uncertainty estimation
per question when we have n responses.

L Prompt Template & Few Shot Examples

Here we introduce details of the prompt template used in this paper as well as some few-shot
examples to guide the LLMs to follow the elicitation process.
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The Prompt Template to Elicit Knowledge Points.

System Description: You are a helpful assistant to do the following: Given a question,
you should reflect and come up with the sufficient knowledge that you need to solve this
question. Two standards: sufficient and concise. And you should respond with numbered
points.

Task Description: Given a question: { question i }. Please provide a response following
system requirements and learning the format from the example: { few shot example }.

Example1:

Question: If it is currently summer in Australia, what season is it in Canada?

Expected Response (For required knowledge):

1. Where is Australia located on Earth?

2. Where is Canada located on Earth?

3. What is the geographical relationship between Australia and Canada?

4. How does the tilt of the Earth affect seasons?

Examples ...

Output: {Placeholder}

The Prompt Template to Express Reasoning Path.

System Description: You are a reasoning assistant, you will see some Edge-Node pairs,
which stands for the Q-A pairs, try to find a reasoning path based on these Q-A pairs that
solves the question.

Task Description: Given a { question }. Please learn how it is reasoned from the example:
Reason Path Example. Now give the reasoning path for {q a}.

Constraints:

1. NodeRaw and NodeResult are nominal term, NodeRaw stands for Question itself and NodeResult stands for
the End of reasoning. ;

2. When reason to the conclusion, there should be an added: ResultNode and ResultEdge as: [Nodex, NodeResult,
ResultEdge];

3. [NodeRaw, Node0, Edge0]: indicates NodeRaw is connected with Node0 by Edge0. [Nodex, NodeResult,
ResultEdge]: indicates Nodex is connected with NodeResult by ResultEdge.;

Example1:

Question: If it is currently summer in Australia, what season is it in Canada?

Edge0: Where is Australia located on Earth?, Node0: Australia in the Southern Hemisphere.;

Edge1: Where is Canada located on Earth?, Node1: Canada is located in the Northern Hemisphere.;

Edge2: What is the geographical relationship between Australia and Canada?, Node2: Australia and Canada are in
the opposite hemisphere.;

Edge3: How does the tilt of the Earth affect seasons?, Node3: Opposite hemispheres experience opposite seasons
because of the Earth’s tilt.;

A Possible Output:
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Structure: [NodeRaw, Node0, Edge0], [NodeRaw, Node1, Edge1], [Node0, Node2, Edge2], [Node1, Node2, Edge2],
[Node2, Node3, Edge3], [Node3, NodeResult, ResultEdge]; ResultEdge: It is summer in Canada.;

Output: {Placeholder}
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Q: If it is currently summer in Australia, what season is it in Canada?

Q

Result

Q

Result

Q

Result

A. It is winter in Canada.

Q

Result
What the season the Canada is based on the above reasoning?
• (To get the final answer)

Where is Australia located on Earth?
• (To understand which hemisphere Australia is in)

Where is Canada located on Earth?
• (To understand which hemisphere Canada is in)

What is the geographical relationship between Australia and Canada?
• (To determine if they are in the same or opposite hemispheres)

How does the tilt of the Earth affect seasons?
• (To understand why different hemispheres experience different seasons)

Edge questions: 

Australia is located in the 
Southern Hemisphere

Canada is located in the 
Northern Hemisphere

Australia and Canada are  in opposite hemispheres

Opposite hemispheres experience opposite seasons because of Earth's tilt

It is winter in Canada

Q

Result

When does winter occur in the Northern Hemisphere? 

In which hemisphere is Australia located? 

In which hemisphere is Canada located? 

When does summer occur in the Southern Hemisphere? 

How does the seasons in the Northern Hemisphere compare to the seasons 
in the Southern Hemisphere?

Edge questions: 

Given the information above, what season is it in Canada?  

Australia is located in the 
Southern Hemisphere

Canada is located in the 
Northern Hemisphere

Dec-Feb Dec-Feb

They happen at the same time

It is winter in Canada

Q

Result

What the season the Canada is based on the above reasoning?

Why would there be seasons on Earth?

How is the season affected? 

What season is it in Canada when it is Summer in Australia?

Edge questions: 

The Earth’s axis is tilted, causing different hemispheres to receive 
varying sunlight at different times of the year.

Due to the tilt, one hemisphere experiences winter while the other 
experiences summer.

Canada is in the hemisphere that is currently tilted away from the 
Sun if now it is Summer in Australia

Q: If it is currently summer in Australia, what season is it in Canada?

Q: If it is currently summer in Australia, what season is it in Canada?Q: If it is currently summer in Australia, what season is it in Canada?

It is winter in Canada

① ②

③

① ② ③

Figure 7: The Example of of same question but different reasoning path and leading to the
same answer: ‘If it is currently summer in Australia, what season is it in Canada?’ .
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Figure 8: The complete version of LLM’s reasoning redundancy on three datasets: node and
edge.
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Figure 9: The Example of the redundancy for LLMs (GPT4o-mini)
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