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Abstract001

Detecting rumors on social media has become002
a critical research challenge. Although ex-003
isting multimodal rumor detection methods004
have achieved promising results, they still suf-005
fer from insufficient utilization of modality-006
specific information and inadequate cross-007
modal interaction. To address these limitations,008
we propose a novel Cross-Modal Consistency009
Enhancement (CME) model for multimodal ru-010
mor detection. It incorporates textual, visual,011
and propagation modalities into a unified frame-012
work and transforms each modality into a graph.013
The uncertainties of the three modalities are014
utilized to guide modality reconstruction. We015
design a modality alignment module, including016
feature alignment and structure alignment to017
improve the consistency of cross-modal repre-018
sentations. In the process of feature alignment,019
the aligned modality representations are used020
as a teacher in a graph-guided self-distillation021
module to supervise each unimodal student rep-022
resentation. Structure alignment is introduced023
to model structural similarities across modali-024
ties. Extensive experiments conducted on two025
public real-world datasets demonstrate that our026
CME model achieves significant improvements027
compared with the state-of-the-art baselines.028

1 Introduction029

With the proliferation of social media platforms,030

online information dissemination has become031

faster and more pervasive than ever before. The032

widespread of social media has greatly enhanced033

public communication and information access.034

However, it also brings significant challenges.035

Among them, the rapid spread of rumors stands036

out as a critical concern, which threatens public037

trust and undermines societal stability. Therefore,038

there is a growing need for effective approaches to039

detect and mitigate the dissemination of rumors.040

Early approaches to rumor detection predomi-041

nantly relied on manually crafted features (Castillo042
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Figure 1: An example of multimodal encoding distri-
bution visualization. The textual, visual, and propa-
gation structure embeddings are projected into a two-
dimensional space using t-SNE, illustrating their distri-
butional differences in the embedding space.

et al., 2011; Yang et al., 2012; Feng et al., 2012; 043

Kwon et al., 2013). However, such methods are 044

inherently limited by the quality of the handcrafted 045

features. Recently, studies have leveraged deep 046

learning techniques to automatically learn high- 047

level feature representations (Ma et al., 2016, 2018; 048

Liu and Wu, 2018; Li et al., 2019). 049

With the increasing diversification of rumor 050

propagation, textual, visual, and multimodal forms 051

that combine both attract greater attention. A se- 052

ries of multimodal rumor detection approaches 053

have been proposed to identify and analyze rumors 054

across different modalities (Khattar et al., 2019; 055

Chen et al., 2022; Zheng et al., 2022; Chen et al., 056

2025). (Qian et al., 2021) highlight the importance 057

of the textual modality by leveraging the textual 058

semantic representations. Several studies have em- 059

phasized the crucial role of image representations 060

in multimodal rumor detection. (Zhou et al., 2020) 061

convert images into textual descriptions. (Lao et al., 062

2024) extract frequency-domain information from 063

images to enrich visual representations. In addition 064

to focusing on individual modalities, some stud- 065

ies have also strengthened cross-modal interactions 066

and information fusion. (Ying et al., 2023) propose 067
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multi-gate mixture-of-expert networks for feature068

refinement and fusion. (Liu et al., 2025) employ069

different fusion strategies to diverse modality in-070

teraction scenarios to achieve a more robust effect071

for multimodal fake news detection. However, the072

mentioned approaches mainly concentrate on inte-073

grating textual and visual data but neglect the social074

context that arises during the spread of rumors.075

In real scenarios, rumors frequently circulate076

via user activities like reposting, commenting, and077

other forms of engagement on social media plat-078

forms. These social interactions reveal the funda-079

mental propagation patterns, which are essential for080

enhancing the performance of multimodal rumor081

detection. Wu et al. (2023) incorporate comments082

in addition to text and images to model the depen-083

dencies among multimodal features. Zheng et al.084

(2022) integrate textual, visual, and social graph085

in a unified framework. Chen et al. (2025) utilize086

cross-modal and propagation network contrastive087

learning. The aforementioned methods leverage088

the modalities of the textual, visual, and propaga-089

tion structure to enhance representational capacity.090

However, they either process each modality inde-091

pendently, resulting in significant distributional dis-092

crepancies that hinder effective fusion, or fail to093

model semantic collaboration and complementarity094

across modalities, thereby limiting the exploitation095

of cross-modal interactions. As shown in Figure 1,096

the representations of textual, visual, and propa-097

gation structure encodings are clearly distributed098

in distinct regions, which reveals a significant in-099

consistency across modalities. This distributional100

discrepancy highlights a core challenge in multi-101

modal rumor detection.102

To address these challenges, we propose a novel103

Cross-Modal Consistency Enhancement (CME)104

model which integrates textual, visual, and propa-105

gation graph modalities into a unified framework106

for multimodal rumor detection. First, each modal-107

ity is transformed into a graph, and the correspond-108

ing graph representations are obtained via graph109

encoders. The uncertainties of the three modalities110

are then estimated to guide the reconstruction of111

the modality, and the reconstruction of unreliable112

modality features is considered. Furthermore, we113

designed a modality alignment module, including114

feature alignment and structure alignment to en-115

hance the cross-modal representations. To achieve116

feature alignment, the completed modality repre-117

sentations are fused into a unified global represen-118

tation, which is then used as a teacher in a graph-119

guided self-distillation module to supervise each 120

unimodal student representation. Then we intro- 121

duce a structure alignment mechanism to model 122

graph-level structural similarities across modalities. 123

Finally, we utilize the fused student representations 124

to enhance the effectiveness of the proposed model. 125

The main contributions of this paper are as follows: 126

• We propose a modality reconstruction strategy 127

guided by uncertainty estimation, which can 128

improve the model’s ability to handle unreli- 129

able modality features. 130

• We propose a modality alignment module, in 131

which a graph-guided self-distillation com- 132

ponent achieves feature alignment and incor- 133

porates a structure alignment mechanism to 134

enhance cross-modal consistency. 135

• We propose a unified multimodal framework 136

based on graphs, which represents text, im- 137

ages, and propagation structures within a 138

structurally consistent space. 139

• We conduct extensive experiments on two real- 140

world datasets to demonstrate the effective- 141

ness of the proposed model in rumor detec- 142

tion. 143

2 Related Work 144

2.1 Unimodal Rumor Detection 145

Many unimodal approaches to rumor detection 146

have been proposed, including methods based on 147

text (Ma et al., 2019; Nguyen et al., 2020b; Dou 148

et al., 2021; Dun et al., 2021; Yang et al., 2022), im- 149

ages (Jin et al., 2016; Qi et al., 2019), and propaga- 150

tion structures (He et al., 2021; Wei et al., 2021; Ma 151

et al., 2022; Min et al., 2022; Liu et al., 2023). Text- 152

based approaches focus on the content of the text 153

and detect rumors by leveraging features such as 154

linguistic patterns and semantic information. Xu et 155

al. (2022) explored textual semantics by modeling 156

text as graph-structured data to capture long-range 157

semantic dependencies. Liao et al. (2023) pro- 158

posed evidence-enhanced method, which models 159

the human process of reading news and assessing 160

its veracity through multi-step retrieval. Image- 161

based methods typically rely on neural networks 162

to extract visual features and learn image represen- 163

tations. Such purely visual approaches often suf- 164

fer from limited model performance. Propagation 165

structures-based methods model the spread of event 166

to simulate the dissemination of information within 167
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social networks. Bian et al. (2020) modeled the168

bidirectional propagation patterns in rumor spread169

by capturing both top-down and bottom-up struc-170

tural patterns. Sun et al. (2022) proposed a graph171

adversarial contrastive learning method to learn the172

robust representations. Tao et al. (2024) devel-173

oped fine-grained semantic learning by construct-174

ing global semantic information from entire graph175

and local semantic representations from parent-176

child nodes. Each modality has its own advantages.177

However, relying on a single modality often limits178

the model’s capacity. This limitation has driven179

researchers to develop rumor detection methods180

that integrate multiple modalities.181

2.2 Multimodal Rumor Detection182

In recent years, multimodal information has been183

extensively explored to enhance rumor detection184

(Khattar et al., 2019; Singhal et al., 2019, 2020;185

Chen et al., 2022; Zheng et al., 2022; Chen et al.,186

2025). These methods primarily focus on the tex-187

tual and visual content of the information. Sev-188

eral studies (Zhou et al., 2020; Qian et al., 2021)189

modeled the textual content by using the seman-190

tic representations and integrating them into multi-191

modal frameworks. Some works have conducted192

in-depth image research by converting images into193

textual descriptions for visual information process-194

ing (Zhou et al., 2020). Works have further in-195

vestigated the impact of multi-scale image inputs196

on model performance (Wang et al., 2024) and ex-197

plored the role of frequency-based visual features198

in multimodal rumor detection (Wu et al., 2021;199

Lao et al., 2024). In addition to enhancing fea-200

tures within single modalities, some works (Ying201

et al., 2023; Liu et al., 2025) have also strength-202

ened cross-modal interactions and fusion, under-203

scoring the importance of complementary informa-204

tion across modalities. Wang et al. (2018) have205

introduced event discrimination as an auxiliary task206

to support detection. However, the aforementioned207

methods primarily focus on the fusion of textual208

and visual information, while overlooking the so-209

cial contextual information generated during the210

propagation of rumors. Wu et al. (2023) incor-211

porated user comments alongside text and images212

based on human reading habits, and proposed a213

cognition-aware fusion method to model the depen-214

dencies among multimodal features. Zheng et al.215

(2022) integrated textual, visual, and social graph216

features in a unified framework to achieve better217

complement and alignment relationships between218

different modalities. Chen et al. (2025) utilized in- 219

trinsic features from text, images, and propagation 220

networks, capturing intermodal relationships for 221

accurate fake news detection. Compared with prior 222

multimodal approaches, the key difference in our 223

work lies in the emphasis on modality reconstruc- 224

tion and alignment, which enhances the model’s 225

cross-modal representation capabilities. 226

3 Methodology 227

3.1 Problem Definition 228

The rumor detection task can be defined as a bi- 229

nary classification problem. Formally, let D = 230

{D1, D2, . . . , Dn} be a rumor detection dataset, 231

where Di is the i-th event and n is the number 232

of events. Each event D = (t, v, p), where t 233

denotes the text, and v denotes the image. p = 234

{p0, p1, . . . , p|Vp|−1} is the propagation structure. 235

p0 is the source post, and other pj represents the 236

j-th responsive post. |Vp| is the number of posts in 237

the propagation structure. The propagation graph 238

of event D is Gp = ⟨Vp, Ap, Xp⟩, where Vp refers 239

to the set of post nodes. Ap ∈ {0, 1}|Vp|×|Vp| rep- 240

resents the adjacency matrix to describe the rela- 241

tionships between nodes. Xp ∈ R|Vp|×d denotes 242

the node feature matrix, where d is the node em- 243

bedding dimension. 244

Rumor detection aims to learn a function f : 245

D → Y that classifies each event into one of the cat- 246

egories Y ∈ {F, T} (i.e., Rumor or Non-Rumor). 247

3.2 Overview 248

In this section, we propose a novel Cross-Modal 249

Consistency Enhancement (CME) model for mul- 250

timodal rumor detection tasks. As illustrated in 251

Figure 2, we will provide a detailed explanation, 252

including Multimodal Feature Extractor, Modality 253

Reconstruction, and Modality Alignment. 254

3.3 Multimodal Feature Extractor 255

3.3.1 Textual Feature Extractor. 256

The text of the event D is represented as t = 257

{t1, t2, . . . , tn}, where n denotes the number of 258

words in the text and ti denotes the i-th word. In 259

order to encode the words and their contextual se- 260

mantic information, we use BERT (Nguyen et al., 261

2020a) as the textual feature extractor to obtain the 262

text embedding Xt = {et1 , et2 , . . . , etn}, where eti 263

is the transformed feature of ti. 264

To represent text information in a structured 265

form, we transform the text into a text graph. We 266
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Figure 2: Overview of the proposed CME framework.

define the word set as node set Vt, and Xt serves267

as the feature matrix. The edges are constructed268

based on the adjacency relationships of words. Let269

(i, j) represent an adjacent pair of words. The edge270

set Et in the text graph is defined as:271

Et = {(i, j)||i− j| = 1, i, j ∈ Vt} (1)272

Based on this, we construct the adjacency matrix273

At as follows:274

[At]ij =

{
1 if (i, j) ∈ Et
0 otherwise

(2)275

Finally, we construct the text graph Gt =276

⟨Vt, At, Xt⟩.277

3.3.2 Visual Feature Extractor.278

The image of the event D is represented as v. We279

adopt a pretrained ResNet50 (He et al., 2016) as the280

visual encoder and remove its final global average281

pooling and fully connected layers to preserve the282

spatial structure of intermediate features. The re-283

sulting output is a convolutional feature map, which284

is denoted as I .285

I = ResNet50(v) (3)286

where I ∈ Rc×h×w, c is the number of channels,287

h and w are the spatial dimensions of the feature288

output. Then the feature output I is reshaped into289

a set of m = h × w region-level feature vectors,290

each with dimension c, resulting in a node feature291

matrix Xv ∈ Rm×c.292

To represent visual information in a structured 293

form, we construct a region-level image graph for 294

each text-associated image. We define the region- 295

level feature set as node set Vv, and Xv serves as 296

the feature matrix. To construct the graph structure, 297

we use the K-Nearest Neighbors (KNN) algorithm 298

in the feature space. Each node connects to its k 299

nearest neighbors based on cosine similarity in the 300

feature space. 301

N (i) = KNN(xi, Xv, k) (4) 302

where xi is the feature vector of the i-th node. N (i) 303

is the set of the k nearest neighbors for xi. Then 304

edges are constructed based on each neighbor pair 305

between node i and its nearest neighborsN (i). The 306

edge set Ev in the image graph is defined as: 307

Ev = {(i, j)|i ̸= j, j ∈ N (i)}} (5) 308

Based on this, we construct the adjacency matrix 309

Av as follows: 310

[Av]ij =

{
1 if (i, j) ∈ Ev
0 otherwise

(6) 311

Finally, we construct the image graph Gv = 312

⟨Vv, Av, Xv⟩. 313

3.3.3 Graph Representation. 314

To effectively model and exploit the structural char- 315

acteristics of each modality, we extract modality- 316

specific graph representations. 317
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Specifically, the text graph is fed into a Graph318

Attention Network (GAT) (Veličković et al., 2017)319

to capture structure-aware representations.320

Ht = GAT (Gt) (7)321

where Ht represents the node representations.322

Then we use mean-pooling operators (MEAN) to323

aggregate the information ofHt and pass it through324

a fully connected layer.325

ht = W (MEAN(Ht)) + b (8)326

where W and b are learned parameters. ht is the327

graph representation of textual modality.328

Similarly, for the visual modality and propaga-329

tion graph modality, we obtain hv and hp respec-330

tively.331

3.4 Modality Reconstruction332

To address the incomplete or unreliable representa-333

tion of certain modalities, we propose a Modality334

Reconstruction (MR) module. MR adaptively re-335

constructs weak modalities using complementary336

information from other modalities.337

Specifically, we first model the uncertainty of338

each modality using a fully connected Layer. Given339

the modality graph representation hm, we estimate340

the standard deviation sm of the modality as:341

sm = exp(Wshm + bs) (9)342

where m ∈ {t, v, p}. Ws and bs are learned param-343

eters. The exponential function ensures positivity344

of the standard deviation.345

Then we transform these uncertainties sm into346

confidence weights.347

ωm = exp(−sm) (10)348

349

ω̄m =
ωm∑
i ωi

(11)350

where the exponential function ensures that the351

predicted uncertainty is strictly positive.352

Then we utilize the normalized weights to guide353

cross-modal reconstruction.354

Mt = ft(ht, ω̄t
hv + hp

2
) (12)355

356

Mv = fv(hv, ω̄v
ht + hp

2
) (13)357

358

Mp = fp(hp, ω̄p
ht + hv

2
) (14)359

where fm(htarget, hsource) is a modality-specific 360

gating network. For each target modality htarget, 361

the reconstruction is computed as a combination 362

with the source modalities hsource. 363

ggate = σ(Wgatehtarget + bgate) (15) 364

365
Mm = ggate · htarget + (1− ggate) · hsource (16) 366

where Wgate and bgate are learned parameters. 367

Finally, the reconstructed features are concate- 368

nated and projected via a linear layer to obtain a 369

modality-enhanced representation. 370

M = concat(Mt,Mv,Mp) (17) 371

372
M̄ = WM + b (18) 373

where M and b are learned parameters. 374

3.5 Modality Alignment 375

3.5.1 Feature Alignment 376

To enhance cross-modal feature representations in 377

multimodal rumor detection, we propose a Feature 378

Alignment (FA) module. Specifically, we employ a 379

graph-guided self-distillation method tailored for 380

graph representations. The self-distillation method 381

utilized a global fused graph representation as the 382

teacher, while each modality-specific graph (i.e., 383

text, image, propagation graph) serves as each 384

student. This design ensures that each unimodal 385

branch benefits from the semantic guidance of the 386

global multimodal context. 387

Specifically, we implement two projectors as 388

teacher projector and student projector. The projec- 389

tions are defined as follows: 390

FSm = fstudent(hm) (19) 391
392

FTm = fteacher(M̄) (20) 393

where fstudent and fteacher are the student projec- 394

tor and teacher projector, here we use linear layer 395

as both the projectors. The student projector up- 396

dated via backpropagation. The teacher projector 397

updated using exponential moving average (EMA) 398

of the student parameters to stabilize the distillation 399

targets. The process are updated iteratively as: 400

θteacher ← µ · θteacher + (1− µ) · θstudent (21) 401

where θteacher are the teacher projector parameters, 402

θstudent are the student projector parameters. µ is 403

the momentum coefficient. 404

To align the feature distributions of student and 405

teacher representations, we adopt a KL-divergence 406
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loss as self-distillation loss between the student407

output and the teacher output:408

LFA =
∑

m∈{t,v,p}

LKL(FSm)||FTm) (22)409

During inference, we employ the student pro-410

jector to obtain the feature representations of each411

student modality.412

3.5.2 Structure Alignment413

To explicitly capture structural correlations across414

different modalities, we design a cross-modal Struc-415

ture Alignment (SA) module. Given the graph416

representation of each modality, we compute the417

pairwise cross-modal structural similarity matrices.418

St =
hthv

T

||ht||2||hv||2
(23)419

420

Sv =
hvhp

T

||hv||2||hp||2
(24)421

422

Sp =
hpht

T

||hp||2||ht||2
(25)423

where || · ||2 denotes the L2-norm.424

Each student representation is then enhanced425

via structure alignment, which incorporates cross-426

modal structure guidance.427

Zt = γt · FSt + (1− γt) · (St · FSt) (26)428
429

Zv = γv · FSv + (1− γv) · (Sv · FSv) (27)430
431

Zp = γp · FSp + (1− γp) · (Sp · FSp) (28)432

where γt, γv and γp are learned parameters.433

Finally, we concatenate the enhanced modal-434

ity representations Zt, Zv and Zp to obtain the435

structure-aware representation.436

Ẑ = concat(Zt, Zv, Zp) (29)437

3.6 Training Objective438

To calculate the labels of the rumors, we apply a439

fully connected layer followed by a softmax layer,440

ŷ = softmax(Wf Ẑ + bf ) (30)441

where ŷ is the predicted probability distribution.442

Wf and bf are weight and bias parameters.443

For the binary classification task, we aim to min-444

imize the cross-entropy loss LD, which defined445

as:446

LD = −
|Y|∑
i

yilogŷi (31)447

Statistics PHEME Weibo
# Non-Rumors 1428 877
# Rumors 590 590
# Images 2018 1467
# Posts 34846 336261

Table 1: Statistics of the datasets.

where yi denotes ground-truth label for the i-th 448

event. 449

Our training object contains a cross-entropy loss 450

and a self-distillation loss. Finally, we aim at mini- 451

mizing the loss as follows. 452

L = LD + αLFA (32) 453

where α is the trade-off parameters. 454

4 Experiments 455

4.1 Datasets 456

We evaluate the proposed model on two real-world 457

datasets: PHEME (Zubiaga et al., 2017) and Weibo 458

(Song et al., 2019). PHEME is an English dataset 459

collected based on five breaking news from Twitter. 460

Weibo is a Chinese dataset collected from the so- 461

cial platform Weibo. Each event in these datasets 462

consists of text, image, and corresponding respon- 463

sive posts. Both datasets are formulated as binary 464

classification tasks, where each event is annotated 465

as either a Rumor (F) or a Non-Rumor (T). Table 1 466

shows the statistics of the datasets. 467

4.2 Implementation Details 468

We use the pre-trained BERT (Nguyen et al., 469

2020a) to extract textual features and the pre- 470

trained ResNet50 (He et al., 2016) to extract visual 471

features. The proposed model is implemented us- 472

ing PyTorch (Ketkar et al., 2021). Adam algorithm 473

(Kingma and Ba, 2014) is used to optimize the pa- 474

rameters. The model is trained for 150 epochs with 475

a learning rate of 0.0005. The dimension of hidden 476

layer is set to 128 and the batch size is set to 128. 477

The trade-off parameter α is set to 0.1. We split 478

the datasets for training and testing with a ratio of 479

8:2. To ensure fairness, we employ 5-fold cross- 480

validation throughout all experiments and report 481

the average results. The Accuracy (Acc.), Preci- 482

sion (Prec.), Recall (Rec.), and F1-score (F1) are 483

adopted as evaluation metrics. 484
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Method Class PHEME Weibo
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

MVAE
F

0.8061
0.6966 0.5523 0.6161

0.7947
0.7633 0.6893 0.7244

T 0.8385 0.9066 0.8712 0.8144 0.8572 0.8352

SpotFake
F

0.7955
0.6861 0.5576 0.6152

0.8737
0.8567 0.8288 0.8425

T 0.8308 0.8940 0.8613 0.8885 0.9040 0.8962

SpotFake+
F

0.8048
0.7252 0.5639 0.6345

0.8785
0.8560 0.8006 0.8274

T 0.8331 0.9074 0.8687 0.8889 0.9182 0.9033

HMCAN
F

0.8209
0.6911 0.6976 0.6944

0.8937
0.9190 0.8209 0.8672

T 0.8770 0.8701 0.8735 0.8969 0.9405 0.9182

CAFE
F

0.8206
0.7407 0.6245 0.6777

0.9004
0.8778 0.8730 0.8754

T 0.8495 0.9066 0.8771 0.9145 0.9189 0.9167

MFAN
F

0.8229
0.7348 0.6473 0.6883

0.8962
0.8698 0.8696 0.8697

T 0.8618 0.8927 0.8770 0.9130 0.9143 0.9137

MFCL
F

0.8170
0.7121 0.6412 0.6748

0.9214
0.8905 0.9159 0.9031

T 0.8585 0.8880 0.8730 0.9426 0.9259 0.9342

CME
F 0.8713 0.8186 0.7225 0.7675 0.9568 0.9382 0.9578 0.9479
T 0.8941 0.9286 0.9110 0.9717 0.9561 0.9638

Table 2: Rumor detection results on two datasets. Abbrev.: Rumor (F), Non-Rumor (T).

4.3 Baselines485

We compare the proposed model with the following486

baselines:487

(1) MVAE (Khattar et al., 2019) uses the bimodal488

variational autoencoder to classify posts for multi-489

modal fake news detection.490

(2) SpotFake (Singhal et al., 2019) utilizes the pre-491

trained models to exploit both the textual and visual492

features for detecting fake news.493

(3) SpotFake+ (Singhal et al., 2020) leverages494

transfer learning to capture contextual represen-495

tation for multimodal fake news detection.496

(4) HMCAN (Qian et al., 2021) jointly models the497

multimodal context and the hierarchical semantics498

in a unified framework.499

(5) CAFE (Chen et al., 2022) propose an500

ambiguity-aware fake news detection method to501

capture the cross-modal correlations.502

(6) MFAN (Zheng et al., 2022) integrates textual,503

visual, and social graph features in a unified frame-504

work to detect multimodal rumors.505

(7) MFCL (Chen et al., 2025) utilizes pretrained506

strategy and text, images, and propagation net-507

works for multimodal fake news detection.508

4.4 Experimental Results509

Table 2 shows the results of rumor detection on510

two public real-world datasets. The experimental511

results demonstrate that the proposed CME model512

outperforms other baselines. MVAE lacks the ca-513

pacity to model deep semantic relationships be- 514

tween textual and visual features, which makes it 515

ineffective in capturing complex cross-modal se- 516

mantic interactions. SpotFake heavily relies on 517

pretrained models to extract textual and visual fea- 518

tures but lacks effective interaction and alignment 519

between the two modalities, thereby limiting the 520

model’s representational capacity. SpotFake+ does 521

not explicitly model or align deep cross-modal in- 522

formation, which results in insufficient multimodal 523

fusion and ultimately hinders model performance. 524

The hierarchical encoding network of HMCAN pro- 525

vides layered semantics for text, but the insufficient 526

exploration of features in image results in inade- 527

quate interaction of modality information. CAFE 528

relies on cross-modal ambiguity learning, which 529

may fail to accurately capture complex modality 530

conflicts. However, the aforementioned models 531

only utilize text and image modalities and lack the 532

ability to model propagation paths and structural 533

information, which limits their detection capabil- 534

ities. MFAN models the text, image, and social 535

graph modalities. In particular, insufficient model- 536

ing of the social propagation path can negatively 537

impact the model’s performance. MFCL relies 538

on the pretrained propagation network and image- 539

text matching augmentation, while the contrastive 540

learning strategy also plays a crucial role in deter- 541

mining the model’s performance. The proposed 542

model CME leverages graph-based representations 543
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(a) CME (b) w/o T (c) w/o V (d) w/o P (e) w/o MR (f) w/o FA (g) w/o SA

Figure 3: T-SNE visualization of the extracted features on the PHEME test set. Dots of the same color correspond
to the same class label.

Model PHEME Weibo
Acc. F1 Acc. F1

CME 0.8713 0.7675 0.9568 0.9479
w/o T 0.8476 0.7251 0.9422 0.9276
w/o V 0.8499 0.7365 0.9503 0.9381
w/o P 0.8629 0.7641 0.9240 0.9090
w/o MR 0.8653 0.7627 0.9492 0.9375
w/o FA 0.8524 0.7325 0.9311 0.9156
w/o SA 0.8606 0.7453 0.9490 0.9392

Table 3: Results of ablation study on two datasets.

for each modality, enabling the capture of rich struc-544

tural relationships through graph encoders. By in-545

corporating an uncertainty-based modality recon-546

struction strategy, the model handles unreliable547

modality features, ensuring effective information548

reconstruction. The graph-guided self-distillation549

approach allows each unimodal student model to550

be supervised by a unified global teacher represen-551

tation, improving the transfer of modality informa-552

tion. The structure alignment mechanism across553

modalities fosters the cross-modal consistency.554

4.5 Ablation Study555

To analyze the contribution of different components556

in our proposed CME model, we compare it with557

the variant models: (1) w/o T (without text), (2) w/o558

V (without image), (3) w/o P (without propagation559

graph), (4) w/o MR (without modality reconstruc-560

tion), (5) w/o FA (without feature alignment) and561

(6) w/o SA (without structure alignment). The ex-562

perimental results are shown in Table 3. Acc. refers563

to the overall results, and F1 refers to the results564

for the Rumor (F) category.565

The experimental results demonstrate that the566

removal of any component results in a performance567

decline, highlighting the essential role of each com-568

ponent in the proposed model. The results indicate569

that: (1) Textual, visual, and propagation graph fea-570

tures each play a critical role in multimodal rumor571

detection. (2) The contribution of each component572

differs across datasets. On the PHEME dataset, tex-573

tual information exhibits the most significant influ- 574

ence on model performance, whereas on the Weibo 575

dataset, the propagation graph contributes most 576

negatively. This discrepancy arises from the struc- 577

tural differences between the two datasets. The 578

propagation graphs in PHEME are relatively shal- 579

low and sparse, and textual contents play a more 580

central role. In contrast, the Weibo dataset features 581

deeper and broader propagation structures, making 582

the propagation graph a more dominant factor in 583

determining model performance. (3) The modality 584

reconstruction and modality alignment can facil- 585

itate the cross-modality fusion and significantly 586

improve the multimodal feature representations. 587

4.6 Visualization 588

In Figure 3, we extract feature vectors before the 589

classification heads for CME under various ab- 590

lation settings on the PHEME dataset, including 591

without text, without image, without propagation 592

graph, without modality reconstruction, without 593

feature alignment, and without structure alignment. 594

The t-SNE visualizations of these features are pre- 595

sented. The results demonstrate that our method 596

achieves clear decision boundaries on PHEME 597

datasets. Compared to other variants, CME features 598

are more discriminative, which facilitates more ac- 599

curacy predictions. 600

5 Conclusion 601

In this paper, we propose a novel Cross-Modal 602

Consistency Enhancement (CME) model for multi- 603

modal rumor detection. We integrate textual, visual, 604

and propagation graph modalities into a unified 605

framework. The uncertainties of the three modali- 606

ties are then estimated to guide the modality recon- 607

struction. We also design a modality alignment 608

module, including feature alignment and struc- 609

ture alignment to enhance cross-modal representa- 610

tion learning. Experiments on two public datasets 611

demonstrate that the CME model outperforms state- 612

of-the-art baselines. 613
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Limitations614

One limitation of our model is the construction615

method of graphs. The quality of graph-based616

representations for each modality can vary sig-617

nificantly depending on the construction method,618

which may affect the overall model performance.619

In the future, we will explore more approaches for620

construction method of graphs of multimodality621

rumor detection further.622

References623

Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wen-624
bing Huang, Yu Rong, and Junzhou Huang. 2020.625
Rumor detection on social media with bi-directional626
graph convolutional networks. In Proceedings of the627
AAAI conference on artificial intelligence, volume 34,628
pages 549–556.629

Carlos Castillo, Marcelo Mendoza, and Barbara Poblete.630
2011. Information credibility on twitter. In Proceed-631
ings of the 20th international conference on World632
wide web, pages 675–684.633

Han Chen, Hairong Wang, Zhipeng Liu, Yuhua Li, Yi-634
fan Hu, Yujing Zhang, Kai Shu, Ruixuan Li, and635
Philip S Yu. 2025. Multi-modal robustness fake636
news detection with cross-modal and propagation637
network contrastive learning. Knowledge-Based Sys-638
tems, 309:112800.639

Yixuan Chen, Dongsheng Li, Peng Zhang, Jie Sui, Qin640
Lv, Lu Tun, and Li Shang. 2022. Cross-modal ambi-641
guity learning for multimodal fake news detection. In642
Proceedings of the ACM web conference 2022, pages643
2897–2905.644

Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and645
Lichao Sun. 2021. User preference-aware fake news646
detection. In Proceedings of the 44th international647
ACM SIGIR conference on research and development648
in information retrieval, pages 2051–2055.649

Yaqian Dun, Kefei Tu, Chen Chen, Chunyan Hou, and650
Xiaojie Yuan. 2021. Kan: Knowledge-aware atten-651
tion network for fake news detection. In Proceedings652
of the AAAI conference on artificial intelligence, vol-653
ume 35, pages 81–89.654

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012.655
Syntactic stylometry for deception detection. In Pro-656
ceedings of the 50th Annual Meeting of the Associa-657
tion for Computational Linguistics (Volume 2: Short658
Papers), pages 171–175.659

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian660
Sun. 2016. Deep residual learning for image recog-661
nition. In Proceedings of the IEEE conference on662
computer vision and pattern recognition, pages 770–663
778.664

Zhenyu He, Ce Li, Fan Zhou, and Yi Yang. 2021. Ru- 665
mor detection on social media with event augmenta- 666
tions. In Proceedings of the 44th international ACM 667
SIGIR conference on research and development in 668
information retrieval, pages 2020–2024. 669

Zhiwei Jin, Juan Cao, Yongdong Zhang, Jianshe Zhou, 670
and Qi Tian. 2016. Novel visual and statistical im- 671
age features for microblogs news verification. IEEE 672
transactions on multimedia, 19(3):598–608. 673

Nikhil Ketkar, Jojo Moolayil, Nikhil Ketkar, and Jojo 674
Moolayil. 2021. Introduction to pytorch. Deep learn- 675
ing with python: learn best practices of deep learning 676
models with PyTorch, pages 27–91. 677

Dhruv Khattar, Jaipal Singh Goud, Manish Gupta, and 678
Vasudeva Varma. 2019. Mvae: Multimodal varia- 679
tional autoencoder for fake news detection. In The 680
world wide web conference, pages 2915–2921. 681

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 682
method for stochastic optimization. arXiv preprint 683
arXiv:1412.6980. 684

Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei 685
Chen, and Yajun Wang. 2013. Prominent features of 686
rumor propagation in online social media. In 2013 687
IEEE 13th international conference on data mining, 688
pages 1103–1108. IEEE. 689

An Lao, Qi Zhang, Chongyang Shi, Longbing Cao, 690
Kun Yi, Liang Hu, and Duoqian Miao. 2024. Fre- 691
quency spectrum is more effective for multimodal 692
representation and fusion: A multimodal spectrum 693
rumor detector. In Proceedings of the AAAI Con- 694
ference on Artificial Intelligence, volume 38, pages 695
18426–18434. 696

Quanzhi Li, Qiong Zhang, and Luo Si. 2019. Rumor 697
detection by exploiting user credibility information, 698
attention and multi-task learning. In Proceedings 699
of the 57th annual meeting of the association for 700
computational linguistics, pages 1173–1179. 701

Hao Liao, Jiahao Peng, Zhanyi Huang, Wei Zhang, 702
Guanghua Li, Kai Shu, and Xing Xie. 2023. Muser: 703
A multi-step evidence retrieval enhancement frame- 704
work for fake news detection. In Proceedings of 705
the 29th ACM SIGKDD Conference on Knowledge 706
Discovery and Data Mining, pages 4461–4472. 707

Leyuan Liu, Junyi Chen, Zhangtao Cheng, Wenxin Tai, 708
and Fan Zhou. 2023. Towards trustworthy rumor 709
detection with interpretable graph structural learning. 710
In Proceedings of the 32nd ACM International Con- 711
ference on Information and Knowledge Management, 712
pages 4089–4093. 713

Yang Liu and Yi-Fang Wu. 2018. Early detection of 714
fake news on social media through propagation path 715
classification with recurrent and convolutional net- 716
works. In Proceedings of the AAAI conference on 717
artificial intelligence, volume 32. 718

9



Yifan Liu, Yaokun Liu, Zelin Li, Ruichen Yao, Yang719
Zhang, and Dong Wang. 2025. Modality interactive720
mixture-of-experts for fake news detection. In Pro-721
ceedings of the ACM on Web Conference 2025, pages722
5139–5150.723

Guanghui Ma, Chunming Hu, Ling Ge, Junfan Chen,724
Hong Zhang, and Richong Zhang. 2022. Towards725
robust false information detection on social networks726
with contrastive learning. In Proceedings of the 31st727
ACM International Conference on Information &728
Knowledge Management, pages 1441–1450.729

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,730
Bernard J Jansen, Kam-Fai Wong, and Meeyoung731
Cha. 2016. Detecting rumors from microblogs with732
recurrent neural networks.733

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor734
detection on twitter with tree-structured recursive735
neural networks. Association for Computational Lin-736
guistics.737

Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect ru-738
mors on twitter by promoting information campaigns739
with generative adversarial learning. In The world740
wide web conference, pages 3049–3055.741

Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin742
Zhao, Junzhou Huang, and Sophia Ananiadou. 2022.743
Divide-and-conquer: Post-user interaction network744
for fake news detection on social media. In Pro-745
ceedings of the ACM web conference 2022, pages746
1148–1158.747

Dat Quoc Nguyen, Thanh Vu, and Anh-Tuan Nguyen.748
2020a. Bertweet: A pre-trained language model for749
english tweets. In Proceedings of the 2020 Confer-750
ence on Empirical Methods in Natural Language751
Processing: System Demonstrations, pages 9–14.752

Van-Hoang Nguyen, Kazunari Sugiyama, Preslav753
Nakov, and Min-Yen Kan. 2020b. Fang: Leveraging754
social context for fake news detection using graph755
representation. In Proceedings of the 29th ACM in-756
ternational conference on information & knowledge757
management, pages 1165–1174.758

Peng Qi, Juan Cao, Tianyun Yang, Junbo Guo, and759
Jintao Li. 2019. Exploiting multi-domain visual in-760
formation for fake news detection. In 2019 IEEE761
international conference on data mining (ICDM),762
pages 518–527. IEEE.763

Shengsheng Qian, Jinguang Wang, Jun Hu, Quan Fang,764
and Changsheng Xu. 2021. Hierarchical multi-modal765
contextual attention network for fake news detection.766
In Proceedings of the 44th international ACM SIGIR767
conference on research and development in informa-768
tion retrieval, pages 153–162.769

Shivangi Singhal, Anubha Kabra, Mohit Sharma, Ra-770
jiv Ratn Shah, Tanmoy Chakraborty, and Ponnu-771
rangam Kumaraguru. 2020. Spotfake+: A multi-772
modal framework for fake news detection via trans-773
fer learning (student abstract). In Proceedings of the774

AAAI conference on artificial intelligence, volume 34, 775
pages 13915–13916. 776

Shivangi Singhal, Rajiv Ratn Shah, Tanmoy 777
Chakraborty, Ponnurangam Kumaraguru, and 778
Shin’ichi Satoh. 2019. Spotfake: A multi-modal 779
framework for fake news detection. In 2019 IEEE 780
fifth international conference on multimedia big data 781
(BigMM), pages 39–47. IEEE. 782

Changhe Song, Cheng Yang, Huimin Chen, Cunchao Tu, 783
Zhiyuan Liu, and Maosong Sun. 2019. Ced: Cred- 784
ible early detection of social media rumors. IEEE 785
Transactions on Knowledge and Data Engineering, 786
33(8):3035–3047. 787

Tiening Sun, Zhong Qian, Sujun Dong, Peifeng Li, and 788
Qiaoming Zhu. 2022. Rumor detection on social 789
media with graph adversarial contrastive learning. In 790
Proceedings of the ACM Web Conference 2022, pages 791
2789–2797. 792

Xiang Tao, Liang Wang, Qiang Liu, Shu Wu, and Liang 793
Wang. 2024. Semantic evolvement enhanced graph 794
autoencoder for rumor detection. In Proceedings of 795
the ACM Web Conference 2024, pages 4150–4159. 796
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