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Abstract

Detecting rumors on social media has become
a critical research challenge. Although ex-
isting multimodal rumor detection methods
have achieved promising results, they still suf-
fer from insufficient utilization of modality-
specific information and inadequate cross-
modal interaction. To address these limitations,
we propose a novel Cross-Modal Consistency
Enhancement (CME) model for multimodal ru-
mor detection. It incorporates textual, visual,
and propagation modalities into a unified frame-
work and transforms each modality into a graph.
The uncertainties of the three modalities are
utilized to guide modality reconstruction. We
design a modality alignment module, including
feature alignment and structure alignment to
improve the consistency of cross-modal repre-
sentations. In the process of feature alignment,
the aligned modality representations are used
as a teacher in a graph-guided self-distillation
module to supervise each unimodal student rep-
resentation. Structure alignment is introduced
to model structural similarities across modali-
ties. Extensive experiments conducted on two
public real-world datasets demonstrate that our
CME model achieves significant improvements
compared with the state-of-the-art baselines.

1 Introduction

With the proliferation of social media platforms,
online information dissemination has become
faster and more pervasive than ever before. The
widespread of social media has greatly enhanced
public communication and information access.
However, it also brings significant challenges.
Among them, the rapid spread of rumors stands
out as a critical concern, which threatens public
trust and undermines societal stability. Therefore,
there is a growing need for effective approaches to
detect and mitigate the dissemination of rumors.
Early approaches to rumor detection predomi-
nantly relied on manually crafted features (Castillo
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Figure 1: An example of multimodal encoding distri-
bution visualization. The textual, visual, and propa-
gation structure embeddings are projected into a two-
dimensional space using t-SNE, illustrating their distri-
butional differences in the embedding space.

et al., 2011; Yang et al., 2012; Feng et al., 2012;
Kwon et al., 2013). However, such methods are
inherently limited by the quality of the handcrafted
features. Recently, studies have leveraged deep
learning techniques to automatically learn high-
level feature representations (Ma et al., 2016, 2018;
Liu and Wu, 2018; Li et al., 2019).

With the increasing diversification of rumor
propagation, textual, visual, and multimodal forms
that combine both attract greater attention. A se-
ries of multimodal rumor detection approaches
have been proposed to identify and analyze rumors
across different modalities (Khattar et al., 2019;
Chen et al., 2022; Zheng et al., 2022; Chen et al.,
2025). (Qian et al., 2021) highlight the importance
of the textual modality by leveraging the textual
semantic representations. Several studies have em-
phasized the crucial role of image representations
in multimodal rumor detection. (Zhou et al., 2020)
convert images into textual descriptions. (Lao et al.,
2024) extract frequency-domain information from
images to enrich visual representations. In addition
to focusing on individual modalities, some stud-
ies have also strengthened cross-modal interactions
and information fusion. (Ying et al., 2023) propose



multi-gate mixture-of-expert networks for feature
refinement and fusion. (Liu et al., 2025) employ
different fusion strategies to diverse modality in-
teraction scenarios to achieve a more robust effect
for multimodal fake news detection. However, the
mentioned approaches mainly concentrate on inte-
grating textual and visual data but neglect the social
context that arises during the spread of rumors.

In real scenarios, rumors frequently circulate
via user activities like reposting, commenting, and
other forms of engagement on social media plat-
forms. These social interactions reveal the funda-
mental propagation patterns, which are essential for
enhancing the performance of multimodal rumor
detection. Wu et al. (2023) incorporate comments
in addition to text and images to model the depen-
dencies among multimodal features. Zheng et al.
(2022) integrate textual, visual, and social graph
in a unified framework. Chen et al. (2025) utilize
cross-modal and propagation network contrastive
learning. The aforementioned methods leverage
the modalities of the textual, visual, and propaga-
tion structure to enhance representational capacity.
However, they either process each modality inde-
pendently, resulting in significant distributional dis-
crepancies that hinder effective fusion, or fail to
model semantic collaboration and complementarity
across modalities, thereby limiting the exploitation
of cross-modal interactions. As shown in Figure 1,
the representations of textual, visual, and propa-
gation structure encodings are clearly distributed
in distinct regions, which reveals a significant in-
consistency across modalities. This distributional
discrepancy highlights a core challenge in multi-
modal rumor detection.

To address these challenges, we propose a novel
Cross-Modal Consistency Enhancement (CME)
model which integrates textual, visual, and propa-
gation graph modalities into a unified framework
for multimodal rumor detection. First, each modal-
ity is transformed into a graph, and the correspond-
ing graph representations are obtained via graph
encoders. The uncertainties of the three modalities
are then estimated to guide the reconstruction of
the modality, and the reconstruction of unreliable
modality features is considered. Furthermore, we
designed a modality alignment module, including
feature alignment and structure alignment to en-
hance the cross-modal representations. To achieve
feature alignment, the completed modality repre-
sentations are fused into a unified global represen-
tation, which is then used as a teacher in a graph-

guided self-distillation module to supervise each
unimodal student representation. Then we intro-
duce a structure alignment mechanism to model
graph-level structural similarities across modalities.
Finally, we utilize the fused student representations
to enhance the effectiveness of the proposed model.
The main contributions of this paper are as follows:

* We propose a modality reconstruction strategy
guided by uncertainty estimation, which can
improve the model’s ability to handle unreli-
able modality features.

* We propose a modality alignment module, in
which a graph-guided self-distillation com-
ponent achieves feature alignment and incor-
porates a structure alignment mechanism to
enhance cross-modal consistency.

* We propose a unified multimodal framework
based on graphs, which represents text, im-
ages, and propagation structures within a
structurally consistent space.

* We conduct extensive experiments on two real-
world datasets to demonstrate the effective-
ness of the proposed model in rumor detec-
tion.

2 Related Work

2.1 Unimodal Rumor Detection

Many unimodal approaches to rumor detection
have been proposed, including methods based on
text (Ma et al., 2019; Nguyen et al., 2020b; Dou
etal., 2021; Dun et al., 2021; Yang et al., 2022), im-
ages (Jin et al., 2016; Qi et al., 2019), and propaga-
tion structures (He et al., 2021; Wei et al., 2021; Ma
etal., 2022; Min et al., 2022; Liu et al., 2023). Text-
based approaches focus on the content of the text
and detect rumors by leveraging features such as
linguistic patterns and semantic information. Xu et
al. (2022) explored textual semantics by modeling
text as graph-structured data to capture long-range
semantic dependencies. Liao et al. (2023) pro-
posed evidence-enhanced method, which models
the human process of reading news and assessing
its veracity through multi-step retrieval. Image-
based methods typically rely on neural networks
to extract visual features and learn image represen-
tations. Such purely visual approaches often suf-
fer from limited model performance. Propagation
structures-based methods model the spread of event
to simulate the dissemination of information within



social networks. Bian et al. (2020) modeled the
bidirectional propagation patterns in rumor spread
by capturing both top-down and bottom-up struc-
tural patterns. Sun et al. (2022) proposed a graph
adversarial contrastive learning method to learn the
robust representations. Tao et al. (2024) devel-
oped fine-grained semantic learning by construct-
ing global semantic information from entire graph
and local semantic representations from parent-
child nodes. Each modality has its own advantages.
However, relying on a single modality often limits
the model’s capacity. This limitation has driven
researchers to develop rumor detection methods
that integrate multiple modalities.

2.2 Multimodal Rumor Detection

In recent years, multimodal information has been
extensively explored to enhance rumor detection
(Khattar et al., 2019; Singhal et al., 2019, 2020;
Chen et al., 2022; Zheng et al., 2022; Chen et al.,
2025). These methods primarily focus on the tex-
tual and visual content of the information. Sev-
eral studies (Zhou et al., 2020; Qian et al., 2021)
modeled the textual content by using the seman-
tic representations and integrating them into multi-
modal frameworks. Some works have conducted
in-depth image research by converting images into
textual descriptions for visual information process-
ing (Zhou et al., 2020). Works have further in-
vestigated the impact of multi-scale image inputs
on model performance (Wang et al., 2024) and ex-
plored the role of frequency-based visual features
in multimodal rumor detection (Wu et al., 2021;
Lao et al., 2024). In addition to enhancing fea-
tures within single modalities, some works (Ying
et al., 2023; Liu et al., 2025) have also strength-
ened cross-modal interactions and fusion, under-
scoring the importance of complementary informa-
tion across modalities. Wang et al. (2018) have
introduced event discrimination as an auxiliary task
to support detection. However, the aforementioned
methods primarily focus on the fusion of textual
and visual information, while overlooking the so-
cial contextual information generated during the
propagation of rumors. Wu et al. (2023) incor-
porated user comments alongside text and images
based on human reading habits, and proposed a
cognition-aware fusion method to model the depen-
dencies among multimodal features. Zheng et al.
(2022) integrated textual, visual, and social graph
features in a unified framework to achieve better
complement and alignment relationships between

different modalities. Chen et al. (2025) utilized in-
trinsic features from text, images, and propagation
networks, capturing intermodal relationships for
accurate fake news detection. Compared with prior
multimodal approaches, the key difference in our
work lies in the emphasis on modality reconstruc-
tion and alignment, which enhances the model’s
cross-modal representation capabilities.

3 Methodology
3.1 Problem Definition

The rumor detection task can be defined as a bi-
nary classification problem. Formally, let D =
{D1,Da,...,Dy,} be a rumor detection dataset,
where D; is the i-th event and n is the number
of events. Each event D = (¢,v,p), where t
denotes the text, and v denotes the image. p =
{Po:P1:- -+, Py, -1} is the propagation structure.
Py 18 the source post, and other p; represents the
j-th responsive post. |V, | is the number of posts in
the propagation structure. The propagation graph
of event D is G), = (V},, Ay, X,,), where V), refers
to the set of post nodes. A, € {0, Ve lxIVel rep-
resents the adjacency matrix to describe the rela-
tionships between nodes. X, € RIV»I*%4 denotes
the node feature matrix, where d is the node em-
bedding dimension.

Rumor detection aims to learn a function f :
D — Y that classifies each event into one of the cat-
egories Y € {F, T} (i.e., Rumor or Non-Rumor).

3.2 Overview

In this section, we propose a novel Cross-Modal
Consistency Enhancement (CME) model for mul-
timodal rumor detection tasks. As illustrated in
Figure 2, we will provide a detailed explanation,
including Multimodal Feature Extractor, Modality
Reconstruction, and Modality Alignment.

3.3 Multimodal Feature Extractor
3.3.1 Textual Feature Extractor.

The text of the event D is represented as ¢ =
{t1,t2,...,t,}, where n denotes the number of
words in the text and t; denotes the 7-th word. In
order to encode the words and their contextual se-
mantic information, we use BERT (Nguyen et al.,
2020a) as the textual feature extractor to obtain the
text embedding X; = {e,, e, - . -, €y, }, Where ey,
is the transformed feature of t;.

To represent text information in a structured
form, we transform the text into a text graph. We
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Figure 2: Overview of the proposed CME framework.

define the word set as node set V;, and X; serves
as the feature matrix. The edges are constructed
based on the adjacency relationships of words. Let
(i, 7) represent an adjacent pair of words. The edge
set & in the text graph is defined as:

E={@lli-jl=147eVey (1)

Based on this, we construct the adjacency matrix
A; as follows:

A = {1 if () €& .

0 otherwise

Finally, we construct the text graph G; =
<‘/t7At7Xt>'

3.3.2 Visual Feature Extractor.

The image of the event D is represented as v. We
adopt a pretrained ResNet50 (He et al., 2016) as the
visual encoder and remove its final global average
pooling and fully connected layers to preserve the
spatial structure of intermediate features. The re-
sulting output is a convolutional feature map, which
is denoted as 1.

I = ResNet50(v) 3)

where I € Re*"*% ¢ is the number of channels,
h and w are the spatial dimensions of the feature
output. Then the feature output I is reshaped into
a set of m = h x w region-level feature vectors,
each with dimension ¢, resulting in a node feature
matrix X, € R™x¢,

To represent visual information in a structured
form, we construct a region-level image graph for
each text-associated image. We define the region-
level feature set as node set V,,, and X, serves as
the feature matrix. To construct the graph structure,
we use the K-Nearest Neighbors (KNN) algorithm
in the feature space. Each node connects to its k
nearest neighbors based on cosine similarity in the
feature space.

N (i) = KNN(zi, Xy, k) 4)

where z; is the feature vector of the i-th node. N (4)
is the set of the k nearest neighbors for z;. Then
edges are constructed based on each neighbor pair
between node ¢ and its nearest neighbors N/ (7). The
edge set £, in the image graph is defined as:

Based on this, we construct the adjacency matrix
A, as follows:

[Av]ij:{1 if (i.5) €&

0 otherwise

(6)

Finally, we construct the image graph G, =
(Vi Ay, Xo).

3.3.3 Graph Representation.

To effectively model and exploit the structural char-
acteristics of each modality, we extract modality-
specific graph representations.



Specifically, the text graph is fed into a Graph
Attention Network (GAT) (Velickovié et al., 2017)
to capture structure-aware representations.

Hi = GAT(Gy) (7

where H; represents the node representations.
Then we use mean-pooling operators (MEAN) to
aggregate the information of H; and pass it through
a fully connected layer.

hi = W(MEAN (H,)) + b (8)

where W and b are learned parameters. h; is the
graph representation of textual modality.

Similarly, for the visual modality and propaga-
tion graph modality, we obtain h, and h,, respec-
tively.

3.4 Modality Reconstruction

To address the incomplete or unreliable representa-
tion of certain modalities, we propose a Modality
Reconstruction (MR) module. MR adaptively re-
constructs weak modalities using complementary
information from other modalities.

Specifically, we first model the uncertainty of
each modality using a fully connected Layer. Given
the modality graph representation h,,,, we estimate
the standard deviation s,, of the modality as:

Sm = exp(Wshy, + bs) )

where m € {t,v,p}. Wy and b, are learned param-
eters. The exponential function ensures positivity
of the standard deviation.

Then we transform these uncertainties s,,, into
confidence weights.

wWm = exp(—sm) (10)

Wm
iWi
where the exponential function ensures that the
predicted uncertainty is strictly positive.

Then we utilize the normalized weights to guide
cross-modal reconstruction.

w

an

_hy+h
Mt = ft(htawt p) 12)
My = fulhe, ") (13)
~ hy+ he
My = fo(hy, Gp———2) (14)

2

where fin (Riarget Psource) is @ modality-specific
gating network. For each target modality Asqrget,
the reconstruction is computed as a combination
with the source modalities hgoyrce-

Jgate = U(Wgatehtarget + bgate) (15)

Mm = ggate . htarget + (1 - ggate) . hsource (16)

where Wyu¢e and byt are learned parameters.
Finally, the reconstructed features are concate-

nated and projected via a linear layer to obtain a

modality-enhanced representation.

M = concat(My, M,, Mp) (17)

M=WM+1b (18)

where M and b are learned parameters.

3.5 Modality Alignment
3.5.1 Feature Alignment

To enhance cross-modal feature representations in
multimodal rumor detection, we propose a Feature
Alignment (FA) module. Specifically, we employ a
graph-guided self-distillation method tailored for
graph representations. The self-distillation method
utilized a global fused graph representation as the
teacher, while each modality-specific graph (i.e.,
text, image, propagation graph) serves as each
student. This design ensures that each unimodal
branch benefits from the semantic guidance of the
global multimodal context.

Specifically, we implement two projectors as
teacher projector and student projector. The projec-
tions are defined as follows:

FSm = fstudent(hm)

FTm = fteacher(M)

where fsiudent and freacher are the student projec-
tor and teacher projector, here we use linear layer
as both the projectors. The student projector up-
dated via backpropagation. The teacher projector
updated using exponential moving average (EMA)
of the student parameters to stabilize the distillation
targets. The process are updated iteratively as:

(19)
(20)

Hteacher A Hteacher + (1 - ,U) : estudent (21)

where Oycqcner are the teacher projector parameters,
Ostudent are the student projector parameters.  is
the momentum coefficient.

To align the feature distributions of student and
teacher representations, we adopt a KL-divergence



loss as self-distillation loss between the student
output and the teacher output:

Lea= Y, Lrxr(FSp)|[FTm)
me{t,v,p}

(22)

During inference, we employ the student pro-
jector to obtain the feature representations of each
student modality.

3.5.2 Structure Alignment

To explicitly capture structural correlations across
different modalities, we design a cross-modal Struc-
ture Alignment (SA) module. Given the graph
representation of each modality, we compute the
pairwise cross-modal structural similarity matrices.

htth
S = — (23)
[[hel2lho]2
hohy,"
Sy = Tt (24)
Aol l2][pll2
hphy”
Sp= >t (25)
P 2l |2
where || - ||2 denotes the La-norm.

Each student representation is then enhanced
via structure alignment, which incorporates cross-
modal structure guidance.

Zy =7 - FSy + (1 =) - (S¢- FSy)  (26)
Zv:7v'FSv+<1_7v)'(Sv'FSU) (27)
Zp:’yp-FSp—l-(l—’yp)~(5p-FSp) (28)

where 74, v, and +y, are learned parameters.

Finally, we concatenate the enhanced modal-
ity representations Z;, Z, and Z, to obtain the
structure-aware representation.

Z = concat(Zy, Zy, Zy) (29)

3.6 Training Objective

To calculate the labels of the rumors, we apply a
fully connected layer followed by a softmax layer,

g = softmax(W;Z + by) (30)

where ¢ is the predicted probability distribution.
W; and by are weight and bias parameters.

For the binary classification task, we aim to min-
imize the cross-entropy loss £p, which defined

as:
V|

Lp=—Y_ yilogj; 31)

Statistics PHEME Weibo
# Non-Rumors 1428 877
# Rumors 590 590
# Images 2018 1467
# Posts 34846 336261

Table 1: Statistics of the datasets.

where y; denotes ground-truth label for the i-th
event.

Our training object contains a cross-entropy loss
and a self-distillation loss. Finally, we aim at mini-
mizing the loss as follows.

L=Lp+alpa (32)

where « is the trade-off parameters.

4 Experiments

4.1 Datasets

We evaluate the proposed model on two real-world
datasets: PHEME (Zubiaga et al., 2017) and Weibo
(Song et al., 2019). PHEME is an English dataset
collected based on five breaking news from Twitter.
Weibo is a Chinese dataset collected from the so-
cial platform Weibo. Each event in these datasets
consists of text, image, and corresponding respon-
sive posts. Both datasets are formulated as binary
classification tasks, where each event is annotated
as either a Rumor (F) or a Non-Rumor (T). Table 1
shows the statistics of the datasets.

4.2 Implementation Details

We use the pre-trained BERT (Nguyen et al.,
2020a) to extract textual features and the pre-
trained ResNet50 (He et al., 2016) to extract visual
features. The proposed model is implemented us-
ing PyTorch (Ketkar et al., 2021). Adam algorithm
(Kingma and Ba, 2014) is used to optimize the pa-
rameters. The model is trained for 150 epochs with
a learning rate of 0.0005. The dimension of hidden
layer is set to 128 and the batch size is set to 128.
The trade-off parameter « is set to 0.1. We split
the datasets for training and testing with a ratio of
8:2. To ensure fairness, we employ 5-fold cross-
validation throughout all experiments and report
the average results. The Accuracy (Acc.), Preci-
sion (Prec.), Recall (Rec.), and F1-score (F1) are
adopted as evaluation metrics.



Method | Class Acc. Pre}:.HEMlic. F1 Ace. Prec‘.}V elbORec. F1
MVAE | p 08081 (s ososs 0wtz | 077 ogias ossa 08352
Spofake || 01955 os 0soin osels | O osass 090i0 08962
Spotfaker || 0308 (Gl 0o omesr | 0555 osemo ootz 0903
HMCAN | 0829 (it ool o5 | O%%7 gson 0os 0912
CAFE | x| 08206 (iioe Gonge osrt | %% 0ous o1 091er
MEAN | 0829 s oo osmo | O gorso 09143 0917
MRCL | q | 08170 Guges oo om0 | O ooume 09259 09ne2
CME | 3 |08 Gl gomse ostto | % agmr osser 0963

Table 2: Rumor detection results on two datasets. Abbrev.: Rumor (F), Non-Rumor (T).

4.3 Baselines

We compare the proposed model with the following
baselines:

(1) MVAE (Khattar et al., 2019) uses the bimodal
variational autoencoder to classify posts for multi-
modal fake news detection.

(2) SpotFake (Singhal et al., 2019) utilizes the pre-
trained models to exploit both the textual and visual
features for detecting fake news.

(3) SpotFake+ (Singhal et al., 2020) leverages
transfer learning to capture contextual represen-
tation for multimodal fake news detection.

(4) HMCAN (Qian et al., 2021) jointly models the
multimodal context and the hierarchical semantics
in a unified framework.

(5) CAFE (Chen et al.,, 2022) propose an
ambiguity-aware fake news detection method to
capture the cross-modal correlations.

(6) MFAN (Zheng et al., 2022) integrates textual,
visual, and social graph features in a unified frame-
work to detect multimodal rumors.

(7) MFCL (Chen et al., 2025) utilizes pretrained
strategy and text, images, and propagation net-
works for multimodal fake news detection.

4.4 Experimental Results

Table 2 shows the results of rumor detection on
two public real-world datasets. The experimental
results demonstrate that the proposed CME model
outperforms other baselines. MVAE lacks the ca-

pacity to model deep semantic relationships be-
tween textual and visual features, which makes it
ineffective in capturing complex cross-modal se-
mantic interactions. SpotFake heavily relies on
pretrained models to extract textual and visual fea-
tures but lacks effective interaction and alignment
between the two modalities, thereby limiting the
model’s representational capacity. SpotFake+ does
not explicitly model or align deep cross-modal in-
formation, which results in insufficient multimodal
fusion and ultimately hinders model performance.
The hierarchical encoding network of HMCAN pro-
vides layered semantics for text, but the insufficient
exploration of features in image results in inade-
quate interaction of modality information. CAFE
relies on cross-modal ambiguity learning, which
may fail to accurately capture complex modality
conflicts. However, the aforementioned models
only utilize text and image modalities and lack the
ability to model propagation paths and structural
information, which limits their detection capabil-
ities. MFAN models the text, image, and social
graph modalities. In particular, insufficient model-
ing of the social propagation path can negatively
impact the model’s performance. MFCL relies
on the pretrained propagation network and image-
text matching augmentation, while the contrastive
learning strategy also plays a crucial role in deter-
mining the model’s performance. The proposed
model CME leverages graph-based representations
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Figure 3: T-SNE visualization of the extracted features on the PHEME test set. Dots of the same color correspond

to the same class label.

PHEME Weibo
Model —CCT ¥ | Acc. | FI
CME | 0.8713 | 0.7675 | 0.9568 | 0.9479
wioT | 0.8476 | 0.7251 | 0.9422 | 0.9276
wioV | 0.8499 | 0.7365 | 0.9503 | 0.9381
wioP | 0.8629 | 0.7641 | 0.9240 | 0.9090
w/o MR | 0.8653 | 0.7627 | 0.9492 | 0.9375
w/o FA | 0.8524 | 0.7325 | 0.9311 | 0.9156
w/o SA | 0.8606 | 0.7453 | 0.9490 | 0.9392

Table 3: Results of ablation study on two datasets.

for each modality, enabling the capture of rich struc-
tural relationships through graph encoders. By in-
corporating an uncertainty-based modality recon-
struction strategy, the model handles unreliable
modality features, ensuring effective information
reconstruction. The graph-guided self-distillation
approach allows each unimodal student model to
be supervised by a unified global teacher represen-
tation, improving the transfer of modality informa-
tion. The structure alignment mechanism across
modalities fosters the cross-modal consistency.

4.5 Ablation Study

To analyze the contribution of different components
in our proposed CME model, we compare it with
the variant models: (1) w/o T (without text), (2) w/o
V (without image), (3) w/o P (without propagation
graph), (4) w/o MR (without modality reconstruc-
tion), (5) w/o FA (without feature alignment) and
(6) w/o SA (without structure alignment). The ex-
perimental results are shown in Table 3. Acc. refers
to the overall results, and F1 refers to the results
for the Rumor (F) category.

The experimental results demonstrate that the
removal of any component results in a performance
decline, highlighting the essential role of each com-
ponent in the proposed model. The results indicate
that: (1) Textual, visual, and propagation graph fea-
tures each play a critical role in multimodal rumor
detection. (2) The contribution of each component
differs across datasets. On the PHEME dataset, tex-

tual information exhibits the most significant influ-
ence on model performance, whereas on the Weibo
dataset, the propagation graph contributes most
negatively. This discrepancy arises from the struc-
tural differences between the two datasets. The
propagation graphs in PHEME are relatively shal-
low and sparse, and textual contents play a more
central role. In contrast, the Weibo dataset features
deeper and broader propagation structures, making
the propagation graph a more dominant factor in
determining model performance. (3) The modality
reconstruction and modality alignment can facil-
itate the cross-modality fusion and significantly
improve the multimodal feature representations.

4.6 Visualization

In Figure 3, we extract feature vectors before the
classification heads for CME under various ab-
lation settings on the PHEME dataset, including
without text, without image, without propagation
graph, without modality reconstruction, without
feature alignment, and without structure alignment.
The t-SNE visualizations of these features are pre-
sented. The results demonstrate that our method
achieves clear decision boundaries on PHEME
datasets. Compared to other variants, CME features
are more discriminative, which facilitates more ac-
curacy predictions.

5 Conclusion

In this paper, we propose a novel Cross-Modal
Consistency Enhancement (CME) model for multi-
modal rumor detection. We integrate textual, visual,
and propagation graph modalities into a unified
framework. The uncertainties of the three modali-
ties are then estimated to guide the modality recon-
struction. We also design a modality alignment
module, including feature alignment and struc-
ture alignment to enhance cross-modal representa-
tion learning. Experiments on two public datasets
demonstrate that the CME model outperforms state-
of-the-art baselines.



Limitations

One limitation of our model is the construction
method of graphs. The quality of graph-based
representations for each modality can vary sig-
nificantly depending on the construction method,
which may affect the overall model performance.
In the future, we will explore more approaches for
construction method of graphs of multimodality
rumor detection further.
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