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Extracting useful knowledge from big data is important for machine learning.
When data is privacy-sensitive and cannot be directly collected, federated

learning is a promising option that extracts knowledge from decentralized
data by learning and exchanging model parameters, rather than raw data.
However, model parameters may encode not only non-private knowledge but
also private information of local data, thereby transferring knowledge via
model parameters is not privacy-secure. Here, we present a knowledge
transfer method named PrivateKT, which uses actively selected small public
data to transfer high-quality knowledge in federated learning with privacy
guarantees. We verify PrivateKT on three different datasets, and results show
that PrivateKT can maximally reduce 84% of the performance gap between
centralized learning and existing federated learning methods under strict
differential privacy restrictions. PrivateKT provides a potential direction to
effective and privacy-preserving knowledge transfer in machine intelligent

systems.

In recent years, machine learning technology has developed rapidly
and empowered intelligent systems in many real-world scenarios, such
as intelligent healthcare' and social computing*”’. The success of
machine learning usually lies in summarizing useful knowledge from
big data, which is mainly benefited from the high capacity and com-
plexity of models®'°. Learning machine learning models on centralized
data is a mainstream knowledge transfer paradigm". However, training
data in many tasks are highly privacy-sensitive'>", and recent privacy
leakage accidents have drawn more and more attention from the
public to the security of user privacy'¢. Moreover, some strict privacy
regulations such as GDPR” and CCPA® are also spawned to limit the
collection, processing, and storage of user data'?. Due to the privacy-
sensitive nature of training data, the centralized model training
usually arouses serious privacy concerns and even violates privacy
regulations®*,

Federated learning (FL) can transfer knowledge from decen-
tralized data®>?®, and thereby begins to serve as a privacy-aware
model training framework in many privacy-sensitive applications, such

as Covid-19 patient detection””*® and intelligent personal assistant*~°.

In federated learning, knowledge is usually extracted from decen-
tralized data into local model updates, and further aggregated into a
shared model by communicating local model updates rather than raw
data (Fig. 1a)****'3, However, model updates usually have enough
capacity to memorize the private information in training data, the
disclosure of which still has the risks of leaking raw data**. To
improve privacy security, some federated learning methods propose
to transfer knowledge based on a large-scale unlabeled public dataset
(Fig. 1b)**, In these methods, each client first extracts knowledge
from decentralized data into local predictions on the entire unlabeled
public dataset, then the server aggregates the uploaded local predic-
tions to update a global model. However, the local model predictions
are also correlated to private information in local data, and thereby
user privacy is still not guaranteed in these works®.

To protect user privacy in federated learning, local differential
privacy (LDP) that perturbs communicated data with noise can be
applied to offer theoretical privacy guarantees’. Nevertheless, the
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Fig. 1| The differences between our work and prior methods. A The federated
learning method that transfers knowledge via local model updates. B The federated
learning method that transfers knowledge via local model predictions on a large-

scale unlabeled public dataset. C The proposed PrivateKT method that transfers
knowledge via actively selected small public data.

intensity of LDP noise is usually proportional to the size of commu-
nicated data*, making it ineffective for LDP to protect existing feder-
ated learning methods that depend on large-scale public data for
knowledge transfer. A naive solution is to reduce the size of public
data, however, knowledge transfer via small data is usually ineffective
and may seriously degrade the model performance*’. Thus, in this
work, we study how to effectively and privately transfer knowledge via
a small amount of data. The core idea of our solution is that, the server
actively selects a small amount of public data informative for model
learning as the carrier of knowledge transfer (Fig. 1c; named as Priva-
teKT). In order to achieve privacy guarantees, PrivateKT locally per-
turbs predictions of local models on the carefully selected data via
randomized response mechanism*. Then the server in PrivateKT col-
lects and aggregates the local knowledge to update the model. We
evaluate PrivateKT on three benchmark datasets for three different
real-world tasks. Extensive experiments show that, under strict privacy
guarantees, many existing federated learning methods almost degrade
into random guesses while PrivateKT can achieve comparable perfor-
mance with centralized learning (1% loss minimally). Through exten-
sive analysis, we also reveal that small carefully selected data has
enough information capacity to transfer big knowledge, which can

inspire researchers to design private, effective, and efficient knowl-
edge transfer systems in the future.

Results
Overall framework
Next, we first briefly introduce the overall framework of PrivateKT for
private knowledge transfer (Fig. 1c). It can extract the local knowledge
from decentralized data to collaboratively learn an intelligent model
under differential privacy guarantees. In PrivateKT, training data is
locally kept by different clients and never shared with the outside, and
an intelligent model is maintained by a central server and has a local
copy on each client. Besides, following previous works**’, we assume
that there is an unlabeled public dataset that is non-privacy sensitive
and can be shared across different parties for knowledge transfer.
The knowledge transfer in PrivateKT includes three steps, namely,
knowledge extraction, knowledge exchange, and knowledge aggre-
gation. In the knowledge extraction step, each client first trains the
intelligent model on its local data and then computes model predic-
tions on a small amount of knowledge transfer data (named KT data).
The KT data is actively sampled from the public dataset by the server
based on an importance sampling mechanism, where the public data
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with lower model confidence will be assigned a higher sampling
opportunity. In the knowledge exchange step, we share the local
knowledge with the server under differential privacy guarantees. Each
client locally perturbs model predictions via the randomized response
mechanism*, which randomly chooses whether to replace a local
model prediction with a randomly-generated category label before
sending it to the server. In the knowledge aggregation step, the server
aggregates uploaded perturbed local predictions and stores them in a
knowledge buffer. In this way, the historical aggregated knowledge in
the past several rounds is kept by the knowledge buffer, and can be
further encoded into the global model by fine-tuning the global model
on the knowledge buffer. Moreover, we employ a self-training
method** to update the global model on the unlabeled public data
to accelerate the model convergence. By repeating this process, we
can privately transfer high-quality knowledge from decentralized data
into the shared intelligent model.

Performance evaluation

We conduct experiments in three real-world tasks for perfor-
mance evaluation. The first task is handwritten digit classification,
which needs to classify the category of a digit written by a user. It
is based on a widely used federated learning benchmark dataset
(named MNIST)*. The second task is text-based disease predic-
tion, which needs to predict the diseases described in medical
abstracts. It is based on a public dataset (named MedText)
released by a Kaggle medical text mining competition. The third
task is image-based pneumonia detection, which aims to detect
pneumonia from chest X-ray images. This task is based on a real-
world dataset (named X-ray) released in a Kaggle X-Ray analysis
competition. Following the previous work?®, 20% of training data
is used as the candidate unlabeled data pool to choose samples
for knowledge transfer. The model performance is compared
under both independent identical data distribution (IID) and non-
identical independent data distribution (Non-IID). The non-IID
data distributions used for evaluation in experiments include the
class non-lID distribution where data classes of local clients are
imbalanced, the size non-IID distribution where data sizes of local
clients are imbalanced, and the mixed non-1ID distribution where
both data classes and data sizes of local clients are imbalanced.
The IID and Non-IID data partition strategies follow the settings of
previous work*®. (We show more details of datasets in the Sup-
plementary Information.)

The architecture of the basic models trained on MNIST and X-Ray
is a two-layer convolution network®, and the basic model trained on
MedText is a transformer network*’. Several representative knowledge
transfer methods for federated learning methods are compared in
experiments, including FedSGD®, FedAvg®, FedAdam®, FedMD*, and
FedED’*. The comparison includes results of using LDP or not. We
apply LDP to protect the baseline federated learning methods by
adding noise to the exchanged local model updates or model predic-
tions. We use the definition of e-LDP and the privacy budget eis set to 5
(see the “Methods” section). We also include the results of centralized
model training (named CenTrain) as a reference for performance
comparisons. We use the accuracy as the metric for evaluation on
MNIST, and the Macro-F1 as the metric for evaluation on MedText and
X-Ray. (More detailed experiential settings are presented in the Sup-
plementary Information.)

We independently repeat each experiment five times and
report the average performance with standard deviations (Fig. 2).
From the results, we find that without differential privacy both
PrivateKT and other federated learning methods achieve com-
parable performance with centralized model training. However,
when we apply LDP to protect user privacy, the LDP noise ser-
iously hurts the performance of existing federated learning
methods. For example, FedAvg drops 86.85% of accuracy on

MNIST under the IID data distribution, and FedMD drops 41.91%
of Macro-F1 on X-Ray under the class non-IID data distribution.
This is because these federated learning methods transfer
knowledge by exchanging a large volume of intermediate vari-
ables (such as local model updates). However, the intensity of
LDP noise is usually proportional to the size of communicated
data, making it ineffective for these methods to balance knowl-
edge utility and privacy protection. By contrast, PrivateKT effec-
tively improves the performance of federated learning under the
same differential privacy guarantees, and significantly outper-
forms previous methods (p<le-4 based on t-test). This is
because PrivateKT uses small carefully selected data to condense
high-quality knowledge, which does not substantially suffer from
the perturbation of LDP noise meanwhile improving the effec-
tiveness of knowledge transfer. We then analyze the contribu-
tions of different mechanisms in PrivateKT in the following
section. We also compare the efficiency and generality of Priva-
teKT with other FL methods in Supplementary Information. It is
worth noting that the evaluation presented in Fig. 2 is primarily
founded on moderately large datasets with thousands or tens of
thousands of samples (e.g., MNIST and X-Ray). Therefore, further
exploration is necessary to fully assess the effectiveness of Pri-
vateKT on large-scale datasets. In light of this, we undertake
further analysis by comparing various methods on two larger FL
benchmark datasets, CIFAR-10 and CIFAR-100*%, which are
expounded upon in the Supplementary Information. Results show
that the main conclusions of our paper still hold: PrivateKT
effectively improves the performance of other FL methods under
strict privacy restrictions.

Model effectiveness

Next, we verify the impacts of several important mechanisms in Pri-
vateKT on knowledge transfer, i.e., knowledge buffer, importance
sampling, and self-training (Fig. 3). We remove the knowledge buffer
and the self-training method from PrivateKT, and replace the impor-
tance sampling mechanism with a uniform sampling method, indivi-
dually, to verify their effectiveness. Results show that both the
knowledge buffer and the importance sampling mechanisms effec-
tively improve the model performance and accelerate the model
convergence. This is because, in order to mitigate the damage of LDP
noise on model performance, PrivateKT only uses a small amount of
data sampled from an unlabeled public dataset for knowledge transfer.
However, small public data may be insufficient for the effective
knowledge transfer and result in suboptimal model performance.
Thus, in PrivateKT we tackle this challenge from two aspects. First, we
propose to sample knowledge transfer data based on their informa-
tiveness for model training, to maximize the quality of knowledge
carried by the small sampled data. Second, we propose a knowledge
buffer to store and encode historical useful knowledge to the global
model, aiming to incorporate more useful knowledge for model
updating. Moreover, to enhance the knowledge transfer in PrivateKT,
we also employ the self-training technique to further fine-tune the
global model, whose contribution is also verified by the results. These
results show that PrivateKT can exploit small data for transferring big
knowledge. This finding reveals that, big knowledge is not necessarily
obtained from big data, but also can be mined from small but repre-
sentative data.

Next, we analyze the trade-off between the performance and
privacy of the knowledge transfer in PrivateKT (Fig. 4). We show the
performance of PrivateKT under different privacy budgets (denoted as
€) and different knowledge transfer sample sizes (denoted as K), where
a smaller privacy budget means a stronger differential privacy guar-
antee. We find that strong differential privacy guarantees do not ser-
iously hurt the model accuracy. For example, the best accuracy of
PrivateKT on MNIST is around 94% under a strong privacy guarantee,
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where both local data sizes and classes are imbalanced (Mixed Non-1ID). The
averaged performance and corresponding standard deviations are shown. The
results show that the LDP noise seriously hurts the performance of existing fed-
erated methods, and PrivateKT can significantly improve the model performance
under the same privacy guarantees (p < le — 4 based on t-test).

i.e., €=2. The results verify that PrivateKT can effectively balance the
knowledge utility and privacy protection in federated learning. We also
find that in each round of PrivateKT a small number of samples (e.g., 2)
are sufficient for privately and effectively extracting knowledge from
decentralized data to a shared model, which further confirms that,
small data is possible for transferring big knowledge. More detailed
analyses on the hyper-parameter settings of PrivateKT are shown
in Supplementary Information.

Discussion

From big data to big knowledge, is an important vision of the current
machine learning research®. Federated learning that transfers
knowledge from decentralized data into a shared intelligent model is
widely used to reduce user privacy risks during knowledge transfer®?>,
Nevertheless, its privacy security is not guaranteed and needs to be
protected by some privacy protection methods such as local differ-
ential privacy*®. However, in this work, we discover that previous
federated learning methods are less performant in trading off privacy
protection and knowledge utility. Though simply reducing the size of
exchanged data is a potential solution to this problem, it may sub-
stantially degrade the knowledge transfer effectiveness and thereby

yield suboptimal model accuracy*>. Thus, there raises a question that
whether it is possible to transfer big knowledge via small data with
strong privacy guarantees.

In this work, we reveal that the answer to the above question is
true. The core of achieving this goal is selecting public samples based
on their informativeness rather than randomly. After knowledge
extraction through these representative samples on local clients, high-
quality knowledge encoded by local models can be transferred to the
server for aggregation to prepare for the further round of updates.
This paradigm enables privacy-preserving knowledge transfer on small
data that can minimally suffer from the performance degradation
brought by differential privacy, which shows a novel direction to train
machine learning models on decentralized data to exploit swarm
intelligence. It can also attract further attention to more sophisticated
data exploitation methods, rather than simply collecting and involving
more and more training data, which is not beneficial for understanding
the bound of machine intelligence under limited real-world data and
reducing the environmental pollution brought by the computation.
We hope our work can further inspire researchers to facilitate knowl-
edge engineering in a more effective, efficient, and privacy-
preserving way.

Nature Communications | (2023)14:3785



Article

https://doi.org/10.1038/s41467-023-38794-x

Accuracy

MedText

Macro-F1

Macro-F1

X-Ray

75 T T T T ) 18 T T y y 40 T v y y
100 200 300 400 500 400 800 1200 1600 1 10 20 30 40
# Rounds # Rounds # Rounds
—— PrivateKT = w/o Knowledge Buffer —- w/o Importance Sampling == wj/o Self-Training

Fig. 3 | The impacts of important mechanisms in PrivateKT on knowledge
transfer. We analyze the impacts of the knowledge buffer and the self-training
mechanisms by removing them from PrivateKT individually, and the impact of the

importance sampling mechanism by replacing it with a uniform sampling method.
Results show that all of these mechanisms can enhance knowledge transfer in
PrivateKT, and the knowledge buffer makes the greatest contribution.

Macro-F1

7 6

5

4

Privacy Budget: ¢

MNIST MedText
96 -
..
95 .-
94 \\\ \‘
3 93] o) o
o Sy o
> .""“*\ 5
9 92 1 \ ~<¢ b
< " =
86 1 i |
N,
78+ N\,
of e
7 6 5 4 3 2 7 6 5 4 3 2
Privacy Budget: € Privacy Budget: ¢
-4¢- K=1 —e— K=2

Fig. 4 | Analysis on the utility-privacy tradeoff in PrivateKT. The model per-
formance under various privacy budgets (i.e., €) and sizes of knowledge transfer

—a - K=5 (Kdenotes knowledge transfer data size)

samples (i.e., K) are presented in this figure. The results show that PrivateKT can
achieve satisfactory performance under very strong privacy guarantees (e.g., € =2).

However, our work also has the following limitations. First,
the private knowledge transfer method in PrivateKT requires an
unlabeled dataset that can be shared across different parties,
which may be inaccessible in some applications (e.g., persona-
lized e-commerce). Fortunately, some latest research works find
that the knowledge transfer can be effectively performed in a
data-free manner*. Thus, we plan to apply the data-free
knowledge transfer methods to PrivateKT to improve its prac-
ticability in real-world scenarios. Second, in real-world applica-
tions, PrivateKT has the risk of being attacked by Byzantine
clients®’. Therefore, in our future work, we plan to study how to
defend the attack to improve the robustness of PrivateKT based
on previous works*?~**, Third, compared with the privacy-invasive
centralized training, PrivateKT faces more significant perfor-
mance degradation on larger datasets. This is because, according
to the no free lunch theorem for privacy security and algorithm
utility of federated learning®, stronger privacy protection will
lead to poorer algorithm performance. Since preserving the
privacy of a larger volume of training data usually needs stronger
protection, the performance degradation of PrivateKT will also
become more serious. Thus, in our future work, we will explore
improving the privacy-preserving knowledge transfer mechanism
of PrivateKT to approach the theoretical performance upper
bound. Besides, the demonstration of PrivateKT is mainly based
on moderately large datasets (e.g., MNIST and CIFAR), and we

admit that the superiority of PrivateKT over other FL methods is
not guaranteed on large-scale datasets. In practice, we think our
approach is applicable in most scenarios with small or moderate
data volumes, and the scalability on huge datasets needs further
exploration.

Methods

Next, we will present the differentially private knowledge transfer
method for federated learning (named PrivateKT). We will first give
former definitions of local differential privacy and the research pro-
blem studied in this paper, and then introduce the details of our Pri-
vateKT method.

Preliminary

The local differential privacy method (LDP)*® aims to protect user
privacy under theoretical guarantees. The core idea of LDP is to
perturb the shared data via a randomized mechanism to guaran-
tee privacy security. Formally, the definition of LDP can be sum-
marized as follow: a randomized mechanism M(-) can protect
the input data - under ¢-LDP, if and only if for two arbitrary input
data X and X', and any output Y € range(M), the following ine-
quation holds:

PriM(X)=Y]<e® - PrM(X')=Y], @
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where Prl-] is the probability of -, and € is the privacy budget. The
privacy budget e quantifies the privacy guarantee, where a smaller
privacy budget means stronger privacy protection.

Problem definition

Following popular federated learning settings, PrivateKT includes N
clients and a central server. Each client privately keeps its local dataset
and never shares it with the outside, where the local dataset in the i-th
client is denoted as Df. The global model is maintained by the central
server and has a local copy on each client. The central server is also
responsible for coordinating the clients to participate in the knowl-
edge transfer. In addition, we assume that there is an unlabeled public
dataset D, that is non-privacy sensitive and can be shared across dif-
ferent parities for knowledge transfer, where the i-th sample in D, is
denoted as x?. In order to guarantee privacy security during knowl-
edge transfer, any communicated variables correlated to the local
private data need to be protected by the LDP method. The research
problem studied in this paper is to design a both private and effective
knowledge transfer method for federated learning.

Differential private knowledge transfer

The core of private knowledge transfer is communicating perturbed
local model predictions on a small amount of actively selected public
data. By drastically reducing the size of communicated variables, Pri-
vateKT can effectively mitigate the damage of LDP noise on model
performance. Nevertheless, randomly sampled small data may be
insufficient to transfer high-quality knowledge from local data to a
global model. Thus, we further propose several mechanisms to
improve the effectiveness of knowledge transfer based on small data.
Next, we will introduce the details of the differential private knowledge
transfer in PrivateKT (Fig. 5).

Take the t-th knowledge transfer round as an example, Pri-
vateKT includes three core steps, i.e., knowledge extraction,
knowledge exchange, and knowledge aggregation. The knowl-
edge extraction step aims to extract knowledge from local data
and encode it into local predictions on small actively sampled
data. Specifically, the server first distributes the global model in
the t-round (denoted as O, and K pieces of knowledge transfer
(KT) data to each client, and selects a part of clients for model
training, where the selected client set is denoted as g,. (The
sampling mechanism of KT data will be introduced in the next
paragraph.) For an arbitrary client ¢ € G,, it first trains the latest
model O, on its local dataset Dj. Then the client ¢ computes
predictions of the locally-trained model on the KT data for
knowledge extraction, where x{ denotes the i-th KT data and y¢;
denotes the local model prediction of the client ¢ on xi. In this
way, knowledge can be extracted from local data into local model
predictions, and exchanging local predictions can transfer local
knowledge to the central server.

However, the local model predictions are correlated to the private
data, the disclosure of which remains the risk of leaking raw data. Thus,
to guarantee user privacy security under LDP, each client locally per-
turbs local predictions via the randomized response mechanism®.
Specifically, for each local model prediction y, each client ¢ randomly
chooses whether replace it with a randomly-generated category label f
before uploading it to the server:

- [y R=1
v={} oo R~EB. £~PO), @

where y € {0, 1} is the one-hot category vector predicted by the local
model, f€{0,1}¢ is a random one-hot vector drawn from a uniform
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multinomial distribution P(C), y is the perturbed local prediction, Ris a
random variable drawn from a Bernoulli distribution B(B), C is the
number of classification categories and S is the probability of assigning
the Bernoulli random variable R to 1. Based on the randomized
response mechanism, the client ¢ can build the perturbed local
predictions {y,;i=1.2,...K} for the knowledge transfer data. By
uploading the perturbed predictions to the server, we can privately
exchange local knowledge under differential privacy guarantees.
(Discussions on privacy guarantees are in the next section.)

After the server collects perturbed predictions from selected cli-
ents G,, the knowledge aggregation step can be executed to update the
global model. The sever first aggregates the local predictions on the
same KT data to estimate the averaged predictions of different local
models on it. Take the i-th knowledge transfer data x! as an example,
the averaged prediction y! = |9 12 ceq,Ye,; ON Xj is estlmated based on
the following equation:

‘ , 3
Yis (mcezg: ) ©

where y; is an unbiased estimation of y¢ and the mean square error of
the estimation can asymptotically converge to 0. (The proof is
in Supplementary Information.) In this way, the LDP noise can be
reduced in the aggregated knowledge, and fine-tuning the global
model on the aggregated knowledge can effectively mitigate the
damage of LDP noise on knowledge transfer.

Recall that, due to the proportional relation between the LDP
noise intensity and communicated data volume, in PrivateKT only a
small amount of public data is used for knowledge transfer to mitigate
the damage of LDP noise. However, small data may be insufficient to
serve as a high-quality carrier to transfer knowledge, which may lead to
a suboptimal model performance. To tackle this challenge, we propose
two mechanisms to enhance knowledge transfer from different
aspects. First, we propose an importance sampling mechanism to
maximize the knowledge capacity of KT data for training the global
model ©%. In this mechanism, we measure the uncertainty of the global
model ©° on each unlabeled data in D, based on the information
entropy, and assign a higher sampling opportunity to unlabeled data
with higher model uncertainty. The model uncertainty u¢ and the
sampling weight w¢ of the i-th unlabeled data x in D, are computed as
follow:

d c
i % d= =3 " p(d j;0,)logp( j;©,),  (4)
=

where p(x? j; ©,) is the probability of classifying x? to the j-th category
based on model .. Second, we propose a knowledge buffer to store
historical aggregated knowledge, aiming to encode more useful
knowledge to the global model. The server first stores the aggregated
knowledge of the current round in the knowledge buffer and then
utilizes the knowledge in the buffer to fine-tune the global model ©,.
(The updated global model is denoted as ©;.) The knowledge buffer is
of size B and maintains the stored knowledge in a first-in-first-out
manner.

Moreover, to accelerate the model convergence, we employ the
self-training technique** to further fine-tune the global model ©;. We
randomly select M samples with low model uncertainties from D, and
utilize them to self-train the model ©;:

where 43 is the uncertainty of model ©; on x? and w? is the sampling
opportunity of x!’ for the self-training. Untll now, we have finished a
knowledge transfer round in PrivateKT and privately transferred
knowledge from decentralized data to the global model, where the
updated model is denoted as ©"*. Furthermore, we can continue the
next knowledge transfer round, after the server distributes the latest
global model ©"! and corresponding KT data to local clients. By
repeating this process, we can transfer knowledge from decentralized
data to collaboratively learn an intelligent model in an effective and
privacy-preserving way. The workflow of PrivateKT is also summarized
in Algorithm 1.

Algorithm pseudo code

Algorithm 1. Workflow of PrivateKT

1: Setting the hyperparameters ¢, K, 5, B, Mand T

2: Sever randomly initializes the model parameter O,

3: Server randomly selects K knowledge transfer data D} = {x}|i=

L...K} from D,,.

4:fortinl2,...,

5:  Sever distributes ©, and D to each client

6:  Server randomly selects a group of clients G,
7:  for each client ¢ € G, (in parallel) do
8
9

Tdo

Locally train model O, on the local dataset D}

foriinl,2,...,Kdo

10: Compute local model prediction y.; on the KT data x}
11: Randomly draw R ~ B(f5) and f ~ P(C)
12: Compute perturbed local model prediction )7;,- via

Eq. 2)
13: end for
14: Upload perturbed local model predictions to the server
15:  end for

16:  Server aggregates local knowledge and stores them in the
knowledge buffer of size B

17:  Server fine-tunes the global model ©, on the knowledge
buffer

18:  Server self-trains the global model and builds the updated
model Oy

19:  Server samples knowledge transfer data D' via the
importance sampling mechanism

20: end for

Discussion on privacy protection

Next, we will discuss the privacy guarantees of the knowledge transfer
in PrivateKT. In PrivateKT, the local private data is kept by each client
and never shared with the outside. In order to transfer knowledge from
decentralized data to an intelligent model, PrivateKT extracts knowl-
edge from local data into predictions on small KT data, and shares
them with a central server for knowledge aggregation. Thus, in Priva-
teKT, among all local variables correlated to the private data, only local
predictions are shared with the server. Since the communication of
local predictions may leak raw data, we propose to perturb each local
prediction before sending it to the central server to protect user
privacy. The privacy security of a single knowledge transfer round in
PrivateKT is guaranteed by the e-LDP based on Lemma 1. (The proof'is
in the Supplementary Information.)

Lemma 1. Given the size of knowledge transfer samples (i.e., K), the
privacy protection of knowledge transfer in PrivateKT is gauranteed by
¢-LDP if the following equation holds:

exp(g) — 1
B= — =~ (6)
exp(—u) ¢ . . exp(g) —1+C
wf:m P = —ZP(XfJQO[)lOgP(X?th), 5) K
1 Jj=1
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Moreover, in PrivateKT we can further avoid the accumulation of
privacy budgets during different knowledge transfer rounds based on
the model shuffling method*+*’. Thus, the privacy security of the whole
knowledge transfer process in PrivateKT is also guaranteed by e-LDP, if
the condition in Lemma 1 can be satisfied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets involved in this study are all publicly available ones. The
usage of these datasets in this paper is permitted under their licenses.
The MNIST dataset is available at http://yann.lecun.com/exdb/mnist/.
The MedText dataset is available at https://www.kaggle.com/datasets/
chaitanyakck/medical-text. The X-Ray dataset is available at https://www.
kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. The
CIFAR-10 and CIFAR-100 datasets are available at https://www.cs.
toronto.edu/~kriz/cifar.html. The experimental results generated in
this study are provided in the Source Data file. Source data are provided
with this paper.

Code availability

Codes for this work are available on a public repository® https://
github.com/taoqi98/PrivateKT. We also provide sufficient details in
the Methods and Supplementary Information for implementing
experiments in this work.
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