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Abstract

In this work, we consider the problem of Bayesian Optimization (BO) under reward
model uncertainty—that is, when the underlying distribution type of the reward
is unknown and potentially intractable to specify. This challenge is particularly
evident in many modern applications, where the reward distribution is highly
ill-behaved, often non-stationary, multi-modal, or heavy-tailed. In such settings,
classical Gaussian Process (GP)-based BO methods often fail due to their strong
modeling assumptions. To address this challenge, we propose a novel surrogate
model, the infinity-Gaussian Process (∞-GP), which represents a sequential spatial
Dirichlet Process mixture with a GP baseline. The ∞-GP quantifies both value
uncertainty and model uncertainty, enabling more flexible modeling of complex
reward structures. Combined with Thompson Sampling, the ∞-GP facilitates
principled exploration and exploitation in the distributional space of reward models.
Theoretically, we prove that the ∞-GP surrogate model can approximate a broad
class of reward distributions by effectively exploring the distribution space, achiev-
ing near-minimax-optimal posterior contraction rates. Empirically, our method
outperforms state-of-the-art approaches in various challenging scenarios, including
highly non-stationary and heavy-tailed reward settings where classical GP-based
BO often fails.

1 Introduction

Bayesian Optimization (BO) [Frazier, 2018] is a powerful framework for optimizing expensive-to-
evaluate black-box functions and has found broad applications in hyperparameter tuning for machine
learning models [Snoek et al., 2012], robotics [Berkenkamp et al., 2023], biology [Amin et al., 2024],
and reinforcement learning [Brochu et al., 2010]. BO typically proceeds by fitting a surrogate model
to the observed reward collected so far, and then using an acquisition policy to guide the selection of
the next location to query. The surrogate model plays a central role in both learning and exploration.

In almost all BO applications, Gaussian Processes (GPs) are used as the default surrogate model. This
practice assumes that the deterministic objective function µ∗(x) and the noise ϵ∗(x) satisfy strong
structural conditions, essentially requiring the true objective to "resemble" a GP. Specifically, µ∗(x)
is often assumed to be a sample path drawn from GP [Russo and Van Roy, 2014, Wang et al., 2025]
or lie in a reproducing kernel Hilbert space (RKHS) with known bounded norm [Srinivas et al., 2010,
2012, Chowdhury and Gopalan, 2017] (the connection between GP regression and RKHS regression
is detailed in Kanagawa et al. [2018]), and ϵ∗(x) is assumed to be independent and (sub-)Gaussian,
or even noiseless [Chen and Lam, 2023]. These assumptions are critical for theoretical guarantees,
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but are rarely verified in practice. GP-based BO can fail when these assumptions are violated. For
instance, GP surrogates struggle to model non-stationary rewards, which are commonly observed in
applying BO in machine learning hyperparameter tuning [Snoek et al., 2014], and are inadequate for
handling heavy-tailed noise, which frequently arises in financial and real-world BO tasks [Chowdhury
and Gopalan, 2019, Cakmak et al., 2020]. Moreover, prompt optimization for large language models
(LLMs) is another representative application [Sabbatella et al., 2024] where the reward model is of
unknown and complex form. The reward typically involves multiple stages—such as combining
with inputs, querying a black-box LLM, and interpreting outputs—each introducing variation and
instability. The resulting reward landscape is highly unstable and non-stationary [Deng et al., 2022],
as even slight variations in prompt formulation can lead to dramatically different outputs.

In this paper, we consider BO under reward model uncertainty—that is, the decision-maker is
uncertain not only about the parameters of the reward distribution, but also about its underlying
distributional type. While classical GP-based BO can effectively quantify value uncertainty under
a fixed model, it fails to capture model uncertainty. Our goal is to develop a surrogate modeling
and decision-making framework that remains robust under reward model uncertainty. To this end,
we propose a novel surrogate model, the ∞-Gaussian Process (∞-GP), which represents an infinite
mixture of Gaussian processes implemented via a sequential spatial Dirichlet process prior with a GP
baseline. When combined with Thompson Sampling, this model automatically facilitates a principled
exploration–exploitation trade-off in the distributional space, and can effectively converge toward a
wide range of reward models.

Related Work. To address non-stationarity in BO, prior works have proposed various modifications,
such as warping the input space of standard GP kernels [Snoek et al., 2014], replacing the surrogate
model with neural networks [Li et al., 2023], or employing non-stationary kernels [Higdon et al.,
2022, Seeger, 2004]. To handle heavy-tailed noise, a substantial body of work has been developed
in the context of multi-armed bandits, i.e., problems with a finite decision space [Bubeck et al.,
2013, Medina and Yang, 2016]. However, for BO with a continuous decision space, the available
methods are much more limited. One notable exception is the work of Chowdhury and Gopalan
[2019], who propose a truncation-based modification to the GP-UCB algorithm to handle heavy-tailed
noises. Misspecified BO [Wynne et al., 2021, Bogunovic and Krause, 2021] addresses limited forms
of model mismatch (e.g., incorrect smoothness) within fixed model classes such as GPs or RKHS
functions, rather than accounting for distributional uncertainty over the entire distributional space.
Mixture-of-experts GP models [Rasmussen and Ghahramani, 2001, Meeds and Osindero, 2005]
also construct infinite GP mixtures using Dirichlet processes. However, they rely on a global DP to
partition the input space, assigning each input to a single GP expert. In contrast, our model employs
a spatial DP prior, allowing each location to mix over infinitely many GP surfaces. This leads to
a fundamentally different formulation that offers a richer, nonparametric representation of model
uncertainty and enables convergence over a broad class of reward distributions. Bariletto and Ho
[2024] also considers combining nonparametric Bayesian models, such as DP, with BO. However,
their focus is on distributionally robust optimization, and the integration is carried out fundamentally
differently from ours.

Our Contributions The main contributions of this work are as follows:

• A novel ∞-GP surrogate model. We propose a new surrogate model for BO, the ∞-
Gaussian Process (∞-GP), which quantifies both model uncertainty and value uncertainty.
Combined with Thompson Sampling, it enables principled and efficient exploration and
exploitation in the distributional space of the reward.

• Theoretical guarantees. We establish posterior convergence guarantees for the ∞-GP
model, showing that it can approximate a broad class of reward distributions at a near-
optimal minimax rate.

• Strong empirical performance. We demonstrate the effectiveness of our method on both
synthetic benchmarks and real-world tasks where standard GP-based BO fails—particularly
in scenarios involving heavy-tailed noise and non-stationary reward structures.
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2 Preliminaries

Bayesian Optimization (BO). We consider the problem of maximizing an expensive-to-evaluate
black-box function µ∗(x) over a compact domain X ⊂ Rd. At each iteration, the decision maker
selects a point xi ∈ X and observes a noisy reward y(xi) = µ∗(xi) + ϵ∗(xi), where ϵ∗(x) denotes
stochastic noise. Since querying the function is costly, the goal is to identify the maximizer of
µ∗(x) using as few evaluations as possible. BO tackles this problem by maintaining a probabilistic
model—called a surrogate model—over the unknown objective. This surrogate is updated after
each evaluation and serves as a cheap proxy for the reward. Based on the surrogate, an acquisition
policy is used to determine the next query location. The policy aims to balance exploration (sampling
uncertain regions) and exploitation (focusing on areas with high predicted values), thereby efficiently
searching for the global optimum. Common acquisition strategies include Expected Improvement
(EI), Upper Confidence Bound (UCB), Knowledge Gradient (KG), and Thompson Sampling (TS),
which draws a random sample from the posterior and selects the maximizer.

Gaussian Process Surrogate Modeling and Kriging. Standard BO methods adopt a Gaus-
sian Process (GP) as the surrogate model. The observed reward is modeled as y(xi) =
m(xi) + ξ(xi) + ϵi, ϵi ∼ N (0, τ2), where m(x) = β⊤x denotes the deterministic mean trend,
and ξ ∼ GP(0, σ2ρϕ) is a zero-mean stationary GP over X with squared exponential kernel

ρϕ(x, x
′) = exp

(
−
∑d

k=1 ϕk(x
(k) − x′(k))2

)
, ϕ = (ϕ1, · · · , ϕd), x = (x(1), · · · , x(d)). The

combined term m(x) + ξ(x) acts as a probabilistic surrogate for the true reward function µ∗(x).
A key advantage of GP models lies in their closed-form posterior inference: given realized histor-
ical data ξ(x1:n) = {ξ(x1), · · · , ξ(xn)} at evaluated locations x1:n = (x1, · · · , xn), the posterior
distribution of the entire function ξ(·) remains a GP. This is known as Kriging (or GP regression):

[ξ(·) | ξ(x1:n)] ∼ GP(µn(·), σ2
n(·)), (1)

µn(·) = Σ0(·, x1:n)Σ−1
0 (x1:n, x1:n)ξ(x1:n), (2)

σ2
n(·) = σ2 − Σ0(·, x1:n)Σ−1

0 (x1:n, x1:n)Σ0(x1:n, ·). (3)
Here, the kernel is Σ0(x, x

′) := σ2ρϕ(x, x
′). The matrix Σ0(x1:n, x1:n) ∈ Rn×n denotes the

covariance matrix with entries [Σ0]ij = Σ0(xi, xj), and Σ0(x, x1:n) ∈ R1×n is the row vector of
covariances between x and each observed input xi.

Value Uncertainty vs. Model Uncertainty Another key strength of GP in BO is their ability to
quantify uncertainty through the posterior variance. This enables principled exploration–exploitation
(E&E) trade-offs, as in the UCB strategy, which directly uses the variance to guide exploration.
However, the uncertainty quantified by a GP is inherently limited to value uncertainty—that is,
uncertainty about the response value at a given location under a fixed reward distribution model. This
overlooks a more fundamental source of uncertainty: whether the GP itself is an appropriate surrogate
model for the underlying reward. We refer to this as model uncertainty, which captures the decision
maker’s uncertainty belief about the type or complexity of the true reward distribution. Consequently,
standard GP-based BO requires strong assumptions for convergence, and GPs fail to capture complex
reward models, such as those that are non-stationary or contaminated with heavy-tailed noises.

3 ∞-GP Surrogate Modeling

In this section, we develop a novel surrogate model called the ∞-Gaussian-Process (∞-GP), formally
referred to as the sequential spatial Dirichlet Process mixture with a Gaussian Process baseline. The
observed reward is modeled as

y(xi) = m(xi) + ξ(xi) + ϵi, ϵi ∼ N(0, τ2), ξ(xi)
ind∼ Gxi

, (4)

where the deterministic mean term m(xi) is the same as classic GP model and the stochastic process
ξ ≜ {ξ(x) ∈ R : x ∈ X} follows distribution {Gx : x ∈ X}. To capture model uncertainty and
explore the space of reward distributions, we do not fix the distribution {Gx : x ∈ X} as a GP.
Instead, we assume that the distribution {Gx : x ∈ X} is itself random and follows a sequential
Spatial Dirichlet Process (SDP) prior, which places a prior over the space of distributions:

{Gx : x ∈ X} ∼ SDP(νG0). (5)
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Therefore, each reward y(xi) is generated via the following hierarchical process: (i) the nature draws
a stochastic process {Gx : x ∈ X} from the distribution space under a SDP prior. (ii) in the i-th
iteration, after determining the location xi to evaluate, a sample ξ(xi) is generated from distribution
Gxi

.

The SDP(νG0) is characterized by two key quantities: a scalar precision parameter ν > 0, and a
baseline distribution G0. In this work, we specify a stationary Gaussian Process GP(0, σ2ρϕ(·, ·))
over X as the baseline distribution. Specifically, a distribution (or stochastic process) arising from
SDP(νG0) is almost surely discrete and admits the representation

Gx =

∞∑
l=1

wlδξ(l)(x),∀x ∈ X , (6)

where each surface ξ(l) ≜ {ξ(l)(x) : x ∈ X} is a sample path independently drawn from the baseline
GP(0, σ2ρϕ(·, ·)) and the weights {wl}∞l=1 admits the traditional "stick breaking" construction of

Dirichlet process, i.e.,w1 = V1, wl = Vl
∏l−1

r (1− Vr), Vr
iid∼ Beta(1, ν). Notably, our approach

directly models the distribution of the observed reward y(x), rather than µ∗(x). In this context, the
additive noise term ϵi ∼ N(0, τ2) in model (4) is not intended to impose a Gaussian assumption on
the true observation noise. Instead, it is solely introduced for modeling purposes—to mix with the
discrete-distributed ξ(x) and produce a continuous reward distribution.

As defined in (6), each realized distribution {Gx : x ∈ X} from the SDP is a discrete measure over
an infinite collection of surfaces {ξ(l)}∞l=1. At any location xi, there is a positive probability that
ξ(xi) = ξ(l)(xi) for some l, meaning that a draw ξ(xi) ∼ Gxi can be realized on any of the surfaces
in the collection. To identify which surface xi lies on, we introduce a latent variable z1:n = {zi}ni=1,
such that zi = l if ξ(xi) = ξ(l)(xi) and thus ξ(zi) is the surface on which observation xi is realized.
Note that for any surface ξ(j) on which the observation at xi is not realized, the corresponding value
ξ(j)(xi) remains latent and must also be inferred. As illustrated in Figure 1, solid dots (e.g., ξ(2)(x5))
indicate that the observation at x5 is realized on surface ξ(2), while hollow dots (e.g., ξ(1)(x3))
indicate that the observation at x3 is not realized on surface ξ(1). Since multiple observations may
be realized on the same surface, the number of realized surfaces, denoted by Kn, typically grows
slowly with n. Let ξ1:n = (ξ(1), . . . , ξ(Kn)) denote the collection of realized surfaces up to iteration
n, and let nj denote the number of locations within {x1, · · · , xn} that are realized on surface ξ(j),
i.e., nj = #{i : zi = j}, j = 1, · · · ,Kn.

It is important to note that the SDP was initially introduced in the spatial statistics and geostatistics
literature [Gelfand et al., 2005, Quintana et al., 2022]. Our ∞-GP model incorporates two key
modifications to adapt SDP for the sequential nature of BO. First, instead of assuming a fixed set of
locations, we allow observations to be collected sequentially at arbitrary locations. Second, unlike
the original SDP, where observations across all locations in each replication are drawn from the same
surface, our model permits each observation to be realized on a potentially different surface, enabling
greater flexibility.

Model Uncertainty Quantification It is important to understand the two quantities that characterize
the SDP: the baseline distribution G0 and the concentration parameter ν. For any measurable set
B, if G ∼ SDP(νG0), then E[G(B)] = G0(B), meaning that G0 serves as the mean measure. The
parameter ν can be interpreted as the "variance" in the distribution space, controlling the variability
of G around G0: Var(G(B)) = G0(B)(1−G0(B))

1+ν . In practice, updating the posterior of ν with data
allows dynamic quantification of model uncertainty: the higher the ν, the more confident we are
that the true reward distribution follows G0. In contrast, a small ν implies significant model
uncertainty, in which case the model relies primarily on empirical distributions (detailed in the next
section). Notably, although the baseline G0 is a stationary GP, a sample path drawn from the ∞-GP
can be non-stationary and exhibit different smoothness. This highlights the enhanced modeling
flexibility of the ∞-GP surrogate.

Full Bayesian Treatment of Hyperparameters Following the seminal work of Snoek et al. [2012],
we adopt a fully Bayesian approach for the hyperparameters Θ = {β, ν, τ, σ2, ϕ} = {Θ(1),Θ(2)},
where the first-layer parameters are Θ(1) = {β, τ} and the second-layer parameters are Θ(2) =
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Figure 1: Illustration of the proposed ∞-GP model as a mixture over infinitely many GP surfaces.
Each observation may be realized on any surface—solid dots indicate assignments to the correspond-
ing surface, while hollow dots represent latent observations not realized on that surface. The red dot
denotes a new input location xnew, which may either be assigned to an existing surface or initiate a
new one drawn from the base measure.

{ν, σ2, ϕ}. Instead of relying on frequentist estimators such as MLE, we place prior distributions on
all components of Θ and update them via posterior inference. Details of the prior specifications are
deferred to the Appendix.

4 ∞-GP Thompson Sampling: E&E in Distributional Space

Although the surrogate modeling in the previous section is performed on the noisy observed reward
y(x), the goal in BO is to maximize the expected reward µ∗(x) := E[y(x)]. The corresponding
Thompson Sampling (TS) acquisition policy proceeds by drawing a sample from the posterior
distribution of µ∗(x) given data Hn = {(x1, y(x1)), · · · , (xn, y(xn))}, and selecting its maximizer
as the next query point, i.e.

xn+1 = argmax
x∈X

µ̂∗(x), µ̂∗ ∼ p(µ∗ | Hn). (7)

In our hierarchical Bayesian model, at the (n+ 1)-th step, for any unobserved location xn+1 ∈ X ,
the posterior distribution µ∗(xn+1) | Hn is implicitly induced by the joint posterior over latent
components Θ′ := {ξ(zn+1)(xn+1),Θ

(1)}, where ξ(zn+1) denotes the surface on which xn+1 is
realized and Θ(1) = {β, τ2}. Specifically, the posterior distribution of y(xn+1) is given by (see
Appendix for proof):

f(y(xn+1) | Hn) =

∫
f(y(xn+1) | Θ′) · f(Θ′ | Hn)dΘ

′

=

∫ ∫
N (x⊤n+1β + ξ(zn+1)(xn+1), τ

2) f(ξ(zn+1)(xn+1) | Θ(2), ξ1:n, z1:n)f(Θ, ξ1:n, z1:n | Hn)︸ ︷︷ ︸
f(Θ′|Hn)

dξ(zn+1)(xn+1)d{Θ, ξ1:n, z1:n},
(8)

where f(·) denotes the probability density. According to this decomposition, given Θ′, the distribution
of y(xn+1) is Gaussian: y(xn+1)|Θ′ ∼ N (x⊤n+1β+ξ

(zn+1)(xn+1), τ
2). Therefore, the (conditional)

expected reward is µ∗(xn+1)|Θ′ = x⊤n+1β + ξ(zn+1)(xn+1).

Thompson Sampling Implementation. Therefore, the Thompson Sampling acquisition policy, as
defined in Eq. (7), is implemented as follows:

(i) Draw a posterior sample Θ̂′ ∼ f(Θ′ | Hn) and (ii) Select the next location to evaluate:

xn+1 = argmax
x∈X

µ̂∗(x)|Θ̂′ = argmax
x∈X

x⊤β̂ + ξ̂(zn+1)(x), (9)
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where the quantities with a hat (e.g., ν̂, β̂, K̂n, {n̂j}K̂n
j=1) denote posterior samples. The core challenge

lies in drawing a posterior sample from f(Θ′ | Hn), particularly in sampling a path {ξ̂(zn+1)(x) :
x ∈ X} from the posterior distribution. As shown in Eq. (8), we can achieve this by (i) first
sampling a Θ̂, ξ̂1:n, ẑ1:n from the joint posterior f(Θ, ξ1:n, z1:n | Hn) using a Gibbs sampler (see
Appendix for details). (ii) Next, given Θ̂, ξ̂1:n, ẑ1:n, we sample a path from the conditional posterior
distribution {ξ(zn+1)(x), x ∈ X} | Θ̂(2), ξ̂1:n, ẑ1:n. According to the Chinese restaurant process
(CRP), a constructive representation of the Dirichlet process, a new upcoming data point either lies
on one of the previously realized surfaces {ξ(j)(·)}K̂n

j=1, or initiates a new surface drawn from the
baseline distribution G0 (as shown in the red dots in Figure 1). Based on this, we derive the following
conditional distribution (see Appendix for proof):

f
(
ξ(zn+1)(·) | Θ̂(2), ξ̂1:n, ẑ1:n

)
∼ P (0)

n G0(·)︸ ︷︷ ︸
Exploration

+

K̂n∑
j=1

P (j)
n

Kriging on ξ(j)︷ ︸︸ ︷
GP(µ̂(j)

n (·), σ̂2
n(·))︸ ︷︷ ︸

Exploitation

, (10)

where P (0)
n = ν̂

ν̂+n and P (j)
n =

n̂j

ν̂+n . Each term GP(µ̂
(j)
n (·), σ̂2

n(·)) corresponds to performing
Kriging on an existing surface ξ(j)(·), using past values ξ(j)(x1:n) = (ξ(j)(x1), · · · , ξ(j)(xn))
realized on that surface. This follows the same calculation as in Eq. (1), with ξ(x1:n) replaced by
ξ(j)(x1:n). Efficient sampling from GP posterior GP(µ̂

(j)
n (·), σ̂2

n(·)), as required here, has been
widely explored in recent literature; see Wilson et al. [2020], Lin et al. [2023], Zhou [2025]. The
pseudo code of our proposed ∞-GP-TS is shown in Algorithm 1.

Exploration and Exploitation in Distributional Space. As illustrated in Figure 1, Eq. (10) can be
viewed as a structured trade-off between exploration and exploitation in the distributional space:

• Exploitation: With probability P (j)
n =

n̂j

ν̂+n , the new input xn+1 is assigned to an existing
surface ξ(j)(·). In this case, the model performs Kriging inference using observations
previously associated with that surface. This corresponds to exploiting empirical knowledge,
resulting in conservative updates confined to the empirical distribution. Notably, the assign-
ment probability is proportional to the number of observations n̂j already associated with
surface j. The more observations are assigned to a surface, the more likely it will be reused.

• Exploration: With probability P (0)
n = ν̂

ν̂+n , a new surface is instantiated from the base GP
prior G0. Since no observations have been made on this surface, it represents functional-
level exploration—expanding the surrogate model by admitting novel structures beyond
those already observed.

As the number of observations n increases, the exploration weightP (0)
n naturally diminishes, gradually

shifting focus from exploration toward exploitation of well-supported surfaces. This hierarchical
Bayesian mechanism thus equips Thompson Sampling with a principled way to adaptively balance
exploration of new functional hypotheses and exploitation of learned structures, effectively broadening
the surrogate model’s support within the distribution space.

Algorithm 1 Thompson Sampling with ∞-GP Surrogate Model (∞-GP-TS)

Input: H0, the total number of iterations N .
for n = 1 to N do

Step 1: Sample {Θ̂, ξ̂1:n} from the posterior f(Θ, ξ1:n|Hn) using Gibbs sampling (see the
Appendix for details).

Step 2: Sample a surface ξ(zn+1) from (10).
Step 3: Evaluate the reward at the next candidate location xn+1 = argmaxx∈X x

⊤β̂ +

ξ̂(zn+1)(x). Observe the response y(xn+1) and update Hn+1 = Hn ∪ (xn+1, yn+1).
Step 4: Continue to the next iteration n+ 1.

end for
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5 Theoretical Analysis: Efficient Exploration in the Distributional Space

In this section, we show that by exploring the space of reward distributions, the proposed ∞-GP model
can approximate a wide range of true reward models and achieve a near-minimax-optimal rate. Since
the noisy reward is a stochastic process over X , it is standard to characterize it in terms of its finite-
dimensional distributions. Specifically, for any finite set of input locations x1:D = {x1, · · · , xD} ⊂
X with D ∈ N+, we denote the corresponding D-dimensional joint density of the true reward values
by f∗(· | x1:D). Let k = (k1, . . . , kD) ∈ ND

0 be a multi-index. Define the corresponding mixed
partial derivative operator of a function f(y1, · · · , yD) as f (k) := ∂k1+···+kDf/∂yk1

1 · · · ∂ykD

D . For
any α > 0, λ0 ≥ 0, and any non-negative function L : RD → R≥0, we define the locally Hölder
class Cα,L,λ0(RD) as the set of all functions f : RD → R that satisfy:(i) f (k) is finite for all multi-
indices k such that |k| :=

∑D
i=1 ki ≤ ⌊α⌋; (ii) for every x, y ∈ RD, and k such that |k| = ⌊α⌋,∣∣f (k)(x+ y)− f (k)(x)

∣∣ ≤ L(x) eλ0∥y∥2 ∥y∥α−⌊α⌋.

Assumption 1 The true density f∗(·|x1:D) ∈ Cα,L,λ0(RD) for some α > 0, λ0 ≥ 0 and a non-

negative function L on RD and satisfy EY∼f∗(·|x1:D)

( |f∗(k)(Y |x)|
f∗(Y |x)

) 2α+η∑D
i

ki < ∞ for any k ∈ ND
0

satisfying
∑D

i=1 ki ≤ ⌊α⌋ and EY∼f∗(·|x1:D)

( L(Y )
f∗(Y |x1:D)

) 2α+η
α <∞ for some η > 0. Additionally,

there are positive constant a1, a2, a3, γ such that

f∗(y|x1:D) ≤ a1exp(−a2∥y∥γ), ∥y∥ > a3. (11)

Assumption 1 imposes mild regularity conditions on the true reward distribution. Apart from the tail
condition in (11), the remaining smoothness assumptions are relatively weak. This assumption is
satisfied by a broad class of distributions, including Weibull (with shape k > 1), Gaussian, Laplace,
Gamma, and exponential distributions, as well as their finite mixtures of the form

∑L
l=1 wl(x)ψl(θl),

where each ψl belongs to one of the aforementioned distribution families.

Theorem 1 (Posterior Convergence of ∞-GP Model) Let f∗(y | x1:D) be the true reward distri-
bution satisfying Assumption 1, Π be the ∞-GP prior as defined in Eq. (4)-(6), and let Πn(· | x1:D)
denote the posterior distribution based on n i.i.d. evaluations at locations x1:D. Then there exists a
sequence ϵn = n−α/(2α+D)(log n)t for some constant t > 0, such that for any M > 0,

lim
n→∞

Πn ({f : ∥f − f∗∥1 > Mϵn} |x1:D) → 0 almost surely under f∗.

This result demonstrates that by efficiently exploring the distribution space, the posterior distribution
of the ∞-GP model can contract around a broad class of true reward distributions at a near-minimax-
optimal rate in L1 distance. In contrast to classical GP regression, which requires strictly stronger
functional class assumptions [Kanagawa et al., 2018, Theorem 5.1] than our method and assumes
Gaussian noise, our framework allows much broader modeling flexibility.

6 Empirical Evaluation

We evaluate our method on ten benchmark tasks, including six synthetic functions, three real-world
problems, and one LLM prompt optimization task. We particularly focus on BO tasks characterized
by non-stationary, complex reward landscapes and heavy-tailed observation noise. Extensive results
and ablations are provided in the Appendix.

Synthetic Benchmarks. We consider three popular synthetic test functions: Ackley, Rosenbrock,
and StybTang [Xu et al., 2024]. To introduce more challenging scenarios, we consider non-stationary
and heavy-tailed variants of these functions. In the heavy-tailed (HT) cases, all the functions are
corrupted by Weibull-distributed noises. In the non-stationary (NS) setting, the base test functions
are modulated by a trigonometric-exponential term of the form fNS(x) = (1 + α sin(x)ex) · f(x),
which introduces non-stationarity across the domain.

Real-world Benchmarks. We consider three real-world benchmarks.

7



10

8

6

4

2

0
Ackley-HT

30

25

20

15

10

5

Rosenbrock-HT

10

20

30

40

50

60

70

80
StybTang-HT

14

12

10

8

6

4

2

Ackley-NS

30

25

20

15

10

5

0
Rosenbrock-NS

20

30

40

50

60

70

StybTang-NS

-GP-TS GP-TS GP-UCB GP-EI GP-KG

Figure 2: Results of synthetic benchmarks. The suffix HT stands for the function with heavy-tailed
noises and NS stands for the non-stationary scenarios.
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Figure 3: Results of real-world benchmarks.

• Portfolio [Cakmak et al., 2020] is a benchmark of tuning the hyperparameters of a trading
strategy to maximize returns. The stock data with heavy-tailed nature is generated from a
realistic financial simulator, CVXPortfolio.

• HPOBench [Eggensperger et al., 2021] provides standard hyperparameter tuning tasks for
ML models, and we use the MLP task in the HPOBench in our experiment.

• NASBench201 [Dong and Yang, 2020] is a neural network search task on CIFAR100.
The search space of hyperparameters and model architecture is considered non-stationary.
Therefore, we use these tasks for our evaluation of real-world non-stationary cases.

Prompt optimization for language understanding. We conduct prefix prompt optimization for
seven language understanding datasets, including sentiment classification (SST-2 [Socher et al.,
2013]), SST-5 [Socher et al., 2013], MR [Pang and Lee, 2005], CR [Hu and Liu, 2004]), topic
classification (AG’s News[Zhang et al., 2015], TREC[Voorhees and Tice, 2000]) and subjectivity
classification (Subj [Pang and Lee, 2004]). We use the Alpaca-7B model [Taori et al., 2023] as the
frozen language model, and optimize continuous prefix embeddings to guide the model toward better
task performance. Due to the high dimensions of the decision variable, we use Uniform Manifold
Approximation and Projection (UMAP) [McInnes et al., 2018] to reduce the dimension.
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Method SST-2 CR MR SST-5 AG’s News TREC Subj Avg.
GP-TS 93.87 91.44 89.85 49.91 72.81 45.29 65.18 72.61
GP-UCB 92.68 90.20 89.98 49.86 71.76 43.27 62.70 71.49
GP-EI 91.82 89.75 87.69 48.26 60.83 42.09 59.70 68.59
GP-KG 90.05 88.38 85.90 42.89 45.98 36.20 49.75 62.74
∞-GP-TS 96.57 92.52 91.51 52.58 75.34 46.23 68.55 74.76

Table 1: Performance comparison on seven language understanding datasets.

Baselines. We compare our methods with the following baselines based on GP surrogate model.
GP-TS [Chowdhury and Gopalan, 2017]: Following the TS policy defined in Eq. (7), except that the
posterior is constructed under a standard GP model for µ∗(x). GP-UCB [Srinivas et al., 2009]: Selects
the location xn+1 = argmaxx∈X µn(x) + β

1/2
n σn(x), where βn is a time-dependent exploration

parameter. GP-EI [Ament et al., 2023]: Selects xn+1 = argmaxx∈X E
[
max{0, µ∗(x)− µbest}

]
,

where the expectation is taken under the posterior distribution of µ∗(x). GP-KG [Wu and Frazier,
2016]: Selects the point whose evaluation is expected to most improve the posterior estimate of the
maximum value of µ∗(x). Non-stationary GP-UCB/TS/EI/KG: In non-stationary tasks and the
Prompt optimization task, all baseline methods adopt input warping techniques in Snoek et al. [2014]
to mitigate GP misspecification. Truncated-GP-UCB: In heavy-tailed noise tasks, GP-UCB adopts
the truncation technique in Chowdhury and Gopalan [2019].

Performance. We report the final optimization outcome of the synthetic and real-world experiment
in Figure 2 and 3, respectively (runtime regret results are provided in the Appendix). The result of
each task is reported from 10 repetitive runs with different seeds. In the synthetic experiment, ∞-GP
consistently outperforms the baselines in heavy-tailed and non-stationary settings. The GP-TS and
GP-UCB have similar performance against each other. The GP-EI performs poorly in both scenarios.
The GP-KG has the worst results, and the final performance fluctuates heavily.

In the portfolio task, we report the returns of the strategy. Stock prices often exhibit sharp fluctuations,
making portfolio optimization a suitable testbed for evaluating performance under heavy-tailed
environments. Our method achieves the highest return among others, while the GP-EI has the
second-best return. In the HPOBench and the NASBench, the performance gap between our method
and baselines is close, but our method has a smaller fluctuation with different seeds, showing better
robustness than others.

Your task is to identify the primary topic of the news article and 
choose from World, Sports, Business and Tech.

In this task, you are given sentences from movie reviews. The 
task is to classify a sentence as  positive or as negative.

Produce input-output pairs that illustrate the subjectivity of 
reviews and opinions.

Best Searched prompts by ∞-GP and the accuracy 

AG’s News

Subj

SST-2

76.02

96.60

68.72

Figure 4: Qualitative examples of best searched prompts

The language model in the prompt op-
timization task is Alphaca-7b. Table 1
reports the average final accuracy
across three independent runs. The
proposed ∞-GP outperforms all GP-
based baselines on average, achiev-
ing the highest mean accuracy (74.76),
and ranking first on every dataset.
Compared to GP-TS and GP-UCB,
∞-GP offers notable gains on complex tasks such as SST-5 and Subj, where the reward land-
scape is highly non-stationary. GP-EI and GP-KG perform significantly worse, consistent with their
known sensitivity to noisy or irregular reward signals. These results demonstrate the robustness of
∞-GP in prompt optimization tasks under distributional uncertainty.

7 Discussion

This work introduces the ∞-GP model and its integration with TS, providing a principled mechanism
to automatically balance exploration and exploitation in the space of reward distributions. Empirically,
the proposed method demonstrates strong performance in a wide range of challenging settings where
classical GP-based BO methods often fail. Nonetheless, we do not systematically evaluate the
performance of ∞-GP in high-dimensional BO tasks. That said, as shown in Eq. (10) and Algorithm 1,
our approach can be interpreted as a finite mixture of traditional GP-TS. This structure is orthogonal
to many recent advances in high-dimensional GP-based BO, and hence, those techniques can be
readily incorporated into our framework. We leave the exploration of such extensions to future work.
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A Proofs

A.1 Proof of Eq. (8) and Eq. (10)

We adopt the bracket notation system used in Gelfand and Smith [1990], where [Y | X] denotes the
conditional density of Y given X , and [Y ] denotes the marginal density of Y .

The predictive reward distribution for any unexplored solution xn+1 is given by

[y(xn+1)|Hn] =

∫
[y(xn+1)|Θ(1), ξ(zn+1)(xn+1)]︸ ︷︷ ︸

A: Gaussian

[Θ(1), ξ(zn+1)(xn+1)|Hn]︸ ︷︷ ︸
B+C

=

∫ ∫
[y(xn+1)|Θ(1), ξ(zn+1)(xn+1)]︸ ︷︷ ︸

A: Gaussian

[ξ(zn+1)(xn+1)|ξ1:n(x1:n), z1:n,Θ(2)]︸ ︷︷ ︸
B

[Θ, ξ1:n(x1:n), z1:n|Hn]︸ ︷︷ ︸
C

(12)

Notice that, when performing computations involving stochastic processes over X , in practice, we are
working with their finite-dimensional distributions, i.e., the joint distribution over a finite subset of X .
Therefore, the term ξ1:n, becomes ξ1:n(x1:n) = {ξ(j)(xi)}i=1,··· ,n j=1,··· ,Kn

, which represents the
Kn × n table of values on the realized surfaces corresponding to the observed locations x1:n.

In the first line of Eq. (12), conditioned on the new surface ξ(zn+1)(xn+1) and first-layer hy-
per parameter Θ(1) = (β, τ2), the distribution [y(xn+1)|Θ(1), ξ(zn+1)(xn+1)] is N (x⊤n+1β +

ξ(zn+1)(xn+1), τ
2), according to Eq. (4). The remaining Term "B+C” is [Θ′|Hn]. In the second line

of Eq. (12), the posterior distribution [Θ(1), ξ(zn+1)|Hn], i.e. the Term "B+C”, is decomposed into
Term B and Term C. Term C represents the posterior distribution of the hyperparameters and realized
surfaces, which requires inference through Gibbs sampling. The proof of Eq. (8) is now complete.

We next proceed to establish Eq. (10). The Term B represents the prediction of the new surface ξ(zn+1)

based on the previously realized surfaces ξ1:n = (ξ(1), . . . , ξ(Kn)) and their associated assignment
labels z1:n. Conditioned on ξ1:n = (ξ(1), . . . , ξ(Kn)) and z1:n, and marginalizing out the random
measure {Gx : x ∈ X}, the distribution of the latent surface index zn+1 follows the urn scheme of
the Dirichlet process [Blackwell and MacQueen, 1973]. Specifically, the new point either reuses
one of the existing surfaces (solid lines in Figure 1) or initiates a new surface drawn from the base
measure G0 = GP(0, σ2ρϕ(·, ·)) (dashed lines in Figure 1). Formally:

[ξ(zn+1) | ξ1:n, z1:n,Θ(2)]︸ ︷︷ ︸
Urn scheme

=

∫
[ξ(zn+1) | ξ1:n, z1:n,Θ(2), G] [G]

∼ ν

ν + n
G0 +

Kn∑
j=1

nj
ν + n

δξ(j) ,

(13)

where nj denotes the number of data points currently assigned to surface ξ(j). The more points
are assigned to a surface, the more likely it is to be reused. Then, after determining which surface
ξ(zn+1) the new location xn+1 will be realized on, we perform Kriging on that surface to predict
ξ(zn+1)(xn+1) using previously realized values ξ1:n(x1:n). Therefore, the Term B can be decomposed
as

[ξ(zn+1)(xn+1)|ξ1:n(x1:n), z1:n,Θ(2)]

=

∫
[ξ(zn+1)(xn+1)|ξ1:n(xn+1), z1:n,Θ

(2)]︸ ︷︷ ︸
Step (a): Urn scheme (13)

[ξ1:n(xn+1)|ξ1:n(x1:n),Θ(2)]︸ ︷︷ ︸
Step (b): kriging

, (14)

where the urn scheme term follows (13) by evaluating ξ(zn+1) and ξ1:n at location xn+1. The Kriging
term is given by (recall that ξ1:n = {ξ(j)}Kn

j=1)

[ξ(j)(xn+1)|ξ1:n(x1:n),Θ(2)]︸ ︷︷ ︸
kriging

∼ GP(µ(j)
n (xn+1), σ

2
n(xn+1)), (15)
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where µ(j)
n (xn+1) = Σ0(xn+1, x1:n)Σ0(x1:n, x1:n)

−1ξ(j)(x1:n), and σ2
n(xn+1) is given by Eq. (3).

Therefore, combing Eq. (14) and Eq. 15, we have

f
(
ξ(zn+1)(·) | Θ̂(2), ξ̂1:n, ẑ1:n

)
∼ P (0)

n G0(·)︸ ︷︷ ︸
Exploration

+

K̂n∑
j=1

P (j)
n

Kriging on ξ(j)︷ ︸︸ ︷
GP(µ̂(j)

n (·), σ̂2
n(·))︸ ︷︷ ︸

Exploitation

, (16)

which concludes the proof.

A.2 Proof of Theorem 1

For any finite set of input locations x1:D = {x1, · · · , xD} ⊂ X with D ∈ N+, we consider the
corresponding D-dimensional joint density of the true reward values by f∗(· | x1:D).

Notice that, focusing on fixed x1:D, the ∞-GP model can be viewed as a DP location mixture of
normals prior Π, which is the distribution of a random distribution fDPG,Σ =

∫
ϕΣ(x− z)DPG(dz).

ϕΣ is the normal density with mean zero and covariance Σ. DPG is a Dirichlet process with
baseline distribution G, which is a D-dimension Gaussian distribution, with squared exponential
kernel ρϕ(x, x′) = exp

(
−
∑d

k=1 ϕk(x
(k) − x′(k))2

)
(i.e. the kernel of baseline of ∞-GP) and zero

mean. In our model, we assume the covariance matrix Σ ∈ RD×D to be diagonal with independent
inverse-gamma priors on each variance component:

Σ =


τ21 0 · · · 0
0 τ22 · · · 0
...

...
. . .

...
0 0 · · · τ2D

 ,
with τ2i ∼ Inv-Gamma(aτ , bτ ) independently for i = 1, . . . , D.

Let |G| = G(RD) and Ḡ = G/|G|. Let eigj be the j-th eigenvalue. We first present the following
lemma.

A.2.1 Lemma 1

Lemma 1 There exist positive constants a1-a8.

1− Ḡ([−x, x]D) ≤ a1 exp(−a2xa3), (17)

and
P(Σ : eigD(Σ−1) ≥ x) ≤ a4 exp(−a5xa6). (18)

for sufficiently large x > 0, and

P(Σ : eig1(Σ
−1) < x) ≤ a7X

a8 (19)

for sufficiently small x > 0. Moreover, there exist a9 such that for any 0 < s1 ≤ · · · ≤ sD and
t ∈ (0, 1),

P(Σ : sj < eigj(Σ
−1) < sj(1 + t), j = 1, · · · , D) ≥ a9s

a10
1 ta11 exp(−a12sd). (20)

Proof : Equation (17) follows from the exponential tail behavior of the Gaussian base measure G. To
prove Equation (18), recall that Σ = diag(τ21 , . . . , τ

2
D) and hence eigD(Σ−1) = maxi

{
1
τ2
i

}
. Since

τ2i ∼ Inv-Gamma(aτ , bτ ), we use the left-tail bound for inverse-gamma random variables:

P
(
τ2i ≤ 1

x

)
≤ C1 exp(−C2x), as x→ ∞.

Applying a union bound over i = 1, . . . , D, we obtain:

P
(
eigD(Σ−1) ≥ x

)
≤ D · C1 exp(−C2x) = a4 exp(−a5xa6).
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For Equation (19), we use the right-tail of the inverse-gamma distribution:

P
(
τ2i ≥ 1

x

)
= P

(
1

τ2i
≤ x

)
≤ C3x

aτ , as x→ 0+.

Therefore,

P
(
eig1(Σ

−1) < x
)
= P

(
1

τ2i
< x for some i

)
≤ D · C3x

aτ = a7x
a8 .

Finally, for the lower bound in Equation (20), note that due to the independence of τ2i , the eigenvalues
of Σ−1 are also independent. Thus, for each j, we consider the event:

eigj(Σ
−1) ∈ [sj , sj(1 + t)],

which translates to τ2j ∈
[

1
sj(1+t) ,

1
sj

]
.

The inverse-gamma distribution has a continuous, strictly positive density on compact intervals
bounded away from zero. Therefore, for each j,

P

(
1

τ2j
∈ [sj , sj(1 + t)]

)
≥ cjs

−b
j t,

for some constants cj , b > 0. Multiplying across j = 1, . . . , D, we get:

P
(
eigj(Σ

−1) ∈ [sj , sj(1 + t)] ∀j
)
≥ a9s

a10
1 ta11 exp(−a12sD),

where we used the fact that inverse-gamma densities decay exponentially on the left (i.e., for small
τ2j ), which leads to the exp(−a12sD) term.

A.2.2 Lemma 2

Lemma 2 [Ghosal and van der Vaart [2007]]

lim
n→∞

Πn ({f : ∥f − f∗∥1 > Mϵn} |x1:D) → 0 almost surely under f∗

whenever there exist positive constants c1, c2, c3, c4, a sequence of positive numbers (ϵ̃n)n≥1 with
ϵ̃n ≤ ϵn and limn→∞ nϵ̃2n = ∞, and a sequence of compact subsets (Fn)n≥1 of probability densities
satisfying

logN(ϵn,Fn, ρ) ≤ c1nϵ
2
n, (21)

Π(Fc
n) ≤ c3e

−(c2+4)nϵ̃2n , (22)

Π{f : K(f∗, ϵ̃n) ≤ ϵ̃2n, } ≥ c4e
−c2nϵ̃

2
n . (23)

then the posterior contracts at the rate ϵn around f0 in the metric ρ.

Here, K(f∗, ϵ) is the Kullback–Leibler ball around f∗ of size ϵ̃n, defined as

K(f∗, ϵ) =

{
f :

∫
f∗ log

(
f∗

f

)
< ϵ2,

∫
f∗ log2

(
f∗

f

)
< ϵ2

}
.

N(ϵn,Fn, ρ) is the ϵn-covering number of Fn under metric ρ.

A.2.3 Proof of Theorem 1

Now we prove Theorem 1 by verifying conditions (21), (22) and (23), respectively. We construct a
sieve

Q(a,M, J, ϵ) ≜

{
fDPG,Σ :

DPG =
∑∞

j=1 wjδξj(x1:D), ξj(x1:D) ∈ [−a, a]D for j < J ;∑
j>J wj < ϵ, σ2

0 ≤ eigj(Σ) < σ2
0

(
1 + σ2

D

)M
, ∀j = 1, . . . , D

}
.

Then, according to [Shen et al., 2013, Theorem 5] and Lemma 1, conditions (21) and (22) hold for
ϵn = n−γ′

(log n)t, ϵ̃n = n−γ′
(log n)t0 , J = ⌊ nϵ2n

logn⌋, M = aa2 , when fixing γ′ ∈ (0, 1/2) and
t > t0 ≥ D+1

2 .
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To verify condition (23), we follow the prior thickness argument in Shen et al. [2013, Theorem 4].
Under Assumption 1, the true density f∗ belongs to a locally Hölder smooth class with exponential
tail decay. Theorem 4 guarantees that there exists a discrete mixture density pF,Σ such that both the
Kullback–Leibler divergence and its second moment between f∗ and pF,Σ are bounded by Cϵ̃2n for
some constant C > 0. Moreover, the Dirichlet process prior assigns exponentially non-negligible
mass to such mixtures via a partitioning and stick-breaking construction. The prior on the covariance
matrix Σ, as discussed in Lemma 1, also places sufficient mass on the eigenvalue shell corresponding
to the mixture approximation. Combining these results, let ϵ̃2n = n−α/(2α+D)(log n)t, for any
t ≥ D(1+1/γ+1/α)+1

2+D+α , according to Shen et al. [2013, Theorem 4], we obtain

Π

{
f : KL(f∗, f) ≤ ϵ̃2n, Varf∗ log

f∗

f
≤ ϵ̃2n

}
≥ c4e

−c2nϵ̃
2
n ,

for some constants c2, c4 > 0, thus verifying condition (23). Finally, according to Lemma (2), the
proof is concluded.

B Gibbs Sampling Algorithm

B.1 Prior Specification

We adopt a fully-Bayesian treatment for hyperparameters Θ = {β, ν, τ, σ2, ϕ} = {Θ(1),Θ(2)},
where the fist-layer parameters Θ(1) = {β, τ} and the second-layer parameters Θ(2) = {ν, σ2, ϕ}.
Specifically, the priors on hyperparameters Θ are given by

β, τ2 ∼ Np(β0,Σβ)× IGamma(aτ , bτ ), (24)

σ2 ∼ IGamma(aσ, bσ), (25)

ϕ ∼ U([0, bϕ]
d), (26)

ν ∼ Gamma(aν , bν), (27)
where β has a Gaussian prior, τ2 and σ2 have inverse Gamma prior, ϕ has a uniform prior on (0, bϕ]
and ν has a Gamma prior.

Selection of Hyperparameters in the Prior we set aτ = aσ = 2 and thus the mean of the prior is
bτ and bσ. Therefore, prior information about the variance (for example, a rough estimation of the
variance and the mean) can be incorporated.

ϕ: ϕ has a uniform prior on (0, bϕ]. If the distance between two locations x1 and x2, ∥x1 − x2∥ > 3
ϕ ,

their correlation will decrease to less than 0.05. Therefore, we set 3
bϕ

= d max∥x1 − x2∥ with a
small d (e.g. 0.01).

β0 and Σβ : we set β0 = [1, · · · , 1] ∈ Rd and set Σβ = Id×d.

B.2 Gibbs Sampling

To perform posterior inference under our fully-Bayesian model, we employ the Gibbs sampling
algorithm. Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method designed to sample
from a complex joint posterior distribution by iteratively sampling from each of its full conditional
distributions. This approach is particularly well-suited for our hierarchical ∞-GP model, where
the full conditionals of most parameters have closed-form expressions or can be easily computed.
To ensure computational tractability, we adopt a truncation approximation to the stick-breaking
representation of the Dirichlet process. Specifically, we fix the number of mixture components to a
finite value L.
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Algorithm 2 Gibbs Sampling for {Θ, ξ1:n(x1:n)}
1: Input: Initialization value of {Θ, ξ1:n(x1:n)}, data Hn, MCMC iteration number B, truncation

number L
2: Output: Samples of [Θ, ξ1:n(x1:n)|Hn], including ξ1:n(x1:n), (w1, . . . , wL), (z1, . . . , zn), and

Θ = {β, ν, τ, σ2, ϕ}.
3: for each iteration b = 1, . . . , B do
4: Step 1: Sampling ξ1:n(x1:n):
5: for each l = 1, . . . , L do
6: Compute Il(z1:n) = diag(I{z1=l}, . . . , I{zn=l})

7: Sample ξl(x1:n) from the distribution ξl(x1:n) ∼ N
(

1
τ2Λ

lIl
(
y(x1:n)− x⊤1:nβ

)
,Λl
)
,

where Λl =
(
Σ−1

0 + τ−2Il
)−1

and Σ0 = σ2H(ϕ)
8: end for
9: Step 2: Sampling Weights (w1, . . . , wL):

10: for each l = 1, . . . , L do
11: Draw Vl ∼ Beta(1 +Ml, ν +

∑L
j=l+1Mj), where Mj = #{i : zi = j}

12: Compute weights by w1 = V1, wl = (1 − V1)(1 − V2) . . . (1 − Vl−1)Vl, wL = 1 −∑L−1
l=1 wl

13: end for
14: Step 3: Sampling Latent Labels (z1, . . . , zn):
15: for each observation xi do
16: Sample zi from {1, . . . , L} with probabilities proportional to

P (zi = j) ∝ wj exp

{
− 1

2τ2
(
y(xi)− x⊤i β − ξj(xi)

)2}
.

17: end for
18: Step 4: Sampling Hyper-Parameters Θ = {β, ν, τ, σ2, ϕ}:
19: (4a) Sampling ν: ν ∼ Gamma(aν + n− 1, bν − log(wL))
20: (4b) Sampling β:

β ∼ N (βn
0 ,Σ

n
β)

where Σn
β =

(
Σ−1

β + τ−2x⊤1:nx1:n

)−1

, βn
0 = Σn

β

(
Σ−1

β β0 + τ−2X⊤
1:nȳ(x1:n)

)
and ȳ(xi) =

y(xi)− ξ(zi)(xi).
21: (4c) Sampling τ2:

τ2 ∼ InvGamma(anτ , b
n
τ )

where anτ = aτ + n
2 , bnτ = bτ + 1

2

∑n
i=1

(
ȳ(xi)− x⊤i β

)2
.

22: (4d) Sampling σ2:
σ2 ∼ IGamma(anσ, b

n
σ)

where anσ = aσ + nL
2 , bnσ = bσ + 1

2

∑L
l=1 (ξl(x1:n))

⊤
ρ−1
ϕ (x1:n, x1:n)ξl(x1:n).

23: (4e) Sampling ϕ: ϕ is sampled from a grid of values {ϕ1, ϕ2, . . . , ϕM} with probabilities
proportional to

P (ϕm) ∝ 1

[det(ρϕm
(x1:n, x1:n))]

L/2
exp

(
− 1

2σ2

L∑
l=1

(ξl(x1:n))
⊤
ρ−1
ϕm

(x1:n, x1:n)ξl(x1:n)

)
.

24: end for
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C Experimental Details, More Experiment Results and Ablations

C.1 More Experiment Results

In this subsection, we provide additional plots that visualize the evolution of instant regret over time
for all benchmark tasks, where instant regret is defined as the gap between the reward obtained and
the global optimum. These plots offer a clearer comparison of the performance dynamics across
different algorithms.

C.1.1 Synthetic Benchmarks

Figure 5: Cumulative regret in synthetic benchmarks

Figure 5 shows the evolution of instant regret over time across various synthetic benchmark functions.
The compared methods—TS, UCB, EI, and KG—are all implemented using standard Gaussian
Process surrogate models. Overall, we observe that ∞-GP-TS achieves the best performance in
settings with nonstationary or heavy-tailed reward structures, significantly outperforming classical
GP-based approaches. In the early iterations (e.g., the first 10 steps), the performance of ∞-GP-TS is
initially lower due to its stronger exploration behavior. However, it quickly adapts and achieves lower
regret as the optimization progresses, demonstrating its ability to efficiently learn complex reward
landscapes.

C.1.2 Real-world Benchmark

Figure 6 shows the runtime performance (instant regret) on three real-world benchmarks: Portfolio,
HPOBench, and NASBench. Across all tasks, NBO consistently outperforms other methods, achiev-
ing faster convergence and lower regret. In the Portfolio task, NBO quickly surpasses all baselines;
in HPOBench and NASBench, it maintains a clear lead throughout the optimization process. These
results highlight NBO’s strong generalization ability and its effectiveness in complex, real-world
settings.

C.2 More Experiment Details

In this subsection, we present more experiment details, including the synthetic benchmarks, real-world
benchmarks and the prompt optimization problem.

18



Figure 6: Cumulative regret in real-world benchmarks

C.2.1 Benchmark Function Definitions

We consider three popular synthetic test functions commonly used in global optimization benchmarks:
the Ackley function, the Rosenbrock function, and the Styblinski–Tang (StybTang) function. These
functions are defined over a d-dimensional input vector x = (x1, . . . , xd) ∈ Rd.

Ackley Function.

fAckley(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1),

with default parameters a = 20, b = 0.2, and c = 2π.

Rosenbrock Function.

fRosenbrock(x) =

d−1∑
i=1

[
100(xi+1 − x2i )

2 + (xi − 1)2
]
.

Styblinski–Tang Function.

fST(x) =
1

2

d∑
i=1

(
x4i − 16x2i + 5xi

)
.

To introduce more challenging and realistic scenarios, we further consider the following two variants
of these base functions: Heavy-tailed (HT) variant: We add random noise to the function outputs,
where the noise is sampled from a Weibull distribution. Non-stationary (NS) variant: We modulate
each base function by a spatially-varying multiplicative factor:

fNS(x) = (1 + α sin(x)ex) · f(x),
where α > 0 controls the magnitude of non-stationarity. This formulation introduces location-
dependent amplitude variations, breaking the stationarity assumption often made in kernel-based
methods.

C.2.2 Real-world Benchmark Details

Portfolio [Cakmak et al., 2020] We tune three hyperparameters of a trading strategy: risk aversion
[0.1, 1000], trade aversion [5, 8], and holding cost multiplier [0.1, 100]. The environment includes
two random variables: bid-ask spread ∼ U [10−4, 10−2] and borrowing cost ∼ U [10−4, 10−3]. The
objective is to maximize the VaR0.8 of the average daily return over four years. To reduce cost, we
build a GP surrogate model using 3000 evaluations selected via Sobol sampling, as in Cakmak et al.
[2020].

HPOBench [Eggensperger et al., 2021] provides standard hyperparameter tuning tasks for ML
models, and we use the MLP task in the HPOBench in our experiment.
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NASBench201 [Dong and Yang, 2020] is a neural network search task on CIFAR-100. Each
architecture is represented by a 4-node directed acyclic graph with operations selected from a
fixed set of 5 choices (e.g., conv, skip, zero). The total search space includes 15,625 architectures.
Each architecture has been trained multiple times with fixed hyperparameters and its validation/test
accuracy and training cost are pre-recorded. For our experiments, we query the test accuracy of a
selected architecture based on its index as the ground-truth objective.

C.2.3 Prompt Optimization Experiment Details

We conduct prefix prompt optimization experiments on seven language understanding datasets.
All experiments are performed using the Alpaca-7B model [Taori et al., 2023], which remains
frozen throughout. The decision variable is a continuous prefix embedding prepended to each input;
its quality is evaluated based on downstream task performance (e.g., accuracy). Due to the high
dimensionality of the prompt embedding space, we apply Uniform Manifold Approximation and
Projection (UMAP) [McInnes et al., 2018] to project the original space into a lower-dimensional
latent space.

• SST-2 and SST-5 are sentiment classification tasks based on the Stanford Sentiment
Treebank [Socher et al., 2013]. SST-2 is a binary classification task where each sentence
is labeled as either positive or negative. SST-5 is a more challenging 5-class variant with
labels: very negative, negative, neutral, positive, and very positive. Both tasks are derived
from movie review sentences and are standard benchmarks for evaluating natural language
understanding.

• MR [Pang and Lee, 2005] is a sentiment classification dataset composed of full movie
reviews with hidden star ratings. The authors constructed both three-class (negative, neutral,
positive) and four-class versions of the dataset by removing explicit rating indicators and
grouping documents by rating level.

• CR [Hu and Liu, 2004] is a sentiment classification dataset constructed from customer
reviews of various electronic products collected from Amazon and CNET. Each review is
labeled as either positive or negative at the sentence level.

• AG’s News [Zhang et al., 2015] is a topic classification dataset consisting of news articles
categorized into 4 classes: World, Sports, Business, and Science/Technology. Each sample
includes the article’s title and a short description. The dataset contains 120,000 training
samples and 7,600 test samples, and is commonly used to benchmark text classification
models. We treat this as a 4-class supervised learning task using the full text (title +
description) as input.

• TREC [Voorhees and Tice, 2000] is a question classification dataset designed for evaluating
systems that categorize natural language questions into broad types. The standard setup
includes 6 coarse-grained classes (e.g., Person, Location, Numeric) and 50 fine-grained
subclasses. We use the 6-way classification task with 5,452 training and 500 test examples.

• Subj [Pang and Lee, 2004] is a sentence-level subjectivity classification dataset consisting
of 10,000 sentences: 5,000 subjective snippets from movie review sites and 5,000 objective
sentences from plot summaries on IMDb. Each sentence is labeled as either subjective or
objective.

GP-TS GP-UCB GP-EI GP-KG ∞-GP-TS

Time(second) 2773 2649 3017 3388 2813
Table 2: Computation time (s) for five GP-based algorithms.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the abstract and introduction clearly state the contributions and scope of this
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: See Assumption 1 and Theorem 1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the experiment is provided in Section 6
and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All datasets used are publicly available. Code, configuration files, and instruc-
tions for reproducing experiments will be released publicly upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 6 and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 6, Figure 2 and Figure 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 6 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is a theoretical study focused on the development and analysis of
BO algorithms. Therefore, we believe this research does not raise direct societal impact
concerns.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any pretrained models, scraped datasets, or
generative components that pose a risk of misuse or dual-use. The work is theoretical and
does not involve the development or deployment of models or data with potential for harm.
Therefore, safeguards for responsible release are not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets used in this work, including publicly available datasets
and code libraries, are properly credited in the main paper
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release a new codebase to support the implementation of our proposed
method. The code is fully documented and includes usage instructions, dependencies, and
example scripts to reproduce all main results. An anonymized version of the code is included
in the supplementary materials for review.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects, crowdsourcing, or any form of
user study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not use LLM as part of its core methods, experiments, or
contributions. LLMs were not involved in any component that affects the originality.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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