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Abstract

The Sharpe ratio is an important and widely-used risk-adjusted return in financial
engineering. In modern portfolio management, one may require an m-sparse
(no more than m active assets) portfolio to save managerial and financial costs.
However, few existing methods can optimize the Sharpe ratio with the m-sparse
constraint, due to the nonconvexity and the complexity of this constraint. We
propose to convert the m-sparse fractional optimization problem into an equivalent
m-sparse quadratic programming problem. The semi-algebraic property of the
resulting objective function allows us to exploit the Kurdyka-Łojasiewicz property
to develop an efficient Proximal Gradient Algorithm (PGA) that leads to a portfolio
which achieves the globally optimalm-sparse Sharpe ratio under certain conditions.
The convergence rates of PGA are also provided. To the best of our knowledge,
this is the first proposal that achieves a globally optimal m-sparse Sharpe ratio with
a theoretically-sound guarantee.

1 Introduction

The Sharpe ratio (SR) [33] is an important and widely-used performance metric in finance. Suppose
an investing strategy is represented by a portfolio w ∈ RN of N assets from a financial market.
µ ∈ RN and Σ ∈ RN×N denote the expected return vector (in excess of the risk-free rate) and its
covariance matrix for the N assets, respectively. It can be seen that w>µ and

√
w>Σw represent

the expected return and its standard deviation (i.e., risk) for the portfolio w. The original definition
of SR is given as the follow quotient between return and risk:

S0(w) =
w>µ√
w>Σw

. (1.1)

Ever since the proposal of SR, how to maximize it becomes an attractive research topic. Ordinary
portfolio optimization methods based on either the mean-variance approach [5, 10] or the exponential
growth rate approach [22, 24] can reduce the portfolio risk and increase the portfolio return to some
extent [23], and hence improve the SR. On the other hand, direct SR optimization methods are
also proposed. Hung et al. [18], Yu and Xu [35] consider the SR as a differentiable function of
the portfolio, which can be solved via the augmented Lagrangian method. Pang [29] converts the
SR maximization under the self-financing and long-only constraints into a linear complementarity
problem, which can be solved via the Parametric Linear Complementarity Technique (PLCT) and the
principle pivoting algorithm [12]. Note that PLCT requires µi > 0 for at least some asset i in order
to be feasible.
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In modern portfolio management, it is widely-recognized that the number of selected assets should
be restricted to a manageable size, in order to keep simplicity and save time and financial costs.
Managerial strategies provide an approach to achieve this objective, such as the revenue driven
resource allocation [11], the endowment model [15], and selling stocks after market crashes [27].
However, the managerial approaches still require intensive administration and abundant experience
in management and finance. Hence researchers turn to sparsity models for solutions via the com-
putational approaches. In [10], a Sparse and Stable Markowitz Portfolio (SSMP) is proposed by
imposing `1-regularization on the portfolio. Ao et al. [2] further propose a mean-variance model with
an `1 constraint based on a maximum-Sharpe-ratio estimation. In [24], the exponential growth rate
(EGR) criterion [1, 13, 19, 23] is exploited to develop a Short-term Sparse Portfolio Optimization
(SSPO). Furthermore, a Short-term Sparse Portfolio Optimization with `0-regularization (SSPO-`0)
is developed in [28]. In [25], a nonlinear shrinkage of the covariance matrix is proposed to obtain an
appropriate size of free parameters. Motivated by this strategy, Lai et al. [22] characterize a sparse
structure for covariance estimation to construct a portfolio via the machine learning approach.

The `1-regularization and the `1 constraint cannot control the exact number of selected assets. One
has to tune the sparsity parameter to roughly adjust this number. On the other hand, suppose we
want to select no more than m active assets out of N assets to construct a portfolio, then this can be
exactly represented by the m-sparse (or `0) constraint ‖w‖0 6 m, where the `0 norm ‖ · ‖0 denotes
the number of nonzero components of a vector. Although many sparsity models are established for
the Markowitz portfolio, few existing methods can optimize the SR (1.1) with the `0 constraint, due
to the nonconvexity and the complexity of this constraint. In addition to the `0 constraint, other
realistic constraints should also be imposed to ensure feasibility. For example, the self-financing
constraint represents full re-investment and no external loans; the long-only constraint represents
no short position. If all these constraints are imposed, the whole model becomes even much more
difficult to solve.

To overcome these difficulties, we observe that this optimization is essentially an m-sparse fractional
optimization that can be transformed into an equivalent m-sparse quadratic programming. Then
the resulting objective function is semi-algebraic, so that the Kurdyka-Łojasiewicz (KL) property
[3] can be exploited to develop an efficient Proximal Gradient Algorithm (PGA) [30]. It converges
to a portfolio which achieves the globally optimal m-sparse SR under certain conditions. To the
best of our knowledge, this is the first proposal that achieves a globally optimal m-sparse SR with a
theoretically-sound guarantee. Our main contributions can be summarized as follows.

1) We propose to directly maximize the SR with the `0 constraint, the self-financing constraint
and the long-only constraint on the portfolio. This model aims to obtain a feasible and realistic
portfolio that optimizes the SR with exact sparsity.

2) SR maximization is essentially a fractional optimization. We convert this m-sparse fractional
optimization problem into an equivalent m-sparse quadratic programming problem, which reduces
the difficulty of solving it.

3) We observe that the resulting objective function is semi-algebraic, thus exploit the KL property
to develop an efficient PGA that leads to a globally or at least a locally optimal solution of the
m-sparse SR maximization model. The convergence rates of PGA are also provided.

Besides the above contributions, our approach also has several advantages: (i) It can be extended to a
wide range of optimization problems with semi-algebraic objective functions and constraints. (ii)
The actual sparsity is robust to the choice of m. (iii) It needs very little parameter tuning. (iv) It
does not require any external algorithms or commercial optimizers.

2 Related Works and Existing Problems
There are some existing works that indirectly or directly optimize the SR to some extent via the
computational approach. We introduce some examples and then analyze some unsolved problems.

2.1 Ordinary Portfolio Optimization

An intuitive approach is to directly optimize the portfolio, so that the expected return is maximized
and/or the risk is minimized. These methods can be categorized into the mean-variance approach
and the exponential growth rate approach [23]. Let R ∈ RT×N be the sample asset return matrix
with T trading times and N assets, and 1n denotes the vector of n ones. Brodie et al. [10] propose
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to impose `1-regularization on the mean-variance model, forming a Sparse and Stable Markowitz
Portfolio (SSMP):

ŵ = argmin
w∈RN

{
1

T
‖Rw − ρ1T ‖22 + τ‖w‖1

}
, s.t. w>µ̂ = ρ, w>1N = 1, (2.1)

where µ̂ := 1
TR
>1T denotes the column vector of sample mean returns, and τ > 0 is the regular-

ization parameter. ‖ · ‖2 and ‖ · ‖1 denote the `2-norm and the `1-norm, respectively. The quadratic
form 1

T ‖Rw− ρ1T ‖
2
2 actually computes the mean squared error between the sample portfolio return

r(t)w (r(t) is the t-th row ofR) and the given return level ρ. Equations w>µ̂ = ρ and w>1N = 1
are the expected return constraint and the self-financing constraint, respectively. Model (2.1) can be
approximately solved by a surrogate model [10] and the Least Absolute Shrinkage and Selection
Operator (Lasso) [34]. Goto and Xu [17] also exploit the Lasso to solve a mean-variance model
through sparse hedging restrictions.

Ao et al. [2] propose a maximum-Sharpe-ratio estimated and sparse regression (MAXER) to approach
mean-variance efficiency. Assume there are sufficient observations T > (N + 2). MAXER first
computes the maximum-Sharpe-ratio estimated regression response r̂c as follows:

θ̂s = µ̂>Σ̂−1µ̂, θ̂ :=
(T −N − 2)θ̂s −N

T
, r̂c := σ

1 + θ̂√
θ̂
, (2.2)

where µ̂ and Σ̂ denote the sample mean and the sample covariance, respectively, σ is the risk
constraint parameter. Then it adopts the Lasso to obtain the portfolio:

ŵ = argmin
w∈RN

1

T
‖Rw − r̂c1T ‖22, s.t. ‖w‖1 6 τ. (2.3)

Instead of the mean-variance approach, our method takes an essentially different objective that
directly maximizes the SR in (1.1). Besides, our method does not require T > (N + 2).

Based on the exponential growth rate criterion [1, 13, 19, 23], Lai et al. [24] propose to minimize a
kind of negative potential returnw>ϕ with `1-regularization but without any risk term, forming a
Short-term Sparse Portfolio Optimization (SSPO) model

ŵ = argmin
w∈RN

{
w>ϕ+ τ‖w‖1

}
, s.t. w>1N = 1. (2.4)

It develops an unconstrained augmented Lagrangian with the existence of a saddle point that can be
solved by the alternating direction method of multipliers (ADMM). Luo et al. [28] further propose
the SSPO-`0 model

ŵ = argmin
w∈∆

{
w>ϕ+ τ‖w‖0

}
, ∆ :=

{
w ∈ RN

∣∣w > 0N and w>1N = 1
}
, (2.5)

where ∆ is the N -dimensional simplex. This simplex constraint w ∈ ∆ is the combination of the
long-only and the self-financing constraints. Under this constraint, the `0-regularization problem
(2.5) has a closed-form solution Ĩminϕ :=

{
i ∈ NN

∣∣∣ ϕi 6 minj∈NN ϕj + ε
}

with a tolerance ε > 0,
where NN := {1, 2, . . . , N}.
On the other hand, Lai et al. [22] propose a rank-one covariance estimator based on the operator
space decomposition, in order to capture the rapidly-changing risk structure in the financial market:

X = VJΞU>J , D = Ξ2 − 1

T
ΞV >J 1T1>TVJΞ, ζ∗1 =

(
tr(D)

N(T − 1)

)− 1
2

θ1, Σ̂RO := u1ζ
∗
1u
>
1 ,

whereX = R+ 1T×N denotes the price relative matrix and VJΞU>J is its singular value decompo-
sition (SVD), θ1 and u1 are the largest eigenvalue and its eigenvector, respectively.

Although the above portfolio optimization methods may partly improve the SR, they may not
be competitive to direct SR optimization. Hence direct SR optimization methods should still be
developed and investigated.
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2.2 Sharpe Ratio Optimization

Pang [29] proposes to optimize the following SR model:

max
w∈RN

S0(w), s.t. w ∈ ∆, Cw 6 d, (2.6)

where S0(w) is defined by (1.1), C ∈ Rl×N and d ∈ Rl form a linear constraint for w. It can be
transformed into the following equivalent parametric linear complementarity problem:

u = −µ+ Σw + (C> − 1Nd
>)y > 0N , w > 0N ,

v = −(C − d1>N )w > 0l, y > 0l,

u>w = v>y = 0.

(2.7)

Problem (2.7) can be efficiently solved by the principle pivoting algorithm [12], but it requires µi > 0
for at least some asset i in order to be feasible. Moreover, if we aim to construct an m-sparse w,
this approach becomes invalid. In Section 3, we will convert the m-sparse SR optimization into an
equivalent m-sparse quadratic programming, and the latter is still a nonconvex optimization. We
further elaborate a proximal gradient algorithm to obtain a globally or locally optimal SR.

Another viable approach is to consider the SR as a function of the portfolio and directly optimize it
under some realistic constraints. Hung et al. [18] propose the following IPSRM-D model to optimize
the SR:

max
w∈∆

{
S (w) :=

w>µ+ κ1w
>Uw

w>Dw
+ κ2w

>(1N −w)

}
, (2.8)

where U ∈ RN×N andD ∈ RN×N are upside and downside risk matrices, respectively,w>(1N −
w) is a diversification term. κ1 and κ2 are hyperparameters that control the strength of upside risk and
diversification, respectively. Interested readers can further refer to [35] for some practical estimators
for µ, U andD.

However, S (w) in model (2.8) is different from the original SR S0(w) (1.1) in several significant
parts. First, S (w) uses second-order moments w>Uw and w>Dw as risk metrics, but S0(w)

uses the first-order moment
√
w>Σw instead. In general, a first-order moment is more appropriate

because the expected return w>µ should remain in the same order of magnitude as
√
w>Σw.

Second, the numerator of S0(w) does not contain any risk term, while the numerator of S (w)
containsw>Uw. This may change the meaning of SR as an equilibrium point in the efficient frontier
based on the CAPM theory [32]. These facts may affect the performance of SR optimization.

Another problem is the lack of effective solving algorithms that could really maximize the SR under
constraints. A conventional way is to adopt gradient methods, since S (w) is a differentiable function
whenw 6= 0N . Hung et al. [18], Yu and Xu [35] propose to adopt the augmented Lagrangian method
to optimize (2.8). Though they do not specify which form of Lagrangian models is used, we give the
following one without loss of generality:

L (w,λ) := S (w) +
%

2
(w>1N − 1)2 + λ>w, (2.9)

where %
2 (w>1N − 1)2 with hyperparameter % 6 0 is a regularization term for the self-financing

constraint, and λ ∈ RN+ is the dual variable with respect to (w.r.t.) w for the long-only constraint
w > 0N . RN+ denotes the set of all N -dimensional nonnegative vectors. The update scheme is{

w(k+1) = w(k) + η1∇wL (w(k),λ(k)),

λ(k+1) = λ(k) − η2∇λL (w(k+1),λ(k)),
(2.10)

where η1, η2 > 0 are update step sizes. Note that S is a nonconvex function w.r.t. w, and the
augmented Lagrangian method is a surrogate method that approximates model (2.8). Hence (2.10)
does not necessarily lead to the maximum SR. Worse still, due to the augmented term %

2 (w>1N −1)2,
(2.10) may not even decrease the objective function S . Moreover, the Lagrangian L (w(k),λ(k))
is increased by the w(k) updates but decreased by the λ(k) updates, hence (2.10) cannot guarantee
convergence to a point (w∗,λ∗) without a thorough investigation of the update scheme. To summarize,
the augmented Lagrangian method and most existing gradient methods cannot guarantee global or
local optimality for model (2.8).
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3 PGA for m-Sparse Sharpe Ratio Maximization

In this section, we formulate the maximization problem of SR as a nonconvex fractional optimization
under constraints. Instead of directly solving the proposed model, we develop an efficient proximal
gradient algorithm to solve a simpler surrogate model (subtraction form) that is equivalent to the
original constrained fractional optimization model.

3.1 m-Sparse Sharpe Ratio Maximization Model

In order to retain the risk premium meaning of SR in finance, we directly maximize the original SR
in (1.1) instead of a variant like (2.8). In the perspective of statistical estimation, suppose we have a
sample asset return (in excess of the risk-free rate) matrixR ∈ RT×N with T trading times and N
assets. Then the original SR (1.1) can be represented by

S(w) :=
1
T 1>TRw√

1
T−1‖Rw − ( 1

T 1>TRw)1T ‖22 + ε‖w‖22
, (3.1)

where ε‖w‖22 is a regularization term for a positive definite Qε defined in (3.2). The parameter ε
can be an arbitrarily-small positive parameter, whose effect on the risk term can be negligible. To
simplify the notation, we define

p :=
1

T
R>1T , Q :=

1√
T − 1

(
R− 1

T
1T×TR

)
and Qε := Q>Q+ εI. (3.2)

Then the maximization of SR under the m-sparse, long-only and self-financing constraints is given
by

max
w∈∆
‖w‖06m

S(w) :=
p>w√
w>Qεw

, (3.3)

where the simplex ∆ is defined in (2.5). Note that minimizing−S(w) under the constraint ‖w‖0 6 m
is essentially quite different from minimizing the `0-regularization version −S(w) + τ‖w‖0 with
some positive τ . In general, the latter is easier because it incorporates the `0 norm into the objective
function and enlarges the feasible set by dropping the constraint ‖w‖0 6 m. We simply call (3.3)
the m-Sparse Sharpe Ratio Maximization (mSSRM) model. In fact, to solve the mSSRM model, it
suffices to solve the following simpler constrained minimization model

min
v>0N
‖v‖06m

{
1

2
v>Qεv − p>v

}
. (3.4)

To see this, we establish the relation between the solutions of these two models in the following
theorem, whose proof is provided in Appendix A.1. We define the constraint sets in model (3.3) and
(3.4) by

Ω1 := {w ∈ ∆| ‖w‖0 6 m} and Ω := {v ∈ RN | v > 0N and ‖v‖0 6 m}, (3.5)

respectively. It is obvious that Ω1 $ Ω.

Theorem 1 Suppose that there exists some w̃ ∈ Ω1 such that p>w̃ > 0. If v̂ is an optimal solution
of model (3.3), then p>v̂

v̂>Qεv̂
v̂ is an optimal solution of model (3.4). Conversely, if v̂ is an optimal

solution of model (3.4), then v̂
v̂>1N

is an optimal solution of model (3.3).

Defining the indicator function ιΩ by

ιΩ(v) :=

{
0, if v ∈ Ω;

+∞, otherwise,
(3.6)

we can rewrite model (3.4) as the following two-term unconstrained minimization model:

min
v∈RN

{f(v) + ιΩ(v)} , where f(v) :=
1

2
v>Qεv − p>v. (3.7)

We then turn to solving model (3.7) instead of the mSSRM model in (3.3).
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3.2 Proximal Gradient Algorithm

To develop a proximal gradient algorithm for solving model (3.7), we recall the notion of proximity
operator, and then establish the relation between the solution of model (3.7) and the proximity
characterization (3.8) in Theorem 2. For a proper function ψ : Rn → R, its proximity operator
at x ∈ Rn is defined by proxψ(x) := argminu∈Rn

{
1
2‖u− x‖

2
2 + ψ(u)

}
. We remark that for

function ψ that is nonconvex, proxψ(x) may not be unique. Throughout this paper, the formula
h = proxψ(x) represents h ∈ proxψ(x). For v∗ ∈ RN and δ > 0, we denote by B(v∗; δ) the
neighborhood of v∗ with radius δ. If there exists some δ > 0 such that f(v∗) 6 f(v) holds for all
v ∈ Ω ∩B(v∗; δ), then we say that v∗ is a locally optimal solution of model (3.7).

Theorem 2 Let function ιΩ and f be defined by (3.6) and (3.7), respectively. If v∗ is a globally
optimal solution of model (3.7), then for any α ∈

(
0, 1
‖Qε‖2

]
,

v∗ = proxιΩ (v∗ − α∇f(v∗)) . (3.8)

Conversely, we have the following two statements:

(i) If α > 1
ε and (3.8) holds, then v∗ is a globally optimal solution of model (3.7).

(ii) For any α > 0, if (3.8) holds, then v∗ is a locally optimal solution of model (3.7).

The proof of Theorem 2 is provided in Appendix A.2. Based on this theorem, the Proximal Gradient
Algorithm (PGA) for solving model (3.7) can be given by the following iterative scheme:

v(k+1) = proxιΩ

(
v(k) − α∇f(v(k))

)
, where k ∈ N, α > 0, v(0) ∈ Ω. (3.9)

We then compute the closed form of proxιΩ . For a vector v ∈ RN , we denote by mv and Jvpos
the number of positive components and the index set of positive components of v. If mv > m,
then we denote by Jvm-pos an index set of the m-largest positive components of v. Specifically,
by letting {vji}i∈NN be an rearrangement of {vj}j∈NN such that vj1 > vj2 > · · · > vjN , then
Jvm-pos := {j1, j2, . . . , jm}. Throughout this paper, for a given vector v ∈ RN , we shall always
compute proxιΩ(v) according to the following proposition. Its proof is given in Appendix A.3.

Proposition 3 Let ιΩ be defined by (3.6), v ∈ RN , and define the index set Jv by

Jv =

{
Jvm-pos, if mv > m;

Jvpos, if mv 6 m.

Then the vector h given by hj =

{
vj , if j ∈ Jv;

0, if j ∈ NN\Jv
satisfies that h ∈ proxιΩ(v).

3.3 Convergence Analysis of PGA

In this subsection, we delve into the convergence analysis of PGA. We aim to demonstrate that PGA
possesses the capability to converge to a globally optimal solution of model (3.4). The limit point
obtained by PGA can also yield a globally optimal solution of the original model (3.3), under certain
conditions. We also demonstrate the convergence rates of PGA.

Firstly, we introduce a proposition that illustrates the convergence and monotonic decreasing behavior
of the objective function values for the iterative sequence, as well as the vanishing gap between
consecutive iterates. The proof of this proposition is provided in Appendix A.4.

Proposition 4 Let function ιΩ and f be defined by (3.6) and (3.7), respectively, and let F := f + ιΩ.
If α ∈

(
0, 1
‖Qε‖2

)
, then for arbitrary initial vector v(0) ∈ RN , the sequence {v(k)}k∈N generated

by PGA satisfies the following properties:

(i) v(k) ∈ Ω, for all k ∈ N;
(ii) F (v(k+1))+a‖v(k+1)−v(k)‖22 6 F (v(k)) for all k ∈ N, where a := 1

2

(
1
α − ‖Qε‖2

)
> 0;

(iii) limk→∞ F (v(k)) exists;
(iv) limk→∞ ‖v(k+1) − v(k)‖2 = 0.
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Though we have established the convergence of {F (v(k))}k∈N and the vanishing gap between
consecutive iterates, further efforts are necessary to rigorously confirm the convergence of the iterative
sequence {v(k)}k∈N. We demonstrate the convergence of {v(k)}k∈N to a local minimizer of function
F and the corresponding convergence rates in the following theorem. In order to maintain consistency
with the original SR maximization model (as outlined in Theorem 1), we further define sequence
{w(k)}k∈N based on {v(k)}k∈N and conduct an analysis of the convergence rate of {w(k)}k∈N. To
prove the theorem, we need to introduce the notions of subdifferential, semi-algebraic function and
Kurdyka-Łojasiewicz property, along with several technical lemmas. Detailed proofs and relevant
content can be found in Appendix A.5.

Theorem 5 Suppose that there exists some w̃ ∈ Ω such that p>w̃ > 0. For arbitrary initial vector
v(0) ∈ RN , let {v(k)}k∈N be generated by PGA, and let {w(k)}k∈N be defined by

w(k) :=

{
v(k)

(v(k))>1N
, if (v(k))>1N 6= 0;

0N , otherwise.

If α ∈
(

0, 1
‖Qε‖2

)
, then the following statements hold:

(i) {v(k)}k∈N converge to a locally optimal solution v∗ of model (3.4) with convergence rates
‖v(k) − v∗‖2 = O(1/

√
k) and |f(v(k))− f(v∗)| = O(1/k).

(ii) The limit point v∗ of {v(k)}k∈N satisfies that v∗ > 0N and v∗ 6= 0N .
(iii) {w(k)}k∈N converge tow∗ := v∗

(v∗)>1N
with convergence rates ‖w(k)−w∗‖2 = O(1/

√
k)

and |S(w(k))− S(w∗)| = O(1/
√
k), where S is defined in (3.3).

In the remainder of this section, we always let v∗ ∈ Ω be the locally optimal solution of model (3.7)
that sequence {v(k)}k∈N converges to. We recall that mv∗ and Jv

∗

pos denote the number of positive
components and the index set of positive components of v∗, respectively. Suppose that there exists
some w̃ ∈ Ω such that p>w̃ > 0. Then item (ii) in Theorem 5 together with v∗ ∈ Ω yields that
1 6 mv∗ 6 m. In fact, v∗ is also the globally optimal solution of the convex model

min
v∈Ω̂

{
1

2
v>Qεv−p>v

}
, where Ω̂:={v ∈ RN | v>0N and vj=0 for all j ∈ NN\Jv

∗

pos}. (3.10)

Certainly, Ω̂ 6= ∅ due to the conditionmv∗ > 1. According to the definition of Ω̂, it is straightforward
to observe that v∗ ∈ Ω̂. Furthermore, Ω̂ is a closed convex set and Ω̂ ⊂ Ω. To analyze the relation
between v∗ and the original m-sparse Sharpe ratio maximization model (3.3), we define

Ω̂1 := {v ∈ ∆| vj = 0 for all j ∈ NN\Jv
∗

pos}, (3.11)

where ∆ is given by (2.5). It is easy to see that Ω̂1 ⊂ Ω1, where Ω1 defined in (3.5) is the constraint
set of model (3.3). We then have the following theorem, whose proof is provided in Appendix A.6.

Theorem 6 Suppose that there exists some w̃ ∈ Ω̂ such that p>w̃ > 0, where Ω̂ is defined in (3.10),
and let w∗ := v∗

(v∗)>1N
. Then the following statements hold:

(i) v∗ is the unique globally optimal solution of model (3.10).
(ii) w∗ is a globally optimal solution of model max

w∈Ω̂1

S(w).

(iii) If mv∗ = m, then w∗ is a locally optimal solution of model (3.3).

Item (iii) in Theorem 6 demonstrates that the limit point of the sequence obtained by PGA can yield
a locally optimal solution of model (3.3). In fact, according to item (i) in Theorem 2, we have the
following theorem that provides sufficient conditions for obtaining a globally optimal solution of
model (3.3), whose proof is provided in Appendix A.7.

Theorem 7 Suppose that there exists some w̃ ∈ Ω1 such that p>w̃ > 0, and let w∗ := v∗

(v∗)>1N
. If

one of the following two conditions holds:

(i) mv∗ < m;
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(ii) mv∗ = m and ∇if(v∗) > −ε ·min{v∗i |i ∈ supp(v∗)} for all i ∈ NN\supp(v∗),

then w∗ is a globally optimal solution of model (3.3).

Combining Theorem 7 and item (iii) in Theorem 6, we see that the proposed method can obtain
a globally optimal solution of model (3.3) when mv∗ < m. Even if this condition does not hold,
we can obtain at least a locally optimal solution. To test validation of PGA’s global optimality, we
conduct a set of simulation experiments, whose details are presented in Appendix A.8. The codes
for the simulation experiments are accessible via the link: https://github.com/linyizun2024/
mSSRM/tree/main/Codes_for_Simulation.

We call the existence of w̃ ∈ Ω̂ such that p>w̃ > 0 in Theorem 6 the Existence of Positive Expected
Return (EPER) condition. Although the EPER condition is required to guarantee the convergence
of w∗ to a locally optimal solution of the original model (3.3), the proposed method is still of high
practical significance in the case that the EPER condition does not hold. From the proofs of item
(i) in Theorem 5 and item (i) in Theorem 6, we see that even if the EPER condition does not hold,
the sequence generated by PGA still converges to a locally optimal solution v∗ of model (3.4),
which is also the globally optimal solution of model (3.10). In these two models, the objective
function 1

2v
>Qεv − p>v (subtraction form) w.r.t. v represents risk minus expected return, whose

minimization gives smaller risk and less loss in revenue, even if the expected return is not positive.
For the case that the expected return is not positive, compared with the failure of Sharpe ratio of
fractional form, the globally or locally optimal solution of the subtraction form seems to have more
realistic significance. We recall from item (ii) in Theorem 5 that v∗ may be equal to 0N if the EPER
condition does not hold. In this case, we shall set w∗ = 0N and keep all the wealth in the risk-free
asset to avoid loss in revenue. To close this section, we summarize the whole m-sparse Sharpe ratio
maximization method, which we abbreviate to mSSRM-PGA, in Appendix A.9.

4 Experimental results

Extensive experiments with real-world financial data sets are conducted to evaluate the performance
of the proposed mSSRM-PGA. Moreover, we also consider one baseline method: 1/N [14], as well as
9 state-of-the-art methods: IPSRM-D [18], PLCT [29], SSMP [10], MAXER [2], SSPO [24], SPOLC
[22], S1, S2 and S3 [28], as competitors in the experiments. We use 6 real-world monthly benchmark
data sets: FF25, FF25EU, FF32, FF49, FF100 and FF100MEINV to compare different methods.
These data sets are collected from the baseline and commonly-used Kenneth R. French’s Real-world
Data Library2. Details regarding these competitors and data sets are given in Appendix A.10. As
for mSSRM-PGA, we examine three levels of sparsity m = 10, m = 15, m = 20 and set ε = 10−3.
The setting of other parameters are presented in Appendix A.9. The codes of mSSRM-PGA are
accessible via the link: https://github.com/linyizun2024/mSSRM/tree/main/Codes_for_
Experiments_in_Paper.

4.1 Results for Sharpe ratios

We adopt the moving-window trading framework in [23] to imitate real-world portfolio management.
For each method, we use the asset returns {r(t)}Tt=1 or the price relatives {x(t) := r(t) + 1N}Tt=1

in the time window t = [1 : T ] to update the portfolio ŵ(T+1) for the next trading time. On the
(T + 1)-th time, we compute the portfolio return by r̂(T+1),ŵ = x>(T+1)ŵ(T+1) − 1 and then turn
to the next round where the time window moves to t = [2 : (T + 1)] and a new portfolio ŵ(T+2) is
computed. This procedure is repeated till the last trading time T , which yields a return sequence
{r̂(t),ŵ}Tt=1. This sequence can be used to compute the test SR:

ŜR =
(
∑T
t=T+1 r̂(t),ŵ)/(T − T )√

(
∑T
s=T+1(r̂(s),ŵ − (

∑T
t=T+1 r̂(t),ŵ)/(T − T ))2)/(T − T − 1)

.

The 1/N strategy does not involve the time window size T . For all other methods, we examine two
conventional settings for the time window size in the finance industry [2, 17]: T = 60 and T = 120.

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1 shows the (monthly) SRs of the 11 compared methods. Because MAXER requires T >
(N+2), it is unavailable on FF100 and FF100MEINV when T = 60. It is worth noting that the trivial
strategy 1/N outperforms most competitors in most situations. The reason is that 1/N diversifies the
risk over all the assets, which is also an effective risk control approach [14]. However, mSSRM-PGA
outperforms all the competitors including 1/N on all the 6 data sets when T = 60 and on 5 data sets
when T = 120. For example, its SR is more than 70% higher than that of 1/N on FF25EU whether
T = 60 or T = 120. Hence mSSRM-PGA achieves competitive SRs with sparse portfolios, which
saves much managerial cost.

Table 1: Sharpe ratios of different portfolio optimization methods on 6 benchmark data sets.
Strategy FF25 FF25EU FF32 FF49 FF100 FF100MEINV FF25 FF25EU FF32 FF49 FF100 FF100MEINV

T = 60 T = 120
1/N 0.2276 0.1574 0.2234 0.2057 0.2087 0.2151 0.2276 0.1574 0.2234 0.2057 0.2087 0.2151

SPOLC 0.1452 0.0315 0.1734 0.0752 0.0562 0.1009 0.1545 0.0350 0.1830 0.1291 0.0988 0.1218
SSPO 0.1544 0.0411 0.1181 0.0588 0.0425 0.0872 0.1789 0.0719 0.1557 0.0601 0.0529 0.1109

S1 0.1497 0.0369 0.1169 0.0559 0.0327 0.0879 0.1789 0.0736 0.1525 0.0648 0.0467 0.0999
S2 0.1382 0.0633 0.1225 0.0573 0.0456 0.1034 0.1578 0.0725 0.1438 0.0605 0.0602 0.1203
S3 0.1428 0.0607 0.1238 0.0570 0.0469 0.1100 0.1609 0.0709 0.1463 0.0617 0.0603 0.1215

SSMP 0.1934 0.1596 0.1535 0.1658 0.0883 0.1448 0.1920 0.0849 0.1512 0.1581 0.0573 0.1495
MAXER 0.1825 0.2229 0.1625 0.1581 N/A N/A 0.1921 0.2379 0.1465 0.1433 0.1351 0.1479
IPSRM-D 0.2239 0.1994 0.1952 0.1436 0.1766 0.1662 0.2439 0.2358 0.2240 0.1410 0.2012 0.1712

PLCT 0.2475 0.2708 0.2600 0.2119 0.2270 0.2220 0.2468 0.2796 0.2577 0.2025 0.2369 0.2279
mSSRM-PGA(m=10) 0.2481 0.2712 0.2612 0.2151 0.2290 0.2217 0.2472 0.2796 0.2592 0.2041 0.2391 0.2271
mSSRM-PGA(m=15) 0.2481 0.2708 0.2615 0.2135 0.2289 0.2232 0.2474 0.2796 0.2592 0.2040 0.2381 0.2293
mSSRM-PGA(m=20) 0.2481 0.2708 0.2615 0.2134 0.2285 0.2234 0.2474 0.2796 0.2592 0.2041 0.2384 0.2292

4.2 Results for Cumulative Wealths

Ordinary investors are also concerned about how much they gain when using an investing strategy.
Without loss of generality, we can set the initial wealth for an investing strategy as S(0) = 1, then the
final cumulative wealth can be conveniently computed by S(T ) =

∏T
t=1(r̂(t),ŵ + 1). The results of

final cumulative wealths are shown in Table 2. The two competitors 1/N and PLCT perform well in
general. Nevertheless, mSSRM-PGA achieves the best final cumulative wealths on 4 out of the 6
data sets. Besides, it outperforms each competitor on at least 5 out of the 6 data sets. For example,
mSSRM-PGA is about 20% higher than the second best competitor PLCT on FF49 when T = 60
and m = 10. On the data sets where mSSRM-PGA is not the best method, it is still the second best
method. These results indicate that mSSRM-PGA is an effective strategy for pursuing return gain in
a practical perspective.

Table 2: Cumulative wealths of different portfolio optimization methods on 6 benchmark data sets.
Strategy FF25 FF25EU FF32 FF49 FF100 FF100MEINV FF25 FF25EU FF32 FF49 FF100 FF100MEINV

T = 60 T = 120
1/N 355.98 13.05 424.42 235.48 364.87 428.70 355.98 13.05 424.42 235.48 364.87 428.70

SPOLC 57.53 0.96 169.58 5.44 2.39 14.05 70.46 1.03 259.74 100.49 16.03 36.20
SSPO 129.35 1.22 30.20 1.33 0.89 8.98 286.51 2.67 130.21 1.61 1.74 25.62

S1 100.76 1.08 29.47 1.09 0.54 9.25 265.82 2.78 121.47 2.23 1.27 15.57
S2 66.24 2.17 39.27 1.39 1.15 20.45 130.31 2.73 93.13 1.89 2.67 43.66
S3 70.88 2.01 36.88 1.28 1.20 23.73 129.90 2.61 89.51 1.92 2.62 38.70

SSMP 248.67 13.47 158.98 186.79 10.09 154.27 237.45 3.25 149.65 143.18 2.26 222.35
MAXER 173.39 47.56 200.03 142.31 N/A N/A 216.94 55.71 117.42 98.85 79.82 188.54
IPSRM-D 398.55 37.25 243.83 69.57 240.12 146.40 567.76 77.79 507.47 50.04 457.86 188.34

PLCT 581.41 126.04 918.62 238.27 471.44 354.70 608.65 148.19 854.83 157.50 552.41 399.48
mSSRM-PGA (m=10) 615.34 126.02 991.89 285.02 527.09 375.75 640.89 147.17 928.19 188.38 635.65 421.97
mSSRM-PGA (m=15) 614.71 125.19 996.32 262.54 522.28 383.44 643.44 147.17 927.21 172.95 597.67 435.01
mSSRM-PGA (m=20) 614.70 125.19 996.23 262.06 515.50 384.65 643.44 147.17 927.16 173.27 603.05 433.15

4.3 Results for Transaction Costs

Cumulative wealth with transaction cost can also be tested to see how the transaction cost influences
the performance of different methods. We adopt the proportional transaction cost model [8, 26, 21]

Sν=S(0)

T∏
t=1

[
(ŵ>(t)x(t)) ·

(
1− ν

2

N∑
i=1

|ŵ(t),i − w̃(t−1),i|

)]
, w̃(t−1),i=

ŵ(t−1),ix(t−1),i

ŵ>(t−1)x(t−1)

,

where w̃(t−1),i is the evolved portfolio weight of the i-th asset at the end of the (t − 1)-th period,
and ν is the bidirectional transaction cost rate. When the cost rate of buying is the same as that
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of selling, updating the evolved portfolio w̃(t−1) as the next portfolio ŵ(t) yields a proportional
transaction cost of ν2

∑N
i=1 |ŵ(t),i − w̃(t−1),i|. Figure 2 in Appendix A.10 shows the final cumulative

wealths of different methods as ν varies from 0 to 0.5% with T = 60. mSSRM-PGA outperforms all
other competitors on FF25, FF25EU and FF32 for all ν ∈ [0, 0.5%], and on FF100 for ν 6 0.45%.
mSSRM-PGA is the second best method on FF100MEINV, following 1/N. This is because 1/N
naturally keeps a small trading volume. Note that a manager for a mutual fund with sufficient trades
and capital is able to negotiate for a small enough ν. Thus mSSRM-PGA is applicable to scenarios
with a certain level of transaction cost.

4.4 Sparsity for mSSRM-PGA

In this subsection, we examine the sparsity of the portfolios {ŵ(t)} generated by mSSRM-PGA. The
sparsity can be measured by the cardinality of the support set of ŵ(t): |supp(ŵ(t))|. For each data set
and each setting of m, the mean and the standard deviation (STD) of {|supp(ŵ(t))|} are computed
to provide a general description, shown in Table 3. It indicates that mSSRM-PGA further increases
sparsity compared with the preseted sparsity level m. Moreover, mSSRM-PGA keeps stable sparsity
w.r.t. the change ofm. For example, the average sparsity for mSSRM-PGA is about 4.9 when T = 60
(or 4.4 when T = 120) on FF25EU, for all the settings m = 10, 15, 20. As the total number of
assets N increases, mSSRM-PGA gets more advantageous in sparsity. For example, the average
sparsity for mSSRM-PGA is about 8 ∼ 11 on FF100 and FF100MEINV, compared with N = 100.
It indicates that mSSRM-PGA selects only 8% ∼ 11% of the assets in the whole asset pool, while
the widely-used 1/N strategy has to maintain the whole asset pool. Therefore, mSSRM-PGA can
save much managerial cost by reducing the proportion of selected assets, while keeping a competitive
performance in SR optimization.

Table 3: Sparsity of the portfolios generated by mSSRM-PGA: |supp(ŵ(t))|.
m FF25 FF25EU FF32 FF49 FF100 FF100MEINV FF25 FF25EU FF32 FF49 FF100 FF100MEINV

T = 60 T = 120

10 Mean 6.3511 4.8342 6.4159 8.1214 8.0097 7.9175 7.1359 4.4560 7.0825 8.4790 8.3706 8.8722
STD 2.4164 2.1763 2.3654 1.9918 2.2473 2.3915 2.2221 1.4645 2.4464 1.9080 2.3343 2.0117

15 Mean 6.4746 4.9352 7.4286 9.0000 8.9709 9.0825 7.1637 4.4430 7.4919 9.6003 9.8754 10.5906
STD 3.0451 2.3573 3.0590 3.0713 3.3964 3.5906 2.2995 1.4462 2.2567 3.1731 3.6169 3.4845

20 Mean 6.4763 4.9352 7.4692 9.0421 9.1974 9.2994 7.1637 4.4430 7.4919 9.6828 10.0437 10.7621
STD 3.0462 2.3573 3.1734 3.1620 3.8949 4.0125 2.2995 1.4462 2.2567 3.3349 3.9160 3.7460

5 Concluding Remarks

The Sharpe ratio (SR) is a very important measurement for the performance of returns attributable
to risk in finance. On the other hand, modern portfolio management usually restricts the number of
selected assets to a relatively small size, in order to save managerial and financial costs. The m-sparse
(`0) constraint is an exact constraint for a sparse portfolio, but it is nonconvex and complex. Thus
few existing methods can optimize the SR with the m-sparse constraint. In this study, we convert
the m-sparse fractional optimization problem into an equivalent m-sparse quadratic programming
problem. Then we develop an efficient, easy-to-implement and mathematically sound proximal
gradient algorithm to solve this nonconvex problem. We theoretically prove that this algorithm yields
a portfolio that achieves the globally optimal m-sparse Sharpe ratio under certain conditions.

We conduct extensive experiments on 6 real-world monthly benchmark data sets built on the Kenneth
R. French’s widely-used public data library. The numerical results demonstrate that the proposed
mSSRM-PGA improves the SR, compared with 9 state-of-the-art portfolio optimization methods
including SPOLC, SSPO, S1, S2, S3, SSMP, MAXER, IPSRM-D, PLCT and one baseline method 1/N.
For another evaluating metric cumulative wealth, mSSRM-PGA outperforms each competitor on at
least 5 out of the 6 data sets. Besides, mSSRM-PGA can withstand a considerable level of transaction
cost rate. Sparsity experiments indicate that mSSRM-PGA successfully generates portfolios with
stable sparsity, and its advantage increases as the size of the whole asset pool increases. In summary,
the proposed mSSRM-PGA is a promising approach in managing portfolios or other financial issues,
which is worth further investigations. A limitation of this research lies in its inability to directly apply
to fractional optimization models featuring nondifferentiable numerator and denominator. Future
work will strive to broaden the theoretical and methodological foundations, ultimately enabling its
application to a broader spectrum of fractional optimization models in machine learning.

10



Acknowledgements

The authors thank the anonymous reviewers for their constructive comments and valuable suggestions
in improving this paper. This work was supported in part by National Natural Science Founda-
tion of China under Grants 12401120 and 62176103, in part by Guangdong Basic and Applied
Basic Research Foundation under Grants 2021A1515110541 and 2023B1515120064, in part by the
Science and Technology Planning Project of Guangdong under Grant 2023A0505030013, and in
part by the Science and Technology Planning Project of Guangzhou under Grants 2024A04J3940,
2024A04J9896, 202206030007, Nansha District: 2023ZD001 and Development District: 2023GH01.

References
[1] Paul H. Algoet and Thomas M. Cover. Asymptotic optimality and asymptotic equipartition

properties of log-optimum investment. The Annals of Probability, 16(2):876–898, 1988.

[2] Mengmeng Ao, Li Yingying, and Xinghua Zheng. Approaching mean-variance efficiency for
large portfolios. The Review of Financial Studies, 32(7):2890–2919, 2019.

[3] Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating
minimization and projection methods for nonconvex problems: An approach based on the
Kurdyka-Łojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457, 2010.

[4] Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss–Seidel methods. Mathematical Programming, 137(1):91–129, 2013.

[5] Gah-Yi Ban, Noureddine El Karoui, and Andrew E. B. Lim. Machine learning and portfolio
optimization. Management Science, 64(3):1136–1154, 2018.

[6] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Space. Springer, New York, 2nd edition, 2017.

[7] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd edition,
1999.

[8] Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs. Machine
Learning, 35(3):193–205, 1999.

[9] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014.

[10] Joshua Brodie, Ingrid Daubechies, Christine De Mol, Domenico Giannone, and Ignace Loris.
Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences of
the United States of America, 106(30):12267–12272, 2009.

[11] Raul O. Chao, Stylianos Kavadias, and Cheryl Gaimon. Revenue driven resource allocation:
Funding authority, incentives, and new product development portfolio management. Manage-
ment Science, 55(9):1556–1569, 2009.

[12] Richard W. Cottle. Monotone solutions of the parametric linear complementarity problem.
Mathematical Programming, 3(1):210–224, 1972.

[13] Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991.

[14] Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. Optimal versus naive diversification:
How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5):1915–1953,
2009.

[15] Stephen G. Dimmock, Neng Wang, and Jinqiang Yang. The endowment model and modern
portfolio theory. Management Science, 70(3):1554–1579, 2024.

[16] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the `1-ball for learning in high dimensions. In Proceedings of the International Conference
on Machine Learning (ICML), pages 272–279, 2008.

11



[17] Shingo Goto and Yan Xu. Improving mean variance optimization through sparse hedging
restrictions. The Journal of Financial and Quantitative Analysis, 50(6):1415–1441, 2015.

[18] Kei Keung Hung, Chi Chiu Cheung, and Lei Xu. New Sharpe-ratio-related methods for portfolio
selection. In Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational
Intelligence for Financial Engineering (CIFEr), pages 34–37, 2000.

[19] John L. Kelly. A new interpretation of information rate. The Bell System Technical Journal,
35(4):917–926, 1956.

[20] Min Jeong Kim, Yongjae Lee, Jang Ho Kim, and Woo Chang Kim. Sparse tangent portfolio
selection via semi-definite relaxation. Operations Research Letters, 44(4):540–543, 2016.

[21] Zhao-Rong Lai, Dao-Qing Dai, Chuan-Xian Ren, and Ke-Kun Huang. Radial basis func-
tions with adaptive input and composite trend representation for portfolio selection. IEEE
Transactions on Neural Networks and Learning Systems, 29(12):6214–6226, 2018.

[22] Zhao-Rong Lai, Liming Tan, Xiaotian Wu, and Liangda Fang. Loss control with rank-one co-
variance estimate for short-term portfolio optimization. Journal of Machine Learning Research,
21(97):1–37, 2020.

[23] Zhao-Rong Lai and Haisheng Yang. A survey on gaps between mean-variance approach
and exponential growth rate approach for portfolio optimization. ACM Computing Surveys,
55(2):1–36, 2023. Article No. 25.

[24] Zhao-Rong Lai, Pei-Yi Yang, Liangda Fang, and Xiaotian Wu. Short-term sparse portfolio
optimization based on alternating direction method of multipliers. Journal of Machine Learning
Research, 19(63):1–28, 2018.

[25] Olivier Ledoit and Michael Wolf. Nonlinear shrinkage of the covariance matrix for portfolio
selection: Markowitz meets Goldilocks. The Review of Financial Studies, 30(12):4349–4388,
2017.

[26] Bin Li, Steven C.H. Hoi, Doyen Sahoo, and Zhi-Yong Liu. Moving average reversion strategy
for on-line portfolio selection. Artificial Intelligence, 222:104–123, 2015.

[27] Hong Liu and Mark Loewenstein. Market crashes, correlated illiquidity, and portfolio choice.
Management Science, 59(3):715–732, 2013.

[28] Ziyan Luo, Xiaotong Yu, Naihua Xiu, and Xingyuan Wang. Closed-form solutions for short-term
sparse portfolio optimization. Optimization, 71(7):1937–1953, 2022.

[29] Jong-Shi Pang. A parametric linear complementarity technique for optimal portfolio selection
with a risk-free asset. Operations Research, 28(4):927–941, 1980.

[30] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends R© in Optimization,
1(3):127–239, 2014.

[31] R. Tyrrell Rockafellar and Roger J-B. Wets. Variational Analysis, volume 317. Springer Science
& Business Media, 2009.

[32] William F. Sharpe. Capital asset prices: A theory of market equilibrium under conditions of
risk. Journal of Finance, 19(3):425–442, 1964.

[33] William F. Sharpe. Mutual fund performance. Journal of Business, 39(1):119–138, 1966.

[34] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, 58(1):267–288, 1996.

[35] Xiaohui Yu and Lei Xu. Adaptive improved portfolio Sharpe ratio maximization with diversi-
fication. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks (IJCNN), pages 472–476, 2000.

12



A Appendix

A.1 Proof of Theorem 1

To prove Theorem 1, we need the following lemma.

Lemma 8 Suppose that there exists some w̃ ∈ Ω1 such that p>w̃ > 0. If v̂ is an optimal solution of
model (3.4), then v̂ 6= 0N and p>v̂ = v̂>Qεv̂ > 0.

Proof. Since v̂ is an optimal solution of model (3.4), we know that v̂ ∈ Ω. Letw := p>w̃
w̃>Qεw̃

w̃. The
facts w̃ ∈ Ω1 and p>w̃ > 0 imply that w ∈ Ω. Then it follows that

1

2
v̂>Qεv̂ − p>v̂ 6

1

2
w>Qεw − p>w = −1

2

(p>w̃)2

w̃>Qεw̃
< 0.

Hence p>v̂ > 1
2 v̂
>Qεv̂ > 0 and v̂ 6= 0N . Now by letting v := p>v̂

v̂>Qεv̂
v̂, then v ∈ Ω and

1

2
v̂>Qεv̂ − p>v̂ 6

1

2
v>Qεv − p>v = −1

2

(p>v̂)2

v̂>Qεv̂
. (A.1)

Multiplying both sides of (A.1) by 2v̂>Qεv̂ yields(
p>v̂ − v̂>Qεv̂

)2
6 0,

which implies that p>v̂ = v̂>Qεv̂ > 0.

Proof of Theorem 1. Let v̂ be an optimal solution of model (3.3). Then v̂ ∈ Ω1 and

p>v̂√
v̂>Qεv̂

>
p>w̃√
w̃>Qεw̃

> 0.

Defining ṽ := p>v̂
v̂>Qεv̂

v̂, we see that ṽ ∈ Ω and

1

2
ṽ>Qεṽ − p>ṽ =

1

2

(p>v̂)2

(v̂>Qεv̂)2
v̂>Qεv̂ −

(p>v̂)2

v̂>Qεv̂
= −1

2

(p>v̂)2

v̂>Qεv̂
< 0. (A.2)

For any u ∈ Ω such that 1
2u
>Qεu− p>u < 0, we have p>u > 0, u 6= 0N and ũ := u

u>1N
∈ Ω1.

Then the fact v̂ is an optimal solution of model (3.3) implies that

(p>v̂)2

v̂>Qεv̂
>

(p>ũ)2

ũ>Qεũ
=

(p>u)2

u>Qεu
. (A.3)

Note that
1

2
u>Qεu− p>u+

1

2

(p>u)2

u>Qεu
=

1

2u>Qεu
(u>Qεu− p>u)2 > 0,

which combined with (A.3) and (A.2) yields

1

2
u>Qεu− p>u > −1

2

(p>u)2

u>Qεu
> −1

2

(p>v̂)2

v̂>Qεv̂
=

1

2
ṽ>Qεṽ − p>ṽ.

Therefore, ṽ is an optimal solution of model (3.4).

Conversely, let v̂ be an optimal solution of model (3.4). It follows from Lemma 8 that v̂ 6= 0N and
p>v̂ = v̂>Qεv̂ > 0. Thus v̂ = p>v̂

v̂>Qεv̂
v̂. For any v ∈ Ω such that p>v > 0, we let u := p>v

v>Qεv
v.

Then u ∈ Ω and

−1

2

(p>v̂)2

v̂>Qεv̂
=

1

2
v̂>Qεv̂ − p>v̂ 6

1

2
u>Qεu− p>u = −1

2

(p>v)2

v>Qεv
. (A.4)

Now we let v̄ := v̂
v̂>1N

. Then v̄ ∈ Ω1. Inequality (A.4) yields that

p>v̄√
v̄>Qεv̄

=
p>v̂√
v̂>Qεv̂

>
p>v√
v>Qεv

.

Note that Ω1 ⊂ Ω. Therefore, v̄ is an optimal solution of model (3.3).
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A.2 Proof of Theorem 2

To prove Theorem 2, we first investigate the properties of function f in Proposition 9, and then recall
two well-known results as Lemmas 10 and 11. Let ψ be a function from Rn to [−∞,+∞]. Then
ψ is proper if −∞ /∈ ψ(Rn) and {x ∈ Rn| ψ(x) < +∞} 6= ∅. Let ψ : Rn → R be a proper
function. We say that ψ is convex if for any x,y ∈ Rn and any λ ∈ (0, 1), ψ(λx + (1 − λ)y) 6
λψ(x) + (1 − λ)ψ(y). If there exists β > 0 such that ψ − β

2 ‖ · ‖
2
2 is convex, then ψ is said to be

β-strongly convex.

Proposition 9 Let f : RN → R be defined in (3.7). Then the following hold:

(i) f is ε-strongly convex on RN ;

(ii) ∇f is ‖Qε‖2-Lipschitz continuous on RN .

Proof. Let f̃(v) := f(v) − ε
2‖v‖

2
2 = 1

2v
>Q>Qv − p>v, v ∈ RN . Since the Hessian matrix

Q>Q of f̃ is positive semidefinite, we know that f̃ is convex on RN (see Proposition B.4 of [7]).
Thus item (i) holds. The gradient of f is given by ∇f(v) = Qεv − p. For all x,y ∈ RN ,
‖∇f(x)−∇f(y)‖2 6 ‖Qε‖2‖x− y‖2, which implies item (ii).

Lemma 10 (Proposition A.24 of [7]) Let function ψ : Rn → R be differentiable with an L-
Lipschitz continuous gradient, where L > 0. Then

ψ(y)− ψ(x) 6 〈∇ψ(x),y − x〉+
L

2
‖y − x‖22

holds for all x,y ∈ Rn.

Lemma 11 (Exercise 17.5 of [6]) Let ψ : Rn → R be differentiable and β > 0. Then ψ is β-
strongly convex if and only if

ψ(y)− ψ(x) > 〈∇ψ(x),y − x〉+
β

2
‖y − x‖22

holds for all x,y ∈ Rn.

Proof of Theorem 2. We first show that (3.8) holds when v∗ is a globally optimal solution of model
(3.7). By the definition of proximity operator, (3.8) is equivalent to

v∗ = argmin
u∈RN

ιΩ(u) +
1

2
‖u− v∗ + α∇f(v∗)‖22 ,

that is,

ιΩ(u) +
1

2
‖u− v∗ + α∇f(v∗)‖22 > ιΩ(v∗) +

1

2
‖α∇f(v∗)‖22 , for all u ∈ RN .

According to the definition of ιΩ in (3.6) and the fact v∗ ∈ Ω, the above inequality can be simply
rewritten as

〈∇f(v∗),u− v∗〉+
1

2α
‖u− v∗‖22 > 0, for all u ∈ Ω. (A.5)

To prove (3.8), it suffices to show that (A.5) holds. From Proposition 9, we know that f is ε-strongly
convex and ∇f is ‖Qε‖-Lipschitz continuous on RN . Then Lemma 10 yields that

f(u)− f(v∗) 6 〈∇f(v∗),u− v∗〉+
‖Qε‖2

2
‖u− v∗‖22, for all u ∈ Ω. (A.6)

Since v∗ is a globally optimal solution of model (3.7), f(u) − f(v∗) > 0 for all u ∈ Ω, which
together with (A.6) and the fact α ∈

(
0, 1
‖Qε‖2

]
implies (A.5). This proves that (3.8) holds.

Conversely, if α > 1
ε and (3.8) holds, then we have (A.5). Recall that f is ε-strongly convex. It

follows from Lemma 11 that

f(u)− f(v∗) > 〈∇f(v∗),u− v∗〉+
ε

2
‖u− v∗‖22,
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which together with the fact α > 1
ε and (A.5) implies that f(u)− f(v∗) > 0 for all u ∈ Ω. Thus

the assertion in item (i) holds.

We then prove item (ii). The fact (3.8) holds implies (A.5). For δ > 0, we define

Ω̃δ := {u ∈ B(v∗; δ)| 〈∇f(v∗),u− v∗〉 = 0}.

Note that when u tends to v∗, the quadratic term 1
2α‖u− v

∗‖22 is of higher order infinitesimal than
the linear term |〈∇f(v∗),u− v∗〉|. There must be some δ > 0 such that

|〈∇f(v∗),u− v∗〉| > 1

2α
‖u− v∗‖22, for all u ∈ B(v∗; δ)\Ω̃δ. (A.7)

We then show that

〈∇f(v∗),u− v∗〉 > 0, for all u ∈
(
B(v∗; δ)\Ω̃δ

)
∩ Ω. (A.8)

Otherwise, there exists some ũ ∈
(
B(v∗; δ)\Ω̃δ

)
∩ Ω such that 〈∇f(v∗), ũ− v∗〉 < 0. It follows

from (A.7) that

〈∇f(v∗), ũ− v∗〉+
1

2α
‖ũ− v∗‖22 < 0,

which contradicts (A.5). Hence (A.8) holds. This together with the definition of Ω̃δ yields that

〈∇f(v∗),u− v∗〉 > 0, for all u ∈ B(v∗; δ) ∩ Ω. (A.9)

Recall that f is convex and differentiable on RN . According to (A.9) and the first order condition for
convexity (Proposition B.3 of [7]),

f(u)− f(v∗) > 〈∇f(v∗),u− v∗〉 > 0, for all u ∈ B(v∗; δ) ∩ Ω,

which implies that v∗ is a locally optimal solution of model (3.7).

A.3 Proof of Proposition 3

Proof. By the definitions of ιΩ and its proximity operator, we have

proxιΩ(v) = argmin
u∈Ω

‖u− v‖2.

To prove that h ∈ proxιΩ(v), it is equivalent to show that

‖h− v‖22 6 ‖u− v‖22, for all u ∈ Ω. (A.10)

For any u ∈ Ω, there exists an index set Ju ∈ NN with m elements such that uj = 0 for all
j ∈ NN\Ju. Let Jvneg be the index set of negative components in v and J ′u := (NN\Ju)∪Jvneg. Since
u > 0N , ‖u− v‖22 >

∑
j∈J′u

v2
j . Let J ′h = NN\Jv. Then Jvneg ⊂ J ′h and ‖h− v‖22 =

∑
j∈J′p

v2
j .

If mv > m, then Jv = Jvm-pos. We are easy to see from the definition of Jvm-pos that∑
j∈J′u

v2
j −

∑
j∈J′h

v2
j =

∑
j∈NN\(Ju∪Jv

neg)

v2
j −

∑
j∈NN\(Jv

m-pos∪Jv
neg)

v2
j > 0.

If mv 6 m, then Jv = Jvpos and
∑
j∈J′u

v2
j −

∑
j∈J′h

v2
j =

∑
j∈(NN\Ju)∪Jv

neg
v2
j −

∑
j∈Jv

neg
v2
j > 0.

Now we conclude from the above two cases that

‖u− v‖22 − ‖h− v‖22 >
∑
j∈J′u

v2
j −

∑
j∈J′h

v2
j > 0,

that is, (A.10) holds. This completes the proof.
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A.4 Proof of Proposition 4

Proof. Item (i) follows from (3.9) and the definition of proxιΩ directly. Then we have that ιΩ(v(k)) =
0 for all k ∈ N. To prove item (ii), it suffices to show that

f(v(k+1)) + a‖v(k+1) − v(k)‖22 6 f(v(k)), for all k ∈ N. (A.11)

Note that a = 1
α − ‖Qε‖2 > 0, since α ∈

(
0, 1
‖Qε‖2

)
. Let

ϕ(u) :=
1

2

∥∥∥u− v(k) + α∇f(v(k))
∥∥∥2

2
+ ιΩ(u), u ∈ RN . (A.12)

Then (3.9) implies that ϕ(v(k+1)) ≤ ϕ(v(k)), that is,

〈∇f(v(k)),v(k+1) − v(k)〉 6 − 1

2α
‖v(k+1) − v(k)‖22, for all k ∈ N, (A.13)

It follows from Lemma 10 that

f(v(k+1))− f(v(k)) 6 〈∇f(v(k)),v(k+1) − v(k)〉+
‖Qε‖2

2
‖v(k+1) − v(k)‖22. (A.14)

Combining (A.13) and (A.14) yields (A.11). Thus item (ii) holds. Now that F is monotonically
decreasing, according to the monotone convergence theorem, to prove item (iii), it suffices to
show that function F is bounded below on Ω. Solving ∇f(v∗) = 0 gives v∗ = Q−1

ε p. Since
f is convex and differentiable on RN , f attains the minimum value at Q−1

ε p on RN . Hence
f(v) > f

(
Q−1
ε p

)
= − 1

2p
>Q−1

ε p for all v ∈ RN , which implies that F (v) > − 1
2p
>Q−1

ε p for all
v ∈ Ω. Therefore, item (iii) holds. Now taking the limit on both sides of the inequality in item (ii)
yields item (iv) immediately. This completes the proof.

A.5 Proof of Theorem 5

In order to prove Theorem 5, it is necessary to review several definitions and establish several
preliminary results. First, We recall the notions of subdifferentials and critical point. The lower limit
of function ψ at x and the domain of ψ are defined by

lim inf
y→x

ψ(y) := lim
δ→0+

(
inf

y∈B(x;δ)
ψ(y)

)
(A.15)

and
dom ψ := {x ∈ Rn| ψ(x) < +∞},

respectively. We say that ψ is lower semicontinuous at x ∈ Rn if ψ(x) 6 lim inf
u→x

ψ(u). If ψ is lower
semicontinuous at every x ∈ Rn, then ψ is lower semicontinuous on Rn [31].

Definition 1 (Subdifferentials and critical point) Let ψ : Rn → R be a proper lower semicontinu-
ous function.

(i) For each x ∈ dom ψ, the Fréchet subdifferential of ψ at x, written by ∂̂ψ(x), is the set of
all vectors u ∈ Rn which satisfy

lim inf
y→x
y 6=x

ψ(y)− ψ(x)− 〈u,y − x〉
‖y − x‖2

> 0.

When x /∈ dom ψ, we set ∂̂ψ(x) = ∅.

(ii) The limiting-subdifferential, or simply the subdifferential of ψ at x ∈ dom ψ, written by
∂ψ(x), is defined through the following closure process

∂ψ(x) := {u ∈ Rn| ∃xk → x, ψ(xk)→ ψ(x) and uk ∈ ∂̂ψ(xk)→ u as k → +∞}.

We call an element in ∂ψ(x) subgradient of ψ at x. We say that x is a critical point of ψ if
0n ∈ ∂ψ(x).
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We also recall the following known results about subdifferential from Theorem 8.6, Exercise 8.8 (c)
and Theorem 10.1 of [31], respectively.

Fact 12 For x ∈ dom ψ, ∂̂ψ(x) ⊂ ∂ψ(x).

Fact 13 Let ψ1 : Rn → R and ψ2 : Rn → R be two proper lower semicontinuous functions and
x ∈ Rn. If ψ1 is differentiable on a neighborhood of x and ψ2 is finite at x, then

∂(ψ1 + ψ2)(x) = ∇ψ1(x) + ∂ψ2(x).

Fact 14 (Fermat’s rule) If x ∈ Rn is a local minimizer of ψ, then 0n ∈ ∂ψ(x).

We shall use Theorem 2.9 of [4], which is recalled as Proposition 15, to prove the convergence of the
PGA. For this purpose, we recall the notions of Kurdyka-Łojasiewicz (KL) property and KL function.

Definition 2 (KL property) Let ψ : Rn → R be a proper semicontinuous function. We say that ψ
satisfies the KL property at x̂ ∈ dom ∂ψ if there exist η ∈ (0,+∞], a neighborhood U of x̂ and a
continuous concave function ϕ : [0, η)→ [0,+∞] such that

(i) ϕ(0) = 0;

(ii) ϕ is continuously differentiable on (0, η) with ϕ′ > 0;

(iii) ϕ′(ψ(x) − ψ(x̂))·dist(0, ∂ψ(x)) > 1 for any x ∈ U ∩ {x ∈ Rn : ψ(x̂) < ψ(x) <
ψ(x̂) + η}.

Definition 3 (KL function) We call a proper lower semicontinuous function ψ : Rn → R KL
function if ψ satisfies the KL property at all points in dom ∂ψ.

Proposition 15 Let ψ : Rn → R be a proper lower semicontinuous function. Consider a sequence
{x(k)}k∈N ⊂ Rn satisfying the following conditions:

(i) There exists a > 0 such that

ψ(x(k+1)) + a‖x(k+1) − x(k)‖22 6 ψ(x(k)), for all k ∈ N.

(ii) There exist b > 0 and y(k+1) ∈ ∂ψ(x(k+1)) such that

‖y(k+1)‖2 6 b‖x(k+1) − x(k)‖2, for all k ∈ N.

(iii) There exist a subsequence {x(kj)}j∈N+ and x∗ ∈ Rn such that

lim
j→∞

x(kj) = x∗ and lim
j→∞

ψ(x(kj)) = ψ(x∗).

If ψ satisfies the KL property at x∗, then

lim
k→∞

x(k) = x∗ and 0n ∈ ∂ψ(x∗).

We then focus on verifying that the sequence {v(k)}k∈N generated by PGA satisfies all the conditions
in Proposition 15. The satisfaction of item (i) has been shown in Proposition 4. We next consider the
satisfaction of item (ii) in Proposition 15.

Proposition 16 Let {v(k)}k∈N be generated by PGA. Then there exist q(k+1) ∈ ∂F (v(k+1)) and
b > 0 such that

‖q(k+1)‖2 6 b‖v(k+1) − v(k)‖2, for k ∈ N. (A.16)

Proof. Let

q(k+1) :=
1

α
(v(k) − v(k+1)) +∇f(v(k+1))−∇f(v(k)), k ∈ N,
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and function ϕ be defined by (A.12). We first prove that q(k+1) ∈ ∂F (v(k+1)). It follows from (3.9)
and Fact 14 that 0N ∈ ∂ϕ(v(k+1)), which together with Fact 13 yields that

v(k) − v(k+1) − α∇f(v(k)) ∈ ∂ιΩ(v(k+1)), for all k ∈ N.

Note that ιΩ = αιΩ. The above inclusion relation can be rewritten as

1

α
(v(k) − v(k+1))−∇f(v(k)) ∈ ∂ιΩ(v(k+1)), for all k ∈ N. (A.17)

Now combining (A.17) and the fact ∂F (v(k+1)) = ∇f(v(k+1)) + ∂ιΩ(v(k+1)) yields that q(k+1) ∈
∂F (v(k+1)), k ∈ N.

We next prove that (A.16) holds. Since∇f isQε-Lipschitz continuous,

‖q(k+1)‖2 6
1

α
‖v(k+1) − v(k)‖2 + ‖∇f(v(k+1))−∇f(v(k))‖2 6 b‖v(k+1) − v(k)‖2,

where b :=
(

1
α + ‖Qε‖2

)
. This completes the proof.

We then consider the satisfaction of item (iii) in Proposition 15. To this end, we need the following
two lemmas.

Lemma 17 Let {v(k)}k∈N be generated by PGA. If α ∈
(

0, 1
‖Qε‖2

)
, then {v(k)}k∈N is bounded.

Proof. We let γ := ‖I−αQε‖2, and denote by λmax(Qε), λmin(Qε) the maximum and the minimum
eigenvalues ofQε, respectively. SinceQε is symmetric positive definite and α < 1

‖Qε‖2 = 1
λmax(Qε)

,
we have γ = 1−α ·λmin(Qε) ∈ (0, 1). From Proposition 3, we are easy to see that ‖proxιΩ(v)‖2 ≤
‖v‖2 for all v ∈ RN , which together with (3.9) yields that

‖v(k+1)‖2 6 ‖v(k) − α∇f(v(k))‖2 = ‖(I − αQε)v
(k) + αp‖2 6 γ‖v(k)‖2 + α‖p‖2,

for all k ∈ N. The above inequality implies that

‖v(k+1)‖2 6 γk+1‖v(0)‖2 + α‖p‖2
k∑
j=0

γj = γk+1‖v(0)‖2 + α‖p‖2 ·
1− γk+1

1− γ
,

for all k ∈ N. Therefore, {v(k)}k∈N is bounded, since γ ∈ (0, 1).

Lemma 18 Let {v(k)}k∈N be generated by PGA. If v∗ is an accumulation point of {v(k)}k∈N, then
v∗ ∈ Ω.

Proof. Since v∗ is an accumulation point of {v(k)}k∈N, there exists a subsequence {v(kj)}j∈N+
of

{v(k)}k∈N such that lim
j→∞

v(kj) = v∗. Note that the set Ω is closed and v(kj) ∈ Ω for all j ∈ N+.

Hence v∗ ∈ Ω, which completes the proof.

Proposition 19 Let {v(k)}k∈N be generated by PGA and F := f + ιΩ. If α ∈
(

0, 1
‖Qε‖2

)
, then

there exist a subsequence {v(kj)}j∈N+ of {v(k)}k∈N and v∗ ∈ Ω such that

lim
j→∞

v(kj) = v∗ and lim
j→∞

F (v(kj)) = F (v∗).

Proof. It follows from Lemma 17 that {v(k)}k∈N is bounded. So there exists a subsequence
{v(kj)}j∈N+

of {v(k)}k∈N converges to some v∗ ∈ RN . It follows from Lemma 18 that v∗ ∈ Ω.
By the continuity of f on RN , we have limj→∞ f(v(kj)) = f(v∗). We also know that ιΩ(v∗) =

ιΩ(v(k)) = 0 for all k ∈ N. Therefore, limj→∞ F (v(kj)) = F (v∗), which completes the proof.

To employ Proposition 15 for the convergence of PGA. We still need to show that F satisfies the KL
property at v∗. To this end, we recall the notions of semi-algebraic sets and functions, and recall a
known result in [4, 9] that establishes the relation between semi-algebraic property and KL property
as Lemma 20.
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Definition 4 (Semi-algebraic sets and functions) A subset S ⊂ Rn is called real semi-algebraic if
it can be represented by

S =

s⋃
j=1

t⋂
i=1

{x ∈ Rn| pij(x) = 0, qij(x) < 0} , (A.18)

where pij and qij are real polynomial functions for i ∈ Nt, j ∈ Ns, for some s, t ∈ N+. A function
ψ : Rn → R is called semi-algebraic if its graph {(x, ψ(x)) : x ∈ dom ψ} is a semi-algebraic
subset of Rn+1.

Lemma 20 Let ψ : Rn → R be a proper lower semicontinuous function. If ψ is semi-algebraic, then
it satisfies the KL property at any point of dom ∂ψ := {u ∈ Rn| ∂ψ(u) 6= ∅}.

Proposition 21 Let F := f+ιΩ, where function ιΩ and f are defined by (3.6) and (3.7), respectively.
Then dom ∂F = Ω and F is semi-algebraic.

Proof. We first prove that dom ∂F = Ω. Note that dom F = Ω is closed, which together with
the definition of limiting-subdifferential implies that dom ∂F ⊂ Ω. For any v ∈ Ω, it is easy to
verify that 0N ∈ ∂̂ιΩ(v). Then we see from Fact 12 that 0N ∈ ∂ιΩ(v). Now by Fact 13, we have
∇f(v) ∈ ∂F (v), which means that ∂F (v) 6= ∅, that is, v ∈ dom ∂F . Hence Ω ⊂ dom ∂F . This
proves dom ∂F = Ω.

We then prove that F is semi-algebraic. From the definition of semi-algebraic function, we are easy
to see that the sum of semi-algebraic functions is still semi-algebraic. It is obvious that function f is
semi-algebraic. To prove that F is semi-algebraic, it suffices to show that ιΩ is semi-algebraic. The
graph of ιΩ is given by

gra ιΩ =
{
x ∈ RN+1

∣∣ x1:N > 0N , ‖x1:N‖0 6 m and xN+1 = 0
}
, (A.19)

where x1:N := (x1, x2, . . . , xN )>. Note that there are K :=
(

N
N−m

)
combinations to choose an

index set with (N −m) elements out of the set {1, 2, . . . , N}. We denote these index sets with size
(N −m) by J1, J2, . . . , JK , and let J̃i := Ji ∪ {N + 1}, i ∈ NK . Then the graph of ιΩ in (A.19)
can be represented by

gra ιΩ =

K⋃
j=1

⋂
i∈J̃j

{
x ∈ RN+1

∣∣ xi = 0
}⋂⋂

i/∈J̃j

{
x ∈ RN+1

∣∣ − xi 6 0
} ,

which implies that ιΩ is a semi-algebraic function. This completes the proof.

We show in the following proposition that the objective function F := f + ιΩ satisfies the KL
property at any accumulation point of sequence {v(k)}k∈N.

Proposition 22 Let {v(k)}k∈N be generated by PGA. If v∗ is an accumulation point of {v(k)}k∈N,
then F satisfies the KL property at v∗.

Proof. Since v∗ is an accumulation point of {v(k)}k∈N, it follows from Lemma 18 that v∗ ∈ Ω. By
Proposition 21, we know that F is semi-algebraic and v∗ ∈ dom ∂F . Thus the desired result follows
from Lemma 20 immediately.

We then show the continuity of the proximity operator proxιΩ in the following proposition, which is
also required to prove the convergence of PGA.

Proposition 23 Let {x(k)}k∈N ⊂ RN be a sequence converges to some x∗ ∈ Ω, and let
h(k) = proxιΩ(x(k)) for k ∈ N and h∗ = proxιΩ(x∗) be given according to Proposition 3.
Then lim

k→∞
h(k) = h∗.

Proof. Since x∗ ∈ Ω, mx∗ 6 m. We first consider the case mx∗ = 0, that is, x∗j 6 0 for all j ∈ NN .

Then h∗ = 0N . For all ε > 0, we let δ1 := ε√
N

. Then there exists K1 ∈ N such that x(k)
j 6 δ1 for
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all j ∈ NN and k > K1. By the definition of h(k), we know that 0 6 h
(k)
j 6 δ1 for all j ∈ NN and

k > K1. Hence
‖h(k) − h∗‖2 = ‖h(k)‖2 6

√
Nδ1 = ε, for all k > K1,

which implies lim
k→∞

h(k) = h∗.

We then consider the case 0 < mx∗ 6 m. In this case, the set {j ∈ NN | x∗j > 0} is nonempty. For

all ε > 0, we let δ2 := min
{

1
3x
∗
min-pos,

ε√
N

}
, where

x∗min-pos := min
j∈NN

{x∗j | x∗j > 0}.

There exists K2 ∈ N such that for all k > K2, ‖x(k) − x∗‖2 6 δ2, which indicates that

x
(k)
j > x∗j − δ2 >

2

3
x∗min-pos > 0, for j ∈ Jx

∗

pos (A.20)

and
x

(k)
j 6 x∗j + δ2 6 δ2 6

1

3
x∗min-pos, for j ∈ NN\Jx

∗

pos. (A.21)

By the fact mx∗ 6 m and the definitions of h(k) and h∗, we can conclude from (A.20) and (A.21)
that for all k > K2,

h
(k)
j = x

(k)
j , h∗j = x∗j , for j ∈ Jx

∗

pos

and
0 6 h

(k)
j 6 δ2, h

∗
j = 0, for j ∈ NN\Jx

∗

pos.

Thus ‖h(k) − h∗‖2 6
√
Nδ2 6 ε, which yields lim

k→∞
h(k) = h∗. This completes the proof.

We are now in a position to utilize Proposition 15 and Theorem 2 to prove Theorem 5.

Proof of Theorem 5. We first prove item (i). According to Propositions 4, 16, 19 and 22, the
convergence of {v(k)}k∈N to a critical point v∗ ∈ Ω of F := f + ιΩ follows from Proposition 15
immediately. By item (ii) in Theorem 2, to prove that v∗ is a locally optimal solution of model (3.7)
(or model (3.4)), it suffices to show that (3.8) holds. Since lim

k→∞
v(k) = v∗, the Lipschitz continuity

of∇f yields that
lim
k→∞

(
v(k) − α∇f(v(k))

)
= v∗ − α∇f(v∗).

Now by letting k →∞ on both side of (3.9) and employing Proposition 23, we obtain (3.8), which
proves the convergence of {v(k)}k∈N to a locally optimal solution v∗ of model (3.4).

We then prove the convergence rates of {v(k)}k∈N. Let Φk(v) := ‖v − v(k) + α∇f(v(k))‖22,
v ∈ RN . It is obvious that Φk is 2-strongly convex, since the Hessian matrix of function Φk − ‖ · ‖22
is positive semidefinite. To prove the convergence rate, we first show that there exists K ∈ N such
that

〈∇f(v∗),v(k) − v∗〉 > 0 and 〈∇Φk(v(k+1)),v∗ − v(k+1)〉 > 0, (A.22)
for all k > K. From the proof of Theorem 2 in Appendix A.2, we see that (A.9) holds. It has been
shown that limk→∞ v

(k) = v∗ and v(k) ∈ Ω for all k ∈ N (see item (i) in Proposition 4). Then there
exists K1 ∈ N such that v(k) ∈ B(v∗; δ) ∩ Ω for all k > K1, which together with (A.9) implies that
the first inequality in (A.22) holds for all k > K1. According to the definition of Φk and (3.9), we
see that

v(k+1) = argmin
v∈RN

1

2
‖v − v(k) + α∇f(v(k))‖22 + ιΩ(v) = argmin

v∈Ω
Φk(v).

By a procedure similar to the first paragraph of the proof of Theorem 2, we can establish that

v(k+1) = proxιΩ

(
v(k+1) − α∇Φk(v(k+1))

)
.

Note that Φk is also strongly convex. Using a proof analogous to that of the first inequality in (A.22),
we can establish the existence of K2 ∈ N such that the second inequality in (A.22) holds for all
k > K2. By setting K = max{K1,K2}, we conclude that (A.22) holds for all k > K.
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It follows from Lemma 11 that

Φk(v∗) > Φk(v(k+1)) + 〈∇Φk(v(k+1)),v∗ − v(k+1)〉+ ‖v∗ − v(k+1)‖22, (A.23)

which together with the second inequality in (A.22) implies that

Φk(v∗) > Φk(v(k+1)) + ‖v∗ − v(k+1)‖22,

that is,

‖v∗ − v(k) + α∇f(v(k))‖22 > ‖v(k+1) − v(k) + α∇f(v(k))‖22 + ‖v∗ − v(k+1)‖22, (A.24)

for all k > K. For simplicity of notation, we define z(k) := v(k+1) − v(k), k ∈ N. Expanding
(A.24) and dividing the resulting inequality by 2α yields

〈∇f(v(k)), z(k)〉+ 1

2α
‖z(k)‖22 +

1

2α
‖v∗−v(k+1)‖22 6

1

2α
‖v∗−v(k)‖22 + 〈∇f(v(k)),v∗−v(k)〉,

(A.25)
for all k > K. Recall that (A.14) in the proof of Proposition 4 holds. Since α ∈

(
0, 1
‖Qε‖2

)
, (A.14)

implies that

f(v(k+1))− f(v(k)) 6 〈∇f(v(k)), z(k)〉+
1

2α
‖z(k)‖22, for all k ∈ N. (A.26)

Combining (A.26) and (A.25), we obtain that

f(v(k+1))− f(v(k)) +
1

2α
‖v∗ − v(k+1)‖22 6

1

2α
‖v∗ − v(k)‖22 + 〈∇f(v(k)),v∗ − v(k)〉, (A.27)

for all k > K. It follows from the first order condition for convexity (Proposition B.3 of [7]) that

f(v∗) > f(v(k)) + 〈∇f(v(k)),v∗ − v(k)〉,

which together with (A.27) yields

f(v(k+1)) +
1

2α
‖v∗ − v(k+1)‖22 6 f(v∗) +

1

2α
‖v∗ − v(k)‖22,

that is,

f(v(k+1))− f(v∗) 6
1

2α

(
‖v(k) − v∗‖22 − ‖v(k+1) − v∗‖22

)
, for all k > K.

We see from (A.11) that {f(v(k))}k∈N is monotonically decreasing. Then for all j ∈ N+,

j
(
f(v(K+j))− f(v∗)

)
6
K+j−1∑
i=K

(
f(v(i+1))− f(v∗)

)

6
1

2α

K+j−1∑
i=K

(
‖v(i) − v∗‖22 − ‖v(i+1) − v∗‖22

)
=

1

2α

(
‖v(K) − v∗‖22 − ‖v(K+j) − v∗‖22

)
.

Hence
f(v(K+j))− f(v∗) 6

1

2αj
‖v(K) − v∗‖22. (A.28)

Note that ‖v(K) − v∗‖22 is a constant. Let k = K + j and C := 1
α‖v

(K) − v∗‖22. Then (A.28)
implies that

f(v(k))− f(v∗) 6 C · 1

2j
6 C · 1

k
, for j > K.

Thus

|f(v(k))− f(v∗)| = O

(
1

k

)
. (A.29)
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Combining Lemma 11 and the first inequality in (A.22), we obtain that

f(v(k))− f(v∗) >
ε

2
‖v(k) − v∗‖22, for all k > K.

This together with (A.29) yields that ‖v(k) − v∗‖2 = O
(

1√
k

)
.

We next prove item (ii). The fact v∗ > 0N follows from (3.8) and Proposition 3 directly. Assume,
to reach a contradiction, that v∗ = 0N . Item (i) in this theorem shows that v∗ is a locally optimal
solution of model (3.7). Then there exists δ > 0 such that

f(v) > f(v∗) = f(0N ) = 0, for all v ∈ Ω ∩B(v∗; δ). (A.30)

We recall from the assumption of this theorem that there exists w̃ ∈ Ω such that p>w̃ > 0. Let
w̃α := αw̃, where α > 0. Then w̃α ∈ Ω and p>w̃α > 0. Note that when α tends to 0, the quadratic
term 1

2w̃
>
αQεw̃α is of higher order infinitesimal than the linear term p>w̃α. There exists some

sufficient small α > 0 such that w̃α ∈ B(v∗; δ) and

f(w̃α) =
1

2
w̃>αQεw̃α − p>w̃α < 0,

which contradicts (A.30). Therefore, v∗ 6= 0N .

Lastly, we prove item (iii). Since v∗ > 0N and v∗ 6= 0N . There exit ε0 > 0 and K ′ ∈ N such that
(v∗)>1N > ε0 and (v(k))>1N > ε0 for all k > K ′, and hence w(k) = v(k)

(v(k))>1N
for all k > K ′.

Note that v∗ and {v(k)}k∈N are both bounded. There exist C1 > 0 and C2 > 0 such that

‖v(k)‖2∣∣(v(k))>1N
∣∣ · |(v∗)>1N |

6 C1 and C1

√
N +

∣∣∣∣ 1

(v∗)>1N

∣∣∣∣ 6 C2.

Then for all k > K ′,∥∥∥∥w(k) − v(k)

(v∗)>1N

∥∥∥∥
2

6

∣∣∣∣ 1

(v(k))>1N
− 1

(v∗)>1N

∣∣∣∣ · ‖v(k)‖2

=
‖v(k)‖2∣∣(v(k))>1N
∣∣ · |(v∗)>1N |

·
∣∣∣(v(k) − v∗)>1N

∣∣∣
6 C1

√
N‖v(k) − v∗‖2,

and hence

‖w(k) −w∗‖2 =

∥∥∥∥w(k) − v(k)

(v∗)>1N
+

v(k)

(v∗)>1N
−w∗

∥∥∥∥
2

6 C1

√
N‖v(k) − v∗‖2 +

∣∣∣∣ 1

(v∗)>1N

∣∣∣∣ ‖v(k) − v∗‖2

6 C2‖v(k) − v∗‖2.

This implies that ‖w(k) −w∗‖2 = O
(

1√
k

)
. Similarly, we can prove that there exists C3 > 0 such

that
|S(w(k))− S(w∗)| 6 C3‖w(k) −w∗‖2, for all k > K ′,

which implies that |S(w(k))− S(w∗)| = O
(

1√
k

)
. This completes the proof.

A.6 Proof of Theorem 6

To prove Theorem 6, we recall Proposition 11.4 of [6] as the following lemma.

Lemma 24 Let ψ : Rn → R be be proper and convex. Then every local minimizer of ψ is a global
minimizer.
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Proof of Theorem 6. We first prove item (i). Let ιΩ̂ be defined by

ιΩ̂(v) :=

{
0, if v ∈ Ω̂;

+∞, otherwise.

Then model (3.10) is equilvalent to min
v∈RN

F̂ (v), where F̂ := f + ιΩ̂. Of course, ιΩ̂ is proper. The

convexity of Ω̂ implies that ιΩ̂ is convex (see Example 8.3 of [6]). Recall that f is strictly convex,
and hence F̂ is proper and strictly convex. Since v∗ is a locally optimal solution of model (3.7) and
Ω̂ ⊂ Ω, there exists δ > 0 such that

f(u) > f(v∗), for all u ∈ B(v∗; δ) ∩ Ω̂. (A.31)

The fact v∗ ∈ Ω̂ gives ιΩ̂(v∗) = 0. Then (A.31) implies that F̂ (u) > F̂ (v∗) for all u ∈ B(v∗; δ),
that is, v∗ is a local minimizer of F̂ . Now it follows from Lemma 24 that v∗ is also a global minimizer
of F̂ . The strict convexity of F̂ implies the uniqueness of its global minimizer.

We next prove item (ii). From item (i) in this theorem and item (ii) in Theorem 5, we see that
v∗ ∈ Ω̂ is a globally optimal solution of model (3.10) and v∗ 6= 0N . Then we are able to prove that
p>v∗ = (v∗)>Qεv

∗ > 0. We omit this proof here since it is very similar to the proof of Lemma 8.
Now we have v∗ = p>v∗

(v∗)>Qεv∗
v∗. For any v ∈ Ω̂ such that p>v > 0, we let u := p>v

v>Qεv
v. Then

u ∈ Ω̂ and p>u > 0. Hence

−1

2

(p>v∗)2

(v∗)>Qεv∗
=

1

2
(v∗)>Qεv

∗ − p>v∗ 6 1

2
u>Qεu− p>u = −1

2

(p>v)2

v>Qεv
,

which implies that
p>v∗√

(v∗)>Qεv∗
>

p>v√
v>Qεv

, for all v ∈ Ω̂.

Since v∗ ∈ Ω̂ and v∗ 6= 0N , by the definition of Ω̂1, we see that w∗ ∈ Ω̂1. Note that Ω̂1 ⊂ Ω̂. For
all w ∈ Ω̂1,

p>w√
w>Qεw

6
p>v∗√

(v∗)>Qεv∗
=

p>w∗√
(w∗)>Qεw∗

,

which implies that w∗ is a globally optimal solution of model max
w∈Ω̂1

S(w).

Lastly, we prove item (iii). Note that w∗j > 0 for all j ∈ Jv
∗

pos. Let w∗min-pos := min
j∈Jv∗

pos

{w∗j },

δ := 1
3w
∗
min-pos, and let w be any vector in B(w∗; δ) ∩ Ω1. Then wj > 2δ > 0 for j ∈ Jv∗pos, and

|wj | 6 δ for j ∈ NN\Jv
∗

pos . Sincew ∈ Ω1 and mv∗ = m, we conclude that wj = 0 for j ∈ NN\Jv
∗

pos ,
which implies that w ∈ Ω̂1. It has been shown that w∗ is an optimal solution of model max

w∈Ω̂1

S(w).

Therefore, S(w) 6 S(w∗) for all w ∈ B(w∗; δ) ∩ Ω1, that is, w∗ is a locally optimal solution of
model (3.3). This completes the proof.

A.7 Proof of Theorem 7

Proof. According to Theorem 1 and item (i) in Theorem 2, to prove the desired result, it suffices to
show that

v∗ = proxιΩ

(
v∗ − 1

ε
∇f(v∗)

)
. (A.32)

From the proof of Theorem 5, we know that (3.8) holds. According to the computation of proxιΩ
in Proposition 3, to guarantee the validity of (3.8), we have ∇if(v∗) = 0 for all i ∈ supp(v∗).
Otherwise, there exists some i0 ∈ supp(v∗) such that v∗i0 6= v∗i0 − α∇i0f(v∗), which together with
Proposition 3 implies that v∗ 6= proxιΩ(v∗ − α∇f(v∗)), a contradiction to (3.8).

Suppose that mv∗ < m. Then we have ∇if(v∗) > 0 for all i ∈ NN\supp(v∗). Otherwise, there
exists some i1 ∈ NN\supp(v∗) such that v∗i1 −α∇i1f(v∗) > 0. Note that mv∗ < m. The operation
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of proxιΩ will preserve the positive value v∗i1−α∇i1f(v∗) instead of truncating it as 0, which violates
(3.8). In this case, we now have v∗i − 1

ε∇if(v∗) = v∗i for i ∈ supp(v∗) and v∗i − 1
ε∇if(v∗) 6 0

for i ∈ NN\supp(v∗), which imply that (A.32) holds.

Suppose that item (ii) holds. Let δ := min{v∗i |i ∈ supp(v∗)} > 0. For i ∈ NN\supp(v∗),
since 1

ε∇if(v∗) > −δ and vi = 0, we have v∗i − 1
ε∇if(v∗) < δ. Note that mv∗ = m. The

operation of proxιΩ makes v∗i − 1
ε∇if(v∗) = v∗i for i ∈ supp(v∗) and v∗i − 1

ε∇if(v∗) = 0 for
i ∈ NN\supp(v∗), that is, (A.32) holds. This completes the proof.

A.8 Validation of PGA’s Global Optimality Through Simulation Experiments

To test the validation of PGA’s global optimality, we conduct a set of simulation experiments by
considering model (3.7), where Qε := Q>Q + εI . The iterative scheme of PGA for solving this
model is given by (3.9) with α = 0.99

‖Q‖2 .

In the simulation experiments, we set Σ ∈ R10×10 by Σij := 0.5|i−j|, and randomly generate a
matrixQ ∈ R50×10 from the multivariate normal distribution, with mean vector 010 and covariance
matrix Σ. We set p as a random vector with components that are randomly generated numbers in the
range [−10, 10], and casually set ε = 0.001 and the sparsity m = 3.

The direct exhaustive approach enumerates all possible support set configurations, totaling C3
10 = 120

cases. In each case, we solve a 3-dimension quadratic programming problem. By comparing the
optimal solutions corresponding to these 120 cases, we obtain the exact globally optimal solution of
model (3.7). After that, we can evaluate the optimality of PGA’s convergence.

For each experiment, we performed 500 iterations of PGA. To ensure the robustness of our findings,
we used three different initializations: 0N , 1N/N and 1N . We repeated the experiments 104 times
for each initialization, with different Q and p in each run. We found that in over 7,200 of the
104 trials, for any of the three initializations, both the normalized error of the iterative sequence
‖v(k) − v∗‖2/‖v∗‖2 and the normalized error of the function value |f(v(k)) − f(v∗)|/|f(v∗)|
were smaller than 10−10. Here v∗ denotes the globally optimal solution, and v(k) represents the
iterative sequence at the k-th iteration of PGA. We show the plots of ‖v(k) − v∗‖2/‖v∗‖2 and
|f(v(k)) − f(v∗)|/|f(v∗)| in the following Figure 1, and show in Table 4 these two normalized
errors obtained at 500 iterations of PGA in ten simulation experiments.
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Figure 1: Simulation results of PGA for model (3.7). Left: normalized error of the iterative sequence
versus number of iterations. Right: normalized error of function value versus number of iterations.

Table 4: The normalized errors obtained at 500 iterations of PGA in 10 simulation experiments.
k 1 2 3 4 5 6 7 8 9 10

‖v(k)−v∗‖2
‖v∗‖2

2.45E-16 1.62E-16 3.03E-16 6.23E-01 1.14E-16 7.68E-16 7.41E-16 9.55E-17 1.50E-16 2.52E-16
‖f(v(k))−f(v∗)‖2

‖f(v∗)‖2
0.00 1.48E-16 1.68E-16 1.17E-01 0.00 1.40E-16 4.73E-16 1.36E-16 0.00 0.00

From the simulation experiments, we conclude that the proposed PGA has a high probability (over
72%) of directly converging to a globally optimal solution of model (3.7). This finding is consistent
with the sufficient conditions for global optimality in Theorem 7.
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A.9 Solving Algorithm: mSSRM-PGA

Algorithm A1 mSSRM-PGA
Input: Given the sample asset return matrixR ∈ RT×N and the positive parameter ε.
Preparation: Let p = 1

TR
>1T , Q = 1√

T−1

(
R− 1

T 1T×TR
)

and Qε = Q>Q + εI . Compute
the largest eigenvalue λ1 ofQε, and set α = 0.999

λ1
.

Initialization: Set v(0) = p, tol = 10−5, MaxIter = 104 and k = 0.
repeat
1. v(k+1) = proxιΩ

(
v(k) − α

(
Qεv

(k) − p
))

2. k = k + 1

until ‖v
(k)−v(k−1)‖2
‖v(k−1)‖2

6 tol or k > MaxIter.

if v(k) 6= 0N
3. w∗ = v(k)

(v(k))>1N
else
4. w∗ = 0N
Output: The portfolio w∗.

A.10 Additional Experimental Results

The 1/N strategy rebalances to the equally-weighted portfolio on each trading time. S1, S2 and
S3 are different versions of SSPO-`0 in (2.5), among which S1 is deterministic but S2 and S3 are
randomized. The hyperparameters of these competitors are set according to the original papers.

FF25 contains 25 portfolios developed by BE/ME (book equity to market equity) and investment in
the US market. FF25EU contains 25 portfolios developed by ME and prior return in the European
market. FF32 contains 32 portfolios developed by BE/ME and investment in the US market. FF49
contains 49 industry portfolios in the US market. FF100 contains 100 portfolios developed by ME
and BE/ME, while FF100MEINV contains 100 portfolios developed by ME and investment, both in
the US market. The information of these data sets are given in Table 5.

Table 5: Information of 6 real-world monthly benchmark data sets.
Data Set Region Time Months Assets

FF25 US Jul/1971 ∼ May/2023 623 25
FF25EU EU Nov/1990 ∼ May/2023 391 25

FF32 US Jul/1971 ∼ May/2023 623 32
FF49 US Jul/1971 ∼ May/2023 623 49

FF100 US Jul/1971 ∼ May/2023 623 100
FF100MEINV US Jul/1971 ∼ May/2023 623 100

There is a relaxation approach based on the semi-definite programming (SDP Relaxation, [20])
that intends to address nearly the same mSSRM model (3.3) of this paper, except for relaxing the
cardinality constraint and the long-only constraint. Therefore, this method fails to control cardinality
exactly and a simplex projection [16] should be implemented to ensure feasibility. Its experimental
results are also provided in Table 6, which are not so good as those of mSSRM-PGA.

Table 6: Final cumulative wealths (CW) and Sharpe Ratios (SR) of SDP Relaxation and mSSRM-PGA
on 6 data sets (T = 60).

Data Set FF25 FF25EU FRENCH32 FF49 FF100 FF100MEINV
Strategy CW SR CW SR CW SR CW SR CW SR CW SR

SDP Relaxation 323.76 0.2340 14.25 0.1674 290.24 0.2224 280.46 0.2151 0.51 0.0218 194.09 0.1528
mSSRM-PGA (m=10) 615.34 0.2481 126.02 0.2712 991.89 0.2612 285.02 0.2151 527.09 0.2290 375.75 0.2217
mSSRM-PGA (m=15) 614.71 0.2481 125.19 0.2708 996.32 0.2615 262.54 0.2135 522.28 0.2289 383.44 0.2232
mSSRM-PGA (m=20) 614.70 0.2481 125.19 0.2708 996.23 0.2615 262.06 0.2134 515.50 0.2285 384.65 0.2234

As for practical issues, Table 7 shows the running times for different methods with T = 60, where
mSSRM-PGA achieves competitive computational efficiency. Figure 2 shows the final cumulative
wealths of different methods as the transaction cost rate ν varies from 0 to 0.5% with T = 60, which
indicates that mSSRM-PGA can withstand considerable levels of transaction cost rates.
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Table 7: The average running times (in seconds) of different portfolio optimization models for one
period on 6 data sets.

Data Set SPOLC SSPO S1 S2 S3 SSMP MAXER IPSRM-D PLCT SDP Relaxation mSSRM-PGA
FF25 0.0263 0.0234 5.72E-05 5.63E-05 8.46E-05 0.0122 0.0525 0.0009 0.0020 1.0115 0.0052

FF25EU 0.0222 0.0239 1.70E-05 2.89E-05 2.59E-05 0.0316 0.0588 0.0009 0.0015 0.8178 0.0059
FRENCH32 0.0239 0.0250 2.93E-05 2.81E-05 3.08E-05 0.0075 0.0392 0.0012 0.0021 1.2862 0.0075

FF49 0.0252 0.0458 2.94E-05 3.51E-05 2.82E-05 0.0083 0.0270 0.0029 0.0034 12.3780 0.0114
FF100 0.0306 0.0854 5.38E-05 4.48E-05 4.27E-05 0.0451 0.0458 0.0132 0.0052 24.5852 0.0713

FF100MEINV 0.0296 0.0864 5.08E-05 4.81E-05 4.53E-05 0.0145 0.0152 0.0144 0.0059 23.9911 0.0696
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Figure 2: Final cumulative wealths of portfolio optimization methods w.r.t. transaction cost rate ν on
6 benchmark data sets.
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