
RECONCILING SECURITY AND UTILITY IN NEXT-GENERATION EPIDEMIC RISK

MITIGATION SYSTEMS

Anonymous authors
Paper under double-blind review

Abstract
Epidemics like the recent COVID-19 require proactive con-
tact tracing and epidemiological analysis to predict and sub-
sequently contain infection transmissions. The proactive mea-
sures require large scale data collection, which simultane-
ously raise concerns regarding users’ privacy. Digital contact
tracing systems developed in response to COVID-19 either
collected extensive data for effective analytics at the cost
of users’ privacy or collected minimal data for the sake of
user privacy but were ineffective in predicting and mitigating
the epidemic risks. We present Silmarillion—in preparation
for future epidemics—a system that reconciles user’s privacy
with rich data collection for higher utility. In Silmarillion, user
devices record Bluetooth encounters with beacons installed in
strategic locations. The beacons further enrich the encounters
with geo-location, location type, and environment conditions
at the beacon installation site. This enriched information en-
ables detailed scientific analysis of disease parameters as well
as more accurate personalized exposure risk notification. At
the same time, Silmarillion provides privacy to all participants
and non-participants at the same level as that guaranteed in
digital and manual contact tracing.

We describe the design of Silmarillion and its communica-
tion protocols that ensure user privacy and data security. We
also evaluate a prototype of Silmarillion built using low-end
IoT boards, showing that the power consumption and user
latencies are adequately low for a practical deployment. Fi-
nally, we briefly report on a small-scale deployment within a
university building as a proof-of-concept.

1 Introduction

Containing infectious diseases, such as the recent COVID-19
pandemic requires two approaches: reactive and proactive.
Reactive measures include testing and isolating infected in-
dividuals to prevent further spread of the disease. Proactive
measures include contact tracing to identify other at-risk in-
dividuals, and performing epidemiological analysis to under-
stand conditions for infection propagation, which can further
inform policy decisions.

In principle, the data required for epidemiological analysis
can be collected during contact tracing. Unfortunately, tradi-
tional manual contact tracing does not scale well and does
not give good coverage as users tend to forget details of their

recent encounters and visits. To scale manual tracing, several
digital contact tracing systems have been proposed recently
[2, 6, 9, 10, 16, 24, 27, 31], which record pairwise bluetooth
encounters between users’ smartphones to capture physical
encounters (also referred as SPECTS1). Several countries
adopted centralized contact tracing systems that supported
extensive data collection for epidemiology [45, 46]. While
these systems were effective for containing COVID-19, they
raised important concerns about surveillance and users’ pri-
vacy. Other countries decided to take a more conservative
approach in the interest of users’ privacy and adopted system
designs that collected minimal data essential only for con-
tact tracing but not epidemiology [3, 13–15, 17]. However,
the importance of proactive epidemiological analysis can be
understood from the fact that availability of such data early
on could have helped in understanding the role of aerosols
in spreading COVID-19 and enforcing social distancing and
isolation much earlier [1, 11].

We seek to build a secure, robust, and scalable system that
expands the utility of SPECTS by collecting additional data
relevant to future epidemics, while preserving the privacy
properties of SPECTS and manual contact tracing systems.
We refer to this as an epidemic risk mitigation system. We
address the following design goals in building such a system.

G1. Rich data collection: According to medical literature,
epidemiology requires analyzing environmental conditions,
demographics, and mobility patterns that promote disease
transmission [29]. Thus, an epidemic risk mitigation system
must collect circumstantial information associated with the
user encounters, such as the location, location type, and time
of encounter, as well as the environmental conditions under
which the encounters occur (e.g., temperature, humidity, am-
bient noise levels, etc.). It must also support capturing non-
contemporaneous encounters to determine if a disease could
transmit through indirect exposure. Finally, the system must
collect attributes of individuals (e.g., age, gender, occupation,
etc.) to support identification of vulnerable demographics. G2.
Security and privacy: Since the system collects sensitive
user information, it must ensure security in collection, pro-
cessing, and dissemination of the data, and balance utility and
user privacy in the analytics. G3. Timeliness: The system
must be able to collect accurate data and disseminate risk in-
formation in a timely manner even under a partial deployment,

1Smartphone-based Pairwise Encounter-based Contact Tracing Systems

low user adoption, and despite malicious or misbehaving par-
ticipants. G4. Inclusivity: The system must be accessible to
all demographic sections within a region of deployment.

The effectiveness of SPECTS was also limited by non-
technical factors, such as low adoption rates. We do not ad-
dress these factors in our work.

1.1 Our solution: Silmarillion
We present Silmarillion, a P2I system that relies on collection
of location/environment-tagged encounters with BLE beacons
installed in strategic locations to facilitate both contact tracing
and epidemic analytics. At the same time, Silmarillion takes
comprehensive measures to avoid indiscriminate collection
and dissemination of users’ encounter data, thus minimizing
data leaks and misuse.

The deploying authority predetermines the analytics they
wish to perform and accordingly the set of location and envi-
ronmental attributes they wish to collect in beacon encounters.
Beacons are then installed in strategic places that may be epi-
demiologically relevant, such as places where people tend to
congregate (e.g., classrooms, markets, and theaters). Each bea-
con broadcasts (on short-range BLE radio) identifiers called
ephemeral ids that are unique to the beacon, the current time
(time is roughly quantized), and the beacon’s location and en-
vironmental attributes (§3). Personal devices of nearby users
record these ephemeral ids – in particular, two users in the
vicinity of the same beacon at similar times will record the
same ephemeral ids.

When a user tests sick, the ephemeral ids on their device
from their period of contagion are collected at a backend.
Users retain full control over what is sent to the backend (they
may remove ephemeral ids corresponding to locations they
consider sensitive), all uploads are anonymous, and a single
user’s ephermeral ids are divided into small chunks that are
routed separately through a mixnet [49] to hide the user’s
trajectory from the backend (§4).

The backend periodically aggregates the ephemeral ids up-
loaded by sick individuals. It can utilize the data for epidemi-
ological analysis, e.g., building mobility models, detecting
superspreading events, predicting infection hotspots, deter-
mining environmental conditions that accelerate infection
transmission, etc. (The design of the analytics backend and
the analytics workloads that can be supported on the data
collected by Silmarillion are beyond the scope of this work
and have been covered in other work [34, 44].)

The backend also disseminates the ephemeral ids back to
everyone for decentralized risk notification (§5). Other users
match these disseminated ephemeral ids to those stored on
their own devices, and assess their infection risk locally.

To ensure privacy of individual patients (who shared their
encounter data) during risk notification, the backend adds
differentially-private noise in the risk information dissemi-
nated to other users, which protects against a strong adversary

(3) Aggregation

(1) Broadcast
<ephIDs, loc, time>

(4) Risk info
(list of ephIDs)

(2) Encounter
history

(2) Encounter history

Backend

Trusted network deviceDongle

BLE beacon

Smartphone

(4) Risk query

(4) Risk query

BLE connection Internet comm.

Sick user

(4) Risk info

Encounter data collection (§3) Interaction with backend (§4 and §5)

Mixnet

Figure 1: Silmarillion’s architecture and workflow.

with auxiliary information about all other users in the system.
Silmarillion also provides privacy for users when they

download risk information. Users query the backend for risk
information relevant to them using an information-theoretic
private information retrieval (PIR) protocol, without revealing
their own data to the backend or an eavesdropper.

In summary, for the desired analytics support, Silmarillion’s
collection of location and environment information does not
raise new privacy concerns for users. The Silmarillion back-
end can support rich analytics without learning sensitive in-
formation about individual participants in the system. Privacy
of sick individuals is preserved from both the backend as well
as other users and eavesdroppers. Similarly, privacy of other
users is preserved.

We build (§6) and evaluate (§7) a prototype of Silmarillion
with battery-powered BLE beacons, and user devices ranging
from smartphones to low-end IoT devices. We demonstrate
that Silmarillion can be deployed with low bandwidth, latency,
and energy costs in data collection and dissemination.

To the best of our knowledge, Silmarillion is the first epi-
demic risk mitigation system based on P2I encounters that has
actually been implemented and evaluated. Silmarillion can
be deployed incrementally by placing beacons in locations of
primary interest first. We envision Silmarillion to be deployed
as a complement to recent contact tracing systems [16] (§8).
While the latter are better suited for private or infrequently
visited spaces, Silmarillion can better support crowded spaces,
where non-contemporaneous transmissions may be prevalent
and the existing systems would fail to capture such events.

2 Overview

Figure 1 shows an overview of Silmarillion’s architecture
and workflow. Silmarillion’s main components include BLE
beacons, personal devices, such as smartphones and dongles,
and a backend platform that relays risk notifications and ag-
gregates data to support epidemiological analysis.

(1) The beacons are placed in strategic locations
(e.g., shops, restaurants) and continuously broadcast crypto-
graphically-generated random strings called ephemeral ids

2

during typical operating hours of the location. Users’ devices
listen to these beacons passively (i.e., without transmitting
anything) and store the beacons’ ephemeral ids. (2) When an
individual tests positive for the infectious disease, they may
be legally required to or may choose to disclose (a selected
subset of) the list of ephemeral ids stored in their personal
device to the backend. The individual must explicitly au-
thorize the transmission of data to the backend from their
personal device. The user device chunks the encounter data
into subsets of ephemeral ids, packages each subset into a sep-
arate message and uploads the messages to the backend via a
mixnet. (3) The backend periodically (e.g., daily) assimilates
the information about which locations were contaminated
at which times (which depends on users’ visits and location
features) into a risk database. (4) Finally, user devices query
the backend for risk information of specific regions, compare
the ephemeral ids in their storage against those in the risk
information disseminated, and notify their owners in case of
non-zero matches.

We now provide an overview of Silmarillion’s components
(§2.1) and threat model (§2.2).

2.1 Components

Beacons. Beacons are commodity, battery-operated, BLE-
capable devices that may be installed in restaurants, squares,
train stations, airports or even mobile locations, e.g., a city
bus or a train. Beacons may be installed either by health au-
thorities or by organizations that have received an approval
from local health authorities. Each day, beacons remain ac-
tive during during the typical operating hours of the location
where they are installed, i.e., when the locations are visited
frequently by many people.

All beacons have a coarse-grained timer and a small flash
storage. The beacons are registered with the backend using an
id, a secret key, and optionally a set of attributes, such as a loca-
tion identifier comprising their stationary coordinate or a route
id, a region (e.g., France), or other epidemiologically-relevant
descriptors about their location (e.g., humidity, temperature).
The descriptors are configured statically and can be used by
the backend for intelligent risk estimation and/or epidemiolog-
ical analysis, thus addressing goal G1. Furthermore, beacons
remain active each day during the typical operating hours of
the location where they are installed, i.e., when the locations
are visited frequently by a lot of crowd. Thus, no individual
user can be uniquely identified based on their encounter with
a small subset of beacons, which preserves privacy of patients
sharing their data with the system and addresses goal G2.

User devices. Silmarillion enables users to participate in
the system with devices ranging from smartphones to simple
dongles that can be attached to a keyring, or worn on the wrist
or around the neck. The dongles are particularly useful for
physically-, technologically-, or economoically-challenged
individuals who cannot use smartphones.

To participate in Silmarillion, a user device must minimally
include a coarse-grained timer, a counter, a small amount of
flash storage, a UI to indicate risk status and battery condi-
tion (e.g., LED), and a button to control the LED notification.
IoT boards already offer such capabilities today [4, 7, 8] and
can be used as dongles. (Smartphones naturally have much
higher capabilities.) Dongle users require an additional trusted
networked device only to upload or download data from Sil-
marillion’s backend. This device could be a smartphone of
the user or a care provider.

By supporting diverse devices, Silmarillion provides an
accessible and inclusive solution for different demographic
sections of the society, thus addressing goal G4. In the rest
of this paper, we describe Silmarillion’s design and protocols
mainly considering personal devices in the form of smart-
phones with a CT app, unless stated otherwise.

Similar to beacons, user devices are registered and authen-
ticated with the backend and receive a public-private key pair
from the backend. In addition, the users configure a password
in their device, which they use to authenticate themselves to
the device. The password and the counter are also used to
control upload of data from the device.

Testing authority. Users get tested at a test center which
is running by a trusted authority. If a user’s test result is
positive, the the test center issues a certificate for the result
signed with the center’s key. Furthermore, it issues several
one-time signing keys to the user, with which the user signs
their encounter entries prior to uploading to the backend. The
signed uploads enable the backend to collect encounter data
only from diagnosed individuals and only data corresponding
to their period of contagion, thus ensuring use of accurate data
for analytics and risk dissemination. Thus, it ensures security
in data collection, addressing goal G2.

Mixnet. To enable users to upload their encounter entries
to the backend without revealing their identity, Silmarillion
relies on a mixnet similar to Vuvuzela [49], which mixes
uploads from different users and hides the origin of uploaded
data (see §4). The mixnet ensures users’ privacy during data
collection, thus addressing goal G2.

Backend. The backend may be managed by a health author-
ity, the organization deploying beacons, or an independent
entity. The backend maintains several databases. (i) BeaconDB
contains each registered beacon’s location/trajectory and the
secret key used by the beacon to generate its unique sequence
of ephemeral ids. (ii) UserDB contains registered users, their
devices, and the public keys of the devices. (iii) RiskDB con-
tains the encounter entries uploaded by diagnosed individuals
and is used for risk dissemination and analytics.

To facilitate risk dissemination, the backend consists of two
non-colluding servers in an IT-PIR setup. The servers derive
a PIR database out of RiskDB, which they use to serve user
queries for risk information of specific regions in a privacy-
preserving manner (see §5). Additionally, the backend pro-
vides differential privacy in the number of entries uploaded by

3

an individual patient, thus preserving patients’ privacy during
risk dissemination. The risk dissemination protocol addresses
goals G2 and G3.

2.2 Threat model
Silmarillion seeks to protect the privacy of users at a level com-
parable to manual tracing and SPECTS. The privacy of users
can be violated when they transmit information, which hap-
pens at two points in Silmarillion: (1) When sick users upload
their collected ephemeral ids to the backend, and (2) When
healthy users query the backend for risk information in re-
gions of interest to them. Silmarillion seeks to protect the
privacy of users at both these points.

Threats in Silmarillion come from compromised network
nodes, compromised users and beacons, and compromise
of the backend. We assume a standard network adversary
that can compromise a subset of the network nodes (routers,
switches, servers), and monitor all traffic on the compromised
nodes, but it cannot compromise a significant fraction of net-
work nodes. This is particularly important for our use of a
mixnet, where we assume that at least one mixnet node is
uncompromised.

For users and beacons, we follow a mostly honest model,
where users and beacons are generally honest but a small
fraction may be controlled to act arbitrarily by the adversary.
The backend is assumed to be honest-but-curious; if compro-
mised, it follows the prescribed protocols but it may try to use
information it sees and information that compromised users,
beacons and network nodes see to break user privacy.

Side channels. Side channels (e.g., EM, power), which
could be exploited to steal devices’ crypto keys, are out of
scope. In practice, devices could implement constant-time
crypto [20] to mitigate these attacks.

3 Encounter data collection

In this section, we describe the device configurations, the in-
teractions of user devices with beacons, and the collection of
encounter data on user devices. In §4, we discuss how user
devices upload the data to a backend to facilitate epidemio-
logical analysis and subsequent risk dissemination. In §5, we
discuss how user devices interact with the backend to receive
the risk information for contact tracing.

3.1 Initial configuration
Prior to its installation, a beacon is configured with a unique
id b, an initial clock Cb synced to real time, a secret key skb
that is known only to the beacon and the backend, and an
optional descriptor descb = {ab,1,ab,2, ...,ab,n} that includes
attributes, such as a location id, environmental conditions, in-
door/outdoor, average temperature, ventilation or other impor-
tant features of the place where the beacon will be installed.

Each user device is configured with a unique id d, the back-
end’s public key, a initial clock Cd synced to real time, a
public-private key pair (pkdid ,skd), a monotonic counter ctr
from the backend, and a password from the user. In smart-
phones, the initial clock value may be the device’s own wall-
clock time. In dongles, the initial clock is set to the backend’s
wall-clock time at the time of device registration. The device’s
initial counter value is known only to the device and the back-
end and is used to ensure freshness of uploads from the device
to the backend. The secret key skd is stored only in the device
and never leaves the device. The password is used to mutually
authenticate the owner and the device whenever the owner
interacts with the device (e.g., to initiate upload to the back-
end as in §4). For dongle users, the password is configured in
both the dongle and the trusted networked device.

The beacon configurations are registered with the backend,
which stores this data in the BeaconDB database in the form:
{device id, device key, initial clock, clock offset, descriptor},
where device key is the secret key for a beacon.

Similar to beacons, user device configurations are also reg-
istered with the backend and stored in the UserDB database
in the form: {device id, device key, initial clock, clock offset,
where device key is the public key for a user device.

The clock offset in the backend is initialized to 0 during
registration of a device and later used to track any divergence
between the real time and the local timer of the device.

3.2 Capturing beacon encounters

Each user device and beacon has a coarse-grained timer of
1-minute resolution (td and tb respectively), which is set to the
initial clock value provided by the backend, and subsequently
increments every minute. A device stores its timer value to
local storage at intervals of fixed length L, called epochs. A
variable tracks the epoch id or the number of epochs elapsed
since the device’s start (id and ib for a user device and bea-
con, respectively). In our prototype, we use epoch length
L = 15 minutes, similar to recent CT systems.

A beacon generates a new ephemeral id every epoch.
In the ith epoch ib, the beacon b generates an id ephb,i =
hash(skb, ib,descb). Here ib = ⌊(tb − Cb)/L⌋ and hash is
a one-way hash function. The beacon broadcasts Eb,i =
{ephb,i,b, ib} on legacy BLE advertisement channel and its
descriptor descb on a separate periodic advertising channel.
Beacons broadcast each Eb,i several times within an epoch.
When a user device is in the bluetooth range of a beacon, it
captures the beacon broadcasts. If the device encounters a new
beacon id, it briefly listens to the periodic advertisement chan-
nel of the beacon to additionally capture the beacon’s descrip-
tor once. A user device persists a single entry for each unique
ephemeral id along with the first beacon and device time-
stamps at which the id was received (tstart

b and tstart
d), the dura-

tion for which the id was observed (tint
d), and the average of the

RSSI values observed (rssi). Thus, a log entry enctr in user de-

4

vice database d would be: {ephb,i,b, t
start
b , tstart

d , tint
d ,rssi}. The

device stores one instance of each unique descb captured,
which it may use to provide the device owner descriptive
information about the owner’s trajectory.

Datastructure configurations. The byte size of each field
in an enctr is as follows. The ephemeral id ephb,i is 23 bytes,
the device id b is 4 bytes, the timestamps tstart

b , tstart
d and the

interval tint
d are 4 bytes each, and rssi is 1 byte. The ephb,i is

generated by computing a SHA-256 hash of the inputs and
taking the least significant 23 bytes of the result. Each beacon
broadcast Eb,i is 31 bytes and fits in a single legacy BLE
advertisement; the descriptor descb can have variable length.
Each encounter stored in a user device is 40 bytes.

Assuming that users encounter on average no more than
one unique ephemeral id every 10 min in a day, user devices
need to store data for 2016 encounters in a 14-day window
(the infectious period for the COVID-19 disease as deter-
mined by health experts), which requires ∼79 KB of persis-
tent storage. Assuming that each encounter also corresponds
to a unique beacon and an average beacon descriptor length of
64 bytes, the device requires an additional 126 KB of persis-
tent storage for the descriptors. In reality, a device is unlikely
to encounter a unique ephemeral id every 10 min, much less
a unique beacon, continuously for 14 days. Hence this esti-
mate is very conservative. Overall, the storage requirement is
satisfied by both smartphones and many IoT devices.

3.3 Security in encounter data collection

BLE beacons learn nothing about nearby users since they
only transmit information unidirectionally. Similarly, no in-
formation is leaked during ephemeral id broadcast, since user
devices only record information at this stage.

Risks during encounter data collection can arise from mis-
configured devices and adversarial principals. These can gen-
erate inconsistent encounters causing false risk estimations.
Inconsistent encounters may arise in three ways: (i) the clocks
of beacons or user devices go out of sync with real time; (ii)
a beacon is misconfigured and placed at a location different
from where it is registered; or, (iii) an illegitimate beacon
re-transmits a legitimate beacon’s transmissions at a different
location. We discuss mechanisms to identify and mitigate
inconsistencies in the encounters reported to the backend.

Clock inconsistencies. Encounters become inconsistent
when an ephemeral id is found to have been used for more
than one epoch length in real time. This may happen when de-
vices crash and reboot after a long time, leading to encounter
timestamps that are out of sync with real clock time. While
smartphones can directly re-sync clock time over the inter-
net, the BLE-only beacons and small dongles cannot do the
same. The backend can detect and fix such an inconsistency
in its database based on the beacon and device timestamps
uploaded in an encounter entry.

Beacon misconfiguration. Inconsistencies also arise if a

beacon transmits information inconsistent with its location.
Such inconsistencies can arise if (i) a beacon was (accidentally
or maliciously) installed in a location different from where
it was registered, (ii) a spoofed beacon configured with the
secret key of a legitimate beacon re-transmits the same eph-
emeral ids in a different location, or (iii) an adversary replays
the ephemeral ids of a legitimate beacon in other locations
[26]. All cases lead to the same inconsistencies due to the
fact that the spoofed beacon is in a location different from
where it is expected. Users with GPS-enabled smartphones
can directly observe the problem when they see a beacon
transmission with a signed location that is different from the
phone’s current location by more than the BLE range. Such
phones may report the inconsistency to the backend.

4 Encounter data upload

When users feel sick or are notified of potential exposure
(§5), they may visit a test center or a clinic for testing. Pa-
tients identify themselves at the time a test is taken using
the normal procedures in place for this purpose. Normally,
their contact details are recorded along with the id of their
device and the test kit used for them. Once the test results
are available, the user is informed using their contact details,
such as their email id or phone number. If the result is pos-
itive, the user may wish to or be required by law to upload
their data to assist in dissemination of risk information and
epidemiological analytics.

We start by discussing the competing challenges involved
in designing a privacy-preserving upload mechanism.

4.1 Requirements
The upload mechanism needs to address four requirements.
First, because encounters contain contextual information
(e.g., beacon location), uploading encounters may reveal a
user’s entire trajectory, which would be a violation of their pri-
vacy. To ensure privacy of diagnosed individuals, the upload
protocol must provide:

U1. Anonymity: the backend or a network adversary cannot
learn the identity of any user uploading encounters.

U2. Unlinkability: the backend or an adversary cannot learn
if two parts of a trajectory belong to the same user or not.

Furthermore, the protocol must be reasonably efficient in
terms of overall network traffic:

U3. Efficiency: The network traffic generated by the protocol
should be linear in the amount of data actually trans-
ferred from users to the backend, ideally higher by only
a small factor.

Finally, the protocol must be robust against malicious users
who may attempt to generate false alarms and panic among

5

users, for instance, by uploading fake entries to the backend or
uploading legitimate entries without having been diagnosed
positive. Specifically, the protocol must support:

U4. Upload authentication: the backend must verify that the
uploads came from a registered user who tested positive.

We discuss Silmarillion’s mixnet-based upload protocol in
§4.2, which addresses the requirements U1-U3. We discuss
authentication (U4) in §4.3 and initiation of encounter uploads
from user devices in §4.4.

4.2 Upload protocol
Message format. Since uploading a user’s complete en-
counter history can compromise the user’s privacy, the user
device chunks the history into small subsets of t encounter
entries and uploads them in separate messages. The privacy
guarantees rely on a key assumption that a user cannot be
uniquely identified by a small segment of t ephemeral id
records of her trajectory. This is a reasonable assumption
since we expect Silmarillion beacons to be installed strategi-
cally in crowded places during busy hours, e.g., train stations,
airports, markets, etc. (see §2).

A user device splits the encounter data into messages as
follows. First, it shuffles the encounter entries in the device
log, and then divides the shuffled log into 24 subsets (one
for each hour of the day). Each subset contains at least t
and at most 2016/24 = 84 ephemeral ids. (Recall from §3
that the max number of entries in a device log can be 2016.)
Then, the device places each subset of entries in a separate
message, pads each message with dummy entries as required
up to a fixed message size M, encrypts the message with the
backend’s public key and signs the message with a unique key
provided by the test center (see §4.3 for signing messages).
Each message is then uploaded to the backend through a
mixnet, as explained below.

Mixnet rounds. Silmarillion’s upload protocol relies on a
mixnet, such as [40], [33], [49]. We assume the mixnet con-
sists of a chain of r servers. We make the standard assumption
about the mixnet service that at least one server in the mixnet
is honest.

The upload protocol runs in synchronous rounds. Specifi-
cally, we divide each hour into nr rounds, each of them 60/nr
minutes long. Every hour, each user device sends messages
to the mixnet in only one of those rounds. Each device is
assigned a round randomly. A device uploads (a subset of)
the encounter data in the message if available, and dummy
data otherwise.

We now explain how U1–U3 are attained.
U1: Given n Silmarillion users, and an average participation

rate of R in any given round, the probability that any given
round has k participants is

(n/nr
k

)
Rk(1−R)(n/nr)−k. Even for

a small city with n = 100,000, and nr = 10, R = 10%, the
probability that there are at least 1,000 participants in a given

round is more than 50%, which implies a high degree of
anonymity.

U2: Users anonymize small subsets of their trajectories
and beacons operate only in densely visited places, making it
difficult for the an adversary to link two trajectory subsets to
the same user.

U3: The average network traffic generated every round in
the system due to the upload protocol is

T =
n ·R ·M · r

nr

If a user is sick with probability p on any given day, then the
actually meaningful traffic would be A = (n/nr) ·R ·M · p per
round. Hence, the average traffic overhead is T/A = r/p. For
r = 4 (a 4-round mixnet) and p = 0.02 (2% users sick at any
given time), this overhead is 200x. Given that the actual traffic
generated by each sick user’s device is about 126KB in 14
days or 9KB per day (see section 3.2), this 200x overhead still
amounts to only 1.8 MB traffic per device each day, which
can be easily tolerated even when user devices have limited
network connectivity.

4.3 Upload authentication
We now describe how a user device authenticates and initiates
uploads. One concern for uploading is that users may upload
incorrect or fake encounter entries, e.g., by uploading entries
without having been diagnosed positive or by uploading en-
tries that are older than the period of contagion. The backend
can easily discard dummy and invalid entries that could not
have been generated by any registered beacons, as well as
entries with timestamps that are too old to be relevant for risk
notification or epidemiology. To mitigate the risk of users
uploading without being sick, we describe a mechanism to
authenticate user uploads.

An upload authentication mechanism must enable the back-
end to verify that each entry has been uploaded by a user who
was diagnosed positive by an authorized test center. A simple
solution would be having users upload their encounter data
along with a certificate from the test center, signed with the
test center’s key, indicating the test date, and the ids of the
patient’s device and test kit. However, the user would need to
upload the certificate with each encounter entry, which would
defeat the goal of ensuring unlinkability of the user’s entries.
Instead, the user must be able to attest each of their encounter
entries independently. We describe the solution next.

The authentication mechanism relies on test centers playing
the role of a trusted third-party. When a test center generates
a positive result for a user, it releases a one-time password
(OTP) to the diagnosed user and to the backend. The OTP
may be derived from a master secret MT of the test center and
a counter CT representing the number of users who tested pos-
itive at the center. The user then sends the OTP to the backend
and downloads N one-time signing keys from a database of

6

keys in the backend using an oblivious transfer (OT) protocol,
which prevents the backend from learning sets of keys that
were downloaded together. Subsequently, the user can sign
each of their trajectory subsets with one of the downloaded
keys each. When the user uploads the subsets, the backend
can verify the signatures on the subsets by trying the verifica-
tion keys. Since the backend does not know which keys were
given to the same user, it cannot link the different uploads of
the same user to each other.

The authentication mechanism can partially prevent a sick
user from authenticating arbitrary entries and uploading them
to the backend. A sick user may authenticate entries that
their device never recorded, e.g., by copying entries from a
colluder’s device to their own device. The backend may be
able to detect if a user uploads entries from multiple distant
locations at the same time; however, it can do so only within a
subset of entries uploaded together, but not across independent
subsets. Thus, the length of the trajectory subsets trades off
unlinkability and the ability to detect malicious behavior.

A malicious user could also simply upload a consistent
encounter history of a different device. This risk cannot be en-
tirely eliminated, since it is difficult to verify whether a device
logged entries in the proximity of beacons or not. However,
this analog loophole exists in all digital contact tracing sys-
tems, not just the one we are proposing here.

4.4 Initiating upload from a user device

Next, we discuss how user devices initiate upload of entries.
Depending on the user device, the upload mechanism requires
different steps as described below.

Smartphone upload. A user initiates the data upload after
they receive a positive test result. A smartphone user down-
loads the OTP from the test center, forwards it to the backend
and downloads the one-time signing keys from the backend,
all over the internet.

Dongle upload. Dongle users need to download the signing
keys with the help of a trusted network device. The trusted de-
vice could download the OTP from the test center on behalf of
the dongle, forward it to the backend, download the one-time
signing keys from the backend and finally forward the keys to
the dongle over BLE. To initiate upload, the dongle user then
establishes a secure connection between the dongle and the
trusted device by entering their dongle’s id and password on
the trusted device’s UI and instructing the device to establish
an authenticated session with the dongle. The dongle encrypts
each encounter entry with the backend’s public key, signs it
with one of the signing keys, and then uploads the encrypted
and signed payload to the trusted device, which then uploads
entries to the backend via the mixnet.

Note that the encounter history is not released in cleartext
to the personal device.

4.5 Security analysis of the upload mechanism

The upload protocol authenticates a user’s encounter entries
to the backend without linking the trajectory subsets to each
other or to the user. This is achieved as follows. If a backend
can verify the signature on an uploaded trajectory subset, it
knows the subset was signed using a one-time signing key
provided by the backend. A user could have received the
signing key only upon authenticating itself to the backend
with a valid OTP that was generated by a trusted test center,
which in turn would have generated the OTP only if the user
was diagnosed positive. At the same time, the OT protocol
prevents the backend from learning the keys downloaded by
the user and the user from learning the keys that they do not
wish to use.

Even when the backend has retrieved all the ephemeral
ids that were deposited in all the mailboxes, it cannot piece
together the full trajectory of any single user. This is because,
by assumption, no ephemeral id is unique to any individual
and the uploading protocol prevents linking a sequence of
messages together and to a specific individual. Moreover, the
backend cannot identify the sick users and, therefore, cannot
know with certainty to which user a particular set of eph-
emeral ids belong.

Nevertheless, for added protection of the encounter data
collected, the backend can be further secured using standard
hardware and cryptographic techniques [34].

5 Risk dissemination

We start with an overview of the risk information structure
and the risk notification mechanism in the user devices. The
risk information consists of a list of ephemeral ids. The
ephemeral id of a beacon b for epoch i is included in the
list only if a diagnosed individual encountered b in epoch i.
For accurate risk estimation, the risk information may contain
additional encounter parameters, e.g., rssi, encounter duration,
beacon’s descriptor, and weights for the beacon descriptors.

If a user device has previously recorded any of the eph-
emeral ids listed in the risk information, its owner may have
been exposed to a diagnosed individual. The device computes
a risk score based on the number of matched ephemeral ids
and (optionally) other features of the matched encounters. If
the risk exceeds a certain threshold, the device notifies the
user so that they can self-isolate and get tested. In dongles, the
notification can be generated by having the user press a button
on the dongle and the LED blink with a specific pattern.

We now discuss how the risk information is disseminated
from the backend to user devices. We assume that most users
check their risk status once a day on average. We start with
the requirements that the risk dissemination protocol needs
to satisfy and then describe how Silmarillion satisfies each of
the requirements.

7

5.1 Requirements

The risk dissemination protocol needs to address four require-
ments, which we discuss in this section. D1. the information
disseminated must be correct, D2. the protocol must preserve
the privacy of the diagnosed patients whose information is
being disseminated (§5.2), D3. the protocol must maintain pri-
vacy of the users seeking the risk information (§5.3), and D4.
the relevant information must reach potentially affected users
in a timely manner and with low bandwidth, power, and com-
putational costs for user devices (see §5.3). Note that all risk
information is signed by the backend to allow detection of
any tampering, which addresses D1.

5.2 Noising the risk dissemination

We present two scenarios where the number of entries in
the risk information could potentially reveal an individual’s
movements or health status to an adversary in the locality of
the individual. We then describe our solution to mitigate such
leaks, addressing requirement D2.

(i) Movements of diagnosed individuals. Suppose Alice
learns (from the local news) that there was only one case
of infection in the past few days within some geographic
region. Separately, she learns that Bob was diagnosed and
that he agreed to upload his encounter history when he got
diagnosed. Alice can infer if Bob was near any beacon in the
region while he was contagious based on whether she receives
risk information for the region or not. Thus, the length of the
risk information (zero vs. non-zero) reveals to an adversary
information about the movements of a diagnosed individual.

(ii) Health status of an individual. Suppose Alice lives in
an area with few people, say n, and Alice is able to track the
movements of n−1 of these people through outside channels.
If Alice receives risk information with more ephemeral ids
than can be accounted for by the movements of the n− 1
people she is tracking, she knows that the nth person (whom
she is not tracking) must be sick as well. Even though such an
attack requires a significant amount of offline information and
may be difficult in practice, it does raise privacy concerns.

Note that these leaks rely solely on the number of
ephemeral ids in a risk notification and arise without the
adversary having even encountered an individual. We miti-
gate these leaks by adding noise to the risk information to
hide the actual number of ephemeral ids. We add junk ids that
do not correspond to any real beacon and thus do not match
the history of any user device. Given our threat model, no
adversary can monitor the ephemeral ids from a significant
fraction of beacons and, thus, distinguish the junk ids from
legitimate ids. The number of junk ids satisfy differential
privacy (DP), which we describe next.

We adapt a mechanism proposed in prior work [23]. Given
a risk payload, we add N junk ids to it, where N = t + ⌊X̃⌋
is always non-negative; t is a natural number, and X̃ is a

random value sampled from a Laplacian distribution with
mean 0 and parameter λ truncated to the interval [−t,∞). The
values of t and λ depend on the privacy required. To get (ε,δ)-
DP, we pick λ = A/ε and t = ⌈λ · ln

(
(e(A/λ)−1+δ)/2δ

)
⌉.

Here, A is the sensitivity of the risk payload function; it equals
the maximum number of risk entries that could be contributed
by a single diagnosed individual, which we conservatively
set to 2016 (§3.2). For ε = 0.1 and δ = 0.01, the 99th %ile
noise required is 115991. We prove that our mechanism is
(ε,δ)-DP in appendix B.

5.3 Dissemination protocol
A key requirement for Silmarillion is to ensure that users can
receive risk information without revealing their own encounter
history. Additionally, traveling users must be able to access
global risk information to receive reliable risk estimation.

A naïve way to satisfy these requirements would be to
broadcast the complete risk information to users and let the
users’ devices filter the data for relevant matches. However,
this could incur high latency, power, and computational costs
for the user devices. Silmarillion simultaneously addresses
requirements D3 and D4 by using a IT-PIR protocol that
allows users to query the backend for risk information without
revealing their own encounter entries. Below, we describe the
PIR datastructures and the protocol.

PIR datastructure. The backend enables users to query
for risk information in fixed-sized blocks, where blocks are
derived by grouping the RiskDB entries based on a set of one
or more beacon attributes. The grouping function G may be,
for instance, based on a region identifier attribute associated
with the beacons (e.g., zip code or country code), or based
on a location type attribute (e.g., airports, theatres, etc.). The
backend may support one or more grouping functions. Sup-
pose a function G yields N possible values for its attribute
set {g1,g2, ...,gN}. The backend maintains an N-length array
DPIR, where entry DPIR[i] corresponds to a block for gi. The
entry is a data block if there are non-zero number of RiskDB
entries with gi in their beacon attributes, otherwise it contains
a dummy block. In other words,

DPIR[i] =

{
G(RiskDB,gi), if ∃ e ∈ RiskDB, gi ∈ e.descb

dummy, otherwise

For each function G, the backend maintains a separate DPIR.
To ensure that a user does not learn the actual number of

ephemeral id entries within a block (e.g., in a region-based
grouping) and to make the block size uniform, the backend
adds dummy entries to each block, following the DP mecha-
nism of §5.2, upto the uniform block size of DPIR.

Dynamic and hierarchical grouping. A key practical chal-
lenge is that as the entries uploaded by users evolve each
day, the distribution of risk entries may vary in the groups
generated by a grouping function. Consequently, the block

8

Figure 2: PIR DB in the backend on a given day.

size for a DPIR may need to be changed frequently. Further-
more, a skewed distribution of risk entries may require very
large block sizes, leading to unnecessary bandwidth over-
heads. Therefore, the backend dynamically adjusts the group-
ing of RiskDB entries based on the prevailing infection rate
distribution, while maintaining a uniform block size B.

For a grouping function, the backend organizes the attribute
ids hierarchically like a B+-tree, whose height and fanout de-
pend on the desired block size. A DPIR block corresponds to a
B+-tree node at a certain level if the total number of risk en-
tries for all nodes below it is ≤ B. When the number of entries
overflows B, the entries are split into new DPIR blocks that are
associated with B+-tree nodes at the next lower level. Partially-
filled blocks are padded with dummy entries as above.

Block encoding. Once the blocks are generated, the back-
end then encodes each block into a cuckoo filter (CF) [37].
The CF encoding ensures that users can only check for pres-
ence of specific ephemeral ids but not learn all the ids in the
risk payload, thus slowing down ephemeral id harvesting by
colluding users. The CFs also reduce bandwidth overheads,
albeit at the cost of a small percentage of false positives. For
instance, a CF with entries of size 32 bits (as opposed to the
15-byte ephemeral ids) reduces risk payload sizes by ∼3.75x
while incurring <0.01% of false positives for a 14-day period.
Figure 2 shows the PIR database.

PIR protocol. We use a PIR protocol based on [32]. Our
scheme relies on two servers, S1 and S2, each of which has a
complete copy of the DPIR. We make the standard assumption
that at least one server is non-malicious and non-colluding.
Suppose DPIR contains N blocks and let the size of the largest
block in DPIR be B bits. We assume that all blocks are padded
with dummy entries up to size B.

First, the user device queries the backend for the grouping
functions supported. In Silmarillion, we support the region-
based grouping function which maps each encounter entry to
an enumerated region id. The user device applies the function
on its own encounter log to determine the unique regions
visited and, therefore, for which it needs the risk information.

To query for the n-th region (block) in DPIR, a user device
generates two secrets shares Q1,Q2, which are random bit
strings of length N with same bits except the n-th bit, which

is flipped. The device sends Q j to S j; j ∈ {1, 2}.
Each server expands its query share from a vector of 1-bit

entries to a vector of B-bits entries by replicating the bit at
each index in the original query B times. Next, each server S j
generates a response A j =

⊕N
k=0(Q j[k] ·DPIR[k]), encrypts it

with the client device’s encryption key, and returns it to the
client. The user device decrypts each response from the two
servers and XOR’s them to retrieve DPIR[n].

The user device’s complexity for generating a query-pair
and uploading the queries, and each backend’s computation
complexity are O(N) each. The cost for receiving the response
shares and retrieving a block is O(B) each.

For querying, the user device sets up an end-to-end secure
session with each backend PIR server and then issues PIR
queries for each unique block covering the logged encounters.
A smartphone user can directly connect with the servers over
Internet. A dongle user offloads risk querying to its trusted
networked device, as is done for encounter history upload.

Furthermore, the user device generates fake queries using
DP (similar to §5.2) to hide the actual number of queries
issued in each round of risk querying (about once a day).

5.4 Security analysis of risk dissemination
Users learn nothing about other users except through the risk
notifications, and the only information they can learn is that
which is uploaded by diagnosed users. Thus, it is impossi-
ble to learn anything about healthy users who never share any
information with the system.

For diagnosed individuals, the DP mechanism in the risk
dissemination protects the number of encounter entries up-
loaded by them, while the cuckoo filter encoding of risk infor-
mation prevents others from easily learning the actual entries.

Silmarillion also ensures strong privacy of users receiving
risk information. As long as one of the PIR servers is non-
malicious, user’s privacy is protected from the servers, since
each server receives only a share of the query and iterates
over the entire DPIR regardless of the query, and only the user
can recover the DB block from the response shares of the
servers. User generates a number of queries following DP,
and all queries and results are encrypted end-to-end between
the clients and servers, thus preventing leaks to eavesdroppers.
The only remaining leak is through the timing and number of
risk notification rounds.

Thus, the backend learns no information about queriers,
particularly healthy users, except the times when they query
for risk data.

Limiting case. A user can still learn the specific ephemeral
ids it collected from a beacon they visited at the same time
as a sick individual. Combining with auxiliary information
(e.g., from local news), she might be able to isolate the lo-
cation trajectory of an individual and ultimately identify an
individual in the worst case. Note that such leaks are inherent
to all digital tracing systems. Nonetheless, DP (§5.2) com-

9

bined with our assumption that an adversary cannot record
ephemeral ids widely ensures that users cannot learn the com-
plete history of an individual without stalking them physically.

6 Silmarillion prototype

As a proof of concept, we implemented Silmarillion using low-
cost BLE beacons, BLE-only dongles, and smartphones with
both BLE and network capabilities. We implemented BLE
beacons on Nordic nRF52832 development kits [4] and BLE
dongles on SiLabs Thunderboard Kit SLTB010A [7]. All the
Bluetooth devices support BLE 5.0. The BLE-only devices
are powered through 3V/220mAh CR2032 coin cells. Only
64KB of flash storage is usable in dongles, with the remaining
storage being used by the platform software. While the storage
was sufficient in our evaluation (§7), we recommend using
devices with at least 128KB of log storage.

BLE beacons. The BLE beacons are configured with a
location id attribute, which is an 8-bit integer indicating geo-
coordinates of the beacon within a 1 km2 region. The beacons
transmit ephemeral ids as legacy advertisements on BLE’s
advertising channels.

Dongle. The dongle’s key datastructure is a circular log
on flash, which is used to store records of beacon encounters.
The dongle implements four event handlers.

An encounter handler scans on the legacy advertisement
channel at 1s intervals with a duty cycle of 10%. When the
dongle receives a packet, the handler decodes the encounter
payload. It adds a new encounter to an in-memory list of "ac-
tive" encounters, or updates an existing encounter’s interval
since the first instance of the same encounter was observed.

A clock handler, triggered once per minute, increments the
dongle’s clock and performs different actions on encounter
entries in memory and on store depending on their state. It
deletes stored encounters older than 14 days. For the "active"
encounters older than one epoch (and thus ready to persist
in the encounter log), it computes their cuckoo filter lookup
indexes and appends the encounter and the indexes to the log.

A query handler, triggered on a button press, initiates the
querying protocol for risk information. The dongle aggre-
gates regions to query from the location ids of the recorded
encounter entries. For each query, the dongle generates two
secret shares using a hardware TRNG and encrypts each share
using a separate key generated with hardware AES-CBC256.
The keys can be derived from the dongle key and counter pre-
shared with each backend PIR server. The dongle then sends
both queries to a network beacon over a BLE connection,
and the beacon then forwards the queries to the respective
server. Each server encrypts its PIR response with its AES
key and sends the response to a network device, which then
transmits the response to the listening dongle. The dongle
decrypts and XORs the response shares to retrieve the final
response, decodes the cuckoo filter in the response, looks

Operation Frequency Compute Bandwidth UI

ephid collect high low low no
risk calc med high high low
history upload rare med med med

Table 1: Dongle operations. (UI = User involvement)

up each dongle log entry in the filter, and sets a bit for each
matched entry.

An LED handler periodically toggles a device LED. Nor-
mally, the LED blinks 5 times at 1s intervals every 2 min
to indicate that the device is alive. After downloading risk
entries, the user can press a button to check for an exposure
(new matches in CF), which is indicated by the LED blinking
continuously at 0.25s intervals for 2 min before resetting to
the normal rate.

Due to limited RAM, dongles compute risk scores in a
streaming manner. The query handler downloads a chunk of
risk payload, performs the necessary lookups, then discards
the chunk before downloading another chunk. The chunk ids
track pending chunks.

Although straightforward, we did not implement the up-
load pipeline from a dongle to a network device, since the
costs of this pipeline would be much smaller than the costs
for the network device to participate in the mixnet protocol
for uploading to the backend.

Smartphone. We also implemented the user device func-
tionalities as an Android 11 app. The app captures beacon
encounters similar to the dongle. Additionally, it uploads the
device’s encounter history for the last 14 days to the backend
over HTTPS and downloads the complete risk data of the last
14 days from the backend over HTTPS.

Backend. The backend server runs on two Dell PowerEdge
R730 Servers, each with 16 Intel Xeon E5-2667, 3.2GHz
cores, 512 GB RAM, and 1TB SSD. It maintains DPIR as an
in-memory array, uses AVX256 for PIR, and computes new
CFs daily from the uploaded ephemeral ids of the last 14 days.
For our experiment, we use a PIR block size of 5 MB and
a PIR database DPIR of ~430K blocks (regions). To enable
incremental risk score updates in user devices, the backend
splits the data into multiple cuckoo filters, which are transmit-
ted as chunks with distinct ids. Each chunk includes a filter
of 128 indices with 4 buckets per index. The backend only
transmits ephemeral ids in the risk information; extensions
for intelligent risk estimation are left for future work.

7 Evaluation

In this paper, we evaluate the practicality and usability of
Silmarillion’s design and implementation for the use case
of contact tracing and risk notification. An evaluation of the
effectiveness of beacon-based tracing has been shown in prior
work [25].

10

12
8

25
6

51
2

10
24

20
48

51
20

Payload size (KB)

0

50

100

150

200

La
te

nc
y

(s
)

0.00

0.05

0.10

0.15

0.20

En
er

gy
 (m

Ah
)

Qdwnld latency Qrisk latency Energy

Figure 3: Risk payload sizes vs end-to-end risk dissemination
latency and energy consumption. 128KB = 32768 ephemeral
ids, 576 250B sized BLE packets.

BLE beacons perform a single task of generating ephemeral
ids periodically; thus, they require low maintenance and the
only practical concern is their battery life. For users’ devices,
the practicality and usability is determined by the frequency
of interactions required with the devices, the timeliness of
risk dissemination, the bandwidth costs, and the impact on
the battery life of the devices. Table 1 shows the compute,
bandwidth, and user involvement characteristics of the three
main operations performed by the devices: (i) ephemeral id
collection, (ii) encounter history upload, and (ii) risk calcu-
lation for a user. Given these characteristics, we care about
the latency of (ii), since it impacts the overall timeliness of
risk dissemination to other users, latency and bandwidth of
(iii), since it requires high computation and bandwidth, and
we care about power consumption of (i) and (ii), since they
have the maximum impact on the device’s battery life. In §7.1
and §7.2, we present an evaluation of the latency and energy
costs of realistic implementations of beacons and low-end
dongles. In §7.3, we describe our experience from a pilot de-
ployment of Silmarillion with BLE beacons and user devices
implementing a basic, functional subset of all the features
described in our design.

7.1 Risk estimation latency
Although Silmarillion supports smartphones, our evaluation
for personal risk estimation focuses on dongles, which have
fewer compute, storage, bandwidth, and power resources, and
thus present a more challenging performance target.

We measure the end-to-end latency for risk notification and
dongle power consumption when downloading risk payloads
of various sizes using the broadcast and the active querying
protocols. In all experiments, a dongle and a network device
are placed 2m apart in an indoor, barrier-free environment.
The numbers are averaged over three runs and the variance
observed is less than 1%.

Figure 3 shows the latency involved in downloading risk
payload (Qdwnld) and for estimating and notifying the user of

any matches (risk) as a function of different payload sizes
(Qrisk). The total risk estimation latency constitutes ∼37.3%
of the end-to-end latency. This latency is dominated by
lookups of each of a dongle’s encounter entry in each CF
chunk downloaded (see streaming lookup in §6). The latency
of decrypting and XOR-ing the PIR query results is negligible
compared to the CF lookups. Similarly, uploading a query
includes secret-share generation, encryption, and uploading
the PIR queries. The querying latency is a constant 2.3s re-
gardless of the risk payload size, and is at most 25% of the
end-to-end latency. Finally, the query executes on the DPIR in
∼170ms in the backend, which is negligible compared to the
dongle’s compute and communication latency.

The green bars in Figure 3 show the energy consumption
for risk notification for different risk payload sizes.

7.2 Battery lifetime
We measured the current consumption of BLE beacons and
dongles using Simplicity Studio’s energy profiler, and here
we estimate the battery life of the devices. Again, we do not
analyze the battery life of smartphones, since they are already
provisioned with much higher battery capacity.

Beacons. The beacons transmit on BLE channels with a
power of -10 dbm or equivalently 0.1 mW. The average current
draw of the beacon is 7 µA, which is dominated by the current
draw during BLE transmission. Thus, with a single coin cell
of 220 mAh capacity, a beacon can last more than 3 years.

Dongles. The dongle’s base current draw is 0.85 mA. In a
60-min period, the dongle’s average current consumption is
0.9 mA when only scanning for beacon ephemeral ids, and
1.04 mA when additionally downloading risk information
from a network beacon once using either periodic broadcast
or connection-oriented communication. Thus, with a coin cell
of 220 mAh capacity, the dongle is expected to last ∼8.8 days.
Note that this is a conservative estimate, since users would
download risk information only infrequently, e.g., once a day.
With rechargeable cells of even 60 mAh capacity, the don-
gles can last ∼2.7 days on a single charge. This is practical,
since users can be asked to place their dongles on a (wireless)
charger overnight.

7.3 Deployment
Our prototype does not yet support an end-to-end implemen-
tation of the upload protocol and the PIR protocol for risk
querying. However, our phone app supports uploading a user’s
encounter history directly to the backend and downloading the
complete risk information from the backend, thus enabling a
pilot deployment.

We tested the end-to-end functionality of Silmarillion using
a pilot deployment in the university building over 16 days2.
We simulated infected users to trigger uploading of encounter

2We received university IRB approval for the deployment.

11

histories and risk dissemination. The backend server was
hosted in a single core Ubuntu 20.04.3 LTS VM with 1GB
RAM and 32GB disk. We hosted users’ data in a MySQL
DB v8.0.27. We placed 8 BLE beacons, one each in various
meeting rooms, labs, and social areas, and 2 network beacons
in a subset of these spaces for risk broadcast. We involved 15
volunteers, 10 of whom carried a dongle and the rest used our
smartphone app. The app users were asked to upload their
encounter history to the backend on three random days. All
users checked their simulated exposure risk everyday. Their
devices downloaded the risk information over periodic broad-
cast channel only and recorded the number of encounters
matched with the broadcast. App users saw the number of
matched entries on their phone screens and the dongles’ LEDs
blinked faster to indicate non-zero matches.

Statistics. Over the period of the experiment, the beacons
generated a total of 12288 unique ephemeral ids, and the
user devices captured a total of 11670 of these ephemeral
ids. When the app users uploaded their encounter history, they
uploaded an average of 155 ephemeral ids to the backend. The
number of other participants whose devices found matching
entries for each of the three uploads was 8, 6, and 5.

User experience. Our users found both the dongles and the
app intuitive and easy to use. In the future, the smartphone
app could provide better visualization of the encounter data.
The dongles could also be allowed to pair with a personal
device, which the user is willing to trust, to provide similar
visualizations of data as the phone app.

Evaluation summary. Our results indicate that Silmaril-
lion can be practically deployed with low infrastructure and
maintenance costs, and can be easily adopted by users. Both
smartphones and low-end dongles can upload encounter data
and receive risk information of their regions of interest with
modest bandwidth, latency, and energy costs.

8 Discussion

Beacon placement. The density and placement of beacons is
important for minimizing false negatives and false positives
in Silmarillion. False positives arise when a user receives
a risk notification even though they have not been in close
contact with an infected user. For instance, a false notifica-
tion may be generated when two users encounter a beacon
placed on a glass door but from opposite sides of the door.
False positives can be reduced by placing a sufficient num-
ber of beacons in a location and using well-known localization
techniques [41], and by relying on the beacons’ descriptors
encoding information, such as temperature, humidity, etc.

False negatives arise when potential transmissions between
users are missed, for instance, because of users meeting in
locations where there are no beacons. Beacon deployments
can be planned strategically to minimize false negatives. For

instance, restaurants are likely to be more crowded than parks;
therefore, restaurants must be prioritized in a partial rollout.

False positives in non-contemporaneous events. If Alice
and Bob (who is infected) visit a beacon in the same epoch
and Alice leaves before Bob’s visit, she would still receive
a risk notification for this beacon visit, even though she was
not exposed to Bob. To eliminate such false positives, Sil-
marillion could additionally transmit in the risk information
the beacon’s start timestamp and interval as observed in the
infected user’s encounter with the beacon. For the matched
ephemeral ids, user devices would then compare the beacon’s
timestamp and interval recorded in their own log and in the
risk information for overlap. A user would be notified only if
the time interval in device’s log overlaps with and starts later
than the interval in the risk information.

Interoperability with existing CT systems. Silmarillion’s
beacons can broadcast ephemeral IDs compatible with the
Google/Apple Exposure Notification (GAEN) protocol used
by most SPECTS [38], allowing the beacons to seamlessly
interoperate with deployed apps.

Silmarillion can also achieve bidirectional interoperabil-
ity with manual contact tracing [21]. Health authorities may
manually obtain location data from consenting diagnosed
individuals and insert records into Silmarillion. Thus, even
users who do not carry a dongle can contribute to subsequent
risk estimates and broadcasts. Conversely, by providing a user-
comprehensible record of visited beacon locations, Silmaril-
lion can be used as a diary aiding the memory of individuals
participating in manual tracing. Finally, since Silmarillion can
associate risk events with locations, information about poten-
tial superspreading events can be broadcast using traditional
means of communication.

9 Related work

We discuss digital CT systems that use various technologies,
such as Bluetooth, GPS, or QR codes, to track users’ trajec-
tory and/or proximity to other users. We also discuss privacy-
preserving techniques relevant for risk information retrieval.

P2P CT systems. SPECTS record instances of physi-
cal proximity with devices of other individuals via close-
range Bluetooth exchanges between user devices. Centralized
SPECTS [5, 6, 10, 27] collect and manage user data cen-
trally, placing a high degree of trust in the central authority.
Decentralized SPECTS [9, 16, 28, 31] minimize data collec-
tion to preserve privacy, but this prevents aggregation of data
for epidemiology. Silmarillion facilitates analysis by enabling
collection of contextual information with encounters.

In SPECTS, users’ devices actively transmit messages and,
thus, are vulnerable to eavesdropping and surveillance at-
tacks [50]. Furthermore, an attacker could relay or replay cap-
tured ephemeral ids [26, 50]. Silmarillion overcomes these
attacks because users’ devices mostly listen passively, and

12

beacons’ location-time configurations can be corroborated
with external trusted sources.

P2I CT systems. Reichert et al. [43] propose an architec-
ture where all beacons (“lighthouses”) and user devices are
smartphones. Lighthouses collaborate with the backend for
removing false positives in risk notification to a user who left
a beacon before an infected user visited it (see §8). Conse-
quently, users need to trust the lighthouses to not collude with
the backend in leaking their data. Silmarillion eliminates the
false positives in risk notification without requiring collabo-
ration between the backend and the network beacons, which
may be operated by untrusted third parties. Unlike lighthouses,
Silmarillion can also handle relay/replay attacks.

PanCast [25] uses Bluetooth beacons and supports don-
gles similar to Silmarillion. However, PanCast focuses on
evaluating—through simulations—the effectiveness of a
beacon-and-dongle architecture for risk notification, and the
benefits of interoperating with manual tracing. Silmarillion,
on the other hand, builds a real system using smartphones
and low-end IoT devices, addressing technical challenges
in achieving security, scalability and performance efficiency.
PanCast assumes a pure broadcast-based risk dissemination ar-
chitecture, which can be very expensive in terms of bandwidth
and even latency during high infection rates. Silmarillion uses
an IT-PIR based active querying protocol, thus minimizing
bandwidth, latency, and power costs for user devices.

Systems that use QR codes [2, 12, 18, 39] rely on static QR
codes for each registered location. Static codes allow linking
a user’s multiple visits to the same locations, thus revealing
more information about their location history. Other appli-
cations track location history using GPS [19, 30], which is
imprecise and invasive, or using encounters with WiFi access
points [48], which requires infrastructure that is relatively
expensive compared to Silmarillion’s infrastructure.

Privacy-preserving risk querying. Silmarillion’s PIR
technique with dynamic block sizes is similar to LBSPIR [42].
However, LBSPIR was designed for smartphone applications,
which can retrieve the dynamic block layout of the PIR DB
from the server and then adapt the size of each PIR query
based on users’ privacy preferences. Silmarillion relies on a
hierarchical geographical tiling, which enables PIR with mini-
mal interaction between the server and a dongle, and provides
a fixed privacy guarantee with fixed overheads for all queries.

EpiOne [47] proposes a two-party private-set intersection
cardinality (PSI-CA) technique, to enable users to find how
many entries in their encounter history match those of patients.
Silmarillion reveals which location-time entries in a user’s
history match those in the risk information. Hence, Silmaril-
lion provides more context for a user’s exposure risk without
compromising patients’ privacy. Secondly, EpiOne relies on
computational PIR, Merkle tree and zero-knowledge proofs
to provide privacy for queriers and the infected individuals.
These mechanisms have high computational and communica-
tion costs. Silmarillion provides similar guarantees but using

IT-PIR, differential privacy, and cuckoo filters, which offload
most computational costs to the server and thus are more
suitable for user devices, particularly low-end dongles.

10 Conclusion

We focus on building a systematic, inclusive, and scalable
contact tracing and risk notification system in preparation
for future needs. To this end, we present Silmarillion, a
novel system for epidemic risk mitigation based on person-
to-infrastructure encounters, showing that it is possible to
extract significant utility without compromising on security.
We presented the design and a prototype of Silmarillion along
with a detailed analysis of its security, efficiency, and scala-
bility. We demonstrated Silmarillion’s practicality through a
pilot deployment in a university building. We plan to evaluate
Silmarillion in a real-world deployment in the future.

References

[1] Coronavirus disease (COVID-19): How is it trans-
mitted? https://www.who.int/docs/default-
source/coronaviruse/situation-reports/
20200326-sitrep-66-covid-19.pdf. Accessed on
23 July 2023.

[2] CrowdNotifier - Decentralized Privacy-Preserving
Presence Tracing. https://github.com/
CrowdNotifier/documents. Accessed on 22
October 2020.

[3] Early Evidence of Effectiveness of Digital Con-
tact Tracing for SARS-CoV-2 in Switzerland.
https://github.com/digitalepidemiologylab/
swisscovid_efficacy/blob/master/SwissCovid_
efficacy_MS.pdf. Accessed on 22 October 2020.

[4] Nordic nRF52832 Development Kit. https:
//www.nordicsemi.com/Products/Development-
hardware/nrf52-dk. Accessed on 4 August 2022.

[5] OpenTrace. https://github.com/opentrace-
community/opentrace-android. Accessed on 28
June 2020.

[6] PEPP-PT (20 April 2020) Data Protection and
Information Security Architecture. https:
//github.com/pepp-pt/pepp-pt-documentation/
blob/master/10-data-protection/PEPP-PT-
data-protection-information-security-
architecture-Germany.pdf. Accessed on 28
June 2020.

[7] SLBT010A EFR32BG22 Thunderboard Kit.
https://www.silabs.com/development-tools/

13

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf
https://github.com/CrowdNotifier/documents
https://github.com/CrowdNotifier/documents
https://github.com/digitalepidemiologylab/swisscovid_efficacy/blob/master/SwissCovid_efficacy_MS.pdf
https://github.com/digitalepidemiologylab/swisscovid_efficacy/blob/master/SwissCovid_efficacy_MS.pdf
https://github.com/digitalepidemiologylab/swisscovid_efficacy/blob/master/SwissCovid_efficacy_MS.pdf
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://github.com/opentrace-community/opentrace-android
https://github.com/opentrace-community/opentrace-android
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://www.silabs.com/development-tools/thunderboard/thunderboard-bg22-kit?tab=overview

thunderboard/thunderboard-bg22-kit?tab=
overview. Accessed on 4 August 2022.

[8] SLWSTK6021A EFR32xG22 Wireless Gecko Starter
Kit. https://www.silabs.com/development-
tools/wireless/efr32xg22-wireless-starter-
kit?tab=overview. Accessed on 4 August 2022.

[9] TCN Coalition. https://github.com/
TCNCoalition/TCN. Accessed on 28 June 2020.

[10] TraceTogether. https://www.tracetogether.gov.
sg/. Accessed on 28 June 2020.

[11] Why the WHO took two years to say COVID
is airborne. https://www.nature.com/articles/
d41586-022-00925-7. Accessed on 23 July 2023.

[12] Canatrace. https://canatrace.com, 2020. Accessed
on 15 Mar 2021.

[13] Corona-Warn-App. https://www.coronawarn.app/
en/, 2020. Accessed on 30 July 2023.

[14] COVID Alert. https://www.canada.ca/en/public-
health/services/diseases/coronavirus-
disease-covid-19/covid-alert.html#a6, 2020.
Accessed on 15 Feb 2021.

[15] COVIDSafe Australia. https://www.abc.net.
au/news/2020-06-02/coronavirus-covid19-
covidsafe-app-how-many-downloads-greg-
hunt/12295130, 2020. Accessed on 15 Feb 2021.

[16] Decentralized Privacy-Preserving Proximity Trac-
ing. https://github.com/DP-3T/documents/
blob/master/DP3T%20White%20Paper.pdf, 2020.

[17] NZ COVID Tracer. https://www.rnz.co.nz/
national/programmes/checkpoint/audio/
2018762292/2-point-1-million-download-
covid-tracer-app-but-who-is-signing-in,
2020. Accessed on 15 Feb 2021.

[18] SafeEntry. https://www.safeentry.gov.sg, 2020.
Accessed on 15 Mar 2021.

[19] SafePlaces. https://github.com/Path-Check/
safeplaces-dct-app, 2020. Accessed on 15 Mar
2021.

[20] BearSSL. https://www.bearssl.org/
constanttime.html, 2022.

[21] Citation withheld for blind review, 2022.

[22] Tor. https://tb-manual.torproject.org/about/
#:~:text=Tor%20is%20a%20network%20of,out%
20onto%20the%20public%20Internet., 2022.

[23] Istemi Ekin Akkus, Ruichuan Chen, Michaela Hardt,
Paul Francis, and Johannes Gehrke. Non-tracking web
analytics. In ACM Conference on Computer and Com-
munications Security (CCS), 2012.

[24] Apple. Privacy-preserving contact tracing. https://
covid19.apple.com/contacttracing, 2020.

[25] Gilles Barthe, Roberta De Viti, Peter Druschel, Deepak
Garg, Manuel Gomez-Rodriguez, Pierfrancesco Ingo,
Heiner Kremer, Matthew Lentz, Lars Lorch, Aastha
Mehta, and Bernhard Schölkopf. Listening to Blue-
tooth Beacons for Epidemic Risk Mitigation. Scientific
Reports, 2022.

[26] Lars Baumgärtner, Alexandra Dmitrienko, Bernd
Freisleben, Alexander Gruler, Jonas Höchst, Joshua
Kühlberg, Mira Mezini, Richard Mitev, Markus Mi-
ettinen, Anel Muhamedagic, Thien Duc Nguyen, Al-
var Penning, Dermot Frederik Pustelnik, Filipp Roos,
Ahmad-Reza Sadeghi, Michael Schwarz, and Christian
Uhl. Mind the GAP: Security & Privacy Risks of Con-
tact Tracing Apps. In IEEE International Conference
on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2020.

[27] Jason Bay, Joel Kek, Alvin Tan, Chai Sheng Hau, Lai
Yongquan, Janice Tan, and Tang Anh Quy. BlueTrace:
A privacy-preserving protocol for community-driven
contact tracing across borders. Government Technology
Agency-Singapore, Tech. Rep, 2020.

[28] Wasilij Beskorovajnov, Felix Dörre, Gunnar Hartung,
Alexander Koch, Jörn Müller-Quade, and Thorsten
Strufe. ConTra Corona: Contact Tracing against the
Coronavirus by Bridging the Centralized–Decentralized
Divide for Stronger Privacy. In International Confer-
ence on the Theory and Application of Cryptology and
Information Security, 2021.

[29] Philip S. Brachman. Medical Microbiology, chapter
Epidemiology. Galveston (TX): University of Texas
Medical Branch at Galveston, 4th edition, 1996.

[30] MIT Media Lab Camera Culture Group. MIT Safe
Paths Privacy Preserving WiFi Co-location for Contact
Tracing without Prior Scanning of WiFi Signals. https:
//github.com/PrivateKit/PrivacyDocuments/
blob/master/WiFiPrivacy.pdf, 2020. Accessed on
26 Oct 2020.

[31] Justin Chan, Shyam Gollakota, Eric Horvitz, Joseph
Jaeger, Sham Kakade, Tadayoshi Kohno, John Lang-
ford, Jonathan Larson, Sudheesh Singanamalla, Jacob
Sunshine, et al. PACT: Privacy Sensitive Proto-
cols and Mechanisms for Mobile Contact Tracing.
arXiv:2004.03544, 2020.

14

https://www.silabs.com/development-tools/thunderboard/thunderboard-bg22-kit?tab=overview
https://www.silabs.com/development-tools/thunderboard/thunderboard-bg22-kit?tab=overview
https://www.silabs.com/development-tools/wireless/efr32xg22-wireless-starter-kit?tab=overview
https://www.silabs.com/development-tools/wireless/efr32xg22-wireless-starter-kit?tab=overview
https://www.silabs.com/development-tools/wireless/efr32xg22-wireless-starter-kit?tab=overview
https://github.com/TCNCoalition/TCN
https://github.com/TCNCoalition/TCN
https://www.tracetogether.gov.sg/
https://www.tracetogether.gov.sg/
https://www.nature.com/articles/d41586-022-00925-7
https://www.nature.com/articles/d41586-022-00925-7
https://canatrace.com
https://www.coronawarn.app/en/
https://www.coronawarn.app/en/
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html#a6
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html#a6
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html#a6
https://www.abc.net.au/news/2020-06-02/coronavirus-covid19-covidsafe-app-how-many-downloads-greg-hunt/12295130
https://www.abc.net.au/news/2020-06-02/coronavirus-covid19-covidsafe-app-how-many-downloads-greg-hunt/12295130
https://www.abc.net.au/news/2020-06-02/coronavirus-covid19-covidsafe-app-how-many-downloads-greg-hunt/12295130
https://www.abc.net.au/news/2020-06-02/coronavirus-covid19-covidsafe-app-how-many-downloads-greg-hunt/12295130
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://www.rnz.co.nz/national/programmes/checkpoint/audio/2018762292/2-point-1-million-download-covid-tracer-app-but-who-is-signing-in
https://www.rnz.co.nz/national/programmes/checkpoint/audio/2018762292/2-point-1-million-download-covid-tracer-app-but-who-is-signing-in
https://www.rnz.co.nz/national/programmes/checkpoint/audio/2018762292/2-point-1-million-download-covid-tracer-app-but-who-is-signing-in
https://www.rnz.co.nz/national/programmes/checkpoint/audio/2018762292/2-point-1-million-download-covid-tracer-app-but-who-is-signing-in
https://www.safeentry.gov.sg
https://github.com/Path-Check/safeplaces-dct-app
https://github.com/Path-Check/safeplaces-dct-app
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://tb-manual.torproject.org/about/#:~:text=Tor%20is%20a%20network%20of,out%20onto%20the%20public%20Internet.
https://tb-manual.torproject.org/about/#:~:text=Tor%20is%20a%20network%20of,out%20onto%20the%20public%20Internet.
https://tb-manual.torproject.org/about/#:~:text=Tor%20is%20a%20network%20of,out%20onto%20the%20public%20Internet.
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://github.com/PrivateKit/PrivacyDocuments/blob/master/WiFiPrivacy.pdf
https://github.com/PrivateKit/PrivacyDocuments/blob/master/WiFiPrivacy.pdf
https://github.com/PrivateKit/PrivacyDocuments/blob/master/WiFiPrivacy.pdf

[32] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private Information Retrieval. In IEEE
Annual Foundations of Computer Science, 1995.

[33] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable Anonymous Group Messaging. In ACM
Conference on Computer and Communications Secu-
rity (CCS), 2010.

[34] Roberta De Viti, Isaac Sheff, Noemi Glaeser, Baltasar
Dinis, Rodrigo Rodrigues, Jonathan Katz, Bobby Bhat-
tacharjee, Anwar Hithnawi, Deepak Garg, and Peter Dr-
uschel. CoVault: A Secure Analytics Platform. arXiv
preprint arXiv:2208.03784, 2022.

[35] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The Second-Generation Onion Router. In USENIX
Security Symposium, 2004.

[36] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4), 2014.

[37] Bin Fan, Dave G Andersen, Michael Kaminsky, and
Michael D Mitzenmacher. Cuckoo Filter: Practically
better than Bloom. In ACM International on Conference
on Emerging Networking Experiments and Technologies
(CoNEXT), 2014.

[38] Google/Apple Exposure Notification (GAEN) sys-
tem. Exposure Notifications: Using technology
to help public health authorities fight COVID-19.
https://www.google.com/intl/en_us/covid19/
exposurenotifications/.

[39] Andrew S Hoffman, Bart Jacobs, Bernard van Gastel,
Hanna Schraffenberger, Tamar Sharon, and Berber Pas.
Towards a seamful ethics of Covid-19 contact tracing
apps? Ethics and Information Technology, pages 1–11,
2020.

[40] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed Private Messaging Immune to Pas-
sive Traffic Analysis. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2018.

[41] Sharareh Naghdi and Kyle O’Keefe. Trilateration with
BLE RSSI accounting for Pathloss due to Human Ob-
stacles. In Intl. Conf. on Indoor Positioning and Indoor
Navigation (IPIN), 2019.

[42] Femi Olumofin, Piotr K Tysowski, Ian Goldberg, and
Urs Hengartner. Achieving Efficient Query Privacy for
Location Based Services. In International Symposium
on Privacy Enhancing Technologies Symposium (PETS),
2010.

[43] Leonie Reichert, Samuel Brack, and Björn Scheuermann.
Lighthouses: A Warning System for Super-Spreader
Events. In IEEE International Conference on Commu-
nications Workshops (ICC Workshops), 2021.

[44] Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebas-
tian Angel, and Andreas Haeberlen. Mycelium: Large-
Scale Distributed Graph Queries with Differential Pri-
vacy. In ACM Symposium on Operating Systems Princi-
ples (SOSP), 2021.

[45] Singapore Government. Safe Entry. https://
www.ndi-api.gov.sg/safeentry. Accessed on 10
September 2020.

[46] The New York Times. In Coronavirus Fight, China
Gives Citizens a Color Code with Red Flags. https:
//www.nytimes.com/2020/03/01/business/
china-coronavirus-surveillance.html. Ac-
cessed on 03 August 2023.

[47] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri,
and Dawn Song. Epione: Lightweight Contact Tracing
with Strong Privacy. arXiv preprint arXiv:2004.13293,
2020.

[48] Amee Trivedi, Camellia Zakaria, Rajesh Balan, and
Prashant Shenoy. WiFiTrace: Network-based Contact
Tracing for Infectious DiseasesUsing Passive WiFi Sens-
ing. arXiv:2005.12045, 2020.

[49] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles
(SOSP), 2015.

[50] Serge Vaudenay. Centralized or Decentralized? The
Contact Tracing Dilemma. Technical report, 2020.

A PIR Optimizations

In this section, we describe two optimizations on the basic
PIR implementation described in §5.3.

Silmarillion’s backend maintains a dynamic and hierarchi-
cal mapping (DPIR) of group IDs to fixed-sized blocks contain-
ing the risk entries of for that group. Consider a three-level
B+-tree of group IDs T = {T 0,T 1,T 2}, where T ℓ represents
the set of nodes at level ℓ. The DPIR array maintains a map-
ping for each B+-tree node to a PIR block, with the T 0 nodes
having lower indices than the T 1 nodes, which in turn have
lower indices than the T 2 nodes. Suppose the group IDs are
n-bit integers and the number of bits corresponding to the ID
at each of the three levels are ℓ0, ℓ1, and ℓ2, respectively. The
number of entries in DPIR equals 2ℓ0 +2(ℓ0+ℓ1)+2(ℓ0+ℓ1+ℓ2).

15

https://www.google.com/intl/en_us/covid19/exposurenotifications/
https://www.google.com/intl/en_us/covid19/exposurenotifications/
https://www.ndi-api.gov.sg/safeentry
https://www.ndi-api.gov.sg/safeentry
https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html
https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html
https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html

As described in §5.3, if the total number of risk entries in
all the B+-tree nodes at a level j are less than the block size B,
then the backend aggregates the risk entries into a single block
that is mapped to the parent node at the level j−1. In this case,
the DPIR may contain a large number of duplicate blocks for
the nodes that map to the same block, leading to unnecessary
costs of PIR query computation in the backend. We use an
optimization in the backend to compress the database and the
queries before performing the PIR operations on them. Our
optimization removes any need for metadata while preserving
information-theoretic privacy for users.

Database compression. The DPIR contains entries for each
B+-node with the nodes at lower levels having lower indices
than the nodes at higher levels. For nodes at a higher level
(e.g., level ℓ2) that all map to the same block, the DPIR maps
the block to the node at the higher level (e.g., level ℓ1), while
the ℓ2 nodes point to a dummy zero-filled block. That is,
DPIR[i′] → B j for index i′ corresponding to a node T 1

τ′ and
DPIR[i]→ φ for all indices i corresponding to nodes T 2

τ such
that T 2

τ is a child of T 1
τ′ .

Query compression. Let Q1 and Q2 be the shares of query
Q and let i be the index of the data block that the user wants
to retrieve. Let Q1[j] be the j-th bit of query Q1 and Q2[j] be
the j-th bit of query Q2. We know that

Q1[j] = Q2[j] ∀ j ̸= i .

Without any loss of generality, suppose that index i identifies
a B+-tree node in T 2, which does not correspond to any data
block and suppose that the parent node in T 1, M, does corre-
spond to a data block. Let { jT 2} be the set that contains all the
indices of all the T 2 nodes contained in M. Remember that if
M has not overflowed yet, all the nodes in M are empty and
point to the same block as M. In order to avoid unnecessary
computations and overhead, Server 1 computes

Q1[jM] = Q1[jM]⊕

 ⊕
j∈{ jT 2}

Q1[j]

and then sets all Q1[j] : j ∈ { jT 2} to 0. Here, Q1[jM] is the
bit corresponding to the node M in Q1. The server performs
this compression in the query Q1 for each such node M whose
child nodes are unmapped. Effectively, the query now avoids
dot products and XOR operations for the unmapped blocks
and maps the operations to a single block mapped to the
lower-level node. Server 2 performs similar operations on Q2.

Subsequently, each server computes its answer share as
usual. We are guaranteed that if the number of ones in the
set {Q1[{ jT 2}]} is even then the number of ones in the set
{Q2[{ jT 2}]} is odd and vice versa because Q1[i] ̸= Q2[i] and
i∈ { jT 2}. Therefore, Q1[jM] ̸=Q2[jM]. The rearranged query
will now allow the user to retrieve the data block correspond-
ing to the B+-tree node in T 1 M, i.e. the node in T 1 that
contains the i-th B+-tree node in T 2.

ε δ = 0.001 δ = 0.01

0.5 39098 29925
0.2 86969 64559
0.1 159131 115991
0.05 290088 210058

Table 2: 99th %ile noise required for various ε, δ.

Removing block padding. As a further optimization, the
PIR implementation handles blocks of varying sizes with-
out requiring padding to be persisted in the data blocks. It
allocates a buffer for the response share corresponding to the
max block size and initializes it to 0. Next, it reads each PIR
block and XORs it into the response share buffer. Each block
affects the XOR in the same way in both shares, regardless of
the block size. Thus, if the client requested a small block the
remaining bytes in the response shares will be automatically
XOR’ed out, without revealing to the server which block was
requested.

Note that each PIR block still includes dummy data to
hide the number of risk entries uploaded by sick individuals;
only the padding added to make all blocks uniform in size is
removed.

B Proof of differential privacy of noise added
to risk broadcasts

In Table 2, we first show the 99th percentiles of the number
of noise entries required to achieve differential privacy with
different levels of ε and δ. Below we prove the following
differential privacy theorem, adapted from a similar theorem
in the Appendix of [23].

Theorem 1. Let t ∈ R+, and let X̃ be a random variable sam-
pled from the Laplace distribution with mean 0 and parameter
λ, truncated to the interval [−t,∞).3 Let f be a Z-valued func-
tion with sensitivity A. Then, the function f̃ defined as

f̃ (x) = f (x)+ t + ⌊X̃⌋

is (ε,δ)-differentially private if:

1. λ ≥ A/ε, and

2. t ≥ λ · ln
(
(e(A/λ)−1+δ)/2δ

)
Proof. Because f (x) is in Z, we have f̃ (x)= f (x)+t+⌊X̃⌋=
⌊ f (x)+ X̃⌋+ t. Hence, f̃ (x) is a function of f (x)+ X̃ . Con-
sequently, by the post-processing theorem of differential pri-
vacy [36], it is enough to show that the function g(x) =
f (x)+ X̃ is (ε,δ)-differentially private.

3Note that if X is a standard (untruncated) Laplace random variable with
mean 0 and parameter λ and Q is any predicate over real numbers, then
Pr[Q(X̃)] = Pr[Q(X) | X >−t] by definition of X̃ .

16

So, pick two adjacent inputs x,x′ and any output set O.4

We need to show that

Pr[g(x) ∈ O]≤ δ+ eε Pr[g(x′) ∈ O]

Define Ob = {o ∈ O | o ≤ f (x)− t +A} ⊆ O. Then,

Pr[g(x) ∈ O] = Pr[g(x) ∈ Ob]+Pr[g(x) ∈ O\Ob]

We now show that Pr[g(x) ∈ Ob] and Pr[g(x) ∈ O\Ob] are
bounded by δ and eε Pr[g(x′) ∈ O], respectively. Before delv-
ing into the details of these proofs, we explain the intuition be-
hind these bounds and our definition of Ob. When g(x) ∈ Ob,
because of the way we defined Ob, g(x) ≤ f (x)− t + A.
Since the distance between f (x′) and f (x) can be A in
the worst-case (x,x′ are adjacent by assumption and A is
the sensitivity of f), it is possible in this case that g(x) ≤
(f (x′)−A)− t +A = f (x′)− t. Note that the lower end of
g(x′)’s range is exactly f (x′)− t. Hence, in this case, it is pos-
sible that g(x′) will never equal g(x), so differential privacy
could “fail” in this case. This is why, this case corresponds
to the “δ” part. Dually, when g(x) ∈ O\Ob, we will have
g(x) = f (x)− t +A > f (x′)− t, so g(x′) will always have
a non-zero probability of matching g(x). Hence, this corre-
sponds to the “eε Pr[g(x′) ∈ O]” case of differential privacy.

Now we prove the bounds formally. We start by showing
Pr[g(x) ∈ Ob]≤ δ. Let X denote a random variable sampled
from an untruncated (standard) Laplace distribution with
mean 0 and parameter λ. We have:

Pr[g(x) ∈ Ob] = Pr[g(x)≤ f (x)− t +A]
= Pr[f (x)+ X̃ ≤ f (x)− t +A]
= Pr[X̃ ≤−t +A]
= Pr[X ≤−t +A | X >−t]

=
Pr[−t < X ≤−t +A]

Pr[X >−t]

=
Pr[X ≤−t +A]−Pr[X ≤−t]

Pr[X >−t]

=
1
2 e(

−t+A
λ

)− 1
2 e(

−t
λ
)

1− 1
2 e(

−t
λ
)

=
e(

A
λ
)−1

2e(
t
λ
)−1

We continue using assumption (2) of the theorem’s statement:

Pr[g(x) ∈ Ob] ≤ e(
A
λ
)−1

2e

(
λ ln((e(A/λ)−1+δ)/2δ)

λ

)
−1

=
e(

A
λ
)−1

2
(
(e(A/λ)−1+δ)/2δ

)
−1

= δ

4In our context, adjacent inputs are two situations that differ in exactly one
user being sick or not. An “output” is the length of a noised risk broadcast,
and O is any set of such possible lengths.

Next, we compute the bound on Pr[g(x) ∈ O\Ob]. Note that
for any o ∈ O\Ob:

Pr[g(x) = o]
Pr[g(x′) = o]

=
Pr[X̃ = o− f (x)]
Pr[X̃ = o− f (x′)]

=
Pr[X = o− f (x) | X >−t]
Pr[X = o− f (x′) | X >−t]

=
Pr[X >−t ∧ X = o− f (x)]/Pr[X >−t]
Pr[X >−t ∧ X = o− f (x′)]/Pr[X >−t]

=
Pr[X >−t ∧ X = o− f (x)]
Pr[X >−t ∧ X = o− f (x′)]

Now note that by definition of Ob, o ∈ O\Ob implies o >
f (x)+A− t. Hence, o− f (x)> A− t >−t. This implies that
(X >−t ∧ X = o− f (x))≡ (X = o− f (x)). So the numerator
simplifies to Pr[X = o− f (x)].

Further, since x and x′ are adjacent, and the sensitivity of
f is A, we have | f (x)− f (x′)| ≤ A, which implies f (x) >
f (x′)−A. Hence, o ∈ O\Ob also implies o > (f (x′)−A)+
A− t = f (x′)− t or, equivalently, o− f (x′)>−t. So, we also
have (X > −t ∧ X = o− f (x′)) ≡ (X = o− f (x′)). Hence,
the denominator simplifies to Pr[X = o− f (x′)]. Continuing,

Pr[g(x) = o]
Pr[g(x′) = o]

=
Pr[X = o− f (x)]
Pr[X = o− f (x′)]

=
1

2λ
e(−|o− f (x)|/λ)

1
2λ

e(−|o− f (x′)|/λ)

= e((−|o− f (x)|+|o− f (x′)|)/λ)

≤ e(|(−|o− f (x)|+|o− f (x′)|)|/λ)

≤ e(| f (x)− f (x′)|/λ)

≤ e(A/λ)

≤ eε

where the last inequality follows from assumption (1) of the
theorem’s statement. It then follows that for any o ∈ O\Ob,

Pr[g(x) = o]≤ eε Pr[g(x′) = o]

and, hence, that:

Pr[g(x) ∈ O\Ob] = ∑o∈O\Ob
Pr[g(x) = o]

≤ ∑o∈O\Ob
eε Pr[g(x′) = o]

= eε ·∑o∈O\Ob
Pr[g(x′) = o]

= eε Pr[g(x′) ∈ O\Ob]
≤ eε Pr[g(x′) ∈ O]

Combining everything we get the required differential pri-
vacy inequality:

Pr[g(x) ∈ O] = Pr[g(x) ∈ Ob]+Pr[g(x) ∈ O\Ob]
≤ δ+ eε Pr[g(x′) ∈ O]

17

	Introduction
	Our solution: Silmarillion

	Overview
	Components
	Threat model

	Encounter data collection
	Initial configuration
	Capturing beacon encounters
	Security in encounter data collection

	Encounter data upload
	Requirements
	Upload protocol
	Upload authentication
	Initiating upload from a user device
	Security analysis of the upload mechanism

	Risk dissemination
	Requirements
	Noising the risk dissemination
	Dissemination protocol
	Security analysis of risk dissemination

	Silmarillion prototype
	Evaluation
	Risk estimation latency
	Battery lifetime
	Deployment

	Discussion
	Related work
	Conclusion
	PIR Optimizations
	Proof of differential privacy of noise added to risk broadcasts

