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Abstract
We conduct a feasibility study into the applica-001
bility of answer-unaware question generation002
models to textbook passages. We show that003
a significant portion of errors in such systems004
arise from asking irrelevant or un-interpretable005
questions and that such errors can be amelio-006
rated by providing summarized input. We find007
that giving these models human-written sum-008
maries instead of the original text results in a009
significant increase in acceptability of gener-010
ated questions (33% -> 83%) as determined011
by expert annotators. We also find that, in012
the absence of human-written summaries, auto-013
matic summarization can serve as a good mid-014
dle ground.015

1 Introduction016

Writing good questions that target salient concepts017

is difficult and time consuming. Automatic Ques-018

tion Generation (QG) is a powerful tool that could019

be used to significantly lessen the amount of time it020

takes to write such questions. A QG system that au-021

tomatically generates relevant questions from text-022

books would help professors write quizzes faster023

and help students spend more time reviewing flash-024

cards rather than writing them.025

Previous work on QG has focused primarily on026

answer-aware QG models. These models require027

the explicit selection of an answer span in the input028

context, typically through the usage of highlight029

tokens. This adds significant overhead to the ques-030

tion generation process and is undesirable in cases031

where clear lists of salient key terms are unavail-032

able. We conduct a feasibility study on the ap-033

plication of answer-unaware question generation034

models (ones which do not require manual selec-035

tion of answer spans) to an educational context.036

Our contributions are as follows:037

• We show that the primary way answer-038

unaware QG models fail is by generating ir-039

relevant or un-interpretable questions.040

Input: The perplexity of a language model on a test set is the 
inverse probability of the test set, normalized by the number of 
words. For a test set W = w1w2…wN we can use the chain 
rule to expand the probability of  W.

Automatic 
Summarization

Human 
Summarization

Q: What is the 
perplexity of a 
test set?
A: w1w2…wN

Q: What is the 
perplexity of a 
language model on 
a test set?
A: the inverse 
probability of the 
test set

Q: What is the 
inverse probability 
of the test set 
normalized by the 
number of words?
A: Perplexity

Figure 1: Relevance, interpretability, and acceptabil-
ity of generated questions are significantly improved
when using human-written summaries (yellow) or
automatically-generated summaries (green) as input in-
stead of the original text (red).

• We show that giving answer-unaware QG 041

models human-written summaries instead of 042

the original text results in a significant in- 043

crease in acceptability of generated questions 044

(33% -> 83%). 045

• We show that, in absence of human-written 046

summaries, providing automatically gener- 047

ated summaries as input is a good alternative. 048

2 Related Work & Background 049

Early attempts to use QG for educational applica- 050

tions involved generating gap-fill or “cloze” ques- 051

tions1 (Taylor, 1953) from textbooks (Agarwal and 052

Mannem, 2011). This procedure has been shown 053

to be effective in classroom settings (Zavala and 054

Mendoza, 2018) and students’ scores on this style 055

of generated question correlate positively with their 056

scores on human-written questions (Guo et al., 057

2016). However, there are many situations where 058

1For example, Q: “Dynamic Programming was introduced
in ____” A: 1957
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gap-fill questions are not effective, as they are only059

able to ask about specific unambiguous key terms.060

In recent years, with the advent of large crowd-061

sourced datasets for extractive question answering062

(QA) such as SQuAD (Rajpurkar et al., 2018), neu-063

ral models have become the primary methods of064

choice for generating traditional interrogative style065

questions (Kurdi et al., 2019). A common task066

formulation for neural QG is to phrase the task067

as answer-aware, that is, given a context passage068

C = {c0, ..., cn} and an answer span within this069

context A = {ck, ..., ck+l}, train a model to max-070

imize P (Q|A,C) where Q = {q0, ..., qm} are the071

tokens in the question. These models are typically072

evaluated using n-gram overlap metrics such as073

BLEU/ROUGE/METEOR (Papineni et al., 2002;074

Lin, 2004; Banerjee and Lavie, 2005) with the ref-075

erence being the original human-authored question076

as provided by the extractive QA dataset.077

The feasibility of using answer-aware neural078

QG in an educational setting was investigated by079

Wang et al. (2018), who used a BiLSTM encoder080

(Zhang et al., 2015) to encode C and A and a uni-081

directional LSTM decoder to generate Q. They082

trained on the SQuAD dataset (Rajpurkar et al.,083

2018) and evaluated on textbooks from various do-084

mains (history, sociology, biology). They showed085

that generated questions were largely grammatical,086

relevant, and had high n-gram overlap with human-087

authored questions. However, given that we may088

not always have a convenient list of key terms to089

use as answer spans for an input passage, there is a090

desire to move past answer-aware QG models and091

evaluate the feasibility of answer-unaware models092

for use in education.093

Shifting to answer-unaware models creates new094

challenges. As Vanderwende (2008) claims, the095

task of deciding what is and is not important is,096

itself, an important task. Without manually se-097

lected answer spans to guide it, an answer-unaware098

model must itself decide what is and is not impor-099

tant enough to ask a question about. Previous work100

primarily accomplishes this by separately modeling101

P (A|C), i.e. which spans in the input context are102

most likely to be used as answer targets for ques-103

tions. The extracted answer spans are then given104

to an answer-aware QG model P (Q|A,C). This105

modeling choice allows for more controllable QG106

and more direct modeling of term salience.107

Previous work done by Subramanian et al. (2018)108

trained a BiLSTM Pointer Network (Vinyals et al.,109

T5

extract answer: Here is a 
sentence. <hl> Now we 
will ask a question <hl>

generate question: Here is 
a sentence. Now we will 
ask <hl> a question <hl>

question:  What will we 
ask now? context: Here is 
a sentence. Now we will 

ask a question

a question

What will we 
ask now?

a question

Figure 2: Diagram of the model’s three different fine-
tuning tasks: Answer extraction, question generation,
and question answering

2015) for this answer extraction task and showed 110

that it outperformed an entity-based baseline when 111

predicting answer spans from SQuAD passages. 112

However, their human evaluation centered around 113

question correctness and fluency rather than rel- 114

evance of answer selection. Similar follow-up 115

studies also fail to explicitly ask human annota- 116

tors whether or not the extracted answers, and 117

subsequent generated questions, were relevant to 118

the broader topic of the context passage (Willis 119

et al., 2019; Cui et al., 2021; Wang et al., 2019; Du 120

and Cardie, 2018; Alberti et al., 2019; Back et al., 121

2021). 122

In our study, we explicitly ask annotators to de- 123

termine whether or not a generated question is rel- 124

evant to the topic of the textbook chapter from 125

which it is generated. In addition, we show that 126

models trained for answer extraction on SQuAD 127

frequently select irrelevant or ambiguous answers 128

when applied to textbook material. We show that 129

summaries of input passages can be used instead 130

of the original text to aid in the modeling of topic 131

salience and that questions generated from human- 132

written and automatically-generated summaries are 133

more relevant, interpretable, and acceptable. 134

3 Methodology 135

To perform answer-unaware QG, we follow work 136

done by Dong et al. (2019) and Bao et al. (2020) 137

who show that language models, when fine-tuned 138

for both QA and QG, perform better than models 139

tuned for only one of those tasks. We assume that 140

answer extraction will aid both QA and QG and 141

thus use a model that was fine-tuned on all three. 142

We considered using UniLM (Bao et al., 2020) or 143

ProphetNet (Qi et al., 2020) but ultimately chose a 144

T5 language model (Raffel et al., 2020) fine-tuned 145

on SQuAD due to the clean separation between 146
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Key-Term Total # Avg. Sent
Coverage Sents Length

A1’s Summary 77.6% 279 17.56
A2’s Summary 80.7% 243 19.28
A3’s Summary 53.4% 148 15.37

Table 1: Analysis of the summaries written by our three
RAs. Sentences are split with NLTK and average sen-
tence length is reported in tokens (space-delimited).

tasks afforded by T5’s task-specific prefixes such147

as “generate question:” and “extract answer:”.2148

The three fine-tuning tasks that were used to149

train our model are illustrated in Figure 2. For150

question generation, the model is trained to perform151

answer-aware question generation by modeling152

P (Q|A,C). For question answering, the model153

is trained to perform extractive QA by modeling154

P (A|C,Q). Finally, for answer extraction, instead155

of directly modeling P (A|C), a new context C ′ =156

{c0, ..., cs, ..., ce, ..., cn+2} is generated where cs157

and ce are highlight tokens that denote the start158

(s) and end (e) of the sub-sequence within which159

we want to extract an answer span. The answer160

extraction fine-tuning task thus becomes modeling161

P (A|C ′) where A = {ck, ..., ck+l} such that k ≥162

s and k + l ≤ e.163

Because T5 has a fixed maximum context length164

of 512 tokens, input passages that contain n > 512165

tokens must be split up into smaller sub-passages.166

We perform this splitting such that no sentences are167

divided between sub-passages and all sub-passages168

have a roughly equal number of sentences. Fi-169

nally, to generate questions, we iteratively choose170

the start and end of each sentence in a given sub-171

passage as our cs and ce and extract at most one172

answer span per sentence.3 We then generate one173

question per extracted answer span using the same174

model in an answer-aware fashion.175

4 Experiments176

Our first experiment evaluates the performance of177

the model on the original text extracted from Juraf-178

sky and Martin (2020)’s textbook “Speech and Lan-179

guage Processing 3rd Edition.”4 To ensure proper180

comparison, we manually extracted the text from181

our three chapters of interest (Chapters 2, 3, and182

4). When extracting text, all figures, tables, and183

2https://huggingface.co/valhalla/t5-base-qa-qg-hl
3If the generated answer span tokens are not sequentially

present in the highlighted sentence, the answer is discarded
4https://web.stanford.edu/ jurafsky/slp3/

equations were omitted and all references to them 184

were either replaced with appropriate parentheti- 185

cal citations or removed when possible. In total, 186

we generated 1208 question-answer pairs from the 187

original text. 188

Our second experiment evaluates the perfor- 189

mance of the model on human-written summaries. 190

We asked three research assistants (RAs) to write 191

abstractive summaries for each subsection of the 192

same three chapters (2-4) of the textbook. These 193

RAs were encouraged to make these summaries 194

easily readable by humans rather than to be eas- 195

ily understandable by machines but otherwise no 196

specific guidelines were given. We report some 197

statistics about these summaries in Table 1 and in- 198

clude examples in Appendix E. From these 3 sets 199

of summaries we generated a total of 667 question- 200

answer pairs. 201

Our final experiment evaluates the performance 202

of the model on automatically generated sum- 203

maries. To perform this automatic summarization 204

we used a BART (Lewis et al., 2020) language 205

model which was fine-tuned for summarization 206

on the CNN/DailyMail dataset (Nallapati et al., 207

2016).5 The same chunking procedure as described 208

in Section 3 was performed on input passages that 209

were larger than 512 tokens. The summarized out- 210

put sub-passages were then concatenated together 211

before running question generation. In total we 212

generated 318 question-answer pairs from our au- 213

tomatic summaries. 214

5 Evaluation 215

For evaluation, we randomly sampled 100 question- 216

answer pairs from each of the three experiments to 217

construct our evaluation set of 300 questions. We 218

recruited three expert annotators, all undergradu- 219

ates in computer science, to evaluate the quality 220

of the question-answer pairs. All 300 pairs were 221

given to all three annotators. We asked the anno- 222

tators to answer the following yes/no questions: 223

a) Would you directly use this question as a flash- 224

card?, b) Is this question grammatical?, c) Does 225

this question make sense out of context?, d) Is this 226

question relevant? and e) Is the answer to this 227

question correct? We report these in our tables as 228

“Acceptable?”, “Grammatical?”, “Interpretable?”, 229

“Relevant?”, and “Correct?” respectively. We pro- 230

vided many annotation examples to our annotators 231

and wrote clear guidelines about each category to 232

5https://huggingface.co/facebook/bart-large-cnn
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Acceptable? Grammatical? Interpretable? Relevant? Correct?
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Figure 3: Results of our human evaluation for each input
method. Numbers represent the proportion of questions
that were labeled as having the given attribute (as deter-
mined by majority vote among our three annotators).

Source n Qs As Qs or As

Original Text 1209 70.9% 70.3% 88.6%
Auto Summary 318 44.9% 43.0% 60.1%
Human Summary 667 63.9% 68.4% 86.1%

Table 2: Recall of bolded key terms from the textbook.
Numbers represent percentage of terms present in any
of the n question/answer pairs selected from the given
source.

ensure high agreement. Our full annotator guide-233

lines can be found in Appendix B.234

In Figure 3 we report the results of our evalua-235

tion across the three sources. We note that a ma-236

jority of observed errors in the original text ques-237

tions stem from them being either irrelevant or238

un-interpretable out of context. We also see that239

generating questions directly from human-written240

summaries significantly improves relevance and in-241

context interpretability, resulting in over 80% being242

labeled as acceptable by annotators. Finally, in the243

case of automatic summaries, we see that relevance244

and in-context interpretability are somewhat im-245

proved as compared to the original text questions246

while grammaticality suffers slightly.247

In Table 2 we evaluate the recall of our generated248

questions. Recall was calculated by extracting all249

bolded key terms from the textbook chapters 2-250

4 and sub-string searching for each term among251

all questions and answers from a given source. If252

we think of the results from Figure 3 as precision253

scores, we see that the human summary questions254

have not only high precision but also high recall. In255

contrast, the original text questions have high recall256

but much lower precision. Automatic summary257

questions seem to strike a balance here, having258

A1 A2 A3 Pairwise IAA

Acceptable? 69.7 48.7 47.7 (0.41, 0.50, 0.33)
Grammatical? 98.3 90.7 86.3 (0.16, 0.49, 0.10)
Interpretable? 79.7 70.7 59.7 (0.51, 0.43, 0.32)
Relevant? 79.0 71.3 69.0 (0.41, 0.29, 0.25)
Correct? 91.7 90.7 90.0 (0.03, 0.08, 0.06)

Table 3: Comparison between our three annotators (A1,
A2, A3) on all 300 questions across all categories. Num-
bers represent percentages. Pairwise Inter-Annotator
Agreement is calculated by Cohen κ and is reported in
the order (A1-A2, A2-A3, A3-A1).

higher precision than original text questions but 259

lower recall than human summary questions. 260

In Table 3 we report the pairwise inter-annotator 261

agreement (IAA) as well as a per-annotator scoring 262

breakdown. We use pairwise Cohen κ instead of 263

Fleiss κ to better highlight the difference in agree- 264

ment between certain pairs of annotators6. While 265

at first glance it may seem that agreement is low for 266

grammaticality and correctness, this is somewhat 267

expected for highly unbalanced classes (Artstein 268

and Poesio, 2008). For the other three categories 269

we see an average pairwise agreement of approx- 270

imately 0.4 which suggests a fair degree of agree- 271

ment for such a seemingly ambiguous category. 272

6 Conclusion and Future Work 273

In this work we show that answer-unaware QG 274

models have difficulty both choosing relevant top- 275

ics to ask about and generating questions that are 276

interpretable out of context. We show that asking 277

questions on summarized text ameliorates this in 278

large part and that these gains can be approximated 279

by the use of automatic summarization. 280

Future work should seek to further explore the 281

relationship between summarization and QG. Work 282

done concurrently to ours by Lyu et al. (2021) al- 283

ready has promising results in this direction, show- 284

ing that training a QG model on synthetic data 285

from summarized text improves performance on 286

downstream QA. 287

Additionally, future work should focus on further 288

refining and standardizing the metrics used for both 289

automatic and human evaluation of QG. As noted 290

by Nema and Khapra (2018) n-gram overlap met- 291

rics correlate poorly with in-context interpretability 292

and evaluation on downstream QA fails to address 293

the relevance of generated questions. 294

6Examples of questions for each category on which there
was significant disagreement are listed in Appendix D
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A Software and Data 466

To assist with reproducibility, included in the sup- 467

plementary materials are: 468

1. The 300 questions used in our study as well 469

as the annotations collected 470

2. The 2,194 un-annotated questions with asso- 471

ciated source and section number 472

3. The text sources used to generate the ques- 473

tions (three chapters of cleaned text from Ju- 474

rafsky and Martin, three sets of human sum- 475

maries, one set of automatic summaries) 476

4. The script used to generate questions (some 477

details redacted to preserve anonymity) 478

The full software will be released after the end of 479

the review process. 480

B Annotator Guidelines 481

In Table 4 we report the annotation guidelines given 482

to our annotators. In the original document, under 483

each category, 3 or more example annotations were 484

given, each containing an explanation as to why the 485

selection was made. Categories such as grammati- 486

cality had upwards of 10 or more examples given 487

to ensure maximum possible agreement between 488

annotators. Several discussion sessions were held 489

between the authors and annotators to ensure that 490

these guidelines were well understood and that they 491

were sensible for the task. 492

During annotation, annotators were not given the 493

original source text from which the question was 494

generated. Instead, they were given the original 495

textbook chapters to use as reference material for 496

relevance and were allowed to use online search en- 497

gines to check for grammaticality and correctness. 498

C Comparison Across Chapters 499

In Table 5 we report the distribution of scores 500

across chapters. The titles of the three chapters are 501

“Regular Expressions, Text Normalization, Edit Dis- 502

tance”, “N-gram Language Models”, and “Naive 503

Bayes and Sentiment Classification” respectively. 504

We note that the scores of the generated questions 505
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Would you directly use this question as a flashcard? (Yes / No):
A Yes answer to this question means that the generated question is salient, grammatically correct, non-awkwardly phrased and
has one correct answer. If you answer Yes to this question you may skip the rest of the annotation for the given example – the
answers for all other questions are assumed to be Yes. If you answer No, then please continue on to the rest of the questions.
Importantly, if you *did* answer yes to all of the other questions, do not feel pressured to answer yes to this question. There
are many reasons why you might not want to directly use a question as a flashcard (too easy, too general, etc.) that are not
enumerated here.

Is this question grammatically correct? (Yes / No):
A Yes answer to this question implies that a question has no grammatical errors. Awkwardly worded questions that are
grammatical should be annotated as such (answer Yes for these questions).

Does this question make sense out of context? (Yes / No):
This question asks if there are any references made by the question to other items that have been “previously discussed”. For
our use case, questions should never refer to other specific items in the text from which they were drawn. A Yes answer to
this implies that the question is interpretable when taken on its own and is a question that someone would ask if there was no
pre-existing context.

Is this question relevant? (Yes / No):
A Yes answer to this question implies that the question being asked is important for understanding the main points that the
chapter (and by extension the book) is attempting to teach. Questions that are relevant should be ones that would plausibly be
asked on a quiz or a test from a fairly thorough course on computational linguistics. Questions that are about insignificant details
or questions that are about specific illustrated examples that are not useful for understanding the main points of the chapter
should be given a No. Anything that is relevant (or tangentially relevant) to computational linguistics should be given a Yes.

Is the answer to the question correct? (Yes / No):
A Yes answer to this question implies that the answer given is one of a multitude of plausible correct answers to the question. If
the question has multiple correct answers and the given answer is one of them, it should be annotated as a Yes. If the question
is bad/ungrammatical or underspecified to such an extent that you cannot judge the answer properly, you should annotate Yes.
However, irrelevant questions that are grammatical and reasonably interpretable should be annotated properly.

Table 4: Guidelines given to our human annotators before annotating for the acceptability, grammaticality, inter-
pretability, relevance, and correctness of generated questions.

Chapter 2 Chapter 3 Chapter 4
# Questions (n = 139) (n = 93) (n = 66)

Acceptable? 54.0% 58.1% 53.0%
Grammatical? 94.2% 93.5% 93.9%
Interpretable? 74.1% 76.3% 72.7%
Relevant? 72.7% 81.7% 83.3%
Correct? 95.0% 100% 98.5%

Table 5: Distribution of human evaluation scores across
the three chapters of annotation. Labels are determined
via majority vote among our three annotators.

are largely consistent across the three chapters,506

with lower average relevance for Chapter 2 ques-507

tions likely owing to the source material containing508

many worked examples of regular expressions and509

other application-specific details.510

D Example Disagreements511

In Table 6 we list questions for which there was512

at least one dissenting annotator for the given cate-513

gory.514

We see that for categories such as “Relevant?”515

and “Interpretable?”, annotations are often depen-516

dent on the level of granularity with which the topic517

is being discussed. For example, a question such518

as “Who named the minimum edit distance algo-519

rithm?” may or may not be relevant depending on 520

how granular of a class the student is taking. 521

For categories such as “Correct?” or “Accept- 522

able?” certain particularities about otherwise good 523

questions can easily disqualify them from receiv- 524

ing a positive annotation. In the case of “What 525

NLP algorithms require algorithms for word seg- 526

mentation?”, keen-eyed annotators would notice 527

that the question is non-sensical, however others 528

may note that both Japanese and Thai do, in fact, 529

require word segmentation. Particularities such as 530

these make this task very difficult, even for expert 531

annotators. 532

E Example Summaries 533

In Table 7 we list two examples of textbook sec- 534

tions with their accompanying summaries from our 535

three annotators and the pre-trained BART model. 536

We see that the length of summary varies drastically 537

between our three human annotators, each of them 538

making different decisions on whether or not to 539

keep or discard certain pieces of information. An- 540

other thing to note is that automatic summaries are 541

much more extractive in nature while the human 542

summaries are generally more abstractive. 543
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Q: What is another name for a corpus that NLP algorithms learn from? A: training corpus
Acceptable? Q: What would happen if we accidentally trained the model on the test set? A: bias

Q: What would give a lower cross-entropy? A: The more accurate model

Q: What are words like uh and um called fillers? A: filled pauses
Grammatical? Q: What context do words that are in our vocabulary appear in a test set in? A: unseen

Q: What word has the same lemma cat but are different wordforms? A: cats

Q: What gives us a way to quantify both of these intuitions about string similarity? A: Edit distance
Interpretable? Q: What is another important step in text processing? A: Sentence segmentation

Q: What seems to matter more than its frequency? A: whether a word occurs or not

Q: What isn’t big enough to give us good estimates in most cases? A: web
Relevant? Q: Who named the minimum edit distance algorithm? A: Wagner and Fischer

Q: What do algorithms have to deal with? A: ambiguities

Q: What do square brackets not allow us to say? A: s or nothing
Correct? Q: What NLP algorithms require algorithms for word segmentation? A: Japanese and Thai

Q: What encode some facts that we think of as strictly syntactic in nature? A: Bigram probabilities

Table 6: Questions for which there was disagreement on the label for the given category

Original Text: What do we do with words that are in our vo-
cabulary (they are not unknown words) but appear in a test set
in an unseen context (for example they appear after a word they
never appeared after in training)? To keep a language model
from assigning zero probability to these unseen events, we’ll
have to shave off a bit of probability mass from some more fre-
quent events and give it to the events we’ve never seen. This
modification is called smoothing or discounting. In this sec-
tion and the following ones we’ll introduce a variety of ways to
do smoothing: Laplace (add-one) smoothing, add-k smoothing,
stupid backoff, and Kneser-Ney smoothing.

Original Text: As we saw in the previous section, naive Bayes
classifiers can use any sort of feature: dictionaries, URLs, email
addresses, network features, phrases, and so on. But if, as in the
previous section, we use only individual word features, and we
use all of the words in the text (not a subset), then naive Bayes
has an important similarity to language modeling. Specifically,
a naive Bayes model can be viewed as a set of class-specific
unigram language models, in which the model for each class
instantiates a unigram language model. Since the likelihood
features from the naive Bayes model assign a probability to each
word P(word|c), the model also assigns a probability to each
sentence.

Automatic Summary: What do we do with words that are in
our vocabulary (they are not unknown words) but appear in a
test set in an unseen context? To keep a language model from
assigning zero probability to these unseen events, we’ll have to
shave off a bit of probability mass from some more frequent
events. This modification is called smoothing or discounting.

Automatic Summary: A naive Bayes Bayes model can be
viewed as a set of class-specific unigram language models. The
model for each class instantiates a language model. Since the
likelihood features assign a probability to each word P(word|c),
the model also assigns a probability to each sentence.

Human Summary (A1): We remove some probability mass
for more frequent events and reassign it to unseen events with
known words, and this is called smoothing or discounting. We
study four 4 main methods of smoothing: Laplace smoothing,
add-k smoothing, stupid backoff, and Kneser-Ney smoothing.

Human Summary (A1): A naïve Bayes model can be viewed
as a set of class-specific unigram language models.

Human Summary (A2): Smoothing or discounting is the pro-
cedure of transferring the probability mass of frequent events to
other words that appear in the test set in an unseen context.

Human Summary (A2): Naive Bayes models are similar to
language modeling in that they can be viewed as a set of class-
specific unigram language models. The probability of a sentence
being positive is the total product of the individual probabilities
that each word in the sentence is positive.

Human Summary (A3): Not assigning zero to the probability
of an unseen word in the test set is called smoothing or discount-
ing. There are different ways to do smoothing: Laplace, add-k
smoothing, stupid backoff, Kneser-Ney smoothing.

Human Summary (A3): A naive Bayes model can be viewed
as a set of class-specific unigram language models, in which the
model for each class instantiates a unigram language model.

Table 7: Examples of human and automatic summaries for two sections of “Speech and Language Processing”. The
left text is from Section 3.4 “Smoothing” and the right text is from Section 4.6 “Naive Bayes as a Language Model”.
We see that the automatic summaries tend to be more extractive while the human summaries are more abstractive.
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