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Abstract
Machine learning research increasingly bifurcates
into two disconnected modes: benchmark-driven
engineering that prioritizes metrics over under-
standing, and idealized theory that often fails to
transfer to modern systems . In this position pa-
per, we argue that the field focuses too heavily on
these endpoints, neglecting the central scientific
object: the idea. We propose an Ideas First frame-
work in which ideas are valued for the behavioral
signatures they predict in modern models, and
these signatures are tested through tailored ex-
periments designed to detect the relevant patterns
rather than to win leaderboards. This shift not
only bridges the gap between theory and prac-
tice but also promotes equity by removing the
“complexity premium,” enabling rigorous scien-
tific contributions from researchers with modest
computational, financial, and human resources.
Ultimately, we advocate for a research culture
that treats benchmarks and theorems as instru-
ments for testing mechanistic hypotheses rather
than as ends in themselves.

1. Introduction
Machine learning research has converged on two domi-
nant modes. On the empirical side, shared benchmarks
and leaderboards define success: contributions are judged
primarily by their effect on a single number on a widely rec-
ognized test set (Lipton & Steinhardt, 2018; Dehghani et al.,
2021). On the theoretical side, many results are evaluated by
the strength of guarantees in highly idealized settings that
only partially resemble contemporary overparameterized
models (Baraniuk et al., 2020; Zhang et al., 2017). Both
modes have delivered real progress, yet they also narrow
what counts as a contribution and who can participate, partic-
ularly when large complex models, and extensive ablations
become de facto requirements (Ahmed & Wahed, 2020).
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Our position. In this paper we argue that the central sci-
entific object in machine learning is not a benchmark score
or a theorem, but an idea: a hypothesis about how learn-
ing systems work, what kinds of structure they can exploit,
or how they should be evaluated. We call our perspective
Ideas First. Ideas gain scientific content when they give
rise to signatures that we can look for in the behavior of
modern models (Figure 1). Signatures might be specific
patterns, characteristic failure modes, or qualitative changes
in representation geometry. Experiments are then designed
primarily to search for these signatures and to rule out com-
peting explanations, rather than to maximize performance
on a fixed leaderboard. On this view, theory is valuable
when it sharpens or systematizes an idea and its predicted
signatures, and a benchmark is valuable when it operational-
izes a family of ideas about what matters for performance.
We are not against benchmarks or theory; we are in favor
of placing ideas at the center so that strong ideas can later
generate both informative benchmarks and illuminating the-
orems without being defined by them at birth.

Reversing the order. This perspective is compatible with
both theory and benchmarks, but it reverses the usual order
of justification. Rather than starting from a large system
or a complex theory and then asking what results can be
extracted, we start from the idea and ask what behavior it
predicts and how those predictions can be tested. In many
cases, simple models, small scale experiments, or theorems
built on minimal assumptions are better suited to this task,
because they isolate the mechanism of interest and make the
expected signatures more visible, while complex systems,
large benchmarks, and sophisticated theorems still play an
important role but no longer act as the sole arbiter of value.

Equity and simplicity. This shift also puts equity and
simplicity at its core. When publication standards implic-
itly demand large models, complex implementations, and
exhaustive ablations, researchers with substantial computa-
tional and engineering resources are favored, while simple
but sharp ideas that can be tested in modest settings struggle
to be seen (Ahmed & Wahed, 2020; Strubell et al., 2019;
Schwartz et al., 2020). Large labs can distribute work across
many people, combining teams that run large scale experi-
ments with teams that derive sophisticated theoretical results.
This capacity can and does lead to impressive contributions.
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The problem arises when the same expectations are used
as a gatekeeper: an idea can be rejected because it lacks a
strong theorem in a highly idealized setting whose assump-
tions limit its relevance, or because it lacks large benchmark
results that may themselves be vulnerable to overfitting and
design artifacts (Dehghani et al., 2021; Bouthillier et al.,
2021). History and sociology of science suggest that major
advances often emerge from chains of small, conceptually
clear steps rather than isolated breakthroughs (Merton, 1973;
Kuhn, 1962). A culture that filters out such steps because
they are not wrapped in heavy systems or frontier bench-
marks risks discarding the very ideas that future theory and
benchmarks could build on.

Change of culture. Our position is a call to return to
hypothesis driven inquiry in the sense used in empirical
sciences such as physics and biology. This style of work
already underlies much of the most insightful machine learn-
ing research (see Section 5), but it is rarely foregrounded
in how contributions are framed, evaluated, and rewarded.
We argue that the community should normalize the Ideas
First perspective, especially for junior researchers, and align
reviewing and publishing norms with it. Doing so would
deliberately shift incentives away from a status quo that un-
consciously mimics the resource intensive priorities of large
industrial labs, toward a culture in which clear ideas, explicit
signatures, and accessible experiments are recognized as
core scientific contributions.

Goals. The objectives of this position paper are threefold:
(i) We propose a framework that links ideas to predicted sig-
natures to tailored experiments for modern neural systems.
(ii) We develop a case in favor of idea centric evaluation,
connecting it to work on benchmarks, theory, philosophy of
science, and equity in AI. (iii) We provide concrete exam-
ples of this framework in practice, together with practical
notions for evaluating ideas.

Structure of the paper. Section 2 introduces our critique
of benchmark driven engineering and idealized theory. Sec-
tion 3 presents the Ideas First framework. Section 4 de-
velops the broader case for idea centric evaluation and its
implications. Section 5 revisits several deep learning results
through this lens, and Section 6 offers practical guidance for
authors and reviewers. Section 7 gives a hypothetical case
study that illustrates the full workflow. Finally, we present
alternative views in Section 8.

2. Standard modes
Before introducing our framework, we briefly characterize
two standard modes that structure much of contemporary
work on neural systems. While we acknowledge that re-
search methodologies are diverse, we argue that with suf-

Mode A:
Benchmark-Driven Engineering

Mode B:
Idealized Theory

Transfer
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The Current Status Quo (Disconnected Modes)

The Proposed Framework (Idea-Centric)

Figure 1. (Top) Current practice often bifurcates into Benchmark-
Driven Engineering (optimizing a single metric on large systems,
often obscuring mechanism) and Idealized Theory (rigorous proofs
in simplified settings that may not transfer to modern models).
(Bottom) Our proposed framework links these worlds: An Idea
generates a concrete Signature (an observable behavioral commit-
ment ). A Tailored Experiment is then designed specifically to
detect this signature, prioritizing mechanistic clarity and accessible
experimental design over state-of-the-art leaderboard performance.

ficient flexibility, the incentives of the field tend to align
the vast majority of current work with one of these two
dominant archetypes.

Mode A: Benchmark-driven engineering

This mode improves comparative performance on standard
tasks by scaling models, adjusting training recipes, and mod-
ifying architectures and data. The central artifact is a system
together with transparent comparisons on leaderboards and
ablation studies that indicate which choices influenced the
metric. Success is a higher score at fixed resources or at
clearly reported increases in resources. The unit of evidence
is a demonstrated score gain supported by controlled ab-
lations. The strength of this mode is that it maps where
and how well a method works across tasks and scales. Its
limitation is that it remains largely agnostic to mechanism
and can confound the effects of scale, data, and compute
unless coupled to analyses that target explanation.
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Illustrative papers. AlexNet (Krizhevsky et al., 2012),
ResNet (He et al., 2016), and EfficientNet (Tan & Le, 2019);
in multimodal and language, CLIP (Radford et al., 2021),
GPT−3 Brown et al. (2020), and Chinchilla (Hoffmann et al.,
2022).

Mode B: Idealized theory

This mode derives provable statements in stylized or asymp-
totic regimes, for example width tending to infinity, infinites-
imal step sizes, or noiseless labels. The central artifacts are
theorems, bounds, and limiting dynamics, and the objective
is logical correctness under explicit assumptions. The unit
of evidence is a formal proof, sometimes accompanied by
simulation in simplified settings. The strength of this mode
is conceptual precision: it produces definitions, constraints,
and organizing principles. Its limitation is that observable
consequences for finite modern systems are often left im-
plicit, operational readouts are usually out of scope, and
external validity remains unknown until tested.

Illustrative papers. Spectrally normalized margin bounds
(Bartlett et al., 2017), norm-based capacity and implicit reg-
ularization (Neyshabur et al., 2015), exact learning dynam-
ics in deep linear networks (Saxe et al., 2014), and benign
overfitting in linear regression (Bartlett et al., 2020).

Takeaway. These modes answer different questions: What
works? (benchmarks) and What must be true under certain
assumptions? (theory). Our proposal in the rest of the paper
is to foreground the missing question: What should we see
if a given idea about mechanism is right?.

2.1. What can go wrong?

When pursued in isolation these modes can lead to problems,
either specific (with direct impact on the current study) or
general (with broad impact on the research community):

Benchmark myopia (Mode A). Optimizing a single score
obscures mechanism and is inconclusive when multiple
changes move the metric in offsetting ways. Consequence:
improvements are hard to attribute; negative or mechanism-
revealing results are underreported.

Transfer gap (Mode B). Theorems crafted in idealized
limits rarely issue observable predictions for real models.
Consequence: theory informs intuitions but does not guide
measurement; experiments cannot falsify the claims.

Non-cumulative findings (within empirical practice).
Exploratory ablations and robustness checks often document
effects without anchoring them to hypotheses or controls
predicted to be inert. Consequence: results do not compose;
later studies cannot easily reuse or contradict prior claims.

Complexity premium. Reviewing often treats complexity
and scale as a proxy for depth: large models, elaborate train-
ing pipelines, and intricate theory are seen as more serious
than simple baselines and ideas that isolate a mechanism.
Consequence: incentives favor “bigger and more complex”
over “cleaner and truer” and discourage small, sharp experi-
ments or proofs that make precise, testable commitments.

Resource asymmetry. SOTA incentives disproportion-
ately reward compute- and data-heavy results, making it
costly to test ideas unless they are bundled with large scale
experiments or elaborate systems. Large labs can distribute
work across many people and machines; smaller groups can-
not. Consequence: publication bias toward scale, underin-
vestment in mechanism-driven tests, weaker reproducibility
for labs without access to large budgets, and a higher chance
that simple but sharp ideas never leave the drawing board.

3. Ideas First
Now that we have introduced the standard modes of re-
search in neural models alongside possible problems that
they faced, we can sketch what research looks like when
ideas—not just final metrics—do the heavy lifting. In this
view, an idea earns weight by making observable commit-
ments (signatures) that experiments can seek and stress-test.
Our proposed framework can be summarized as

idea → signature → tailored experiment.

We treat progress as a chain from ideas to experiments, with
signatures as the link. An idea is useful when it makes
something visible; an experiment is useful when it is built to
see that thing. Benchmarks remain valuable instruments for
external validity and regressions, but signatures, not ranks,
are our unit of explanation and value. Let’s elaborate on our
three linked notions of ideas, signatures and experiments.

What is an idea? An idea is a scope-bearing claim about
how or why a system behaves, usually established in a sim-
plified setting (e.g., single layer, tied weights, infinite width,
synthetic data) where analysis or controlled observation is
feasible. The idea names the mechanism or constraint, states
where it is meant to apply and where it may fail, and issues
observable commitments. Its value is conceptual and pre-
dictive, not benchmark-driven: it makes something precise
enough that we can later look for it beyond the toy regime.

What is a signature? A signature is the concrete way
an idea would show up in a complex/modern model. It
translates the idea’s commitments into measurable phenom-
ena—geometry, dynamics, causal responses, invariances,
thresholds, or characteristic error patterns—that should be
detectable (perhaps approximately or in restricted regimes)
when we move from the simplified setting to realistic archi-
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tectures, scales, and data. A good signature specifies where
and how to look (layers, training phases, sweeps) and what
trend or boundary to expect.

What is a tailored experiment? A tailored experiment
is an empirical test in a complex model that is designed to
observe the signature. The idea determines the readouts,
perturbations, controls, and the region of model/data space
where detectability is highest. Success is the clear visibil-
ity (or principled absence) of the predicted pattern, not a
leaderboard delta. Concretely: (i) define the signature as
a statistic/visual you can resolve; (ii) choose instruments
that expose it (measurements, ablations/repairs, counterfac-
tuals); (iii) place the measurement where the idea predicts
signal (layers/training windows/scale); (iv) sweep the knob
the idea says should modulate the signature and include
negative controls the idea says should not; (v) report the
qualitative trend, thresholds, and failures that refine scope.

Modern systems are noisy and heterogeneous; pointwise
perfection is the wrong target. We evaluate signatures in ex-
pectation or as coarse patterns (e.g., “usually increasing”),
and we allow bounded exceptions. What matters is that the
predicted shape is visible with reasonable aggregation or
replication, not that every unit or datapoint obeys it.

Why this helps. Our position directly combats benchmark
myopia by shifting the basis of evaluation from marginal
score improvements to the explicit detection or falsification
of predicted signatures. By requiring that abstract ideas
manifest as observable behaviors in finite models, we bridge
the transfer gap, translating idealized theory into concrete
measurements that experiments can use to refine or reject
hypotheses. Furthermore, anchoring ablations and robust-
ness checks in specific predictions addresses the problem of
non-cumulative findings, transforming scattered exploratory
results into hypothesis-driven tests that future work can reli-
ably replicate. Emphasizing sharp experiments that make a
signature visible regardless of system size, counters the com-
plexity premium, establishing conceptual clarity and testable
commitments as the primary currency of evidence. Finally,
by legitimizing modest, carefully targeted experiments as
sufficient to substantiate an idea, the framework mitigates
resource asymmetry, empowering low-compute groups to
participate substantively in shaping the field.

4. Discussion
Our central premise is that the primary unit of scientific
value in ML should be the idea, rather than a marginal
leaderboard gain or an intricate theorem. Currently, the
field often inverts this priority, judging work by benchmark
numbers or formal guarantees in idealized settings. We ar-
gue that this regime is epistemically fragile and structurally

biased. An alternative culture centered on ideas and tailored
experiments is both scientifically grounded and ethically
preferable.

4.1. Benchmark Centrism and Its Limits

The dominance of benchmarks encourages the use of com-
plex notation to obfuscate rather than clarify, and a fixation
on incremental SOTA results, often obscuring what is ac-
tually being learned (Lipton & Steinhardt, 2018). Koch &
Peterson (2024) describe benchmarking as an “epistemic
monoculture” that privileges specific tasks while marginal-
izing alternative goals.

Empirically, benchmark conclusions are surprisingly fragile.
Model superiority often depends more on the specific test
set than the method’s intrinsic properties (the “Benchmark
Lottery”) (Dehghani et al., 2021), and small perturbations
or variance in seeds can swamp reported gains (Bouthillier
et al., 2021; Alzahrani et al., 2024). Furthermore, standard
evaluation pipelines can yield misleading conclusions about
transferability (Singh et al., 2025a) and ignore critical costs
like energy and fairness (Ethayarajh et al., 2020).

Leaderboards are not neutral scoreboards; they are socio-
technical artifacts that can entrench power imbalances
(Eriksson et al., 2025b;a) and encourage overfitting to the
evaluation environment itself (Singh et al., 2025b). Special-
ized domains face similar issues, where widely used datasets
can systematically bias conclusions in drug discovery and
scientific ML (Cieplinski et al., 2023; Thiyagalingam et al.,
2022). While benchmarks remain indispensable infrastruc-
ture (Deng et al., 2009; Wang et al., 2018; Walters, 2023),
treating marginal improvements as the primary currency of
research is at odds with robust science.

4.2. Idealized Theory and Partial Understanding

Theoretical work faces a parallel transfer gap (see Figure 1).
Classical frameworks often fail to explain the generalization
of deep networks that fit random noise (Zhang et al., 2017).
While recent science of deep learning efforts are valuable
(Baraniuk et al., 2020; Drori et al., 2022), they frequently
rely on stylized models and asymptotic regimes that depart
from frontier systems.

Philosophers of science emphasize that laws and theories are
typically partial, holding only in circumscribed situations
(Cartwright, 1983; da Costa & French, 2003). Scientific un-
derstanding often emerges from the interplay of models and
exploratory experimentation rather than universal derivation
(Giere, 2019; Frigg & Nguyen, 2022). As in physics, where
theory must remain aligned to experimental feedback (Ellis
& Silk, 2014; Hossenfelder, 2018), mechanistic understand-
ing in ML requires probing trained models directly (Räz &
Beisbart, 2024). We advocate for a practice where theory
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is treated as partial and idealized, and experiments possess
enough autonomy to stabilize phenomena independent of a
single theoretical framework (Hacking, 1983).

4.3. Ideas and Experimental Signatures

There are strong precedents for our proposed “idea plus sig-
natures” approach. The HANS dataset (McCoy et al., 2019),
reproducibility studies (Pineau et al., 2021; Bouthillier et al.,
2021), and fairness suites (Wang et al., 2024) all priori-
tize testing behavioral signatures over maximizing a single
metric. Even critiques of benchmarking rely on detecting
signatures of contamination or gaming (Cheng et al., 2025).

We propose treating such work as central. A compelling
ML idea should predict specific signatures (observable pat-
terns in geometry, dynamics, error rates, etc.). The primary
empirical contribution becomes the design of experiments
tailored to detect these signatures and rule out competing
explanations via negative controls. This rigor can often be
achieved with smaller models or simplified data.

4.4. Resource Inequality and the Bias of Current
Practice

Demanding large-scale experiments and extensive ablations
as a default requirement for publication creates a resource
threshold for legitimacy. This exacerbates the “compute di-
vide”, concentrating research power in a few well-resourced
labs (Ahmed & Wahed, 2020). “Red AI” practices that
chase accuracy at any cost worsen environmental impacts
and research inequality (Strubell et al., 2019; Schwartz et al.,
2020; Xu et al., 2022).

While recommendations for extensive reproducibility
checks are well-intentioned (Gundersen et al., 2022; Nature
Editorial, 2021), they structurally disadvantage researchers
in the Global South and teaching-focused institutions (Mo-
hamed et al., 2020; Chan et al., 2021). Current norms effec-
tively assert that a contribution is only valuable if validated
in a regime dominated by a small set of actors (Wu et al.,
2022). Positioning idea-centric research as a methodology
for Frugal AI is therefore critical. By validating “modest”
experiments that clearly isolate a mechanism, the field can
broaden participation and mitigate the colonial power rela-
tions currently reproduced by AI development (Ayana et al.,
2024; UNESCO, 2025).

4.5. Simplicity and Cumulative Science

Scientific merit should not be conflated with model complex-
ity. Simple algorithms and conceptual proposals are often
dismissed as preliminary if they lack large-scale demon-
strations, yet simplicity often increases evidential value by
isolating the mechanism of interest.

History suggests that major scientific advances emerge from
chains of small, incremental contributions (Merton, 1973;
Kuhn, 1962). A culture that filters out implementable ideas
because they lack heavy engineering risks damaging the
field’s future. Protecting the ecology of simple ideas al-
lows for a cumulative process where insights can be tested
and scaled by others. A reviewing culture that values idea-
centric work would reduce the “fixed cost” of participation
and prevent the loss of valuable concepts at the submission
stage.

4.6. Balancing Rigor, Benchmarks, and Idea-Centric
Evaluation

We do not argue against theoretical rigor or benchmarks,
but for diversifying what counts as evidence. Bench-
marks should be viewed as evolving socio-technical arti-
facts (Hardt, 2025; Eriksson et al., 2025b) rather than static
scoreboards. Theory should be acknowledged as partial and
guided by exploratory experiment (Steinle, 2002).

Ultimately, methodological choices are inseparable from
questions of justice (Buolamwini & Gebru, 2018; Noble,
2018). By valuing strong ideas supported by appropriately
scaled experiments and negative controls, we can align ML
research with the history of successful science while foster-
ing a more equitable and robust community.

5. Illustrative Examples
Here we present a list of three well-known works our ap-
proach is present:

5.1. Linearized training (NTK)

In the infinite-width limit, training a network is equivalent
to kernel gradient flow with a fixed Neural Tangent Ker-
nel, yielding a linearized, feature-frozen dynamics (Jacot
et al., 2018). This gives a crisp bridge from an idealized
regime to modern practice: if the idea carries over at scale,
early training of big models should visibly track their NTK
linearizations before feature learning takes over.

Idea: In simplified settings (wide limits; squared loss;
isotropic inputs), gradient descent follows kernel regression
under the NTK fixed at initialization; predictions evolve
linearly around the start point (Jacot et al., 2018).
Signature: In complex models, during early epochs the
network’s predictions and loss trajectory closely match those
of its NTK-at-init linearization; agreement improves with
width and fades as features move.
Tailored experiment: Instantiate the linearized predictor
and compare it to full training across widths/epochs, reading
out prediction/loss alignment and its breakdown. Lee et al.
(2019) do exactly this for CNN/ResNet/WRN on CIFAR,
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directly exposing the early-time linearization signature.

5.2. Implicit bias to max-margin

Gradient descent on separable problems implicitly prefers
maximum-margin solutions: a phenomenon proved for lin-
ear models with exponential-tail losses and extended to ho-
mogeneous deep nets (Soudry et al., 2018; Lyu & Li, 2020).
The simplified analysis predicts a concrete directional trend
that should leave traces in modern representations.

Idea: For linearly separable data, GD on logis-
tic/exponential losses drives the weight direction toward
the hard-margin SVM solution; analogously holds for ho-
mogeneous networks (Soudry et al., 2018; Lyu & Li, 2020).
Signature: In complex models, once training error hits zero,
the normalized margin in penultimate-layer features con-
tinues to increase and the classifier direction aligns with a
max-margin solution.
Tailored experiment: Track normalized margins and
alignment-to-SVM over epochs after interpolation. Lyu
& Li (2020) report monotone (smoothed) margin growth
and alignment trends on MNIST/CIFAR with MLPs/CNNs,
making the max-margin signature visible.

5.3. Mixup (heuristic)

Training on convex combinations of inputs and labels en-
courages approximately linear behavior between examples
(Zhang et al., 2018). The heuristic is easy to see in toy 2D
settings where decision boundaries straighten along line seg-
ments and scales to large vision/speech models, suggesting
a clear signature to seek in modern networks.

Idea: In simplified settings, decision regions straighten
along line segments between examples and logits vary
smoothly with the mixing coefficient (Zhang et al., 2018).
Signature: In complex models, along interpolation paths
xλ = λxi + (1− λ)xj , predicted logits for the mixed label
vary roughly linearly in λ; memorization under label noise
is reduced and gradients are smoother between samples.
Tailored experiment: Probe logits vs. mixing coefficient
on real datasets/models and stress-test with corrupted la-
bels; report interpolation-linearity and reduced memoriza-
tion alongside standard accuracy (Zhang et al., 2018).

6. Call to Action: A Field Guide
Now we provide a brief field guide for authors and reviewers
that translates our proposal into concrete suggestions for
writing and evaluating idea centric work.

6.1. For authors

Specifying the idea. Aim to (i) state a one or two sentence
claim, whether it concerns a concrete method, improvement
or a stylized theoretical result, (ii) make the scope explicit
in terms of architectures, data regimes, training setups, or
the class of models and assumptions considered in the the-
ory, and (iii) mention at least one plausible failure mode or
limitation, for example regimes where you do not expect the
claim to apply. Avoid (i) presenting only a slogan or heuris-
tic with no precise claim and (ii) letting the idea be defined
only via a specific experiment, benchmark gain, or theorem
statement without intuitive interpretation and scope.

Defining signatures. Aim to (i) introduce a small set of
signatures that you reuse throughout the paper, (ii) for each
signature, specify the measured or derived quantity, how
it is computed, and the expected pattern, and (iii) state
regimes where the signature should appear and where it
should weaken or disappear. Signatures can be empirical
measurements, such as margin distributions or error patterns,
or theoretical predictions, such as scaling laws, shapes of
learning curves, or stability properties that could be tested.
Avoid (i) using generic predictions such as “better gener-
alization” without concrete measurements or model level
predictions and (ii) introducing many loosely related met-
rics, lemmas, or bounds whose relation to the idea is unclear.

Designing tailored experiments. Aim to (i) make the
primary outcome the presence, absence, or strength of your
signatures, using empirical measurements or simulations,
(ii) use the simplest models and datasets that remain faithful
to the stated scope of the idea while plausibly exhibiting the
same qualitative patterns as more complex state of the art
systems, and (iii) include at least one stress test or boundary
case where the idea predicts change, weakening, or failure,
for example by relaxing a key assumption or moving outside
the intended regime. Avoid (i) treating benchmark gains or
theorem strength as a substitute for testing signatures and (ii)
scaling models and data sizes, or adding layers of technical
assumptions, without a corresponding change in what the
idea actually claims about mechanisms or behavior.

6.2. For reviewers

Evaluating the idea. Aim to (i) judge the clarity, mecha-
nism, and scope of the claim independently of raw perfor-
mance numbers or formal sophistication, (ii) check that the
idea is specific enough that data, simulations, or counterex-
amples could contradict it, and (iii) reward connections to
and tensions with prior empirical and theoretical work, not
only incremental gains. Avoid (i) rejecting mainly because
the paper does not present new state of the art benchmarks
or fully general theorems and (ii) demanding large scale ex-
periments when the main contribution is theoretical and/or
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conceptual, or demanding complete formalization when the
stated contribution is mostly empirical.

Evaluating signatures. Aim to (i) check that signatures
are concrete, measurable, or otherwise operationalizable,
and clearly derived from the idea or model, (ii) look for
explicit regimes where signatures should appear and for
proposed negative controls or assumptions under which they
should fail, and (iii) encourage signatures that other groups
could realistically test or extend, whether by running new
experiments or by sharpening or generalizing the theory.
Avoid (i) asking primarily for more benchmarks or more
theorems when the missing piece is clearer signatures and
(ii) accepting vague or post hoc patterns, or technically
involved results with no interpretable signature, as sufficient
evidence for the idea.

Evaluating tailored experiments. Aim to (i) evaluate how
well the experiments and simulations align with the stated
signatures and scope, (ii) prioritize the informativeness and
design of these probes over sheer scale or technical difficulty,
and (iii) value reporting of failures, anomalies, and boundary
cases that refine the idea or expose limits of the formal
model. Avoid (i) automatically requesting larger models or
datasets when the claim is not about that regime, or stronger
and more general theorems when the idea is already well
supported by partial results and empirical signatures, and (ii)
treating small benchmark deltas or theorem strength alone
as the main success criterion for an idea centric paper.

7. Hypothetical case study: Investigating topic
inertia in LLMs

To illustrate the proposed framework in practice, we present
a hypothetical case study inspired by Jia & Diaz-Rodriguez
(2025) investigating how large language models (LLMs)
maintain topic consistency as context grows.

The Idea. Since the main components of LLMs are attention
layers, We begin with a hypothesis derived from a simpli-
fied theoretical setting: a single-layer self-attention model
(Vaswani et al., 2017) with a unified key-query matrix. The-
oretical analysis in this idealized regime suggests that as the
input sequence length increases, the attention mechanism
becomes increasingly biased toward the dominant semantic
cluster of the input. We generalize this concept as “Topic
Inertia”: the probability of an LLM adhering to the topic
of the input sequence increases as the input length grows.
Scope: This claim is grounded in the mechanics of standard
self-attention and is not expected to extend to non-attention
architectures (e.g., RNNs) or complex agentic workflows
involving multi-step reasoning.

The Signature. We translate this idea into a concrete, ob-
servable pattern for modern, deep LLMs. Predicted Sig-

nature: The semantic similarity (measured via cosine sim-
ilarity of embeddings) between the input prompt and the
generated text should exhibit a generally increasing trend
as the number of tokens in the prompt increases. A flat or
decreasing trend would falsify the hypothesis.

The Tailored Experiment. To detect this signature, we
design a targeted experiment. (i) We select a curated set of
200 documents from a private corpus unknown to public
models to rule out memorization effects. (ii) We sample text
segments of varying lengths (from 10 to 200 tokens) from
these documents and we use them as prompts to query multi-
ple open-weights models: LLaMA 2 (Touvron et al., 2023),
GPT-NeoX-20B (Black et al., 2022), MPT-7B (MosaicML,
2023). As a negative control, we also generate with a sim-
ple RNN baseline (which lacks the attention mechanism).
(iii) We compute the cosine similarity between the prompt
and the generated text SBERT (Reimers & Gurevych, 2019)
embeddings for varying prompt lengths.

Hypotethical results. In Figure 2 we observe all tested
LLMs display the predicted average upward trend in simi-
larity as context length increases, while it is absent in the
RNN baseline. We conclude that the signature is visible,
supporting the Topic Inertia hypothesis within the defined
scope. We explicitly note that these results apply to fixed-
size inputs and do not make claims regarding topic drift
during long-form generation (increasing output length).

Hypothetical Contributions. The hypothetical contribu-
tions of this work are: (i) the formalization of the idea of
“Topic Inertia,” demonstrated theoretically in simplified self-
attention models; and (ii) the empirical observation of its
predicted signature in complex LLMs through tailored ex-
periments. This demonstrates that the identified mechanism
extends beyond theoretical results to accurately describe the
behavior of complex Large Language Models.

7.1. Hypothetical Criticisms and the Defense of Scope

If this study were submitted under the current evaluation
regime, it would likely face rejection for failing to meet
the implicit requirements of benchmark-driven engineering
or idealized theory. By anticipating these criticisms, we
illustrate how our framework protects scientific value from
being discarded due to structural biases.

The critique of scale and SOTA (Mode A). A reviewer
might object: Why stop at 200 tokens? Why evaluate on
older open-weights models instead of frontier better systems
like GPT-5.1 (OpenAI, 2025) or Gemini 3 (Google Deep-
Mind, 2025)? Does this insight improve perplexity on the
LongBench (Bai et al., 2024) leaderboard?” Under our
framework, these demands enforce a resource threshold
rather than ensuring scientific rigor. If the signature of Topic
Inertia” is clearly resolvable at 200 tokens, scaling the exper-

7
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Hypothetical example
Cosine similarity between the embeddings of the prompt and the generated text

Figure 2. The framework on a hypothetical example. The Idea
(Topic Inertia) predicts a specific Signature: an upward trend in em-
bedding similarity as prompt increases. The Tailored Experiment
confirms this signature in Transformer models, while the negative
control (RNN) shows no such trend, validating the mechanism.

iment requires massive compute without adding mechanistic
insight. Furthermore, demanding evaluations on closed, pro-
prietary APIs introduces reproducibility issues and financial
barriers. A tailored experiment maximizes the ratio of in-
sight to compute; demanding scale for scale’s sake excludes
researchers in low-resource settings and perpetuates “Red
AI” without refining the idea.

The critique of exactness and ablation (Mode B). A re-
viewer might also ask: Why does the trend fluctuate and dip
rather than strictly increasing as the theorem suggests? Why
did you only test Cosine Similarity and not sweep across all
possible embedding metrics?” This reflects a confusion be-
tween a signature and a mathematical law. Real-world data
is noisy; the scientific question is whether the mechanism
is visible in expectation. The “dips” in the graph represent
natural variance, not a falsification of the trend. Similarly,
demanding exhaustive ablations across every possible met-
ric is a form of the complexity premium. Since the tailored
experiment included a negative control that ruled out generic
artifacts, additional metric sweeps serve only to increase the
authors’ workload, not the validity of the claim.

The “Ideas First” standard. Ultimately, an “Ideas First”
culture changes the burden of proof. It allows authors to
state: “The idea is clearly visible via the predicted signature;
optimization and scaling are future work.” If the mechanism
is isolated and the signature is robustly detected against
controls, the paper has succeeded. The community must
learn to accept clear, bounded interesting insights without
penalizing them for not being total, SOTA systems.

8. Alternative views
Our proposal sits within a broader landscape of reasonable
disagreement. Many researchers accept that benchmarks,

large-scale ablations and strict reproducibility standards
are imperfect yet still regard them and their leaderboards
as indispensable coordination tools. Similarly, idealized
theory, and the emerging science of deep learning are seen
as the primary route to general principles, with transfer
to contemporary systems treated as a long-term goal. We
disagree to the extent that this stance treats benchmark gains
and idealized theory as self-justifying, rather than requiring
a clear link to concrete ideas and model behavior.

A second concern is that simple models and tailored experi-
ments might be less trustworthy than benchmark evaluations,
since targeted tests can be unconsciously tuned to confirm
a preferred story. From this perspective, strong benchmark
improvements or theorems in clean settings are valued be-
cause they are harder to manipulate and easier to evaluate
consistently. We argue instead that explicit behavioral signa-
tures, and negative controls can make targeted experiments
at least as rigorous and reproducible as broad benchmarks.

An alternative view on the role of equity in methodological
choice is that resource inequality and the marginalization
of small labs are serious social problems but should not
shape epistemic standards. If frontier applications require
massive compute and complex systems, it is then acceptable
that only a few institutions can fully participate, and equity
should be addressed through funding and policy rather than
by redefining good evidence. We disagree because method-
ological standards and distributive justice are intertwined,
and norms that systematically exclude many researchers are
both epistemically and ethically costly.

Finally, some see machine learning as closer to engineering
than to basic science, where value is measured primarily by
deployed systems, competitive performance, and real-world
impact. Within this paradigm, theory, benchmarks, and
large-scale experimentation are evaluated mainly by their
contribution to products and capabilities, and a program
that foregrounds ideas and signatures may seem secondary.
We disagree because even in engineering-dominated fields,
durable progress depends on understanding mechanisms
rather than relying only on short-term performance gains.

Conclusion. We have argued that ML research is currently
constrained by a dual fixation on leaderboard dominance and
idealized theory, which excludes low-resource researchers,
particularly those in the Global South. By adopting the
Ideas First framework, the community can shift its focus
to understanding behavior. This approach restores the cu-
mulative nature of scientific discovery by validating clear,
scope-limited hypotheses through accessible experiments.
Ultimately, prioritizing mechanistic clarity over SOTA met-
rics is not just a methodological correction; it is an ethi-
cal imperative that democratizes participation and fosters a
more sustainable, scientifically rigorous future for AI.
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