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ABSTRACT

Guidance of generative models is typically achieved by modifying the probability
flow vector field through the addition of a guidance field. In this paper, we instead
propose the Source-Guided Flow Matching (SGFM) framework, which modifies
the source distribution directly while keeping the pre-trained vector field intact.
This reduces the guidance problem to a well-defined problem of sampling from the
source distribution. We theoretically show that SGFM recovers the desired target
distribution exactly. Furthermore, we provide bounds on the Wasserstein error
for the generated distribution when using an approximate sampler of the source
distribution and an approximate vector field. The key benefit of our approach is
that it allows the user to flexibly choose the sampling method depending on their
specific problem. To illustrate this, we systematically compare different sampling
methods and discuss conditions for asymptotically exact guidance. Moreover, our
framework integrates well with optimal flow matching models since the straight
transport map generated by the vector field is preserved. Experimental results on
synthetic 2D benchmarks, physics-informed generative tasks, and imaging inverse
problems demonstrate the effectiveness and flexibility of the proposed framework.

1 INTRODUCTION

Flow matching (Lipman et al., 2022) is a generative modeling framework to learn a vector field
that drives the probability flow from a source distribution q0 to a target distribution q1 in some fixed
time. It has demonstrated state-of-the-art computational efficiency and sample quality across a range
of applications, from image generation (Lipman et al., 2022) and molecular structure generation
(Chen and Lipman, 2023) to decision-making tasks (Zheng et al., 2023). In particular, optimal flow
matching (Tong et al., 2023) trains the vector field by leveraging the optimal transport (OT) solution
between q0 and q1. The resulting optimal vector field moves each sample along a straight-line trajec-
tory with a constant velocity, corresponding to the Wasserstein geodesic between the distributions.
In practice, these straight trajectories lead to stable training and faster inference, since generative
sampling can then reach the target distribution with few integration steps.

The guidance of flow matching refers to directing the probability flows toward outcomes with de-
sired properties (Venkatraman et al., 2025; Dhariwal and Nichol, 2021; Du et al., 2023; Graikos
et al., 2022; Ho and Salimans, 2022; Song et al., 2020). In this context, sample generation aims
not only to approximate the data distribution but also to satisfy additional properties, such as condi-
tioning on auxiliary information or optimizing an energy-based objective. Training-based guidance
methods (Ho and Salimans, 2022; Song et al., 2020) address this by training a specialized model for
a given conditioning scenario. While effective, these methods require retraining for every new con-
ditioning scenario, which incurs significant cost and therefore limits their flexibility. Thus, a variety
of training-free approaches have emerged for both diffusion models (Chung et al., 2022; Song et al.,
2023; Ye et al., 2024; Uehara et al., 2024; Tang, 2024) and flow matching models (Ben-Hamu et al.,
2024; Wang et al., 2024; Liu et al., 2023; Domingo-Enrich et al., 2024; Feng et al., 2025).

Among these methods, exact guidance is achieved by Uehara et al. (2024); Tang (2024); Domingo-
Enrich et al. (2024); Feng et al. (2025). Specifically, Uehara et al. (2024); Tang (2024) reformulate
guidance as a stochastic optimal control (SOC) problem and achieve exactness by modifying both
the source distribution and the vector field. Additionally, Domingo-Enrich et al. (2024) shows that
exact guidance is possible by modifying only the vector field, given a suitable noise schedule. How-
ever, these methods require solving an SOC problem for every new conditioning scenario, which is
computationally expensive. Recently, Feng et al. (2025) proposed a framework for exact guidance
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including various adjustments of the vector field. However, exactness is only proved for a specific
class of pre-trained vector fields, thereby having limited generality. Moreover, a shared feature of
all of these methods is that the vector field is transformed. For optimal flow matching models, this
means that the desirable property of straight-line transport is not preserved when guidance is applied.

In this work, we show that exact guidance can instead be achieved by appropriately modifying the
source distribution while keeping the original vector field unchanged. We introduce the Source-
Guided Flow Matching (SGFM) framework, which reduces guidance to the well-defined task of
sampling from the modified source distribution. We prove that sampling from the modified source
distribution and driving the flow along the exact vector field precisely recovers the desired target
distribution. Furthermore, we provide bounds on the Wasserstein error of the target distribution
when using an approximate sampler of the source distribution and an approximate vector field.

The key to effective implementation of SGFM is accurate and efficient sampling of the modified
source distribution. SGFM gives the user the flexibility to tune the procedure by customizing the
sampling method according to their specific problem. Such methods include importance sampling,
Hamiltonian Monte Carlo, and optimization-based sampling. We discuss the asymptotic exactness
of SGFM with these methods. Interestingly, SGFM with optimization-based sampling method co-
incides with the heuristic formulation in Ben-Hamu et al. (2024). In the context of our framework,
this method is equivalent to recovering the mode of the modified source distribution. In this way, we
offer a new view of Ben-Hamu et al. (2024) with theoretical justification that also naturally extends
to other sampling methods. Experiments on synthetic 2D datasets, physics-informed generative
tasks, and imaging inverse problems demonstrate the effectiveness and flexibility that SGFM offers
compared to other methods.

2 BACKGROUND

Throughout this paper, we consider a generative modeling framework defined on a data space in Rd.
The generative model is characterized by a source distribution q0 and a target distribution q1. The
source distribution is an arbitrary distribution from which samples can be drawn, while the target
distribution represents an empirical data distribution given by a finite set of samples.

2.1 PROBABILITY FLOW AND FLOW MATCHING

The goal of a flow-based generative model is to sample from the target distribution q1 by trans-
forming samples from the source distribution q0. Specifically, the model is defined by a vector field
ut(x) : [0, 1]× Rd → Rd, which transports particles according to the ordinary differential equation
(ODE) dx = ut(x)dt. Integration yields the transport map ϕt(x0), which maps the initial point
x0 to the solution xt at time t. Applying ϕt to a distribution of particles p0 induces a probability
flow where the density at time t is given by the pushforward measure pt ≜ [ϕt]#(p0), where [g]#
is defined by the property

∫
f(x) d([g]#(p))(x) =

∫
f ◦ g(x) dp(x) for every integrable function

f (Figalli and Glaudo, 2021). Equivalently, pt can be characterized as the probability flow arising
from the continuity equation ∂tpt +∇ · (ptut) = 0 (Villani et al., 2008).

In this view, the flow matching problem is to find a vector field ut that induces a probability flow
pt such that p0 = q0 and p1 = q1. While an exact vector field ut is often inaccessible, it can be
approximated by a neural network vθt and trained using the conditional flow matching objective

LFM(θ) = Et∈U [0,1],(x0,x1)∼π

∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)
∥∥2 , (1)

where the joint distribution π ∈ Γ(q0, q1), with Γ(q0, q1) being the set of all joint distributions with
marginals q0 and q1 (Lipman et al., 2022). For example, we can select π(x0, x1) = q0(x0)×q1(x1).

2.2 OPTIMAL TRANSPORT AND OPTIMAL FLOW MATCHING

There are many possible transport plans between q0 and q1; among these, the optimal transport
(OT) plan is defined as the minimizer of the total cost of transportation. This is quantified by the
2-Wasserstein distance, which is expressed in Kantorovich or Monge formulations respectively as

W 2
2 (q0, q1) = min

π∈Γ(q0,q1)

∫
Rd×Rd

∥x− y∥2 dπ(x, y) = min
T :T#q0=q1

∫
Rd

∥x− T (x)∥2 q0(x) dx.
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As shown in Villani (2021); Figalli and Glaudo (2021), these optimization problems admit unique
minimizers π∗ and T ∗, which are related by π∗ = [Id, T ∗]#q0. Of particular interest to our case is
the dynamic OT formulation, which is defined by the optimization problem:

W 2
2 (q0, q1) = inf

(pt,ut)

{∫ 1

0

∫
Rd

∥ut(x)∥2 pt(x) dx dt
∣∣∣∣ ∂tpt +∇ · (ptut) = 0,

p0 = q0, p1 = q1

}
, (2)

which seeks the vector field u∗
t that induces a probability flow pt that transports the source distribu-

tion p0 = q0 to the target distribution p1 = q1 with minimal total kinetic energy. The relation be-
tween the static and dynamic OT solutions is simply given as u∗

t ((1−t)x0+tT ∗(x0)) = T ∗(x0)−x0.
Thus, u∗

t gives rise to a linear trajectory xt = tT ∗(x0) + (1− t)x0 for every initial point x0.

Among the infinitely many choices of vector fields that solve the flow-matching problem, the unique
solution u∗

t to the dynamic OT formulation in equation 2 is associated with particularly efficient
inference and fast generation. This is because u∗

t is independent of t, so ODE integration along this
field simply yields straight-line paths, which lead to lower time-discretization errors and improved
computational efficiency (Kornilov et al., 2024; Liu et al., 2022). To approximate u∗

t via equation 1,
it is necessary to choose π = π∗. However, computing π∗ has cubic computational complexity in
the number of samples, which is challenging for large datasets. A solution is to instead approximate
π∗ using mini-batch data (Tong et al., 2023), or alternatively to use entropic OT solvers (Pooladian
et al., 2023). Another approach is to train flow matching models on a class of vector fields that
guarantee straight trajectories (Kornilov et al., 2024).

2.3 FLOW MATCHING GUIDANCE

Given a pre-trained flow matching model that transforms the source distribution q0 to the target
distribution q1, consider the conditional generation problem where the task is to generate sam-
ples that satisfy additional constraints. When the constraints are encoded by an energy function
J , which attains its minimum when the constraints are satisfied, the likelihood of constraint sat-
isfaction can be expressed in canonical form ∝ e−J(·). In this case, the new target distribution
becomes q′1(x1) ∝ q1(x1) × e−J(x1). It can be shown that q′1 is the solution of the variational
problem q′1 = argminq Ex1∼q[J(x1)] +KL(q||q1), where KL(q||q1) denotes the Kullback-Leibler
divergence between q and q1 (Uehara et al., 2024). In this view, conditional generation is a fine-
tuning problem: the distribution is shifted to reduce the task-specific loss J while staying close to
the original data distribution q1.

3 SOURCE-GUIDED FLOW MATCHING

Suppose that we have a pre-trained flow matching model vt that transports the source distribution
q0 to the target distribution q1. Consider the conditional generation task in which the new target
distribution is of the form q′1(x1) ∝ q1(x1)×e−J(x1), where J is a given loss function. The problem
considered in this paper is how to generate samples from q′1. To that end, one could, in principle,
modify the source distribution and/or the vector field. Here, we explore how to to generate a flow
that arrives at q′1 by modifying only the source distribution while retaining the vector field.

3.1 EXACT GUIDANCE UNDER AN EXACT TRANSPORTATION MAP

Consider the ideal case where the pre-trained vector field vt exactly transports q0 to q1. In this
case, we derive a closed-form expression for the modified source distribution. We show that trans-
porting samples from the modified source distribution along vt precisely yields the desired target
distribution. This result is formally stated in the following theorem and proven in Appendix A.1.

Theorem 1. Let q0 and q1 be the source and target distributions, respectively. Let vt : Rd → Rd be
a vector field whose flow map ϕt satisfies (ϕ1)#q0 = q1. For any measurable function J : Rd → R,
define the new target distribution q′1(x1) =

1
Z1

q1(x1) e
−J(x1) and new source distribution q′0(x0) =

1
Z0

q0(x0) e
−J◦T (x0), where T = ϕ1, and Z0, Z1 are normalizing constants. Then, the same flow ϕt

transports q′0 to q′1, i.e., (ϕ1)#q
′
0 = q′1.
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Algorithm 1: Source-Guided Flow Matching
1: Input: Source samples x0 ∼ q0, target data

samples x1 ∼ q1, loss function J
2: Train the vector field vθt (·) that transforms q0 to q1
3: Sample x0 ∼ q′0
4: Integrate over ODE d

dtxt = vθt (xt)
5: Output: samples x1

Theorem 1 indicates that, if x0 ∼ q′0
and xt evolves as dxt = vt(xt)dt, then
x1 = T (x0) ∼ q′1. In other words, ex-
act guidance is achieved. Inspired by this
theorem, we propose the SGFM frame-
work, presented in Algorithm 1. First, we
learn a vector field vθt by minimizing the
flow matching loss in equation 1. Then,
we draw samples x0 ∼ q′0, using an ap-
propriate sampling strategy such as those discussed Section 4. Finally, each sample x0 is transported
along the learned vector field vθt by integrating the associated ODE, yielding guided samples x1.

3.2 ERROR ANALYSIS UNDER VECTOR FIELD AND SOURCE SAMPLING APPROXIMATIONS

Learning an exact vector field is inherently difficult, particularly in high-dimensional spaces. In
addition, exact sampling from the desired source distribution q′0 may not be possible. In this section,
we analyze how these errors jointly influence the quality of the generated samples. Specifically,
we quantify how deviations in both the vector field and the source distribution contribute to the
divergence between the target and generated distributions.

To that end, let vt(x) denote the exact vector field, and let vθt (x) denote the learned vector field with
flow ϕθ

t (x), such that d
dtϕ

θ
t (x) = vt(ϕ

θ
t (x)). We derive an upper bound on the error of the condi-

tionally generated distribution in terms of the two error sources; the proof is given in Appendix A.2.
Theorem 2. Assume that

∥∥vt(x)− vθt (x)
∥∥
∞ ≤ ϵ, and the learned flow vθt (x) is Lv-Lipschitz con-

tinuous in x. Suppose that the sampling method returns samples of distribution q̃0. Then, the gener-
ated samples of distribution [ϕθ

1]#q̃0 satisfy W2(q
′
1, [ϕ

θ
1]#q̃0) ≤ eLvW2(q

′
0, q̃0) + ϵeLv .

To interpret Theorem 2, the first term reflects the distributional discrepancy introduced by an ap-
proximate sampler of the source distribution scaled by eLv , the Lipschitz constant of the flow map
ϕθ
1. Intuitively, any deviation in the initial distribution can be amplified by at most a factor of this

Lipschitz constant during transport. The second term captures the accumulated effect of errors in
the learned vector field over the trajectory. This contribution arises from integrating a bounded drift
perturbation ϵ over an Lv-Lipschitz flow, where Lv controls local error growth along trajectories.
Thus, Lv characterizes the sensitivity of the generative process to errors in both source distribution
and vector field. When the vector field is perfectly learned (ϵ = 0), exact guidance is feasible. From
Theorem 2, we conclude that our guidance method is particularly effective when Lv is small.

3.3 IMPROVED GUIDANCE WITH THE OPTIMAL VECTOR FIELD

To encourage a small Lipschitz constant Lv , we employ methods designed to learn the optimal
vector field v∗t (Tong et al., 2023); see Appendix C.1.2 for more details and experimental support.
The optimal vector field v∗t also improves efficiency, as it induces straight trajectories with constant
velocity, thereby reducing the number of discretization steps needed to integrate the ODE over
t ∈ [0, 1] to obtain the flow map T = ϕ1. In addition to accelerating particle transportation, this also
lowers the cost of sampling from the modified source distribution q′0(x0) = 1

Z0
q0(x0) e

−J◦T (x0),
since this requires evaluating the flow map T by definition. Theoretically, the flow map under v∗t
coincides with the optimal Monge map T ∗ (Figalli and Glaudo, 2021, Theorem 4.1.3).

Our method is illustrated in Figure 1. In the prior model, v∗t induces a straight-line map from each
source sample x0 ∼ q0 to its corresponding target sample x1 ∼ q1. Sampling from the conditional
target q′1 by minimizing J reduces to selecting the subset of the source samples that flows to q′1 under
v∗t . Theorem 1 shows that this subset follows the distribution q′0(x0) ∝ q0(x0)e

−J◦T∗(x0), where
T ∗ is the flow map at t = 1. Because our guidance method modifies only the source distribution, the
straightness of v∗t is preserved in conditional generation, ensuring inference speed and integration
stability. By contrast, guidance methods modifying the vector field (e.g., Feng et al. (2025)) yield
curved trajectories, as illustrated in Figure 2, requiring finer discretization to maintain accuracy.

Modifying the source distribution in Rd versus modifying the vector field in Rd × [0, 1]: In
conditional generation, several existing methods (Song et al., 2023; Feng et al., 2025) augment the
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(a) Optimal vector field. (b) Guidance with optimal vector field.

Figure 1: Illustration of SGFM

(a) q1 (b) q′1 (c) g-MC (d) Our method

Figure 2: Illustration of flow guidance in a 2D example. The method g-MC (Feng et al., 2025)
modifies the vector field, resulting in curved trajectories. In contrast, our proposed method maintains
the optimal vector field and modifies the source distribution, leading to straight trajectories. In (d),
each ball’s radius indicates the relative weight of the corresponding source sample.

original vector field vt with a guidance term gt, typically approximated via Monte Carlo sampling.
Since generation involves evaluating the augmented vector field at numerous intermediate times
t ∈ [0, 1], where each evaluation demands many samples, the whole process requires extensive
sampling. In contrast, our approach leaves the vector field unchanged, and transforms the task into
sampling from a modified source distribution at a single time. This is enabled by an instantiation of
the classical change-of-variables formula (see also Venkatraman et al. (2025)), as formalized in The-
orem 1. Our framework naturally decomposes the error into just two distinct sources, whose scaling
factors directly motivate using optimal transport-based models for superior accuracy (Theorem 2).

4 SAMPLING FROM THE MODIFIED SOURCE DISTRIBUTION

Given the pre-trained optimal vector field v∗t , the guidance problem is reduced to drawing samples
from the modified source distribution. Thus, the key to effective implementation of our method
is accurate and efficient sampling from q′0(x0) ∝ q0(x0)e

−J◦T∗(x0). The choice of the sampling
method depends on the properties of the cost function J and the dimensionality of the sample space.
Whenever the sampling method generates a sequence of approximate distributions (q̃k)k≥0 such
that W 2

2 (q̃
k, q′0) → 0 as k → ∞, our method of guided flow matching is asymptotically exact, as

follows from Theorem 2. In this section, we discuss asymptotically exact samplers and efficient,
optimization-based approximations, including their connection to D-Flow (Ben-Hamu et al., 2024).
Additional relevant sampling methods are described in Appendix B.2.

4.1 ASYMPTOTICALLY EXACT SAMPLING METHODS

Importance Sampling: In low-dimensional spaces, importance sampling (IS) (Chopin and Pa-
paspiliopoulos, 2020) offers a fast and gradient-free sampling method. Given an unnormalized tar-
get distribution q, an initial set of particles is generated using a proposal distribution m such that
supp(m) ⊃ supp(q). Samples are then drawn from this set according to weights determined by their
relative probability in the target versus proposal distribution Wn = w(Xn)∑

m
w(Xm) , where w(x) ∝ q(x)

m(x) .

The approximate distribution q̃N (x) ≜
∑N

n=1 W
nδXn(x), with Xn ∼ m, converges weakly to the

target distribution q when N → ∞ (Chopin and Papaspiliopoulos, 2020). Assuming q is defined on
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a closed and bounded subset of Rd, this implies that W 2
2 (q̃

N , q) → 0 as N → ∞ (Villani, 2009,
Theorem 6.9). When q = q′0 and m = q0, we have w(x0) = e−J◦T∗(x0). Note that this method
does not require J to be differentiable. For a detailed outline of the algorithm, see Appendix B.2.1.

Hamiltonian Monte Carlo: IS suffers from the curse of dimensionality, making Hamiltonian
Monte Carlo (HMC) (Neal et al., 2011) a popular alternative in high-dimensional state spaces. HMC
is a gradient-based Markov chain Monte Carlo method for unnormalized, continuous densities. In
particular, HMC generates proposal samples by propagating the target variable, representing position
in space, and an auxiliary momentum variable using Hamiltonian dynamics, achieving extensive
exploration while maintaining high acceptable probabilities. For more details, see Appendix B.2.3.

HMC typically returns an ergodic Markov chain, which means that it converges asymptotically
to the target distribution q (Neal et al., 2011). When the negative log-likelihood − ln q is twice
differentiable, strongly convex and has Lipschitz-continuous gradients, and the integration of the
dynamics is sufficiently accurate, the law of the Markov chain after N steps q̃N approximates the
target distribution q up to arbitrarily small Wasserstein precision W 2

2 (q̃
N , q) for a sufficiently large

N (Chen and Vempala, 2019, Theorem 5).

In our case, the negative log likelihood is − ln q′0(x0) = − ln q0(x0) + J ◦ T ∗(x0), where T ∗

generally prevents global convexity. However, since T ∗ is learned while encouraging straight-line
transport, we might expect that the composition J ◦ T ∗ approximately preserves the convexity of J
locally. To escape local modes, various strategies exist, e.g., tempering (Neal et al., 2011).

4.2 OPTIMIZATION-BASED SAMPLING

While HMC offers strong theoretical guarantees, its computational cost can become prohibitive for
highly non-concave target densities. An approximate and more efficient alternative is to dispense
with the momentum variable and acceptance step, and instead directly search for high-probability
regions of the target distribution through the optimization problem:

min
x0

− ln q′0(x0) ⇔ min
x0

− ln q0(x0) + J ◦ T ∗(x0). (3)

In this formulation, the term J ◦ T ∗(x0) introduces task-specific loss via the OT map T ∗, while
the term − ln q0(x0) acts as a regularizer. This regularizer, however, attracts x0 toward the most
probable fixed points, rather than toward regions of high probability. For example, when the source
distribution is Gaussian x0 ∼ q0 = N (0, Id), the optimization problem in equation 3 becomes

min
x0

∥x0∥2 /2 + c+ J ◦ T ∗(x0), (4)

in which the regularizer − ln q0(x0) = ∥x0∥2 /2 + c would guide the sample toward the unique
mode at x0 = 0 and lead to mode collapse.

To mitigate this issue, the regularizer can be replaced by an alternative that better promotes sample
diversity. For the Gaussian source distribution, we have ∥x0∥2 ∼ χ2, where χ2

d is the chi-square
distribution with d degrees of freedom. Instead of regularizing with the probability of the sample,
one might instead use the probability of the norm of the sample, − ln pχ2

d
(∥x0∥2). This means that

the unique prior mode at x0 = 0 is replaced by the sphere {x0 : ∥x0∥2 = argmaxx pχ2
d
(x) =

max(d− 2, 0)}. The resulting optimization problem is

min
x0

− ln pχ2
d
(∥x0∥2) + J ◦ T ∗(x0) ⇔ min

x0

−(d− 2) log ∥x0∥+ ∥x0∥2 /2 + J ◦ T ∗(x0), (5)

which coincides with heuristic formulations in Ben-Hamu et al. (2024) (see discussion below).

Relation to D-Flow (Ben-Hamu et al., 2024): In D-Flow, sampling is heuristically reformulated
as an optimization problem with various forms of regularization, where representative instances
coincide with equation 4 - equation 5. Since our formulation guarantees fidelity to the ground
truth target distribution via Theorem 1, we explicitly clarify the role of the regularization term, thus
providing foundational support. Therefore, D-Flow can be regarded as a special case of SGFM.
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An extension of this idea is to more explicitly target high-density regions of the prior. Since
E[∥x0∥2] = d, Var[∥x0∥2] = 2d, and pχ2

d
is unimodal, we observe that the prior density con-

centrates in the hyperspherical shell |∥x0∥2 − d| ≤
√
2d. Motivated by this, we propose a new

method within the optimization-based sampling family for Gaussian source distributions given by

min
x0

J ◦ T (x0) s.t. |∥x0∥2 − d| ≤
√
2d. (6)

In practice, the constrained problem in equation 6 can be addressed either by incorporating a reg-
ularizer of the form (∥x0∥2 − d)2, or by applying projected gradient descent onto the feasible set.
The implementation details can be found in Appendix B.2.4.

From Theorem 1, it follows that ensuring that x0 lies in high-density regions of q′0 implies that the
corresponding sample x1 will also lie in high-density regions of q′1, which justifies equation 3 -
equation 6 as sampling methods in our framework. In practice, we can design specific optimization
objectives to sample from q′0 depending on the problem structure and the source distribution.

The optimization-based sampling method is typically suitable when the target distribution resembles
a Dirac distribution, or when we are interested in obtaining a high-probability sample rather than a
representative sample of the distribution. However, it risks leading to mode collapse: under perfect
optimization, the global mode is consistently returned. In practice, some diversity among the sam-
ples can still be seen if the optimizer is randomly initialized and the objective function has multiple
local maxima from which it struggles to escape. Then, the samples concentrate around these optima,
resulting in a ”local” mode collapse. We illustrate this with an example below.

Figure 3: Mode collapse in
optimization-based sampling

Example of mode collapse in optimization-based sampling:
Consider a set of particles at locations (x1, x2) uniformly dis-
tributed over an ’S’-shaped structure. To encourage x1 and x2 to
be close, we introduce a soft penalty J = ∥x1 − x2∥ to guide gen-
eration. As shown in Figure 3, applying equation 3, or equivalently
D-Flow, leads to an excessive concentration of the particles around
the line x1 = x2. Therefore, optimization-based sampling fails to
capture the inherent diversity of the true conditional distribution.

5 EXPERIMENTS

Figure 4: Comparison of guidance pre-
cision and running time in 2D example.

Figure 5: Asymptotic exactness

In this section, SGFM is evaluated on toy 2D examples,
physics-informed generative tasks, and inverse imaging
problems. Our framework is benchmarked against its
closest counterparts: D-Flow (Ben-Hamu et al., 2024),
top-performing methods in Feng et al. (2025), and PnP-
flow (Martin et al., 2024).

5.1 TOY 2D EXAMPLE

We begin the evaluation on a two-dimensional synthetic
dataset, consisting of a uniform source distribution with
an 8-Gaussian target distribution. Since the source is non-
Gaussian, diffusion-based guidance cannot be applied.
We use importance sampling (SGFM-IS) and evaluate
performance in terms of guidance precision, measured
by the empirical Wasserstein distance between the true
guided distribution and the generated distribution, relative
to inference time, as controlled by the number of function
evaluations (NFEs). As shown in Figure 4, our method
consistently achieves better guidance precision. More-
over, reducing NFEs (which lowers runtime), has only a
small effect on precision. This observation aligns with
the prior findings that the optimal vector field produces
straight trajectories that require fewer integration steps.
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Figure 6: Solutions to the inverse problem of the Darcy flow equations. Top: target pressure and
true solution pK̂ corresponding to inverse estimate K̂; middle: target reconstruction error; bottom:
inverse estimate K̂ of the permeability field generated by conditional sampling.

Next, we evaluate the exactness of SGFM, in terms of how guidance precision evolves as the number
of IS samples increases. As shown in Figure 5, for each of three pairs of two-dimensional source
and target distributions, the guidance precision consistently improves as the IS samples increase.
Hence, this low-dimensional experiment shows that SGFM-IS achieves asymptotic exactness.

5.2 PDE INVERSE PROBLEM

We next consider a high-dimensional inverse problem with a multi-modal posterior distribution
based on the Darcy flow equations (Bastek et al., 2024; Jacobsen et al., 2025). Darcy flow is an
elliptic PDE describing fluid flow though a porous medium with permeability field K and pressure
field p. The flow matching model is trained to sample pairs of K and p occurring as discretized
solutions on a square domain with resolution 64× 64. The dataset (Bastek et al., 2024) is obtained
by solving the PDE using finite differences. For more details, see Appendix C.2.1-C.2.2.

The conditional sampling problem is to generate permeability fields consistent with a partially ob-
served pressure field. We define the family of valid solutions as the target distribution. The validity
of an inverse estimate K̂ is measured by J(pK̂), where J computes the target reconstruction error
and pK̂ is the true pressure field corresponding to K̂. Since pK̂ is inaccessible, the sampling guid-
ance cost is J

(
p̂), where p̂ is the pressure field sampled jointly with K̂. We assess the performance

of SGFM using HMC and two variants of optimization-based sampling, SGFM-OPT-1 (equation 4)
and SGFM-OPT-2 (equation 5), the latter equivalent to Ben-Hamu et al. (2024) with preferred regu-
larization, and compare with g-covA, g-covG (Feng et al., 2025) and PnP flow (Martin et al., 2024).

Figure 6 shows the target pressure and pK̂ corresponding to a single outcome of K̂ for each method.
SGFM-OPT-2 obtains the best target reconstruction, closely followed by SGFM-HMC. In compar-
ison, SGFM-OPT-1 and baseline methods suffer from large biases. Additional samples are shown
in Appendix C.2.3. To further analyse the performance, the validity J(pK̂), guidance cost J(p̂),
and physical consistency ∥pK̂ − p̂∥ of 25 samples are shown in Table 1, reported as the median
and interquartile range. SGFM-OPT-2 achieves the best validity, followed by SGFM-HMC. In com-
parison, SGFM-OPT-1 and baseline methods do not perform significantly better than unconditional
sampling. Although g-covA achieves the lowest guidance cost, it compromises physical consistency,
leading to poor validity. Similarly, SGFM-OPT-1 has worse validity than SGFM-HMC despite
achieving lower guidance cost. In contrast, both SGFM-HMC and SGFM-OPT-2 maintain physi-
cal consistency while SGFM-OPT-2 achieves lower guidance cost, resulting in the best validity. The
poor performance of PnP can be attributed to its difficulty in handling the target’s multi-modality: by
interpolating a gradient step with random noise followed by denoising, this method jumps between
different modes rather than converging consistently to a single one, resulting in degraded accuracy.
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Due to the complex source distribution, the SGFM methods require longer runtimes compared to
g-covA, which limits the number of samples that can be evaluated. While this constrains our ability
to assess how well the methods capture the whole family of solutions, we show that SGFM-HMC
performs best in this regard for an example in lower dimension in Appendix C.5.

Table 1: Performance of guidance methods in the Darcy flow inverse problem

Method Validity of Inverse Estimate (↓) Guidance Cost (↓) Physical Consistency (↓)
SGFM-HMC 0.591 [0.532, 0.654] 0.281 [0.248, 0.335] 0.188 [0.168, 0.228]
SGFM-OPT-1 0.907 [0.503, 1.875] 0.206 [0.149, 0.294] 0.421 [0.174, 0.770]
SGFM-OPT-2 0.474 [0.416, 0.562] 0.187 [0.131, 0.218] 0.194 [0.157, 0.215]
g-covA 0.992 [0.857, 1.293] 0.030 [0.028, 0.052] 0.289 [0.247, 0.351]
g-covG 0.955 [0.814, 1.201] 0.242 [0.163, 0.388] 0.245 [0.190, 0.285]
PnP 1.055 [0.950, 1.204] 0.610 [0.590, 0.632] 0.116 [0.099, 0.129]
Unconditional sampling 1.006 [0.860, 1.269] 1.051 [0.905, 1.289] 0.214 [0.167, 0.274]

5.3 IMAGING INVERSE PROBLEM ON CELEBA

We evaluate SGFM on various imaging inverse problems using the high-dimensional CelebA dataset
(R3×128×128) (Yang et al., 2015), considering five distinct tasks: denoising, deblurring, super-
resolution, random inpainting, and box inpainting. Since the target distribution for these inverse
problems is typically Dirac or highly concentrated, we apply optimization-based sampling within
our SGFM framework. We index the SGFM-OPT variants by 1-6, where OPT-1 corresponds to
equation 4 and OPT-2 to equation 5 (Ben-Hamu et al. (2024)) as before, and OPT 3-5, OPT-6
correspond to equation 6 implemented with different regularizers (Table 4) and projected gradient
descent, respectively. Our methods are benchmarked against strong baselines, including top meth-
ods g-covA and g-covG from Feng et al. (2025), and PnP flow (Martin et al., 2024). For details of
the SGFM variants, implementation, and visualizations of the generated images, see Appendix C.3.

The results in Table 2 demonstrate that SGFM-OPT variants achieve state-of-the-art performance.
Specifically, they outperform g-covA and g-covG across all tasks. Our method is competitive with
PnP-flow in most tasks and ranks one class below in deblurring; however, we note that PnP is specif-
ically designed for imaging inverse problems, while our method is more general. The results confirm
that using the SGFM framework with optimization-based samplers is an effective and flexible strat-
egy for imaging inverse problems. In Appendix C.3.2, it is further shown that optimal SGFM
performance is attained at low NFEs, indicating that sufficiently straight trajectories are learned.

Table 2: PSNR (↑) comparison of methods for inverse problems on CelebA.

Method Denoising Deblurring Super-res Rand inpaint Box inpainting
g-covA 26.73 29.72 18.45 19.61 24.88
g-covG 30.35 29.50 24.18 25.49 26.12
PnP 32.14 38.74 31.33 33.87 29.92
SGFM-OPT-1 28.51 35.12 33.30 34.02 28.51
SGFM-OPT-2 (D-Flow) 28.95 35.23 33.32 34.01 28.43
SGFM-OPT-3 31.51 35.21 33.28 34.05 30.09
SGFM-OPT-4 31.60 35.27 33.31 34.03 30.12
SGFM-OPT-5 28.94 35.22 33.33 34.06 28.55
SGFM-OPT-6 31.54 32.60 32.10 32.36 29.19

6 CONCLUSION

We presented a framework for guided flow matching with theoretical guarantees. The framework re-
duces the guidance problem to a problem of sampling from a modified source distribution. Examples
on 2D benchmarks, physics-informed generative tasks, and imaging inverse problems demonstrated
the effectiveness and flexibility of the framework. We acknowledge that sampling from the source
distribution may present its own challenges, especially for complex, high-dimensional distributions.
Nevertheless, the proposed method offers users the flexibility to select a sampling strategy that bal-
ances their desired trade-offs between accuracy and computational cost.
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A PROOFS

A.1 PROOF OF THEOREM 1

Recall that T = ϕ1. Since the transport map T pushes q0 to q1, according to Villani (2009) we have

q1(x1) = T#q0(x1) =
q0(T

−1(x1))

|det∇T−1(x1)|
. (7)

The resulting pushforward distribution of q′0 under the transport map T is then

T#q
′
0(x1) =

q′0(T
−1(x1))

|det∇T−1(x1)|
=

q0(T
−1(x1))e

−J(x1)

Z|det∇T−1(x1)|
=

q1(x1)e
−J(x1)

Z
= q′1(x1), (8)

where the second equality follows from the definition of q′0 and third equality follows from equa-
tion 7. The proof is complete.

We note that the extension to to discrete state spaces,

q1(x1) = T#q0(x1) =
∑

x0∈T−1(x1)

q0(x0),

is straightforward: By defining again q′0(x0) :=
1
Z0

q0(x0)e
−J◦T (x0), the modified proof follows as

T#q
′
0(x1) =

∑
x0∈T−1(x1)

q′0(x0) ∝
∑

x0∈T−1(x1)

q0(x0)e
−J◦T (x0) ∝ q1(x1)e

−J(x1) ∝ q′1(x1).

A.2 PROOF OF THEOREM 2

Before the proof of Theorem 2, we give a useful lemma.
Lemma 1. Suppose that f(x) is L-Lipschitz continuous in x. Then, we have

W2(f#µ, f#ν) ≤ LW2(µ, ν). (9)

Proof. The 2-Wasserstein definition gives

W 2
2 (f#µ, f#ν) = inf

π′∈Γ(f#µ,f#ν)
E(f(x),f(y))∼π′ ∥f(x)− f(y)∥2 .

Denote (f × f)(x, y) = ((f(x), f(y)). For every π′ ∈ Γ(f#µ, f#ν), we have a corresponding
π ∈ Γ(µ, ν) that satisfies π′ = (f × f)#π. Then, we have

W 2
2 (f#µ, f#ν) = inf

π∈Γ(µ,ν)
E(x,y)∼π′ ∥f(x)− f(y)∥2

≤ L2 inf
π∈Γ(µ,ν)

E(x,y)∼π′ ∥x− y∥2

= L2W 2
2 (µ, ν), (10)

where the inequality follows from the Lipschitz property of f . Taking the square root on both sides
of equation 10 completes the proof.

Now we are ready to prove Theorem 2. By virtue of the triangle inequality for the Wasserstein
distance (Santambrogio, 2015, Lemma 5.3), we have

W2(q
′
1, [ϕ

θ
1]#q̃0) = W2([ϕ1]#q

′
0, [ϕ

θ
1]#q̃0) (11)

≤ W2([ϕ1]#q
′
0, [ϕ

θ
1]#q

′
0) +W2([ϕ

θ
1]#q

′
0, [ϕ

θ
1]#q̃0). (12)

Since the learned vector field has uniform error bound ϵ and is Lv-Lipschitz continuous, by virtue
of Theorem 1 in Benton et al. (2023), the first term can be bounded by

W2([ϕ1]#q
′
0, [ϕ

θ
1]#q

′
0) ≤ ϵeLv . (13)
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In what follows, we analyze the Lipschitz property of ϕθ
t . Recall that ϕθ

t is the flow of the learned
vector field vθt . Let xt and yt be the solutions of the ODEs

dxt = vθt (xt)dt, x0 = x0

dyt = vθt (yt)dt, y0 = y0,

respectively. Define ∆t = ∥xt − yt∥2. Then, we have

d∆t

dt
= 2⟨xt − yt,

dxt

dt
− dyt

dt
⟩ = 2⟨xt − yt, v

θ
t (xt)− vθt (yt)⟩ ≤ 2Lv ∥xt − yt∥2 = 2Lv∆t.

Integrating from 0 to t gives

∆t ≤ ∆0 + 2Lv

∫ t

0

∆sds.

By virtue of Grönwall’s inequality, we have

∆t ≤ ∆0e
2Lvt = ∥x0 − y0∥2 e2Lvt.

By taking the square root, we have that ϕθ
t (x) is eLvt-Lipschitz continuous in x. In particular, at

t = 1, ϕθ
1(x) is eLv Lipschitz continuous. Then, it follows from Lemma 1 that the second term is

bounded by

W2([ϕ
θ
1]#q

′
0, [ϕ

θ
1]#q̃0) ≤ eLvW2(q

′
0, q̃0). (14)

Substituting equation 13 and equation 14 into equation 11, we have the desired result. The proof is
complete.

B ADDITIONAL DISCUSSIONS

B.1 RELATED WORKS

Diffusion guidance: Conditional sampling has been widely studied in diffusion models (Chung
et al., 2022; Song et al., 2023; Ye et al., 2024; Guo et al., 2024; Wu et al., 2023; Xu and Chi, 2024).
However, the diffusion model requires the source distribution to be Gaussian, and cannot handle
general source distributions. Therefore, these guidance methods cannot be applied here.

Flow matching guidance: The flow guidance methods can be divided into two groups: training-
based guidance and training-free guidance. Training-based guidance (Zheng et al., 2023) requires
retraining when we have a different conditioning. Therefore, this paper focuses on training-free
guidance (Ben-Hamu et al., 2024; Feng et al., 2025). One closely related training-free guidance
method is D-Flow (Ben-Hamu et al., 2024), which proposes to optimize the source samples via
a regularized optimization problem. However, its optimization objective is heuristic, whereas our
framework provides the missing theoretical foundation. Besides, Feng et al. (2025) proposed a
training-free guidance method that keeps the original source distribution and modifies the vector
field. Such an approach generates curved vector fields and, therefore, requires a large number of
discretization steps to integrate the ODE. Moreover, the exactness of this guidance method applies
to a limited class of pre-trained vector fields and lacks generality.

Guidance via stochastic optimal control (SOC): Optimal control methods have been used to
guide generative models (Uehara et al., 2024; Tang, 2024; Wang et al., 2024; Domingo-Enrich et al.,
2024). Specifically, Wang et al. (2024) augments the vector field with an additional control term,
obtained by solving a SOC problem. However, Wang et al. (2024) does not connect the generated
distribution with the target distribution, and there is a bias between these two distributions. The
works Uehara et al. (2024); Tang (2024) cancel out this bias by both modifying the vector field and
shifting the initial distribution. More recently, Domingo-Enrich et al. (2024) showed that solely ad-
justing the vector field is able to remove the bias if the noise schedule is appropriately selected. Our
method is orthogonal to the guidance methodology of Domingo-Enrich et al. (2024): we remove the
bias by solely shifting the source distribution. Moreover, whenever we have a new guidance energy
function, SOC-based guidance methods have to re-solve the SOC problem, which is computationally
expensive.
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Guidance by optimizing the source distribution: Conditional generation by optimizing the
source distribution has been explored in Ben-Hamu et al. (2024); Wallace et al. (2023); Tang et al.
(2024); Novack et al. (2024); Karunratanakul et al. (2024). These works propose to propagate the
gradient from the target criteria through the whole generation process to update the initial noise.
However, their optimization objectives are heuristically designed without theoretical justification.
One exception is Venkatraman et al. (2025), which provides a justification for achieving exact guid-
ance by modifying only the source distribution. We extend this line of work by giving an error
analysis that explicitly delineates when such approaches are effective. Moreover, whereas Venkatra-
man et al. (2025) emphasizes training-based guidance, our focus is on training-free methods.

B.2 SAMPLING ALGORITHMS

A key strength of SGFM is that it reduces guidance to a well-defined sampling problem, enabling
users to flexibly choose the most suitable method for their specific problem. For low-dimensional
problems, importance sampling is a simple and asymptotically exact method, as described in Sec-
tion 4.1. For more complex distributions where gradient information is available and a minor bias
acceptable, the Unadjusted Langevin Algorithm (ULA) (Robert et al., 1999) offers an efficient op-
tion. If asymptotic exactness is required and the computational budget is larger, a better alternative
is Metropolis–Adjusted Langevin Algorithm (MALA) (Robert et al., 1999), which corrects ULA’s
bias. For extensive exploration of complex, high-dimensional distributions, HMC would be pre-
ferred. In the most complex cases, we may use optimization-based approximate samplers as de-
scribed in Section 4.2. Below, we give further details on some of these methods. Beyond classical
methods, promising approaches to approximate sampling include variational inference and recent
diffusion-based samplers (Berner et al., 2022), cf. Venkatraman et al. (2025). Implementation of
these is left for future work.

B.2.1 IMPORTANCE SAMPLING

Following the discussion on importance sampling (IS) in Section 4.1, a de-
tailed outline of the method with target density q = q′0 and proposal den-
sity m = q0 is given in Algorithm 2 (Chopin and Papaspiliopoulos, 2020).

Algorithm 2: Importance Sampling
1: Input: samples from x0 ∼ q0

2: Set w(·) ≜ q′0(·)
q0(·) = e−J◦T∗(·)

3: Compute weights Wn =
w(xn

0 )∑
m

w(xm
0 )

4: Sample x′
0 from {xn

0} with probabilities {Wn}
5: Output: sample x′

0 from q′0

B.2.2 UNADJUSTED AND METROPOLIS ADJUSTED LANGEVIN ALGORITHMS

The Unadjusted Langevin Algorithm (ULA) (Robert et al., 1999) generates approximate samples
from a target distribution with density q(x) ∝ exp(−U(x)) by discretizing the Langevin stochastic
differential equation (SDE). Specifically, given a step-size ηk > 0, the ULA update is

xk+1 = xk − η∇U(xk) +
√

2ηk, ξk, (15)

where ξk ∼ N (0, I) are independent Gaussian noise. Due to discretization errors, ULA introduces
sampling bias.

The Metropolis Adjusted Langevin Algorithm (MALA) (Robert et al., 1999) improves upon ULA
by incorporating a Metropolis-Hastings correction step to ensure exact sampling from the target
distribution q(x). Given a current state xk, MALA proposes a candidate x′ via

x′ = xk − η∇U(xk) +
√
2η, ξk, (16)

and accepts it with probability: α(xk, x
′) = min

{
1, π(x′)q(xk|x′)

q(xk)q(x′|xk)

}
, where q(·|·) denotes the tran-

sition density induced by the proposal step. If rejected, the chain remains at xk. This correction
guarantees that the stationary distribution matches exactly the target distribution π(x).
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Algorithm 3: Leapfrog integrator ηϵ,L
1: Input: initial state (x0, v0);

v0 = v0 − ϵ
2∇U(x0);

for m = 0 to L− 1 do
xm+1 = xm + ϵvm;
vm+1 = vm − ϵ∇U(xm+1);
vL = vL + ϵ

2∇U(xL)
2: Output: (xL, vL)

B.2.3 HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) is an accept–reject MCMC method for unnor-
malized continuous densities on Rd where partial derivatives of the log density exist. By associating
the target variable with the position of a particle in space and the density with its potential energy,
the method introduces an auxiliary momentum variable and implements Hamiltonian dynamics to
achieve extensive exploration while maintaining a high acceptance probability.

Specifically, the unnormalized target density q is expressed in canonical form q(x) ∝ e−U(x), where
U(x) ≜ − ln q(x) represents the potential energy. The momentum variable v gives the kinetic
energy K(v) ≜ ∥v∥2

2 . This forms the Hamiltonian H(x, v) = U(x)+K(v) with the associated joint

distribution π(x, v) ∝ e−
(
U(x)+K(v)

)
, where x and v are considered independent with marginals q

and the standard Gaussian distribution respectively. HMC generates samples from π with MCMC,
where each chain iteration starts by resampling the momentum, v′ ∼ N (0, I), while keeping the
position unchanged, x′ = x. Then, a Metropolis update step is implemented by generating proposals
using Hamiltonian dynamics

dx

dt
= v,

dv

dt
= −∇xU (17)

to propagate (x′, v′) along trajectories of constant energy to (x∗, v∗) and accepting the new state
with probability α = π(x∗,v∗)

π(x′,v′) .

Integrating equation 17 with the leapfrog method (Algorithm 3) ensures α ≈ 1, as H is approxi-
mately constant and the transformation is volume-preserving. Still, the integration may move x to
positions with very different marginal density U(x). The resampling step prevents the marginal U
from being constrained by the initial value of H . Thus, the momentum variable is critical for effi-
cient exploration of the space. Algorithm 4 implements HMC when q = q′0, initializing the process
by q0.

HMC can be tuned by appropriately choosing the step size and the number of leapfrog steps (Neal
et al., 2011). It is generally advised to choose the parameters such that the empirical acceptance
rate is around the optimal value of 65%. One may also randomly select these parameters from fairly
small intervals at each Markov chain iteration to ensure that both big steps and fine-tuning steps can
be taken at various points in the chain.

B.2.4 OPTIMIZATION-BASED SAMPLING

To solve equation 3 or equation 5, we can use any preferred optimization algorithm such as stochastic
gradient descent (SGD) or Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS). Using
the torchdiffeq package, the gradient of the objective can be computed via automatic differentiation.
With access to the gradient, we iteratively refine the initial sample using a standard update rule.
Starting from an initial x(0)

0 , the update takes the form

x
(k+1)
0 = OPT Alg(x(k)

0 ),

where OPT Alg denotes the chosen optimization routine. We can feed the final xK
0 into T ∗ to

generate the sample x1 = T ∗(xK
0 ).
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Algorithm 4: Hamiltonian Monte Carlo
1: Input: samples from x0 ∼ q0;

for n = 0 to N − 1 do
v′n ∼ N(0, I);
(x∗, v∗) = ηϵ,L(xn, v

′
n);

α = e−
(
U(x∗)+K(v∗)

)
+U(xn)+K(v′

n);
Draw u ∼ U(0, 1);
if u < α then

xn+1 = x∗

else
xn+1 = xn

2: Set x′
0 = xN

3: Output: sample x′
0 from q′0

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 2D EXPERIMENTS

In this section, we present more details on the 2D example in Section 5.1, including implementation
details and additional experimental results. All experiments were run on a single NVIDIA A100
GPU.

C.1.1 IMPLEMENTATION DETAILS

Flow matching model: The vector field is approximated using a time-varying multilayer per-
ceptron (MLP) adopted from Tong et al. (2023). We train a standard vector field model using an
independent coupling distribution π = q0 × q1, and an optimal vector field model using the optimal
joint distribution π∗ in equation 1. Each model is trained for 20,000 epochs with a batch size of 256,
employing the Adam optimizer.

Conditional sampling: We consider three pairs of source and target distributions: (i) 8-Gaussian
to Moon, (ii) Uniform to 8-Gaussian, and (iii) Circle to S-Curve. For these three tasks, we respec-
tively select loss functions J(x) = ((x[2])2)/0.4, J(x) = 4|x[1]+x[2]|, and J(x) = 5|x[1]−x[2]|,
where x := (x[1], x[2]).

Implementation of D-Flow in Ben-Hamu et al. (2024): Among several choices of regularization
terms in D-Flow, we employ − ln q1, which ensures the generated samples stay close to the target
distribution q1. Although q1 generally lacks an explicit form, in this 2D experiment, we approximate
it using kernel density estimation. For the pre-trained vector fields used in D-Flow, we evaluate two
variants: a standard model trained with an independent π = q0×q1 and an optimal vector field model
trained with π∗ in equation 1. We refer to these variants as D-Flow and D-Flow-OT, respectively. In
the optimization process, we use 60 optimization steps and employ SGD as the optimizer.

Implementation of methods in Feng et al. (2025): Among several training-free methods in Feng
et al. (2025), we select two of the best methods g-sim-MC and g-MC, which perform well in low-
dimensional settings. We use 100 and 50 Monte Carlo samples for g-sim-MC and g-MC, respec-
tively. For both methods, the pre-trained model is selected as the optimal vector field.

Implementation of SGFM: We evaluate SGFM with four sampling methods: IS, ULA, MALA,
and HMC. For ULA, MALA, and HMC, we run 100 sampling iterations. In both MALA and HMC,
the proposal step-size is tuned to target an acceptance rate of 60%. Besides, each HMC iteration
employs L = 5 leapfrog steps.

Evaluation metric: The sample quality is measured using the empirical 1-Wasserstein distance
between the generated and ground truth distributions. In Figure 4, the generated distribution is esti-
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mated using 2000 samples, while the ground truth distribution is estimated using 10, 000 samples.
In Figure 5, the generated distribution is instead estimated using an increasing number of samples
as indicated by the x-axis. All experiments were conducted ten times, with solid lines and shaded
areas representing the mean and standard deviation.

C.1.2 IMPACT OF PRE-TRAINED VECTOR FIELDS ON GUIDANCE PERFORMANCE

We evaluate the impact of pre-trained vector fields on guidance performance by training the vector
fields in equation 1 using two different coupling strategies: an independent coupling π = q0⊗q1 and
the optimal coupling π∗, referred to as the independent vector field and optimal vector field, respec-
tively. The Lipschitz constant Lv for each of the fields is empirically approximated by evaluating
the derivative at 50000 uniformly selected points in the domain [0, 1] × X using autodifferentia-
tion. Here, X is the domain of the source and target samples. To assess guidance performance, we
compute the Wasserstein distance between the true target distribution and the generated distribu-
tion. We use 10,000 samples from the target distribution as ground truth and generate 2,000 guided
samples for evaluation. The guidance error (Wasserstein distance) is reported as mean ± standard
deviation over 20 runs. As shown in Table 3,the optimal vector field is associated with a smaller
Lipschitz constant and achieves a lower guidance error. This result aligns with Theorem 2, confirm-
ing that a smaller Lipschitz constant is associated with reduced sensitivity and improves generation
performance.

Table 3: Guidance performance and approximated Lipschitz parameters for two pre-trained vector
fields. The optimal vector field consistently demonstrates superior performance with lower Lipschitz
constants, consistent with Theorem 2.

8gaussian → moon uniform → 8gaussian
Lv Guidance error Lv Guidance error

Independent vector field 20.1 0.125± 0.186 16.8 0.124 ± 0.023
Optimal vector field 11.9 0.066± 0.047 11.1 0.067 ± 0.019

C.1.3 ADDITIONAL RESULTS

We conduct an extensive comparison across different source and target distributions. The generated
distributions are visualized in Figure 7. In the first experiment (8-Gaussian to moon), we observe
that all the baseline methods and most Langevin-based algorithms struggle. The key reason is the
highly multimodal landscape of this task, which makes the sampler easy to get trapped in local min-
ima. However, SGFM-IS successfully navigates the posterior distribution. In the second experiment
(circular to S-curve), many guidance methods perform well, but D-Flow tends to overemphasize
minimizing the loss J and loses sample diversity. In the third experiment (uniform to S-curve),
we observe that D-Flow fails to generate a satisfactory conditional distribution, and g-MC exhibits
slight deterioration in sample quality. Across every experiment, SGFM-IS consistently delivers
high-quality, diverse samples, with SGFM-MALA and SGFM-HMC providing strong alternatives
in the latter two tasks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

q1

q′1 (ground truth)

D-Flow

D-Flow-OT

g-sim-MC

g-MC

SGFM-IS

SGFM-ULA

SGFM-MALA

SGFM-HMC

Figure 7: Results of synthetic datasets with different source distributions (marked in blue) and target
distributions (marked in red).
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We provide additional experiments that evaluate the sample quality with other pairs of source and
target distributions. Since the distributions are simple and low-dimensional, we adopt IS as the
sampling method and refer to our guidance method as SGFM-IS. Figure 8 presents the generation
results with an 8-Gaussian source distribution and a moon target distribution. We observe that
SGFM-IS achieves superior sample quality across varying running times. However, both baseline
methods perform poorly and more running time did not help. The primary reason for failure is the
multi-modal structure of this generation task, which makes samplers trapped in local optima, as
illustrated in Figure 7. These results underscore the flexibility of our guidance framework, which
allows for the tailored selection of advanced sampling strategies to suit different tasks.

Figure 8: Comparison of sample quality and running time in 2D example, with an 8-gaussian source
distribution and a moon target distribution.

Figure 9 presents the generation results with a circle source distribution and an S-curve target dis-
tribution. We observe that D-Flow performs even worse with increasing running time. As shown
in Figure 7, D-Flow tends to overly transport points to the line x[1] = x[2], indicating that D-Flow
overemphasizes minimizing the loss J and loses sample diversity.

Figure 9: Comparison of sample quality and running time in 2D example, with a circle source
distribution and an S-curve target distribution.
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C.2 PDE INVERSE PROBLEM

In this section, we provide more details on the physics-informed inverse problem in Section 5.2,
including an outline of the Darcy flow equations, implementation details, and additional sample
outcomes.

C.2.1 DARCY FLOW EQUATIONS

Darcy flow is an elliptic PDE describing fluid flow through a porous medium,

u(x) = −K(x)∇p(x), x ∈ Ω

∇u(x) = f(x), x ∈ Ω

u(x) · n̂(x) = 0, x ∈ ∂Ω∫
Ω

p(x)dx = 0,

(18)

where K is the permeability field, f is a source function, and p is the resulting pressure field. In
alignment with Bastek et al. (2024); Jacobsen et al. (2025), we consider the equations on a square
domain Ω = [0, 1]2 with resolution 64×64 and let f be a constant function. In this setting, a dataset
of pairwise solutions (K, p) is offered by Bastek et al. (2024), which is generated by translating
equation 18 to a linear system using finite difference approximations of the derivatives, and then
solving this system.

C.2.2 IMPLEMENTATION DETAILS

Flow matching model: The vector field defining the flow-matching model is approximated using
a U-Net architecture adopted from Tong et al. (2023). The source distribution is a standard Gaussian
distribution. In addition to the flow matching objective, the loss is regularized by the physics-residual
following Bastek et al. (2024). The residual is computed using x̂1 from (Feng et al., 2025, Eq. 4) as
data-space estimate and we select Σt = 1−t

t and c = 10−2. The model is trained on 104 samples
for 200 epochs using the Adam optimizer with an initial learning rate η = 10−4 which decays
exponentially with a factor γ = 0.99.

Conditional sampling: All methods are initialized by the same set of samples from the unmodi-
fied source distribution. To balance the scale of the cost function J and the prior probability log q0,
the cost is scaled by a factor 1

λ where λ = 10−3. To simulate a setting where true solutions are
unavailable, all methods were tuned before observing the validity scores of the outcomes.

Implementation of SGFM-HMC: SGFM-HMC is implemented by running the HMC algorithm
for NHMC = 100 steps with L = 3 leapfrog steps, where the step size is randomly selected in
each Markov chain iteration as ϵ = 5 × (10−4 + ζ × 10−3) where ζ ∼ χ2(2) with χ2(2) being
the chi-squared distribution with two degrees of freedom. We found that this setting gives good
acceptance ratios while allowing for a significant number of HMC iterations to be performed without
having too long runtimes. The transport map is obtained by integrating the neural ODE associated
with the vector field for two steps using the Dormand-Prince (Dopri5) method. We use the same
transportation map both for the density computation in the HMC iterations and to map the sampled
source point to the target space.

Implementation of SGFM-OPT-1 and SGFM-OPT-2: SGFM-OPT-1 (equation 4) and SGFM-
OPT-2 (equation 5) are implemented using L-BFGS optimization with learning rate η = 1, maxi-
mum iterations of 20, and history size 100. The method is allowed to run for the same amount of
runtime as HMC (which corresponds to approximately 15 optimization steps), but usually converges
before that. The transport map is designed as in SGFM-HMC.

Implementation of g-covA: g-covA (Feng et al., 2025) is implemented using a linear schedule
λcovA
t = 10 × λ. We found that λcovA

t = λ was not sufficient to observe a significant change in
the guidance cost, while this choice achieves the lowest guidance cost of all methods. The ODE is
integrated for three steps with the Dopri5 method, additional steps had no effect on performance.
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C.2.3 ADDITIONAL SAMPLES

To elaborate on the results in Figure 6, we present the pressure p̂ sampled jointly with K̂ for each
of the outcomes in Figure 6 (where instead the true pressure pK̂ corresponding to K̂ is shown) in
Figure 10. Note that p̂ serves as basis for the guidance signal since pK̂ is considered inaccessible.
We observe that p̂ generally aligns well with the target, while in Figure 6 many methods struggle
with a large mismatch of pK̂ to target. This is because the process is driven to improbable pairs
(p̂, K̂), leading to the mismatch between pK̂ and p̂. This is also reflected by a poor validity score
despite a low guidance cost. Finally, we present additional outcomes of pK̂ and K̂ in Figure 11.
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Figure 10: Solutions to the inverse problem of the Darcy flow equations. Top: target pressure and
sampled pressure p̂ (which is sampled jointly with inverse estimate K̂ and serves as basis for the
guidance signal); middle: target reconstruction error; bottom: inverse estimate K̂ of the permeability
field generated by conditional sampling.
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Figure 11: Solutions to the inverse problem of the Darcy flow equations - additional outcomes
following the target in Figure 6. Top: true solution pK̂ corresponding to inverse estimate K̂; bottom:
inverse estimate K̂ of the permeability field generated by conditional sampling.
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C.3 IMAGE INVERSE PROBLEM ON CELEBA

C.3.1 IMPLEMENTATION DETAILS

The regularizers or constraints used in different variants of optimization-based sampling are sum-
marized in Table 4. For regularization-based methods, we introduce a weighting coefficient and tune
it to achieve optimal performance. For the constraint-based method, we project the solution onto the
hyperspherical shell after each update.

Table 4: Regularizer or constraint for variants of optimization-based sampling.

Method Regularizer or constraint
SGFM-OPT-1 equation 4 R1(x0) = ∥x0∥2

SGFM-OPT-2 equation 5 R2(x0) = − ln pχ2
d
(∥x0∥2) = −(d− 2) log ∥x0∥+ ∥x0∥2

2

SGFM-OPT-3 equation 6 R3(x0) = (∥x0∥2 − d)2

SGFM-OPT-4 equation 6 R4(x0) =
∣∣ ∥x0∥2 − d

∣∣
SGFM-OPT-5 equation 6 R5(x0) = (∥x0∥ −

√
d)2

SGFM-OPT-6 equation 6 Constraint: |∥x0∥2 − d| ≤
√
2d

C.3.2 SENSITIVITY TO THE OPTIMALITY OF THE VECTOR FIELD

In our method, we propose to target the optimal vector field when learning the prior flow matching
model, thereby promoting straight paths between the source and the target distribution. While our
method requires no straightness assumption (Theorems 1-2 hold for arbitrary vector fields), this is
mainly motivated from the practical perspective: increased straightness enables lower NFEs and
thus faster inference without sacrificing performance. In other words, the straightness of the vector
field is good to have in a practical sense but not necessary.

In practice, mini-batch optimal transport (OT) training (Tong et al., 2023) yields sufficiently straight
fields in both low and high dimensions to enable effective guidance:

1. In low-dimensional settings, performance (Figs. 4, 8, 9) remains stable across NFEs from
1 to 100.

2. In CelebA (Yang et al., 2015) setting R3×128×128, SGFM-OPT performance shows that
increasing NFE beyond NFE=3 has little to no added benefit (Table 5).

Table 5: PSNR (↑) SGFM-OPT-2 performance using increasing NFEs on CelebA

NFE Denoising Deblurring Super-res Rand inpaint Box inpainting
NFE = 1 21.33 34.71 32.65 31.57 29.83
NFE = 3 28.64 35.38 32.95 32.92 29.61
NFE = 6 29.16 34.53 32.59 32.72 30.21
NFE = 9 29.31 34.43 32.30 32.69 30.57
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C.3.3 GENERATED CELEBA SAMPLES

Figure 12: Comparison of image restoration methods on CelebA.
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C.4 MNIST IMAGE GENERATION

C.4.1 CONDITIONAL GENERATION ON MNIST

Method SGFM-ULA g-covA
Accuracy 87.6% 98.5%
FID 46.7 57.1

Table 6: The label accuracy (higher is
better) and FID (lower is better).

We perform conditional image generation experiments on
the MNIST dataset, where the generated samples are con-
ditioned on provided labels. Given a target label, the loss
function J corresponds to the negative log-likelihood of
the label computed via a classifier. We select ULA as our
sampling method and benchmark its performance against
the baseline method g-covA in Feng et al. (2025).

Performance is evaluated using the Fréchet Inception Distance (FID) and label accuracy. A separate
classifier determines accuracy to avoid overconfidence. The experimental results, detailed in Table 6,
indicate that while our proposed method yields relatively lower label accuracy, it achieves a superior
FID score. Figure 13 presents illustrative examples of generated images from both methods. We
observe that although g-covA consistently generates images corresponding to the correct digits,
the generated samples exhibit limited diversity, characterized by uniformly thick strokes and similar
visual styles. In contrast, the ground-truth MNIST distribution inherently comprises digits exhibiting
diverse shapes, styles, and stroke widths. Our approach demonstrates improved sample diversity
over g-covA (although with some degradation in quality compared to ground truth). This gives a
better covariance match between the empirically generated distribution and the real data distribution,
resulting in a lower FID score.

(a) Ground truth (b) g-covA (c) SGFM-ULA

Figure 13: MNIST sample generation conditioned on digit 5.

C.4.2 IMPLEMENTATION DETAILS

Pre-trained models: For the classifier used for guidance, we train a convolutional neural network
classifier on MNIST, which achieves an accuracy of 96.8% on the standard test set. For the classifier
used for evaluating the accuracy of generated samples, we adopt an independent pre-trained Vision
Transformer classifier1, which achieves higher robustness with an accuracy of 98.7% on the testing
distribution. Following Tong et al. (2023), the vector field model used in our experiments is trained
using a U-Net architecture initialized from a Gaussian distribution. It was trained for three epochs,
each consisting of 468 iterations.

Conditional generation: The objective of this task is to generate images conditioned on a speci-
fied label and stay close to the original dataset. The guidance for this conditional generation utilizes
a loss function J defined as the negative log-probability of the targeted label i:

J(x) = − log softmax(h(x))i,

where h(x) represents the logits returned by a pre-trained classifier. To balance the scale of the cost
function and the probability density function, we scale the loss function J by 1

λ with λ = 10−3.

1https://github.com/sssingh/hand-written-digit-classification/tree/master
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Implementation of the method in Feng et al. (2025): We select g-covA as the baseline method
in Feng et al. (2025), which shows superior performance in image problems. We use a constant
schedule λcov-A

t = λcov-A. The ODE is integrated for 100 steps using the Dopri5 method.

Implementation of SGFM-ULA: SGFM-ULA is implemented by running the ULA algorithm
over a maximum of 150 steps with a batch size of 16. The step size in each iteration is selected as
5 × 10−4 × ζ, where ζ ∼ χ2(2) with χ2(2) being the chi-squared distribution with two degrees of
freedom. Each batch takes about 218 seconds to process.

Evaluation metric: We assess the quality of generated images using the Fréchet Inception Dis-
tance (FID), which measures the similarity between two distributions based on their means and
covariances. The reference images used in the FID calculation are subsets of the MNIST training
dataset corresponding to each target label, and evaluations are performed using 400 samples.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.5 ODE FORWARD PROBLEM

In this section, we present another example of conditional generation in the context of physics-
informed generative modeling. Instead of the Darcy flow equations (equation 18), we consider an
ODE with truncated solution trajectories. Compared to the problem in Section 5.2, this example has
lower dimension which allows us to further explore how well the SGFM framework and benchmark
methods approximate the target distribution.

C.5.1 CONDITIONAL GENERATION OF ODE TRAJECTORIES VIA FLOW MATCHING

Consider the ODE

ẋ(t) = −θax(t) + θb sin(θωt), x(0) = 0, x(t) ∈ R, (19)

where a flow matching model is trained to sample from the joint distribution of the ODE parameters
[θa, θb, θω] ≜ θ ∼ U(1, 3)3 and the set of corresponding discretized solutions xθ ∈ R100. The
source distribution is a standard Gaussian distribution for the parameters θ and a Gaussian Process
with zero mean and squared exponential kernel for xθ to encourage smooth solutions.

The conditional sampling problem is to generate solution trajectories consistent with a partial
observation of the ODE parameters [θ∗a, θ

∗
b , ·], which defines a family of admissible solutions

{xθ∗
a,θ

∗
b ,·}θω∈[1,3]. The cost function is the reconstruction error of the target parameters, J(θ, xθ) =

∥θa−θ∗a∥2+∥θb−θ∗b∥2. This corresponds to a soft constraint on θa and θb, since the marginal target
distributions for θa and θb then behave like posteriors with uniform priors and Gaussian likelihoods.
Figure 14 shows samples from the unconditional model and conditional samples using SGFM-HMC,
SGFM-OPT (Ben-Hamu et al., 2024) corresponding to equation 32, and g-covA (Feng et al., 2025).

Unconditional sampling
True
Sampled

SGFM-HMC
Sampled

SGFM-OPT (D-Flow)
Sampled

gcov A

Sampled

Figure 14: Solutions to the forward ODE problem. Samples [θ, xθ] ∈ R103 consist of ODE parame-
ters θ ∼ U(1, 3)3 and corresponding solution trajectories xθ ∈ R100. The conditioning set consists
of a partial observation of the ODE parameters, [θ∗a, θ

∗
b , ·], which yields a family of admissible solu-

tions {xθ∗
a,θ

∗
b ,·}θω∈[1,3].

We evaluate the methods by generating 103 samples and assessing both their physical consistency
and how well the empirical distribution approximates the target distribution. The latter is evalu-
ated by comparing the parameter outcomes to equal-tailed credible intervals derived from the target
distribution, which are obtained by MCMC simulation. The results in Figure 15 show that SGFM-
based methods generate samples of higher physical consistency compared to g-covA. Furthermore,
SGFM-HMC achieves the most representative distribution over the parameters. In contrast, SGFM-
OPT collapses to the modes for the conditioned parameters θa, θb, and importantly fails to capture
the full admissible range of the unconditioned parameter θω . g-covA, on the other hand, captures the
full range of admissible θω but excessively generates values outside of the credible intervals, some-
times outside of the training data distribution. Thus, we conclude that SGFM-HMC best approxi-
mates the target distribution. Together with the PDE inverse problem in Section 5.2, this illustrates
the trade-off between asymptotic exactness and computational complexity that the methods within
SGFM can balance: SGFM-HMC yields a more accurate empirical distribution, while SGFM-OPT
methods are faster at the expense of local mode collapse.

2In this example, the source distribution is not directly compatible with equation 4-equation 5. However,
equation 3 remains applicable, which reflects the base implementation in D-Flow.
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Figure 15: Physical consistency of samples and closeness of the empirical distribution to the target
distribution. The physical consistency is measured by the relative L2 error between the sampled tra-
jectory and the true trajectory under the jointly sampled ODE parameters. Each method’s ability to
capture the target distribution is then assessed by analyzing the empirical distribution of the sampled
ODE parameters. In the ideal case, 99% of the samples fall within the credible interval indicated
by the dashed lines. The true marginal target distributions for the conditioned parameters θa, θb
behave like posteriors with a uniform prior and Gaussian likelihood, so the outcomes are expected
to distribute smoothly across the bounds. Similarly, the true marginal target distribution for the un-
conditioned parameter θω is a uniform distribution, so the outcomes are expected to be distributed
uniformly across the bound.

C.5.2 IMPLEMENTATION DETAILS

Flow matching model: The vector field defining the flow-matching model is approximated using
an MLP similar to Tong et al. (2023) with four hidden layers of size 256 and SELU activation
functions. Furthermore, we add a Gaussian smoothing filter with non-learnable parameters on the
last layer to encourage smooth solutions. The source distribution is a standard Gaussian distribution
for the ODE parameters and a Gaussian process with zero mean and squared exponential kernel
having length scale l = 1. The dataset consists of 104 samples which are generated by sampling
θ ∼ U(1, 3)3 and integrating equation 19 for t ∈ [0, 5] using the Euler method with ∆t = 0.05. The
model is trained for 103 epochs using the Adam optimizer with learning rate η = 10−3.

Conditional sampling: All methods are initialized by the same set of samples from the unmodi-
fied source distribution. To balance the scale of the cost function J and the prior probability log q0,
the cost is scaled by a factor 1

λ where λ = 5× 10−2.

Implementation of SGFM-HMC: SGFM-HMC is implemented by running the HMC algorithm
for NHMC = 200 steps with L = 50 leapfrog steps, where the step size is randomly selected in each
Markov chain iteration as ϵ = 10−4(1+ ζ × 15) where ζ ∼ χ2(2) with χ2(2) being the chi-squared
distribution with two degrees of freedom. We found that this setting gives good acceptance ratios
while allowing for a significant number of HMC iterations to be performed without having too long
runtimes. The transport map is obtained by integrating the neural ODE associated with the vector
field for two steps using the Dormand-Prince (Dopri5) method. We use the same transportation map
both for the density computation in the HMC iterations and to map the sampled source point to the
target space.

Implementation of SGFM-OPT: SGFM-OPT is implemented using L-BFGS optimization with
learning rate η = 1, maximum iterations of 20, and history size 100. The method is allowed to
run for approximately the same amount of runtime as HMC (which corresponds to 160 optimization
steps), but usually converges before that. The transport map is designed as in SGFM-HMC. We use
the same transportation map both for the density computation in the D-Flow iterations and to map
the sampled source point to the target space.

Implementation of g-covA: g-covA (Feng et al., 2025) is implemented using a constant schedule
λcovA
t = λ. This choice cancels out the loss scaling factor 1

λ , and other alternatives either degrade
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physical consistency or impose weak constraints on the conditioned parameters. The ODE is inte-
grated for three steps using the Dopri5 method, additional steps had no effect on performance.

D LIMITATIONS AND FUTURE WORK

Similar to other guidance methods that optimize the source samples, one limitation of our method
lies in the long runtime due to the need to backpropagate through the ODE. Consequently, it would
be interesting to incorporate efficient backpropagation in our framework. Additionally, training the
optimal vector field requires access to the OT coupling, which becomes particularly challenging
in high-dimensional settings. Although we can approximate π∗ using mini-batch data or entropic
OT solvers, these approximations can introduce bias and may not scale well. Developing a more
efficient and scalable approach to training the optimal vector field is another important avenue for
future research.

This paper employs Large Language Models (LLMs) exclusively for the purpose of polishing written
text.
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