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Abstract
In many interactive decision-making problems,
there is contextual side information that remains
fixed within the course of an interaction. This
problem has been studied quite extensively under
the assumption the context is fully observed, as
well as in the opposing limit when the context
is unobserved, a special type of POMDP also re-
ferred to as a Latent MDP (LMDP). In this work,
we consider a class of decision problems that inter-
polates between the settings, namely, between the
case the context is fully observed, and the case the
context is unobserved. We refer to this class of de-
cision problems as LMDPs with prospective side
information. In such an environment an agent
receives additional, weakly revealing, informa-
tion on the latent context at the beginning of each
episode. We show that, surprisingly, this prob-
lem is not captured by contemporary POMDP
settings and is not solved by RL algorithms de-
signed for partially observed environments. We
then establish that any sample efficient algorithm
must suffer at least Ω(K2/3)-regret, as opposed
to standard Ω(

√
K) lower bounds. We design

an algorithm with a matching upper bound that
depends only polynomially on the problem param-
eters. This establishes exponential improvement
in the sample complexity relatively to the existing
LMDP lower bound, when prospective informa-
tion is not given (Kwon et al., 2021).

1. Introduction
"If in the first act you have hung a pistol on the wall, then in
the following one it should be fired." A. Chekhov famously
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stated. From a decision making perspective this idea serves
as a reminder that in many environments an observer is
being presented with side information at the beginning of
an interaction that will be of value only in later use. Math-
ematically, this can be modelled as a contextual decision
problem with initial side information. Such natural problem
has been studied for the fully observed, Markovian setting,
when an agent has access to the contextual side informa-
tion (Jiang et al., 2017; Modi et al., 2018; Sun et al., 2019).
Such a problem was additionally studied in the partially
observed setting, when the contextual information exists but
is not observable by the agent (Chadès et al., 2012; Hallak
et al., 2015; Brunskill & Li, 2013; Chatterjee et al., 2020;
Steimle et al., 2018; Kwon et al., 2021), a setting that was
also referred as Latent MDPs (LMDPs) in prior literature.

An LMDP can model real world problems where there ex-
ists an unobserved latent context, e.g., in dialogue, recom-
mender or in healthcare systems, when complete informa-
tion on a user or patient is not given, yet, each user remains
fixed within each episodic interaction. Recently, Kwon et al.
(2021; 2023) derived exponential worst-case lower bounds
in the number of contexts for this subclass of POMDPs. This
implies that, in general, near optimal policy of an LMDP
cannot be learned efficiently when the number of latent
context is large.

In this work, we study a natural sub-class of LMDPs in
which weakly revealing information on the latent context is
given to an agent at the beginning of the interaction. That
can be thought of as an intermediate regime between the
case the contextual side information is given to the case
it is hidden and latent, as in general LMDPS. We refer to
this class of environments as LMDP with Prospective Side
Information, or as LMDP-Ψ. We introduce this class of
problems, study lower bounds and matching upper bounds
for this class, and show this setting can be learned efficiently,
unlike general LMDPs.

Motivating Example. Consider a navigation task where
the goal location is randomly selected at the beginning of an
episode from a small set of goal locations. Without further
assumptions, also an optimal policy of such POMDP will
perform poorly, and may not reach the goal state with high
probability. A natural way to improve the performance of
an agent is to supply it with additional hints about the goal
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MDP α-Revealing POMDP LMDP with α-Prospective SI LMDP POMDP
(UB)

√
AK poly(A,α−1)

√
K poly(A,α−1,M)K2/3 Unknown AH

√
K

(LB)
√
AK poly(A,α−1)

√
K min

(
AΩ(M)

√
K,poly(A,α−1,M)K2/3

)
AΩ(M)

√
K AΩ(H)

√
K

Table 1: Known regret upper and lower bounds in different classes of POMDPs, ordered by their degree of difficulty from
the simplest to hardest (left to right). Dependencies on other problem parameters are omitted (e.g., S and H). The results
and the setting introduced in this work are highlighted in green.

state, e.g., which area the goal is located. Such a hint is
given at the beginning of the interaction and remains fixed
throughout the episode, yet, this hint does not fully specify
the location of the goal state. Such an environment is an
instance of the LMDP-Ψ class.

Our Contributions. The main contributions of this work
are the following (see also Table 1). We introduce the
LMDP-Ψ setting and study its sample complexity. Specifi-
cally, we study the problem of learning a near-optimal pol-
icy of an LMDP-Ψ when the prospective side information
weakly reveals information, quantified by a parameter α, on
the true latent state. We provide a poly(A,α−1)K2/3 regret
upper bound, by building upon the pure exploration scheme
developed in Huang et al. (2023). Our upper bound does
not suffer exponential dependence in the number of latent
contexts as in an LMDP, namely, in the absence of prospec-
tive information Kwon et al. (2021; 2023). We also derive
a lower bound of Ω

(
A
α2ϵ2K

2/3
)

to this problem, unlike the
K1/2 rate one may expect.

Technically speaking, our work builds upon recent algorith-
mic advancements for POMDPs (Liu et al., 2023; Uehara
et al., 2022; Huang et al., 2023). However, proper appli-
cation of these requires care. Perhaps our most surprising
finding is that the LMDP-Ψ class is not contained within
POMDP classes previously known to be efficiently learn-
able; hence, new results should be established for this class.
This fact also puts forward natural questions on generaliza-
tions of the LMDP-Ψ setting which we leave to the future.

2. Preliminaries
An episodic LMDP is defined as follows:

Definition 2.1 (Latent MDP). An LMDP instance con-
sists of a tuple θ :=

(
{pm}Mm=1, {Tm}Mm=1, {Om}Mm=1

)
,

where M is the number of latent contexts; {pm}Mm=1 are the
mixing weights, the probability latent context m is drawn
at the beginning of an episode; Tm ∈ RS×S×A,Om ∈
R|O|×S×A are the transition probabilities and instant ob-
servation distribution of mth MDPs, i.e., Tm(s′|s, a) :=
P(s′|m, s, a) and Om(o, s, a) := P(o|m, s, a) for state
s ∈ S, next state s′ ∈ S, action a ∈ A, instanteneous
observation o ∈ O, and latent context m ∈ [M ].

We assume that for all o ∈ O, there is a known reward-
decoding function r : O → R, and each reward is bounded
|r(o)| ≤ 1. To simplify the discussion, we assume that
the set of LMDP instances Θ has finite (but exponentially
large) cardinality |Θ|. Similarly, we also assume that the
observation space is discrete and finite:
Assumption 1 (Observation Space). Each observation at-
tains a value in the set O which has finite but could be
arbitrarily large cardinality |O|.

All claims made in this paper hold similarly for the continu-
ous model class with a standard ϵ-discretization of Θ with
the extra discretization error analysis similar to Liu et al.
(2022) and continuous observations Liu et al. (2023).

At the beginning of every episode, a latent and unobserved
context m ∈ [M ] is sampled from a mixing distribution
{pm}Mm=1 and is fixed for H time steps. Without loss of
generality, we assume that the system starts from time-step
t = 0 at a fixed initial state sdummy and transits to other states
following the initial state distribution of the chosen MDP
regardless of taken actions (and we always see a dummy
observation odummy).

Prospective Side Information for LMDPs. In this work,
we assume the LMDP is augmented with prospective side
information. Prospective side information is an additional
observation given prior to the beginning of the episode
and remains fixed along an episode. Let I be the set of
prospective side information values, and is assumed to be
finite but may be arbitrarily large. Let I ∈ R|I|×M be a
context dependent emission matrix, i.e., I(ι,m) := P(ι|m).
Further, we assume it provides some hint on the identity
of the true latent MDP. Formally, we assume the following
weakly revealing condition:
Assumption 2 (α-Weakly Revealing Prospective Side Infor-
mation). For any two belief vectors v̄1, v̄2 ∈ ∆([M ]),

dTV (P(ι|v̄1),P(ι|v̄2)) ≥
α

2
∥v̄1 − v̄2∥1. (1)

With these definitions at hand, we define the LMDP with
Prospective Side Information, or LMDP-Ψ, An LMDP-Ψ is
the tuple θ = (I, {pm,Tm,Om}Mm=1) ∈ Θ.

Accordingly, our goal is now to learn an ϵ-optimal policy
from a larger class of policies Π : I × (A × O × S)∗ →
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∆(A) that exploits the prospective side information. An
additional subclass which is useful to define is the class of
side information blind policies Πblind : (A×O × S)∗ →
∆(A), that does not exploit the prospective side information.
Trivially Πblind ⊂ Π if I is non-empty. As we will see, the
nature of the problem becomes different by the capacity of
the policy class.

The optimal policy π∗ is the optimal history-dependent pol-
icy that maximizes the expected cumulative reward

V ⋆ = max
π∈Π

V π := Eπ
[∑H

t=1 rt(ot)
]
,

where the expectation is taken over latent contexts and
rewards generated by an LMDP instance, following pol-
icy π. We let π∗

blind be the counterpart in the smaller policy
class Πblind.

Notation We use the symbol ≲ to mean that the inequality
holds up to some absolute multiplicative constant. We use
≲P when it holds up to some problem dependent polynomial
factors. To simplify notation, we occasionally denote pair-
wise quantities as xt := (st, at), yt := (ot, st+1). Ber(p)
denotes a Bernoulli random variable with parameter p ∈
[0, 1]. For arbitrary full column-rank matrix M , M† is a
left-inverse of M such that M†M = I .

3. Related Work
The study of learning algorithms for LMDPs was initiated
within the framework of long-horizon multitask RL (Taylor
& Stone, 2009; Brunskill & Li, 2013; Hallak et al., 2015; Liu
et al., 2016), where full information on the latent contexts is
revealed for a long-enough episode. However, problems in
which full information on the latent context is not revealed
cannot be solved through this framework. Kwon et al. (2021)
considered the sample complexity of learning a near-optimal
policy for LMDPs without any assumptions. Unfortunately,
their lower bound is exponential in the number of contexts,
even when the transition dynamics are shared (Kwon et al.,
2023; 2022). Hence, further investigation on the natural
assumption for which LMDPs are efficiently learnable is
required. To overcome the fundamental barriers in LMDPs,
a few works have considered the assumption of giving true
information in hindsight (Kwon et al., 2021; Zhou et al.,
2022; Lee et al., 2023), as discussed earlier.

Another related work to our setting is the multi-step weakly
revealing POMDP, where an agent must play sub-optimal
actions to obtain weakly-revealing information (Golowich
et al., 2022; Liu et al., 2023; Chen et al., 2023). In this set-
ting, a similar lower bound ofK2/3 regret has been reported
in Chen et al. (2023). While our lower bound construction is
partially inspired by theirs, the LMDP-Ψ setting is different
since we obtain the weakly-revealing information “for free”

at the beginning of each episode. Hence, a priori, one may
hope for an improved upper bound in the simpler LMDP-Ψ
setting.

Lastly, in Kwon et al. (2021); Zhou et al. (2022); Lee et al.
(2023) the authors studied a somewhat dual setting to the one
we consider here: they assume the agent receives complete
information on the latent context in hindsight. Unlike their
work, we assume the revealing information is being given
at the initial time step: this implies the agent can use the
prospective information during the interaction. Further, we
do not assume the prospective information is sufficient for
deterministically decoding the latent state as in these works.

LMDP-Ψ is not a Weakly Revealing POMDP. The re-
cent line of work on weakly revealing POMDPs (Liu et al.,
2022; 2023; Uehara et al., 2022; Chen et al., 2022; 2023) is
the most closely related to ours. Next, we elaborate on the
differences between the settings. These highlight both the
novelty and challenges in tackling the LMDP-Ψ problem.

• Standard POMDP modeling assumptions are violated
in the presence of prospective information. For the
LMDP-Ψ setting, the available observations between
different time steps are not independent, conditioned
on the latent state. Let the available observation at each
time step be õt := (ot, ι), i.e., a combination of the
observation and the available initial prospective side in-
formation. Trivially, the common conditional indepen-
dence on the latent state assumption for the observation
generation process does not hold. It does not necessar-
ily hold that Pπ(õt | st,m) ̸= Pπ(õt | st,m, õt−1):
õt−1 contains information on õt since the prospective
information, ι, is fixed during an episode. That is,
there is a non-trivial correlation between observations.
Unlike LMDP-Ψ, in the common POMDP and the
weakly revealing POMDP settings (Liu et al., 2022),
the observation is independent of historical information
conditioned on the latent state.

• Regret guarantees are fundamentally different. As de-
picted in Table 1, the regret lower bound for LMDP-Ψ,
without the exponential on the number of latent con-
texts, is Ω(K2/3). Such a lower bound is fundamen-
tally different than theO(

√
K) upper bound for weakly

revealing POMDPs. This highlights a key difference
between the settings established by our results.

4. Learning in LMDP-Ψ
In this section, we present our algorithmic results as well as
lower bound analysis.
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Algorithm 1 Regret Minimization within Πblind

1: Initialize D0 = ∅, C0 = Θ
2: for k = 1...K do
3: # Optimistic Policy Search
4: Pick (θk, πk) = argmaxθ∈Ck,π∈Πblind

V π
k

θk

5: Get τk = (sk1 , a
k
1 , ..., r

k
H), ιk by executing πk

6: # Confidence Set Construction
7: Dk ← Dk−1 ∪ {(ιk, τk, πk)} and update Ck using

(6)
8: end for

4.1. Warm Up:
√
K-Regret within Πblind

Consider the problem of learning a near-optimal policy
only in the blind policy class Πblind. Such a setting is
equivalent to the one in which the prospective side in-
formation is provided in hindsight, and thus, the prob-
lem falls into the setting of well-conditioned PSR studied
in Liu et al. (2023). To see this, define problem opera-
tors B(o, s+1|s, a) = I · diag([P(o, s+1|m, s, a)]Mm=1) · I†
and b0 = Iw. We can easily verify that for any blind policy
π ∈ Πblind and trajectory τ = (s1, a1, o1, ..., sH , aH , oH),

Pπ(ι, τ) = e⊤ι ·ΠHt=1B(ot, st+1|st, at) · b0 · π(τ),

where π(τ) = ΠHh=1π(ah|s1, ..., sh). We define sH+1 := ∅
in the above expression. Let

ωt := (rt, st+1, at+1, ..., rH),

ψ(ωt, ι|st, at)⊤ := e⊤ι ·ΠHh=tB(oh, sh+1|sh, ah), (2)

where ωt is the future partial trajectory from time step t.
With this, the system reparameterized by B and b0 with
the blind policy class is a well-conditioned PSR, as defined
in Liu et al. (2023) (see their Condition 4.3), i.e., for any
t ∈ [H] and any policy π ∈ Πblind it holds that

max
b:∥b∥1=1

∑
ι,ωt

π(ωt)|ψ(ωt, ι|st, at)⊤b| ≤
M

α
. (3)

With the above condition, since no extra tests are required
to obtain ι, this allows us to apply the Optimistic-MLE (O-
MLE) algorithm introduced in Liu et al. (2022) for regret
minimization (see Algorithm 1).

We can follow the analysis of the optimistic-MLE approach
for well-conditioned PSRs (Liu et al., 2023), yielding the
following theorem:

Theorem 4.1. Let π∗
blind be the optimal policy in Πblind

for the true environment θ∗. With probability greater than
1− δ, the regret of Algorithm 1 (with respect to the optimal
blind policy) satisfies

K∑
k=1

V
π∗
blind

θ∗ − V π
k

θ∗ ≲
M3/2H2

α

√
SAK log(|Θ|/δ)(logK).

Note that the size of model class |Θ| is typically exponential
in the number of free parameters that define the system,
and we would hope to bound the regret with a log |Θ| term
for general function classes. For the tabular case with finite
supported observation and prospective side information, this
term scales as log |Θ| = Õ(M(S2A+ SA|O|) +M |I|).

4.2. What’s Wrong with π∗
blind?

Even if we obtain a sublinear O(
√
K)-regret compared to

π∗
blind, note that the original goal is to learn the true op-

timal policy π∗ ∈ Π which exploits the prospective side
information within each trajectory. Therefore, the notion of
true regret must be defined in a stronger sense:

Regret(K) =
∑K
k=1 V

π∗

θ∗ − V π
k

θ∗ . (4)

The overall measure of performance should be on obtaining√
K-regret with the above stricter definition.

Another issue is, by converting the argument of regret-
minimization to sample-complexity, we can obtain ϵ-
optimal policy from Algorithm 1 with ϵ = O(1/

√
K). How-

ever, a naive conversion of near-optimal policies in Πblind

would only guarantee (|I|ϵ)-optimality for the larger class
of policies Π. To see this, suppose O-MLE returns a model
θ such that for all π ∈ Πblind,

dTV (P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≤ ϵ,

For the individual ι, however, we can only infer in the worst
case that

Pθ∗(ι) · dTV (Pπθ (τ |ι),Pπθ∗(τ |ι)) ≤ min(Pθ∗(ι), ϵ).

Thus, when considering a larger policy class π ∈ Π, a naive
analysis would lead to the following upper bound∑
ι

Pθ∗(ι)dTV

(
P
π(·|ι)
θ∗ (τ |ι),Pπ(·|ι)

θk
(τ |ι)

)
≤ min(1, |I|ϵ),

since for every ι we use different policy π(·|ι), but a naive
analysis would result in a loose bound with multiplicative
amplification of the error. Since we consider a large or (al-
most) continuous observation, the result should not directly
depend on |I|, and, instead depend on log(|Θ|).

4.3. Hardness of LMDP-Ψ

The first question with prospective side information is
whether

√
K-regret is achievable in the stronger sense of

Equation (4), i.e., with respect to the stronger comparison
policy π∗. Surprisingly (and rather disappointingly), when
learning with a larger policy class with the stronger notion
of regret, we show that it is impossible to obtain

√
K-regret

unless K is larger than AΩ(M).
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Theorem 4.2. There exists a family of LMDP-Ψs, Θhard,
and a reference model θ0 with α-prospective side informa-
tion, such that for any algorithm, the regret of the worst-case
instance satisfies with α < 1/(256

√
M),

inf
ψ:Algs

sup
θ∈Θhard∪{θ0}

K∑
k=1

V π
∗

θ − V π
k(ψ)

θ

≳ min

(
(A/3)(M/4)

Mϵ
,

A

Mα2ϵ2
,
Kϵ

M

)
.

By optimizing over ϵ, we obtain the following lower bound:
Corollary 4.3. The regret of any algorithm for the worst-
case family of instances satisfy

inf
ψ:Algs

sup
θ∈Θhard∪{θ0}

K∑
k=1

V π
∗

θ − V π
k(ψ)

θ

≳P min

(
AΩ(M)

√
K,

(
A

α2

)1/3

K2/3)

)
.

This lower bound implies the impossibility of designing
a learning algorithm with poly(M)

√
K-regret. Instead,

next, we aim to derive an algorithm with an upper bound of
poly(M)K2/3 on its regret, i.e., a regret guarantee with no
exponential dependence in the number of latent contexts.

4.4. Pure Exploration within Πblind is Sufficient

In this section, we present an explore-then-exploit strat-
egy that achieves the optimal O(K2/3) regret. When Al-
gorithm 1 (or a reward-free version of it) terminates, the
guaranteed inequality is usually on the total variation dis-
tance between any model in the confidence set θ ∈ CK and
true model θ∗:

max
π∈Πblind

dTV(P
π
θ̂
,Ππθ∗) ≤ ϵ.

As discussed earlier, this is not sufficient, and we need a
stronger notion of termination criterion, which ensures that
all reachable belief (and the PSR) states have been suffi-
ciently explored in all models in the remaining confidence.
Formally, define the reward bonus for any history at a state-
action pair x := (s, a) as

Λ̂kt (x) = λ0I +
∑
j<k

1
{
xjt = x

}
b̄θk(τ

j
t )b̄θk(τ

j
t )

⊤,

r̃k(τt) = ∥b̄θk(τt)∥Λ̂k
t (x)

−1 ,

where b̄θ(τt) =
bθ(τt)

∥b̄θ(τt)∥1
is a normalized PSR of history τt

in a model θ when a blind policy is executed. Our key obser-
vation is the following upper bound that relates estimation
errors between Π and Πblind:

max
π∈Π

dTV(P
π
θ̂
,Pπθ∗) ≲P max

π∈Πblind

Eπ
θ̂

[∑H
t=1 r̃

k(τt)
]
. (5)

Algorithm 2 Pure Exploration for LMDP-Ψ
Input: Termination condition ϵpe := αϵ

10HM2
√
λ0M2/α2+β

,

Regularizer λ0 := βM2H2

α2

1: Initialize D0 = ∅, C0 = Θ
2: for k = 0...K − 1 do
3: # Execute the Worst Blind Policy
4: Pick any θk ∈ Ck
5: πk = argmaxπ∈Πblind Ṽ

π
θk,r̃k

6: If Ṽ πθk,r̃k ≤ ϵpe, then break
7: Get ιk and τk = (sk1 , a

k
1 , ..., r

k
H) by executing πk

8: # Confidence Set Construction
9: Dk ← Dk−1 ∪ {(τk, ιk, πk)} and update Ck using

(6)
10: end for
11: return θ̂ = θk

A recent result of Huang et al. (2023) (see their Lemma 6)
gives an explicit bound on the quantity Eπ

θ̂

[∑H
t=1 r̃

k(τt)
]
,

instead of bounding the total-variation distance indirectly
from the elliptical potential lemma. Therefore, their pure
exploration algorithm, only with policies from a class of
blind policies Πblind, is sufficient to learn the optimal pol-
icy in a larger class of policy Π. We mention that before the
result of Huang et al. (2023), direct bound on the cumulative
bonus of trajectories did not exist.

Formally, we consider Algorithm 2, where we let τt :=
(s1, a1, ..., st, at) be a partial trajectory up to time-step t
without prospective side information. The expected cumu-
lative bonus at the kth episode in the empirical model is
defined as

Ṽ πθk,r̃k := Eτ∼Pπ

θk

[∑H
t=1 r̃

k(τt)
]
.

The confidence set is given based on the likelihood of each
model:

Ck :=
{
θ ∈ Θ

∣∣∣∑(ι,τ,π)∈Dk logPπθ (ι, τ)

≥ max
θ′∈Θ

∑
(ι,τ,π)∈Dk logPπθ′(ι, τ)− β

}
. (6)

β is pre-defined by the concentration of likelihood value,
and is given by log(K|Θ|/δ) as shown in Lemma A.1. Note
that from the construction of the confidence set Ck, for all
k ∈ [K], we know that with probability at least 1− δ,

−
∑

(τ,π)∈Dk

log

(
Pπθk(ι, τ)

Pπθ∗(ι, τ)

)
≤ 2β.

Thus, we may simply choose the maximum likelihood esti-
mator (MLE). We obtain the following guarantee:

Theorem 4.4. Let ϵpe, λ0 as defined in the input in Algo-
rithm 2. Then, with probability at least 1− δ, Algorithm 2
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returns a model θ̂ after at most K episodes where

K = O

(
M8H4SA · log(K|Θ|/δ) log(K)

α6ϵ2

)
, (7)

Furthermore, the optimal policy π∗
θ̂
∈ Π for the returned

model θ̂ is an ϵ-optimal policy for θ∗ with probability at

least 1− δ, i.e.,
∣∣∣V π∗

θ∗ − V
π∗
θ̂

θ∗

∣∣∣ ≤ ϵ.
Finally, the sample complexity guarantee can naturally be
converted into a regret guarantee by a standard explore-then-
exploit approach. That is, by playing ϵ−2 = O(K2/3) to
obtain an ϵ-optimal policy and exploit the learned policy for
the remaining episode. For regret minimization, we get:

K∑
k=1

V π
∗

θ∗ − V π
k

θ∗ ≲

(
M8H4SA · log(|Θ|/δ)

α6

)1/3

K2/3,

regret bound up to logarithmic factors for K episodes.

5. Analysis
In this section, we provide the upper and lower bounds
proofs and intuition.

5.1. Upper Bound

Here, we provide the overview of analyzing Algorithm 2.
The main step is to establish the inequality of equation (5).
We adopt the idea from Huang et al. (2023) of separating
the concentration argument (for bounding the sum of TV
distances) and the elliptical potential argument. In addition
to the notation defined in equation (2), we let

b(τt) := Πt−1
h=1B(oh, sh+1|sh, ah)b0,

π(ι, τt) := Πth=1π(ah|ι, s1, ..., sh),
π(ωt|ι, τt) := ΠHh=t+1π(ah|ι, s1, ..., sh).

Our crucial observation on exploiting the prospective weakly
revealing side information is the following conditional, on
the value of ι, well conditioning of the LMDP-Ψ system:

Lemma 5.1. Fix any prospective side information ι ∈ I.
For all xt = (st, at) ∈ S × A, t ∈ [H], and π that is
independent of the history before time-step t, we have

max
b:∥b∥1=1

max
π

∑
ωt

π(ωt)|ψ(ωt, ι|xt)⊤b| ≤
M

α
max
m∈[M ]

P(ι|m).

On the other hand, following the standard algebra to bound
the total variation distance, we can bound dTV(Pπθ∗ ,P

π
θ ) as

for all θ as follows:

dTV(P
π
θ∗ ,P

π
θ ) ≤

H∑
t=1

∑
ι,τt

π(τt|ι)
∑
ωt

|f(ωt, ι)bθ(τt)| ,

Case I: ιhard is hardly informative

Case II: ι ̸= ιhard nearly specifies the context

Figure 1: Optimal behaviors in the family of hard instances.
The numbers on the arrow mean the probability of transi-
tions under the optimal policy. Actions on the arrow mean
transition happens when the action satisfying the condition
is taken.

where f(ωt, ι) := π(ωt|τt, ι) · ψθ∗(ωt+1, ι|xt+1)
⊤

(Bθ∗(yt|xt)−Bθ(yt|xt)) is the term involving the oper-
ator difference between two models. The inner summation
over the partial future trajectory ωt can be split into the
multiplication of the concentration error conditioned on ι:

∥
∑
ωt
f(ωt, ι)∥Λ̂t(xt)

and the cumulative sum of trajectory bonuses when the
prospective side information ι is ignored:

∥b̄θ(τt)∥Λ̂t(xt)−1 .

For the concentration error in PSRs, we can apply the con-
ditional concentration of total-variation distances for likeli-
hood estimators (see Appendix A.3) and Lemma 5.1. For
the cumulative bonuses, we use the termination condition
of Algorithm 2. Combining the two, we can prove Theorem
4.4. See Appendix B for the complete proofs.

5.2. Lower Bound

Next, we describe the lower bound construction and supply
intuition for this result. Consider the following scenario
(see Figure 1 for the class of LMDP-Ψs): suppose that
for a non-negligible portion of episodes, the prospective
side information does supply any information on the latent
context. That is, given the prospective side information
ιhard the posterior probability over the latent contexts is
uniform, i.e., P(m|ιhard) = 1/M , and ιhard happens with
constant probability, e.g., 1/4. With ιhard alone, however,
learning the optimal action sequence a∗1:d (optimal policy)
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may suffer from an exponential lower bound AΩ(M) since
ιhard supplies no information on the latent context. At the
same time, playing any sub-optimal action sequence incurs
an Ω(ϵ) regret where ϵ is the required target accuracy.

On the other hand, any other prospective side information
ι ̸= ιhard, provides a strong signal of one environment that
is the most likely, i.e., P(m∗(ι)|ι) ≥ 1/2. Further, suppose
that there is a unique exploiting action for each context that
always gives a high reward, and playing any other action
incurs O(1)-regret. For this environment, the regret of any
algorithm is proportional to how many times the sub-optimal
action is played when ι ̸= ιhard.

However, it is still essential to learn the optimal sequence
of actions a∗1:d in order to behave optimally under ιhard.
Therefore, to avoid the exponential lower bound, we should
be aided by good prospective side information ι ̸= ιhard
despite the strong signal of the underlying model. We can
construct internal dynamics such that we need to explore the
two chains for at least Ω(A/α2ϵ2) episodes to identify the
optimal action sequence a∗1:d when ι ̸= ιhard. Combining
these arguments, the regret lower bound should be at least
min

(
AΩ(M)

ϵ , A
α2ϵ2 ,Kϵ

)
, yielding Theorem 4.2.

To obtain the multiplicative dependence on α and ϵ, the
actual construction of the hard instance family is slightly
more complicated. We assume that M is sufficiently large
and a multiple of 4, and let d =M/4. We also assume that
α≪ 1 is a sufficiently small constant. We let the time step
start from t = 0 at the initial state sinit. Next, we describe
the construction of the hard LMDP-Ψ class:

State Space. There are four categories of states. The ini-
tial state sinit, absorbing state ster (which means essentially
an episode is terminated), a chain of states constructing
a hard-to-learn system shard

1:d , and another chain of states
constructing a reference system sref

1:d.

Action Space. The set of actions at the initial time step
consists of a set of candidate exploring actions Aexplore and
exploiting actions Aexploit := {amexploit}Mm=M/2+1 that con-
trol the dynamics at the initial state. The action set at time
steps 1, · · · , d, denoted by Acontrol, controls the dynamics
in hard-to-learn and reference chains of the system. At the
initial time step, only one action of Aexplore is a true explor-
ing action a∗explore. At time steps 1, · · · , d only one action

sequence a∗1:d ∈ A
⊗
d

control is the optimal sequence.

Latent Environments and Initial Dynamics. There are
three groups of MDPs: Glearn, Gref, and Gobs. All MDPs
always start from the same starting state sinit.

Glearn consists of (M/4) MDPs, M1, ...,MM/4, which
essentially form the hard to learn example from Kwon et al.

(2021) when no prospective side information is provided. In
any of these environments, in the beginning, when the ‘true’
explore action a∗explore is played, it transitions to the starting
of hard-instance chain shard

1 with some small probability.

Similarly, Gref consists of another (M/4) MDPs,
MM/4+1, ...,MM/2, and the purpose of Gref is to confuse
the learning the optimal action sequence in the hard-to-learn
chain, as we make the prospective side information hard
to distinguish whether an MDP belongs to Glearn or Gref.
More precisely, under ιhard, it is hard to identify which one
is the hard-to-learn or reference chain, and thus it is hard
to identify a∗explore. This is crucial to build a multiplicative
lower bound on α and ϵ.

The rest of (M/2) MDPs, indexed byMM/2+1, ...,MM ,
belong to the almost observable group Gobs. In each en-
vironment of this groupMm ∈ Gobs where m = M/2 +
1, ...,M , executing amexploit at the initial time step step results
with a reward 1, and gets 0 otherwise.

Dynamics of Two Chains. In both hard and reference
chains, at any states in shard

1:d and sref
1:d, all actions a /∈ Acontrol

invoke transitions to ster with 0 rewards.

In the reference chain, in all environments in Glearn ∪Gref,
for all actions a ∈ Acontrol, sref

t transitions to sref
t+1 with

probability
(
1− 1

d+1−t

)
and transitions to ster otherwise

when t < d. When the chain transitions to ster, we receive a
reward sampled from Ber(1/8).

In the hard-to-learn chain, for all environments in Gref, the
system dynamic is identical to the reference chain. The en-
vironments in Glearn are set to be the hard family instances
of MDPs from Kwon et al. (2021) (while setting d =M/4),
also depicted in Figure 1, Case I:

1. At each time, MDPs in Glearn transitions from one
state in the chain to the next state or to ster depending
on the played action. When an agent transitions to ster
it receives a reward drawn from Ber(1/8).

2. At all time steps besides at the last one, the agent re-
ceives a reward of 0, when taking an action that does
not take it to ster. At the last time step, if the agent did
not move to ster and upon taking the action a∗d it recives
a reward of 1. Hence, the essence of this construction
is to identify the optimal action sequence a∗1:d which
guarantees a reward 1 fromM1 at the end of the chain
shard
d . Playing any sub-optimal action sequence gener-

ates the distribution of observations indistinguishable
from the reference chain.

We complete the construction in Appendix C.
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Prospective Side Information. The prospective side in-
formation either is a strong prior of one of the MDPs in Gobs,
or uninformative in which case ι = ιhard. Our construction
ensures that when observing ιhard, all MDPs in Glearn and
Gref have equal conditional probability, i.e., P(m|ι) = 2/M
for all m ∈ [M/2], whereas for other values of prospec-
tive information ι ̸= ιhard, there is one MDP from Gobs
whose prior probability is greater than 1/2, and priors over
Glearn ∪ Gref are nearly equally distributed but perturbed
by a small parameter α, i.e., P(mobs|ι) ≥ 1/2 for some
mobs ∈ [M/2+1,M ], and P(m|ι) = O(1/M)+O(α) for
all m ∈ [M/2].

Hard Instances. The family of hard instances Θhard that
consists the set of hard-to-learn LMDP-Ψs is described as
follows. All instances in the hard instance family share
the same state space, action space and prospective side-
information. The family of hard-to-learn LMDP-Ψs dif-
fer in their transition dynamics. Each LMDP-Ψ in Θhard
differs by its transition dynamics. The transition dynam-
ics of each element of Θhard is determined by one of the
possible sequences a∗1:d ∈ A

⊗
d

control that represents the op-
timal action sequence, and by the ‘true’ exploring actions
a∗explore ∈ Aexplore.

Reference Model. We denote θ0 as the reference model
whose hard-to-learn chain is no different from the refer-
ence chain in all individual MDPs. In the reference model,
at sinit, all MDPs in Gref transitions to shard

1 and those in
Glearn transitions to sref

1 deterministically when any action
inAexplore is played. All other parts are constructed with the
same dynamics as in Θhard.

Proof Overview. With the above construction, the follow-
ing lemmas play key roles in proving the lower bound:

Lemma 5.2. Let ψ be any exploration strategy for LMDP-
Ψ. Consider any hard instance θ ∈ Θhard and the refer-
ence model θ0. Let N explore

ψ,ι,a1:d
(K) be the number of times

that explored the chain systems with the test tι(a1:d) :=
{ι, a∗explore, a1:d}, i.e., with the true exploration action and
any sequence a1:d ∈ A

⊗
d given prospective side informa-

tion ι. Then,∑
ι,a1:d

Eθ0
[
N explore
ψ,ι,a1:d

(K)
]
· KL (Pθ0(·|tι(a1:d),Pθ(·|tι(a1:d))

= KL
(
P
ψ
θ0
(τ1:K),Pψθ (τ

1:K)
)
, (8)

wherePψ(τ1:K) is a distribution ofK trajectories obtained
with the exploration strategy ψ.

The main reason for the equality (8) is that whenever
a ̸= a∗explore is played regardless of the prospective side
information, the two models θ and θ0 generate observations

from the same distribution. Then the key lemma is on the
bounds for the conditional KL-divergence:

Lemma 5.3. For all non optimal action sequences a1:d ̸=
a∗1:d, the following holds:

KL
(
Pθ0(·|ιhard, a

∗
explore, a1:d),Pθ(·|ιhard, a

∗
explore, a1:d)

)
= 0,

and for all ι ∈ I,

KL
(
Pθ0(·|ι, a∗explore, a

∗
1:d),Pθ(·|ι, a∗explore, a

∗
1:d)
)
≲ ϵ2.

Furthermore, for all ι ̸= ιhard and a1:d ̸= a∗1:d:

KL
(
Pθ0(·|ι, a∗explore, a1:d),Pθ(·|ι, a∗explore, a1:d)

)
≲ (αϵ)2.

Therefore, we can bound the KL-divergence between the
total trajectory distributions of the two models as

KL
(
P
ψ
θ0
(τ1:K),Pψθ (τ

1:K)
)

≤ Eθ0 [N
explore
ψ,ιhard,a∗1:d

]ϵ2 +
∑

ι̸=ιhard,a1:d

Eθ0 [N
explore
ψ,ι,a1:d

](αϵ)2,

which translates to the impossibility of distinguishing the
two with a probability more than 2/3 unless either

Eθ0 [N
explore
ψ,ιhard,a∗1:d

(K)] ≳
1

ϵ2
,

or
∑

ι̸=ιhard,a1:d

Eθ0 [N
explore
ψ,ι,a1:d

(K)] ≳
1

α2ϵ2
. (9)

Finally, note that playing sub-optimal actions with ι ̸= ιhard
incurs at least 1/8-regret, playing sub-optimal action se-
quence a1:d ̸= a∗1:d incurs at least O(ϵ/M)-regret, and play-
ing the optimal sequence a∗1:d at least O(1/ϵ2) times would
take (Ad/ϵ2) episodes in the worst case. The remaining
steps are to formally state the ideas (see Appendix C).

6. Conclusion
In this work, we introduced the LMDP-Ψ setting, when a
prospective and weakly revealing information on the latent
context is given to an agent. We showed that LMDP-Ψ does
not belong to the weakly revealing POMDP class, as our
results highlight its fundamental different characteristic: for
an LMDP-Ψ, differently than a weakly revealing POMDP,
an O(

√
K) worst-case upper bound is not achievable with-

out suffering exponential dependence in the problem param-
eters. We complemented this negative result with a positive
one: an Ω(K2/3) lower bound and a matching upper bound
that depends polynomially on problem parameters.

From a broader perspective, our results highlight a key defi-
ciency of a ubiquitous assumption made in POMDP model-
ing, namely, the independence of observation between con-
secutive time steps, when conditioning on the latent state.
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This assumption is violated in the presence of prospective in-
formation and, specifically, in the LMDP-Ψ setting. We be-
lieve that studying the learnability of more general POMDP
settings with prospective side information, or non-trivial
correlation between observations serves as a fruitful ground
for future work. Further, scaling the methods for practical
settings, while building on a solid theoretical foundation, is
a valuable and open research direction.

Impact statement. This paper presents work whose goal is
to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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Supplementary Materials for “Prospective Side Information for
Latent MDPs"

A. Auxiliary Lemmas
Lemma A.1 (General MLE, Liu et al. (2022)). With probability 1− δ for any δ > 0, for all k ∈ [K], t ∈ [H] and for any
θ ∈ Θ, ∑

(ι,τt,π)∈Dk

log(Pπθ (ι, τt))− 3 log(K|Θ|/δ) ≤
∑

(ι,τt,π)∈Dk

log(Pπθ∗(ι, τt)). (10)

This is by now a standard MLE technique for constructing confidence sets in RL (Agarwal et al., 2020).

Proof. The proof follows a Chernoff bound type of technique:

Pθ∗

 ∑
(ι,τt,π)∈Dk

log

(
Pπθ (ι, τt)

Pπθ∗(ι, τt)

)
≥ Eθ∗

 ∑
(ι,τt,π)∈Dk

log

(
Pπθ (ι, τt)

Pπθ∗(ι, τt)

)+ β


≤ Pθ∗

exp

 ∑
(ι,τt,π)∈Dk

log

(
Pπθ (ι, τt)

Pπθ∗(ι, τt)

) ≥ exp (β)


≤ Eθ∗

exp
 ∑

(ι,τt,π)∈Dk

log

(
Pπθ (ι, τt)

Pπθ∗(ι, τt)

) exp(−β).

The last inequality is by Markov’s inequality. Note that random variables are (ι, τt, π) in the trajectory dataset Dk, and

Eθ∗

 ∑
(τ,π)∈Dk

log

(
Pπθ (ι, τt)

Pπθ∗(ι, τt)

) = −KL(Pθ∗(Dk)||Pθ(Dk)) ≤ 0.

Then,

Eθ∗

exp
 ∑

(ι,τt,π)∈Dk

log

(
Pπθ (ι, τt)

Pπθ∗(ι, τt)

) = Eθ∗
[
Π(ι,τt,π)∈Dk

Pπθ (ι, τt)

Pπθ∗(ι, τt)

]
=
∑
Dk

Pθ(Dk) = 1.

Combining the above, taking a union bound over k ∈ [K] and θ ∈ Θ, letting β = log(K|Θ|/δ), with probability 1− δ, the
inequality in equality (10) holds.

Lemma A.2. With probability 1− δ, for all k ∈ [K], t ∈ [H] and θ ∈ Θ, we have

∑
(ι,τ,π)∈Dk

d2TV (P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≲

∑
(ι,τ,π)∈Dk

log

(
Pπθ∗(ι, τ)

Pπθ (ι, τ)

)
+ β,

∑
(ι,τ,π)∈Dk

d2H (P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≲

∑
(ι,τ,π)∈Dk

log

(
Pπθ∗(ι, τ)

Pπθ (ι, τ)

)
+ β.

Proof. By the TV-distance and Hellinger distance relation, for any ι, τ , π and t ∈ [H],

d2TV (P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≤ 2d2H (P

π
θ (ι, τ),P

π
θ∗(ι, τ))

= 2

(
1− Eι,τ∼Pπ

θ∗

[√
Pπθ (ι, τ)

Pπθ∗(ι, τ)

])

11



LMDP with Side Information

≤ −2 log

(
Eι,τ∼Pπ

θ∗

[√
Pπθ (ι, τ)

Pπθ∗(ι, τ)

])
.

To bound the summation over samples, we start from∑
(ι,τ,π)∈Dk

d2TV (P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≤ −2

∑
(ι,τ,π)∈Dk

log

(
Eι,τ∼Pπ

θ∗

[√
Pπθ (ι, τ)

Pπθ∗(ι, τ)

])
.

On the other hand, by the Chernoff bound,

Pθ∗

 ∑
(ι,τ,π)∈Dk

log

(√
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
≥

∑
(ι,τ,π)∈Dk

logEι,τ∼Pπ
θ∗

[√
Pπθ (ι, τ)

Pπθ∗(ι, τ)

]
+ β


≤ Eθ∗

 exp
(∑

(ι,τ,π)∈Dk log
(√

Pπ
θ (ι,τ)

Pπ
θ∗ (ι,τ)

))
exp

(∑
(ι,τ,π)∈Dk logEι,τ∼Pπ

θ∗

[√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

])
 exp(−β)

= Eθ∗

 Π(ι,τ,π)∈Dk

√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

Π(ι,τ,π)∈DkEι,τ∼Pπ
θ∗

[√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

]
 exp(−β)

= Eθ∗


Π(ι,τ,π)∈Dk−1

√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

· E
ι,τk∼Pπk

θ∗

[√
Pπk

θ (ι,τk)

Pπ
θ∗ (ι,τ

k)

∣∣∣πk,Dk−1

]
Π(ι,τ,π)∈DkEι,τ∼Pπ

θ∗

[√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

]
 exp(−β)

= Eθ∗

 Π(ι,τ,π)∈Dk−1

√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

Π(ι,τ,π)∈Dk−1Eι,τ∼Pπ
θ∗

[√
Pπ

θ (ι,τ)

Pπ
θ∗ (ι,τ)

]
 exp(−β) = ... = exp(−β),

where in the last line, we used the tower property of expectation. Thus, again by setting β = O (log(KH|Θ|/δ)), with
probability at least 1− δ, we have∑

(ι,τ,π)∈Dk

d2TV(P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≲ −

1

2

∑
(ι,τ,π)∈Dk

log

(
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
+ β

= −1

2

∑
(ι,τ,π)∈Dk

log

(
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
+

1

2

∑
(ι,τ,π)∈Dk

log

(
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
+ β.

We can apply Lemma A.1, and finally have∑
(ι,τ,π)∈Dk

d2TV(P
π
θ (ι, τ),P

π
θ∗(ι, τ)) ≲ −

∑
(ι,τ,π)∈Dk

log

(
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
+ β.

Most of the following lemmas can also be found in (Huang et al., 2023) as we adopt their proof strategy. We state and
prove them for the completeness. The following is the concentration lemma for the empirical conditional probability, which
Importantly, this property still holds regardless of causal relationships inside each trajectory sample:
Lemma A.3. With probability 1− δ, for all k ∈ [K], t ∈ [H], θ ∈ Θ, we have∑

(ι,τt,ωt,π)∈Dk

d2TV (P
π
θ (ι, ωt|τt),Pπθ∗(ι, ωt|τt)) ≲

∑
(ι,τ,π)∈Dk

log

(
Pπθ∗(ι, τ)

Pπθ (ι, τ)

)
+ β,

∑
(ι,τt,ωt,π)∈Dk

d2H (P
π
θ (ι, ωt|τt),Pπθ∗(ι, ωt|τt)) ≲

∑
(ι,τ,π)∈Dk

log

(
Pπθ∗(ι, τ)

Pπθ (ι, τ)

)
+ β.

12
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Proof. The proof is almost identical except that we now start from

∑
(τ,π)∈Dk

d2TV (P
π
θ (ι, ωt|τt),Pπθ∗(ι, ωt|τt)) ≤ −2

∑
(τ,π)∈Dk

log

(
E(ι,ωt)∼Pπ

θ∗ (·|τt)

[√
Pπθ (ι, ωt|τt)
Pπθ∗(ι, ωt|τt)

])
.

and use the tower property of expectation conditioned on τkt . Thus, again by setting β = O (log(KH|Θ|/δ)), with
probability at least 1− δ, we have∑

(τ,π)∈Dk

d2TV (P
π
θ (ι, ωt|τt),Pπθ∗(ι, ωt|τt)) ≲ −

1

2

∑
(τ,π)∈Dk

log

(
Pπθ (ι, ωt|τt)
Pπθ∗(ι, ωt|τt)

)
+ β

= −1

2

∑
(ι,τ,π)∈Dk

log

(
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
+

1

2

∑
(ι,τ,π)∈Dk

log

(
Pπθ (τt)

Pπθ∗(τt)

)
+ β.

Finally, we apply Lemma A.1, and have∑
(ι,τ,π)∈Dk

d2TV (P
π
θ (ι, ωt|τt),Pπθ∗(ι, ωt|τt)) ≲ −

∑
(ι,τ,π)∈Dk

log

(
Pπθ (ι, τ)

Pπθ∗(ι, τ)

)
+ β.

Lemma A.4. For arbitrary probability distribution P,Q over joint distributions (τ, ω),

Eτ∼P [d2H(P (ω|τ), Q(ω|τ))] ≤ 4d2H(P (ω, τ), Q(ω, τ)).

Proof. We prove this statement by explicitly bounding the Hellinger distance.∫ (∫ (√
P (ω|τ)−

√
Q(ω|τ)

)2
dω

)
P (τ)dτ

≤ 2

∫ ∫ (√
P (ω, τ)−

√
Q(τ)Q(ω|τ)

)2
dωdτ + 2

∫ ∫ (√
P (τ)Q(ω|τ)−

√
Q(τ)Q(ω|τ)

)2
dωdτ

= 2d2H(P (ω, τ), Q(ω, τ)) + 2

∫ ∫ (√
P (τ)−

√
Q(τ)

)2
Q(ω|τ)dωdτ

≤ 4d2H(P (ω, τ), Q(ω, τ)).

Lemma A.5. Let x ∈ Rd be a random vector from a series of distributions {Dk}k and let Uk = U1 +
∑
j<k Ex∼Dj [xx⊤]

with U1 ⪰ λI for some positive constant λ > 0. Assume that ∥x∥2 ≤ 1 almost surely. Then,

K∑
k=1

min
(
Ex∼Dk

[
∥x∥2

U−1
k

]
, R
)
≤ (1 +R)d log(1 +K/λ).

This is minor variation of the standard result from (Abbasi-Yadkori et al., 2011). Differently from their result, here, we need
to establish the bound for the expected Uk. Hence their result is not directly applied here.

Proof. We follow the same technique of (Abbasi-Yadkori et al., 2011).

K∑
k=1

min
(
Ex∼Dk

[
∥x∥2

U−1
k

]
, R
)
≤ (1 +R)

K∑
k=1

log
(
1 + Ex∼Dk

[
∥x∥2

U−1
k

])
(a)
= (1 +R)

K∑
k=1

log
(
1 + Tr(Ex∼Dk

[
xx⊤

]
U−1
k )
)

13
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= (1 +R)

K∑
k=1

log
(
1 + Tr((Uk+1 − Uk)U−1

k )
)

≤ (1 +R)

K∑
k=1

log det
(
Id + (U

−1/2
k (Uk+1 − Uk)U−1/2

k )
)

= (1 +R)

K∑
k=1

log
detUk+1

det(Uk)
= (1 +R) log

det(UK+1)

det(U1)

≤ (1 +R)d log(1 +K/λ),

where (a) is due to the linearity of trace operators.

Lemma A.6. Let xk be any sequence of vectors in Rd where rank({xk}k) = r < d, and let Uk = λI +
∑
j<k xjx

⊤
j . Then,∑

j<k

∥xk∥2U−1
k

≤ r.

Proof. Again, we can express a⊤A−1a = Tr(aa⊤A−1), and thus∑
j<k

Tr(xjx
⊤
j U

−1
k ) = Tr

(
(
∑
j<k xjx

⊤
j )U

−1
k

)
= Tr

(
I −

(
I + λ−1∑

j<k xjx
⊤
j

)−1
)
≤ r,

where the inequality holds since the matrix inside Tr is at most rank r with eigenvalues less than or equal to one.

Lemma A.7. For any vectors a, b and positive definite matrices A,B such that A,B ⪰ λ0I , we have

∥a∥A−1 − ∥b∥B−1 ≤ 1√
λ0
∥a− b∥2 + ∥b∥B−1∥A−1/2(B −A)B−1/2∥2.

Proof. The proof follows by algebraic manipulations:

∥a∥A−1 − ∥b∥B−1 =
∥a∥2A−1 − ∥b∥2B−1

∥a∥A−1 + ∥b∥B−1

=
a⊤A−1(a− b) + (a− b)⊤B−1b+ a⊤A−1(B −A)B−1b

∥a∥A−1 + ∥b∥B−1

≤ ∥a∥A
−1∥a− b∥A−1 + ∥a− b∥B−1∥b∥B−1 + a⊤A−1(B −A)B−1b

∥a∥A−1 + ∥b∥B−1

≤ 1√
λ0
∥a− b∥2 + ∥b∥B−1∥A−1/2(B −A)B−1/2∥2.

B. Proof of Upper Bounds
We remind the reader some notations we frequently use in the appendix.

B(o, s+1|s, a) = I · diag([P(o, s+1|m, s, a)]Mm=1) · I†,
b0 = Iw,
τt = (s1, a1, o1, ..., st, at),

ωt = (ot, st+1, at+1, ..., oH),

ψ(ωt, ι|st)⊤ = e⊤ι ·ΠHh=tB(oh, sh+1|sh, ah),

14
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b(τt) = Πt−1
h=1B(oh, sh+1|sh, ah)b0,

π(τt) = Πth=1π(ah|s1, ..., sh),
π(ωt|τt) = ΠHh=t+1π(ah|s1, ..., sh).

We frequently use a shorthand for a pair of observations, xt := (st, at) and yt := (ot, st+1).

B.1. Proof of Theorem 4.1

There are several analysis techniques available in previous work (e.g., Liu et al. (2022); Uehara et al. (2022); Liu et al.
(2023); Chen et al. (2022); Huang et al. (2023)). Among all the above great works, we find the recent analysis of Huang
et al. (2023) as particularly well-suited for our setting, and thus we adopt their proof ideas.

By the choice of model selection in the confidence set, it is sufficient to bound the sum TV-distances since

K∑
k=1

V
π∗
blind

θ∗ − V π
k

θ∗ ≤
K∑
k=1

V πk

θk
− V π

k

θ∗ ≤ H ·
K∑
k=1

dTV(P
πk

θk ,P
πk

θ∗ ).

At each episode k ∈ [K], we start by unfolding the upper bound of the total-variation distance:

dTV(P
πk

θ∗ (τ, ι),P
πk

θ (τ, ι)) ≤
∑
τ,ι

H∑
t=1

π(τ) ·
∣∣ψθk(ωt+1, ι|xt+1)

⊤bθ∗(τt+1)− ψθk(ωt, ι|xt)⊤bθ∗(τt)
∣∣

=

H∑
t=1

∑
τ,ι

π(τ) ·
∣∣ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) bθ∗(τt)
∣∣ .

We focus on bounding the inner summation fixing t. Every trajectory τ can be decomposed into τt and ωt, and thus

dTV(P
πk

θ∗ (τ, ι),P
πk

θ (τ, ι))

≤
∑
t

∑
τt

πk(τt)
∑
ωt,ι

πk(ωt|τt) ·
∣∣∣ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) Iθ∗I
†
θ∗bθ∗(τt)

∣∣∣ , (11)

where we used Iθ∗I†θ∗bθ∗(·) = bθ∗(·) since bθ∗(·) is in the column span of Iθ∗ . Define

vθ∗(τt) = I†θ∗bθ∗(τt), and , v̄θ∗(τt) =
vθ∗(τt)

∥vθ∗(τt)∥1
,

which are the internal unnormalized and normalized latent belief states, respectively. Then the RHS in equation (11) can be
expressed as∑

τt

πk(τt)∥v̄θ∗(τt)∥1
∑
ωt,ι

πk(ωt|τt) ·
∣∣ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) Iθ∗ v̄θ∗(τt)
∣∣ .

Define an elliptical potential matrix Λk∗(s, a) as

Λk∗(s, a) = λ∗I +
∑
j<k

Eπ
j

θ∗
[
1 {(st, at) = (s, a)} v̄θ∗(τt)v̄θ∗(τt)⊤

]
,

where we define λ∗ later (here, the choice of λ∗ does not matter much). Using Cauchy-Schwartz inequality, we can
separate the concentration argument and the pigeon-hole (a.k.a. elliptical potential lemma) argument. For simplicity, let
f(ωt, ι) := ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) Iθ∗ . Then∑
ωt,ι

πk(ωt|τt) ·
∣∣ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) Iθ∗ v̄θ∗(τt)
∣∣

=
∑
ωt,ι

πk(ωt|τt) · |f(ωt, ι)v̄θ∗(τt)| =
∑
ωt,ι

πk(ωt|τt) · f(ωt, ι)sgn(f(ωt, ι)v̄θ∗(τt)) · v̄θ∗(τt)
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≤

∥∥∥∥∥∑
ωt,ι

πk(ωt|τt) · f(ωt, ι)sgn(f(ωt, ι)v̄θ∗(τt))

∥∥∥∥∥
Λk

∗(xt)

∥v̄θ∗(τt)∥Λk
∗(xt)−1 .

Checking the squared norm of the first part, we observe that∥∥∥∥∥∑
ωt,ι

πk(ωt|τt) · f(ωt, ι)sgn(f(ωt, ι)v̄θ∗(τt))

∥∥∥∥∥
2

Λk
∗(xt)

= λ∗

∥∥∥∥∥∑
ωt,ι

π(ωt|τt)f(ωt, ι) · sgn(f(ωt, ι)v̄θ∗(τt))

∥∥∥∥∥
2

2︸ ︷︷ ︸
(i)

+
∑
j<k

Eπ
j

θ∗

1{xjt = xt

}(∑
ωt,ι

π(ωt|τt)(f(ωt, ι)v̄θ∗(τ jt )) · sgn(f(ωt, ι)v̄θ∗(τt))

)2


︸ ︷︷ ︸
(ii)

.

Bounding (i). For any m ∈ [M ] we observe that∣∣∣∣∣∑
ωt,ι

π(ωt|τt)f(ωt, ι)em · sgn(f(ωt, ι)v̄θ∗(τt))

∣∣∣∣∣ ≤∑
ωt,ι

|π(ωt|τt)f(ωt, ι)em|

≤
∑
ωt,ι

π(ωt|τt)
∣∣ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) Iθ∗em)
∣∣

≤
∑
ωt,ι

π(ωt|τt)
∣∣ψθk(ωt, ι|xt)⊤Iθ∗em − ψθk(ωt+1, ι|xt+1)

⊤Iθ∗em · Pθ∗(yt|m,xt)
∣∣

≤ 2M

α
∥Iθem∥1 =

2M

α
.

Therefore, (i) ≤ λ∗M(2M/α)2 = 4M3λ∗/α2.

Bounding (ii). Observe that∑
ωt,ι

π(ωt|τt)(f(ωt, ι)v̄θ∗(τ jt )) · sgn(f(ωt, ι)v̄θ∗(τt))

≤
∑
ωt,ι

π(ωt|τt)
∣∣∣ψθk(ωt+1, ι|xt+1)

⊤ (Bθk(yt|xt)−Bθ∗(yt|xt)) Iθ∗ v̄θ∗(τ
j
t )
∣∣∣

≤
∑
ωt,ι

π(ωt|τt)
∣∣∣ψθk(ωt+1, ι|xt+1)

⊤
(
Bθk(yt|xt)b̄θk(τ

j
t )−Bθ∗(yt|xt)b̄θ∗(τ

j
t )
)∣∣∣

+
∑
ωt,ι

π(ωt|τt)
∣∣∣ψθk(ωt, ι|xt)⊤ (b̄θk(τ jt )− b̄θ∗(τ jt ))∣∣∣

≤ M

α

(
∥b̄θk(τ

j
t )− b̄θ∗(τ

j
t )∥1 +

∑
yt

∥Bθk(yt|xt)b̄θk(τ
j
t )−Bθ∗(yt|xt)b̄θ∗(τ

j
t )∥1

)
,

where we denoted b̄θ = Iθv̄θ for any θ. The last inequality follows from the well-conditionedness of the system following
equation (3). Then the statistical meaning of each term is given by

e⊤ι b̄θ(τ
j
t ) = P

πj

θ (ι|τ jt ),

1
{
xjt = xt

}
e⊤ι Bθ(yt|xt)b̄θ(τ

j
t ) = P

πj

θ (ι, yt|τ jt ).
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The second equality can be verified by the following steps:

1
{
xjt = xt

}
· e⊤ι Bθ(yt|xt)b̄θ(τ

j
t )

=
1⊤diag(Pθ(ι|m))Πth=1diag(Pθ(yh|m,xjh))w

∥b̄θ(τ jt )∥1

=
1⊤diag(Pθ(ι|m))Πth=1diag(Pθ(yh|m,xjh))w∑
ι′ 1

⊤diag(Pθ(ι′|m))Πt−1
h=1diagθ(P(yh|m,x

j
h))w

=
πj(τ jt )1

⊤diag(Pθ(ι|m))Πth=1diag(Pθ(yh|m,xjh))w∑
ι′ π

j(τ jt )1
⊤diag(Pθ(ι′|m))Πt−1

h=1diagθ(P(yh|m,x
j
h))w

=
Pπ

j

θ (ι, yt, τ
j
t )

Pπ
j

θ (τ jt )
= Pπ

j

θ (i, yt|τ jt ).

In summary, we have (ii) ≤ 4M2

α2

(
d2TV(P

πj

θk (ι, yt|τ
j
t ),P

πj

θ∗ (ι, yt|τ
j
t ))
)

.

Combining bounds for (i) and (ii). Therefore, we can conclude that∥∥∥∥∥∑
ωt,ι

πk(ωt|τt) · f(ωt, ι)sgn(f(ωt, ι)v̄θ∗(τt))

∥∥∥∥∥
2

Λk
∗(xt)

≤ 4M3λ∗

α2
+

4M2

α2

∑
j<k

Eπ
j

θ∗

[
d2TV(P

πj

θk (ι, yt|τ
j
t ),P

πj

θ∗ (ι, yt|τ
j
t ))
]

≤ 4M3λ∗

α2
+

8M2

α2

∑
j<k

Eπ
j

θ∗

[
d2H(P

πj

θk (ι, yt|τ
j
t ),P

πj

θ∗ (ι, yt|τ
j
t ))
]

≤ 4M3λ∗

α2
+

32M2

α2

∑
j<k

d2H(P
πj

θk (ι, yt, τ
j
t ),P

πj

θ∗ (ι, yt, τ
j
t )),

where we used Lemma A.4. Finally, due to the concentration of the square sum of Helligner distances (Lemma A.2), we can
conclude that ∥∥∥∥∥∑

ωt,ι

πk(ωt|τt) · f(ωt, ι)sgn(f(ωt, ι)v̄θ∗(τt))

∥∥∥∥∥
2

Λk
∗(xt)

≲
M2

α2
(λ∗M + β).

Plugging this bound back to equation (11), we have

dTV(P
πk

θ∗ (τ, ι),P
πk

θk (τ, ι)) ≲
M

α

√
(λ∗M + β) ·

∑
t

∑
τt

πk(τt)∥v̄θ∗(τt)∥1∥v̄θ∗(τt)∥Λk
∗(xt)−1

=
M

α

√
(λ∗M + β) ·

∑
t

Eπ
k

θ∗
[
∥v̄θ∗(τt)∥Λk

∗(xt)−1

]
.

Finally, summing up over all episodes, we have

K∑
k=1

dTV(P
πk

θ∗ (τ, ι),P
πk

θk (τ, ι)) ≲
M

α

√
(λ∗M + β) ·

H∑
t=1

K∑
k=1

Eπ
k

θ∗
[
∥v̄θ∗(τt)∥Λk

∗(xt)−1

]

≤ M

α

√
(λ∗M + β)K ·

H∑
t=1

√√√√ K∑
k=1

Eπk

θ∗

[
∥v̄θ∗(τt)∥2Λk

∗(xt)−1

]
.
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Applying the expectation version of the elliptical potential lemma (see Lemma A.5), by considering v̄θ∗(τt) in the space of
RMSA, and setting λ∗ = O(1), β = log(K|Θ|/δ) > M , we have

K∑
k=1

dTV(P
πk

θ∗ (τ, ι),P
πk

θk (τ, ι)) ≲
MH

α

√
MSAKβ log(K), (12)

with probability at least 1− δ. Consequently, the regret bound is given by

K∑
k=1

V
π∗
blind

θ∗ − V π
k

θ∗ ≲
M3/2H2

α

√
SAK log(K|Θ|/δ) log(K),

completing the proof.

B.2. Proof of Lemma 5.1

Proof. Recall that

π(ωt)ψ(ωt, ι|xt)⊤ = π(ωt) · e⊤ι B(yH |xH)...B(yt|xt)
= I(ι)⊤diag(Pπ(ωt|m,xt))I†.

Thus, ∑
ωt

π(ωt)|ψ(ωt, ι|xt)⊤b| =
∑
ωt

|I(ι)⊤diag(Pπ(ωt|m,xt))I†b|

≤
∑
ωt

∑
m

|P(ι|m)Pπ(ωt|m,xt)| · |e⊤mI†b|

≤
∑
m

P(ι|m)|e⊤mI†b| ≤ ∥I(ι)∥∞∥I†b∥1.

Now applying Lemma G.4 in (Liu et al., 2023), there exists a left-inverse of I such that ∥I†b∥1 ≤M∥b∥1/α, and we have
the result.

B.3. Proof of Theorem 4.4

We divide the proof of this theorem into two parts. In the first part, we prove the required number of episodes until
Algorithm 2 terminates. In the second part, we show the optimality of the returned model in a larger class of prospective
side information exploiting policies Π.

B.3.1. PROOF PART I

The first part largely follows the proofs in Huang et al. (2023) for the reward-free exploration until the sum of trajectory
bonuses becomes small. The key step is connecting the trajectory bonuses between two different models in the confidence
set. Define the bonus counterpart in the true environment:

Λkt (x) = λ0I +
∑
j<k

1
{
xjt = x

}
b̄θ∗(τ

j
t )b̄θ∗(τ

j
t )

⊤,

r̃k∗(τt) = ∥b̄θ∗(τt)∥Λk
t (xt)−1 .

Then we compare that

∥b̄θk(τt)∥Λ̂k
t (xt)−1 − ∥b̄θ∗(τt)∥Λk

t (xt)−1 .

Using Lemma A.7, we can show that

∥b̄θk(τt)∥Λ̂k
t (xt)−1 − ∥b̄θ∗(τt)∥Λk

t (xt)−1
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≤ 1√
λ0
∥b̄θk(τt)− b̄θ∗(τt)∥2

+ ∥b̄θ∗(τt)∥Λk
t (xt)−1

∥∥∥∥∥∥
∑
j<k

1
{
xjt = xt

}
Λ̂kt (xt)

−1/2(b̄θ∗(τ
j
t )b̄θ∗(τ

j
t )

⊤ − b̄θk(τ
j
t )b̄θk(τ

j
t )

⊤)Λkt (xt)
−1/2

∥∥∥∥∥∥
2︸ ︷︷ ︸

(a)

.

(a) can be further bounded by

(a) ≤ max
u,v:∥u∥2=1,∥v∥2=1

∑
j<k

1
{
xjt = xt

}
uΛ̂kt (xt)

−1/2(b̄θ∗(τ
j
t )b̄θ∗(τ

j
t )

⊤ − b̄θk(τ
j
t )b̄θk(τ

j
t )

⊤)Λkt (xt)
−1/2v

≤ max
u,v:∥u∥2=1,∥v∥2=1

∑
j<k

1
{
xjt = xt

} ∣∣∣uΛ̂kt (xt)−1/2b̄θk(τ
j
t )
∣∣∣ ∣∣∣(b̄θ∗(τ jt )⊤ − b̄θk(τ jt ))⊤Λkt (xt)−1/2v

∣∣∣
+ max
u,v:∥u∥2=1,∥v∥2=1

∑
j<k

1
{
xjt = xt

} ∣∣∣uΛ̂kt (xt)−1/2(b̄θ∗(τ
j
t )− b̄θk(τ

j
t ))
∣∣∣ ∣∣∣b̄θ∗(τ jt )⊤Λkt (xt)−1/2v

∣∣∣
≤
√∑
j<k

1
{
xjt = xt

}
∥b̄θk(τ

j
t )∥2Λ̂k

t (xt)−1

√∑
j<k

1
{
xjt = xt

}
∥b̄θ∗(τ jt )− b̄θk(τ

j
t )∥2Λk

t (xt)−1

+

√∑
j<k

1
{
xjt = xt

}
∥b̄θ∗(τ jt )∥2Λk

t (xt)−1

√∑
j<k

1
{
xjt = xt

}
∥b̄θ∗(τ jt )− b̄θk(τ

j
t )∥2Λ̂k

t (xt)−1

(b)

≤
√
M

λ0

√∑
j<k

∥b̄θ∗(τ jt )− b̄θk(τ
j
t )∥22 ≤

√
M

λ0

√∑
j<k

d2TV(P
πj

θ∗ (ι|τ
j
t ),P

πj

θk
(ι|τ jt )) ≲

√
Mβ

λ0
,

where for (b), we used Lemma A.6.

Now taking expectation on both sides, we have

Eπ
k

θ∗

[
∥b̄θk(τt)∥Λ̂k

t (xt)−1

]
≤
(
1 +O(1) ·

√
Mβ/λ0

)
Eπ

k

θ∗

[
∥b̄θ∗(τt)∥Λk

t (xt)−1

]
+
O(1)√
λ0
dTV(P

πk

θ∗ ,P
πk

θk
),

where we used

Eπ
k

θ∗
[
∥b̄θk(τt)− b̄θ∗(τt)∥2

]
≤ Eπ

k

θ∗
[
∥b̄θk(τt)− b̄θ∗(τt)∥1

]
≤ Eπ

k

θ∗

[
dTV

(
Pπ

k

θk (ι|τt),P
πk

θ∗ (ι|τt)
)]

≤ 2dTV

(
Pπ

k

θk (ι, τt),P
πk

θ∗ (ι, τt)
)
.

To proceed, note that ∥b̄θk(τt)∥Λ̂k
t (xt)−1 ≤ 1√

λ0
almost surely, and thus,

Eπ
k

θk

[
∥b̄θk(τt)∥Λ̂k

t (xt)−1

]
≤ Eπ

k

θ∗

[
∥b̄θk(τt)∥Λ̂k

t (xt)−1

]
+

1√
λ0
dTV

(
Pπ

k

θk ,P
πk

θ∗

)
.

Therefore, summing over K episodes, we have

K∑
k=1

Eπ
k

θk

[
∥b̄θk(τt)∥Λ̂k

t (xt)−1

]
≤
(
1 +O(1) ·

√
Mβ/λ0

) K∑
k=1

Eπ
k

θ∗

[
∥b̄θ∗(τt)∥Λk

t (xt)−1

]
+
O(1)√
λ0

K∑
k=1

dTV

(
Pπ

k

θk ,P
πk

θ∗

)
.

For the second term, we can apply equation (12). For the first term, we can first apply Azuma-Hoeffding inequality on

K∑
k=1

(
Eπ

k

θ∗

[
∥b̄θ∗(τt)∥Λk

t (xt)−1

]
− ∥b̄θ∗(τkt )∥Λk

t (xt)−1

)
,
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and apply the empirical version of elliptical potential lemma (Lemma A.5). This gives

K∑
k=1

Eπ
k

θk

[
∥b̄θk(τt)∥Λ̂k

t (xt)−1

]
≲
√
MSAK log(K)

(
1 +O(1) ·

√
Mβ/λ0 + (MH/α) ·

√
β/λ0

)
.

With the choice of λ0 = βM2H2

α2 , the Algorithm 2 must terminate after at most K episodes where

K = O

(
MSA log(K)

ϵ2pe

)
.

B.3.2. PROOF PART II

Now suppose Algorithm 2 terminated with the model θ that has the desired property:

max
π∈Πblind

V πθ,r̃ := Eπθ
[∑

t ∥b̄θ(τt)∥Λ̂k
t (xt)−1

]
≤ ϵpe.

Assuming this event holds true we continue the proof.

Proof. We can express the total-variation distance between θ∗ and θ as

dTV(P
π
θ∗(τ, ι),P

π
θ (τ, ι)) ≤

H∑
t=1

∑
τ

π(τ) ·
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) bθ(τt)
∣∣

≤
∑
ι

H∑
t=1

∑
τt

π(τt|ι)
∑
ωt

π(ωt|τt, ι) ·
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) bθ(τt)
∣∣ .

Notice that this time, we use θ∗ to express the future prediction, and θ to express the history part in the above equation. Now
we fix ι, t and τt, and focus on bounding the inside summation. The first step is to normalize the belief state and rewrite the
inner sum as:∑

τt

π(τt|ι)
∑
ωt

πk(ωt|ι, τt) ·
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) bθ(τt)
∣∣ (13)

=
∑
τt

π(τt|ι)∥bθ(τt)∥1
∑
ωt

πk(ωt|ι, τt) ·
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) b̄θ(τt)
∣∣ ,

where b̄θ(τt) =
bθ(τt)

∥bθ(τt)∥1
are the normalized predictive representation of belief states. Then note that π(τt|ι)∥bθ(τt)∥1 =

P
π(·|ι)
θ∗ (τt), i.e., a marginalized probability of τt when running a prospective side information blind policy π(·|ι):

P
π(·|ι)
θ∗ (τt) =

∑
ι′

P
π(·|ι)
θ∗ (τt, ι

′),

as if we do not use the true prospective side information but instead use an arbitrary dummy variable ι to instantiate a blind
policy. Thus, we can express (13) as

E
τt∼Pπ(·|ι)

θ (·)

[∑
ωt

π(ωt|ι, τt)
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) b̄θ(τt)
∣∣] .

Recall the empirical pseudo-count matrix:

Λ̂(s, a) = λ0I +
∑
k∈[K]

[
1
{
(skt , a

k
t ) = (s, a)

}
· b̄θ(τkt )b̄θ(τkt )⊤

]
.

For simplicity, let f(ωt) := ψθ∗(ωt+1, ι|xt+1)
⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) (f is only a function of ωt as other variables are

fixed at this point). Using Cauchy-Schwartz inequality, we have

(13) ≤ E
τt∼Pπ(·|ι)

θ

∥∥∥∥∥∑
ωt

π(ωt|ι, τt)f(ωt) · sgn(f(ωt)⊤b̄θ(τt))

∥∥∥∥∥
Λ̂(xt)

∥b̄θ(τt)∥Λ̂(xt)−1

 .
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To bound the concentration bound, we can check that∥∥∥∥∥∑
ωt

π(ωt|ι, τt)f(ωt) · sgn(f(ωt)⊤b̄θ(τt))

∥∥∥∥∥
2

Λ̂(xt)

≤ λ0

∥∥∥∥∥∑
ωt

π(ωt|ι, τt)f(ωt) · sgn(f(ωt)⊤b̄θ(τt))

∥∥∥∥∥
2

2

+
∑
k∈[K]

1
{
xkt = xt

}(∑
ωt

π(ωt|ι, τt)
(
f(ωt)

⊤b̄θ(τ
k
t )
)
· sgn(f(ωt)⊤b̄θ(τt))

)2

. (14)

For the term with λ0, note that any vector v that lies on the orthogonal complement of the span of Iθ, I†θv = 0. Consider a
vector v = Iθu such that ∥Iθu∥2 ≤ 1. Note that to satisfy this condition, u cannot be too large: ∥u∥1 ≤ max∥v∥2=1 ∥I†θv∥1 ≤
max∥v∥1=1 ∥I†θv∥1 ≤

M
α . Thus,∣∣∣∣∣∑

ωt

π(ωt|ι, τt)f(wt)v

∣∣∣∣∣
≤
∑
ωt

π(ωt|ι, τt)|ψθ∗(ωt+1, ι|xt+1)
⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) Iθu)|

≤
∑
ωt

π(ωt|ι, τt)|ψθ∗(ωt, ι|xt)⊤Iθu− ψθ∗(ωt+1, ι|xt+1)
⊤Iθdiag(Pθ(yt|m,xt))u|

≤ 2M

α
∥Iθ∗(ι)∥∞∥u∥1 =

2M2

α2
∥Iθ∗(ι)∥∞,

where we applied Lemma A.1, and therefore∥∥∥∥∥∑
ωt

π(ωt|ι, τt)f(wt)

∥∥∥∥∥
2

2

≤ 4M4

α4
∥Iθ∗(ι)∥2∞.

To bound the second term in (14), first we observe the term inside the summation (over k) is only nonzero when xkt = xt,
i.e., (skt , a

k
t ) = (st, at). We have that∑

ωt

π(ωt|ι, τt)
(
f(ωt)

⊤b̄θ(τ
k
t )
)
· sgn(f(ωt)⊤b̄θ(τt))

≤
∑
ωt

π(ωt|ι, τt)
∣∣f(ωt)⊤b̄θ(τkt )∣∣

=
∑
ωt

π(ωt|ι, τt)
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)−Bθ(yt|xt)) b̄θ(τkt )
∣∣

≤
∑
ωt

π(ωt|ι, τt)
∣∣ψθ∗(ωt+1, ι|xt+1)

⊤ (Bθ∗(yt|xt)b̄θ∗(τkt )−Bθ(yt|xt)b̄θ(τkt ))∣∣
+
∑
ωt

π(ωt|ι, τt)
∣∣ψθ∗(ωt, ι|xt)⊤ (b̄θ∗(τkt )− b̄θ(τkt ))∣∣

≤ M

α
∥Iθ∗(ι)∥∞ ·

(∑
yt

∥Bθ(yt|xt)b̄θ(τkt )−Bθ∗(yt|xt)b̄θ∗(τkt )∥1 + ∥b̄θ(τkt )− b̄θ∗(τkt )∥1

)
,

where we denote b̄θ = Iθ b̄θ. We can check the meaning of each term: for any ι′ ∈ I and any blind policy π ∈ Πblind,

1
{
xkt = xt

}
· e⊤ι′Bθ(yt|xt)b̄θ(τkt )

=
1⊤diag(Pθ(ι′|m))Πth=1diag(Pθ(yh|m,xkh))w

∥vθ(τkt )∥1
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=
1⊤diag(Pθ(ι′|m))Πth=1diag(Pθ(yh|m,xkh))w∑
ι′′ 1

⊤diag(Pθ(ι′′|m))Πt−1
h=1diagθ(P(yh|m,xkh))w

=
π(τkt ) · 1⊤diag(P(ι′|m))Πth=1diag(P(yh|m,xkh))w∑
ι′′ π(τ

k
t ) · 1⊤diag(P(ι′′|m))Πt−1

h=1diag(P(yh|m,xkh))w

=
Pπθ (ι

′, yt, τ
k
t )

Pπθ (τ
k
t )

= Pπθ (i
′, yt|τkt ).

To proceed, let the prospective side information blind policy executed on the kth episode be πk. We have that∑
ωt

1
{
xkt = xt

}
π(ωt|ι, τt)

(
f(ωt)

⊤b̄θ(τ
k
t )
)
· sgn(f(ωt)⊤b̄θ(τt))

≤ 2M

α
∥Iθ∗(ι)∥∞1

{
xkt = xt

}
· dTV

(
Pπ

k

θ∗ (ι
′, yt|τkt ),Pπ

k

θ (ι′, yt|τkt )
)
.

Combining the result, we conclude that

(13) ≤ E
τt∼Pπ(·|ι)

θ

∥∥∥∥∥∑
ωt

π(ωt|ι, τt)f(ωt) · sgn(f(ωt)⊤b̄θ(τt))

∥∥∥∥∥
Λ̂(xt)

∥b̄θ(τt)∥Λ̂(xt)−1


≤ E

τt∼Pπ(·|ι)
θ (·)

[
2M

α
∥Iθ∗(ι)∥∞ · c(xt)∥b̄θ(τt)∥Λ̂(xt)−1

]
,

where

c(xt) =

√√√√M2

α2
λ0 +

∑
k∈[K]

[
1
{
xkt = xt

}
d2TV
(
Pπ

k

θ∗ (ι
′, y′t|τkt ),Pπ

k

θ (ι′, y′t|τkt )
)]

≤

√√√√M2

α2
λ0 +

∑
k∈[K]

d2TV
(
Pπ

k

θ∗ (ι
′, y′t|τkt ),Pπ

k

θ (ι′, y′t|τkt )
)

≲

√
M2

α2
λ0 + β := cmax,

where in the second inequality, we used Lemma A.3. Now proceeding,∑
ι,τH

|Pπθ∗(ι, τH)− Pπθ (ι, τH)|

≤ 2M

α
cmax

∑
ι

∥Iθ∗(ι)∥∞
∑
t

E
τt∼Pπ(·|ι)

θ

[
∥b̄θ(τt)∥Λ̂(xt)−1

]
=

2M

α
cmax

∑
ι

∥Iθ∗(ι)∥∞ · Eπ(·|ι)θ

[∑
t

∥b̄θ(τt)∥Λ̂(xt)−1

]

≤ 2M

α
cmax

∑
ι

∥Iθ∗(ι)∥∞ · max
π∈Πblind

Eπθ

[∑
t

∥b̄θ(τt)∥Λ̂(xt)−1

]
(a)

≤ 2M2

α

√
M2λ0
α2

+ β · ϵpe,

where (a) comes from
∑
ι ∥Iθ∗(ι)∥∞ ≤

∑
m

∑
ι Iθ∗(m, ι) = M . With the choice of λ0 = βM2H2/α2, by setting

ϵpe := αϵ

10HM2
√
M4H2β/α4

ensures that

|V πθ − V πθ∗ | ≤ HdTV(Pπθ ,Pπθ∗) ≤ ϵ/2,

for all π ∈ Π. Therefore, optimizing over θ gives ϵ-optimal policy for θ∗, completing the proof.
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C. Lower Bound Proofs
We first complete the construction of the hard instance family deferred from the main text. Recall that we defined:

1. Action space:

• Aexploit = {amexploit} for m =M/2 + 1, ...,M

• Aexplore: contains the true exploration action (at the initial step) a∗explore and dummy actions
• Acontrol: contains the optimal actions a∗t for t ∈ [d] and dummy actions

2. State space:

• sinit, ster: initial and terminated state
• shard

1:d : chained states in the hard-to-learn chain
• sref

1:d: chained states in the reference chain

3. MDP groups in an LMDP:

• Glearn: a set of MDPs that needs to be acted optimally in the hard-to-learn chain
• Gref: a set of MDPs that confuses the identity of hard-to-learn and reference chains
• Gobs: a set of MDPs whose identity is strongly correlated to the prospective side information

Initial Transition Setup. Glearn consists of (M/4) MDPs ,M1, ...,MM/4, which form the hard-to-learn example from
Kwon et al. (2021) when no prospective side information is provided. In any of these MDPs in Glearn, at the beginning, if
an action a∗explore is executed, the environment transitions to the starting of the hard-instance chain shard

1 with probability
ϵ > 0, or transitions to the starting of reference chain sref

1 with probability 1− ϵ. If any other action in Aexplore is executed,
the environment transitions to sref

1 with probability 1. For all other actions executed, the MDPs transition to a terminate-state
ster.

Gref consists of another (M/4) MDPs,MM/4+1, ...,MM/2, which suppose to confuse the learning process in Glearn. In
these environments, dynamics in hard-to-learn chain and the reference chain are the same. Instead, at the beginning of
an episode, if a∗explore is executed, an MDP transitions to the starting of hard-to-learn chain shard

1 with probability 1− ϵ, or
transitions to the starting of reference chain sref

1 with probability ϵ. If any other action inAexplore is executed, the environment
transitions to shard

1 with probability 1. Like the group Glearn, for all other actions executed, the MDPs in Gref transition to
ster.

The of the MDPs, indexed byMM/2+1, ...,MM , belong to the almost observable group Gobs. In any of these MDPs in
Gobs, the environment always transitions to an absorbing state ster after playing an initial action. In each environment of this
groupMm ∈ Gobs where m = M/2 + 1, ...,M , playing amexploit results with a reward of 1, and with 0 when playing any
action different than amexploit.

Prospective Side Information Setup. The prospective side information is a finite alphabet belongs and belongs to one of
the M + 1 disjoint sets I1, I2, ..., IM , IM+1. We let IM+1 := {ιhard} contains a single element, and all other disjoint sets
have equal cardinality |I1| = |I2| = ... = |IM | := |I|. ForMM/2+1, ...,MM in Gobs, for each m ∈ [M/2 + 1,M ], the
emission probability is give by P(ι|m) = 1/(2|I|) if ι ∈ Im−M/2 ∪ Im, and 0 otherwise.

For all environmentsM1, ...,MM/4 ∈ Glearn andMM/4+1, ...,MM/2 ∈ Gref, for all m ∈ [M/2], P(ιhard|m) = 1/2,
and P(ι|m) = 0 if ι ∈

⋃M
i=M/2+1 Ii. For all ι ∈

⋃M/2
i=1 Ii, we assign the probability of prospective side information

P(ι|m) ∝ 1+αει,m
M |Im| , where each ει,m ∈ {−1, 1} is decided in the following lemma:

Lemma C.1. There exists a set of {ει,m}ι,m such that for all x ∈ RM it holds that ∥x∥1 = 1, ∥Ix∥1 ≥ α′ = α
128

√
M

.

Construction of Hard-to-Learn Chain for Glearn, whereM1, ...,Md with d =M/4. This set is also depicted in the
top part of Figure 1.

• At t = 1, i.e., shard
1 , there are three state-transition possibilities:
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– M1: For all actions a ∈ Acontrol except a∗1, we go to ster. For the action a∗1, we go to shard
2 .

– Md: For all actions a ∈ Acontrol except a∗1, we go to shard
2 . For the action a∗1, we go to ster.

– M2, ...,Md−1: For all actions a ∈ Acontrol, we go to shard
2 .

• At time step t = 2, we again have three cases but nowM1 andMd would look the same:

– M1,Md: For all actions a ∈ Acontrol except a∗2, we go to ster. For the action a∗2, we go to shard
3 .

– Md−1: For all actions a ∈ Acontrol except a∗2, we go to shard
3 . For the action a∗2, we go to ster.

– M2, ...,Md−2: For all actions a ∈ Acontrol, we go to shard
3 .

...

d. At time step t = d, we always transitionto ster, and there are two possibilities of getting rewards:

– M1: For the action a∗d ∈ Acontrol, we get reward 1. For all other actions, we get rewards from Ber(1/8).
– M2, ...,Md: For all actions a ∈ Acontrol, we get rewards from Ber(1/8).

C.1. Proof of Lemma C.1

Proof. This can be shown by probabilistic arguments. Note that prospective side information that belongs to
⋃M/2
i=1 Ii

uniquely identifies the environment from Gno, and thus

∥Ix∥1 = ∥I1:M/2x∥1 + ∥IM/2+1:M+1x∥1

≥ 1

2
∥xM/2+1:M∥1 +max

(
0, ∥IM/2+1:M+1x1:M/2∥1 −

1

2
∥xM/2+1:M∥1

)
,

where with slight abuse in notation, we denote Ii:j as the sub-matrix whose rows only correspond to one of prospective side
information groups Ii, Ii+1, ..., Ij . It is easy to check that if ∥IM/2+1:M+1x1:M/2∥1 ≥ α

64
√
M
∥x1:M/2∥1, then

∥Ix∥1 ≥
1

2
∥xM/2+1:M∥1 +max

(
0,

α√
M
∥x1:M/2∥1 −

1

2
∥xM/2+1:M∥1

)
≥ 1

2
∥xM/2+1:M∥1 +max

(
0,

α√
M
− ∥xM/2+1:M∥1

)
≥ α

128
√
M
.

Thus, it is sufficient to show that there exists {ει,m}ι,m such that

∥IM/2+1:M+1x1:M/2∥1 ≥ ∥IM/2+1:Mx1:M/2∥ ≥
α

64
√
M
∥x1:M/2∥1.

Probabilistic Assignment. We set each ει,m by an independent uniform sampling over {−1, 1}. We assume that |Im| is
sufficiently large, so that

∑
ι∈I ει,m concentrates around 0 within 1/

√
|I| and 1/

√
|I| is sufficiently small.

Probabilistic Existence. To simplify the notation, we let J = ∥IM/2+1:Mx1:M/2∥ and v = x1:M/2. Consider an
γ = α

256
√
M

-cover, Bγ for the set {v ∈ RM/2 : ∥v∥1 = 1}. Note that for each row of J and each v ∈ Bγ ,

|J⊤ι v| =
1

M |I|

∣∣∣∑m∈[M/2] vm + α ·
∑
m∈[M/2] vmει,m

∣∣∣ .
Without loss of generality, we assume

∑
m∈[M/2] vm ≥ 0. Note that the statistics of W := |

∑
m∈[M/2] vmει,m|, by

Paley–Zygmund inequality (Paley & Zygmund, 1930),

P

(
W ≥ 1

2
∥v∥2

)
≥ 3

16
,
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and thus with probability at least 3/32, we have∑
m∈[M/2]

vmει,m ≥
1

2
√
M

=⇒ |J⊤ι v| ≥
α

2
√
M
.

Since this holds for each row, and all ϵι,m are independent across the rows, at least 3
64 (M/2)|I1| rows satisfies the above

with probability at least 1−exp(−(M/8)|I1|) from the concentration of the sum of independent Bernoulli random variables,
which translates to

∥J⊤v∥1 ≥
3α

128
√
M
,

with probability 1− exp(−(M/8)|I1|). Therefore, taking a union bound over Bγ , we have

∥J⊤v∥1 ≥
3α

128
√
M
,

with probability 1 − |Bγ | exp(−(M/8)|I1|) ≥ 1 − exp(c1M log(γ) − c2|I|) with proper absolute constants c1, c2 > 0.
Then for arbitrary v : ∥v∥1 = 1, we can always find vγ in Bγ such that ∥v − vγ∥ ≤ γ, and therefore

∥J⊤v∥1 ≥ ∥J⊤vγ∥1 − ∥J⊤(v − vγ)∥1 ≥
3α

128
√
M
−Mγ.

Thus, setting γ = o(α/
√
M) sufficiently small, for all v : ∥v∥1 = 1,

∥J⊤v∥1 ≥
α

64
√
M
.

Since this probabilistic argument implies the existence of {ϵι,m}, the proof is done.

C.2. Proof of Lemma 5.2

This comes from the fundamental equality for sequential decision making information gain (see e.g., Cesa-Bianchi & Lugosi
(2006); Garivier et al. (2019); Kwon et al. (2023)). For completeness, we prove this. We can start from

KL
(
P
ψ
θ0
(τ1:K),Pψθ (τ

1:K)
)
= Eθ0

[
log

(
P
ψ
θ0
(τ1:K−1)

P
ψ
θ (τ

1:K−1)

)]
+ Eθ0

[
log

(
P
ψ
θ0
(τK |τ1:K−1)

P
ψ
θ (τ

K |τ1:K−1)

)]
.

Note that in all models in our construction set Θhard ∪ {θ0}, P(ι) and ψ(akt |all histories until kth episode, tth step) are the
same. Therefore, we have that

Eθ0

[
log

(
P
ψ
θ0
(τK |τ1:K−1)

P
ψ
θ (τ

K |τ1:K−1)

)]

= Eψθ0

[
Eψθ0

[ ∑
ι,a,a1:d

log

(
P
ψ
θ0
(·|ι, a, a1:d)

P
ψ
θ (·|ι, a, a1:d)

)
1
{
(ι, a, a1:d)

K = (ι, a, a1:d)
} ∣∣∣τ1:K−1

]]

=
∑

ι,a,a1:d

Eψθ0

[
Eψθ0

[
log

(
P
ψ
θ0
(·|ι, a, a1:d)

P
ψ
θ (·|ι, a, a1:d)

)∣∣∣ι, a, a1:d]1{(ι, a, a1:d)K = (ι, a, a1:d)
}]

=
∑

ι,a,a1:d

KL (Pθ0(·|ι, a, a1:d),Pθ(·|ι, a, a1:d)) · E
ψ
θ0

[
1
{
(ι, a, a1:d)

K = (ι, a, a1:d)
}]
,

where the second equality is an application of the tower rule, and the last equality is due to the choice of action purely
depends on the history and exploration strategy ψ, and does not depend on underlying models. Applying this recursively in
K, and denoting Na

ψ,ι,a1:d
(K) as the number of times action a was executed at the initial step, a1:d in the next d steps under

prospective side information ι. Thus, we have

KL
(
P
ψ
θ0
(τ1:K),Pψθ (τ

1:K)
)
=

∑
ι,a,a1:d

Eθ0
[
Na
ψ,ι,a1:d

(K)
]
· KL (Pθ0(·|ι, a, a1:d),Pθ(·|ι, a, a1:d)) ,

Note that when playing a ̸= a∗explore, the hard instance and the reference model behave the same, yielding the result.
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C.3. Proof of Lemma 5.3

We first check the following inequality:

KL
(
Pθ0(·|ιhard, a

∗
explore, a

∗
1:d),Pθ(·|ιhard, a

∗
explore, a

∗
1:d)
)
.

The point is that until seeing the last time-step event, the distribution of histories are the same in all environments. To
see this, at the initial time step given the prospective side information ιhard, the belief over latent contexts are all equal to
2/M for all MDPs in Glearn and Gref. Thus, the probability of transitioning to shard

1 is 1/2 by executing a∗explore (if the
environment transitions to sref

1 , or any other action is executed, then the future distribution on of all events are exactly the
same in all hard and reference instances). In the middle of the hard-instance chain, at shard

t , the probability of moving to the
next state conditioned on the past is 1− 1/(d− t+ 1). However, the true posterior probability over MDPs from Gref at this
point is given by:

P(m|ιhard, a1:t, s
hard
t ) = ϵ/(d− t+ 1),

for all m = 1, 2, ...,M/4 with non-zero posteriors (since we eliminated MDPs from the set after gathering information in a
certain way). On the other hand,

P(m|ιhard, a1:t, s
hard
t ) = 4(1− ϵ)/M,

for all m = M/4 + 1, ...,M/2, i.e., MDPs from Gref. Thus, at the last time step, the chance of observing the reward 1
conditioned on the history that we reached shard

d with the optimal action sequence a∗1:d, is 1/8 +O(ϵ) in hard instances, and
1/8 in the reference model. Thus, the KL divergence between the two models takes the following form:

KL
(
Pθ0(·|ιhard, a

∗
explore, a

∗
1:d),Pθ(·|ιhard, a

∗
explore, a

∗
1:d)
)

=
∑

rd∈{0,1}

Pθ0(rd, s
hard
1:d |ιhard, a

∗
explore, a

∗
1:d) · log

(
Pθ0(rd, s

hard
1:d |ιhard, a

∗
explore, a

∗
1:d)

Pθ(rd, s
hard
1:d |ιhard, a∗explore, a

∗
1:d)

)

= Pθ0(s
hard
1:d |ιhard, a

∗
explore, a

∗
1:d)

∑
rd∈{0,1}

Pθ0(rd|shard
1:d , ιhard, a

∗
explore, a

∗
1:d) log

(
Pθ0(rd|shard

1:d , ιhard, a
∗
explore, a

∗
1:d)

Pθ(rd|shard
1:d , ιhard, a∗explore, a

∗
1:d)

)

≤ 1

2d
· KL(Ber(1/8),Ber(1/8 +O(ϵ)) ≲ ϵ2/M.

For other inequalities, note that for any trajectory with any a ̸= a∗explore, for all ι and a1:d ∈ A
⊗
d, the marginal distribution is

always the same in all hard-instances and the reference model. The marginal distribution is also the same when transitioning
to sref

1 even if a∗explore is executed at the initial time. Thus, we can focus on the case when the action at the initial time step is
a∗explore, and the environment transitions to shard

1 . If this is the case, for all s2:d,

P((shard
1 , s2:d), rd|ι, a∗explore, a1:d) =

∑
m∈[M/2]

pm(ι)P((shard
1 , s2:d), rd|a∗explore, a1:d,m)

=
∑

m∈[M/2]

pm(ι)P(shard
1 |a∗explore,m)P(s2:d, rd|shard

1 , a1:d,m).

Note that

pm(ι) =
P(ι|m)∑
m′ P(ι|m′)

,

and in all models, and since for all m ∈ [M/2],

P(ι|m) ∝ (1 + αει,m),

we can observe that

pm(ι) =
(1 + αεi,m)

M/2 +
∑
m′∈[M/2](1 + αει,m′)

=
(1 +O(α))

M
,
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Therefore, in all instances,

P(shard
1 , s2:d, rd|ι, a∗explore, a1:d) = ϵ

∑
m∈[M/4]

pm(ι)P(s2:d, rd|shard
1 , a1:d,m)

+ (1− ϵ)
∑

m∈[M/4+1,M/2]

pm(ι)P(s2:d, rd|shard
1 , a1:d,m)

=
(1 +O(α))ϵ

4

∑
m∈[M/4]

4

M
P(s2:d, rd|shard

1 , a1:d,m)

+ (1− ϵ)
∑

m∈[M/4+1,M/2]

pm(ι)P(s2:d, rd|shard
1 , a1:d,m).

Now comparing this probability between any hard-instance θ ∈ Θhard and reference model, note that

Pθ0(s2:d, rd|shard
1 , a1:d,m) = Pθ(s2:d, rd|shard

1 , a1:d,m),

for all m ∈ [M/4 + 1,M/2], and∑
m∈[M/4]

4

M
Pθ0(s2:d, rd|shard

1 , a1:d,m) =
∑

m∈[M/4]

4

M
Pθ(s2:d, rd|shard

1 , a1:d,m),

for all s2:d ̸= shard
2:d or a1:d ̸= a∗1:d, and∑

m∈[M/4]

4

M
Pθ0(s

hard
2:d , rd = 1|shard

1 , a∗1:d,m) =
4

M
· 1
8
=

1

2M
,

∑
m∈[M/4]

4

M
Pθ(s

hard
2:d , rd|shard

1 , a∗1:d,m) =
4 · 1 {rd = 1}

M
.

Therefore,

|Pθ(shard
1 , s2:d, rd|ι, a∗explore, a1:d)− Pθ0(shard

1 , s2:d, rd|ι, a∗explore, a1:d)|

= O(αϵ)
∑

m∈[M/4]

4

M
Pθ0(s2:d, rd|shard

1 , a1:d,m) +O(ϵ)
1
{
s2:d = shard

2:d , a1:d = a∗1:d
}

M
,

and also we note that ∑
m∈[M/4]

4

M
Pθ0(s2:d, rd|shard

1 , a1:d,m) = O(Pθ0(s
hard
1 , s2:d, rd|ι, a∗explore, a1:d)),

Pθ0(s
hard
1:d , rd|ι, a∗explore, a

∗
1:d) = O(1/M).

Therefore, we can ensure that

|Pθ(shard
1 , s2:d, rd|ι, a∗explore, a1:d)− Pθ0(shard

1 , s2:d, rd|ι, a∗explore, a1:d)|
≤ O(αϵ)Pθ0(s

hard
1 , s2:d, rd|ι, a∗explore, a1:d),∑

s2:d,rd

|Pθ(shard
1 , s2:d, rd|ι, a∗explore, a1:d)− Pθ0(shard

1 , s2:d, rd|ι, a∗explore, a1:d)| ≤ O(αϵ),

for all a1:d ̸= a∗1:d, and similarly for a∗1:d,

|Pθ(shard
1 , s2:d, rd|ι, a∗explore, a

∗
1:d)− Pθ0(shard

1 , s2:d, rd|ι, a∗explore, a
∗
1:d)|

≤ O(ϵ)Pθ0(s
hard
1 , s2:d, rd|ι, a∗explore, a

∗
1:d),∑

s2:d,rd

|Pθ(shard
1 , s2:d, rd|ι, a∗explore, a

∗
1:d)− Pθ0(shard

1 , s2:d, rd|ι, a∗explore, a
∗
1:d)| ≤ O(ϵ).
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Finally, to bound the KL-divergence, using log(x) ≤ x− 1,

KL
(
Pθ0(·|ι, a∗explore, a1:d),Pθ(·|ι, a∗explore, a1:d)

)
=
∑
s1:d,rd

Pθ0(rd, s1:d|ι, a∗explore, a1:d) · log

(
Pθ0(rd, s1:d|ι, a∗explore, a1:d)

Pθ(rd, s1:d|ι, a∗explore, a1:d)

)

≤
∑
s1:d,rd

Pθ0(rd, s1:d|ι, a∗explore, a1:d) ·

(
Pθ0(rd, s1:d|ι, a∗explore, a1:d)

Pθ(rd, s1:d|ι, a∗explore, a1:d)
− 1

)

=
∑
s1:d,rd

∣∣∣Pθ0(rd, s1:d|ι, a∗explore, a1:d)− Pθ(rd, s1:d|ι, a∗explore, a1:d)
∣∣∣2

P0(rd, s1:d|ι, a∗explore, a1:d)

=
∑
s2:d,rd

∣∣∣Pθ0(rd, shard
1 , s2:d|ι, a∗explore, a1:d)− Pθ(rd, shard

1 , s2:d|ι, a∗explore, a1:d)
∣∣∣2

Pθ0(rd, s
hard
1 , s2:d|ι, a∗explore, a1:d)

,

which is O(αϵ)2 if a1:d ̸= a∗1:d, and O(ϵ2) if a1:d = a∗1:d. This concludes the proof of the lemma.

C.4. Proof of Theorem 4.2

Proof. Suppose any learning strategy (algorithm). Note that an ϵ/4-optimal policy for any given θ ∈ Θhard should be able to
play the correct action sequence a∗1:d of θ whenever the prospective side information is ιhard. On the other hand, by pigeon
hole principle, for any algorithm ψ with any choice of K, there must exist at least one action-sequence a∗1:d and a∗explore such
that,

∑
ι

E0[N
explore
ψ,ι,a∗1:d

(K)] = min
a∈Aexplore,a1:d

(∑
ι

E0[N
a
ψ,ι,a1:d

(K)]

)
≤ |Acontrol|−(d+1) ·K,∑

ι̸=ιhard,a1:d

E0[N
explore
ψ,ι,a1:d

(K)] = min
a∈Aexplore

(∑
ι̸=ιhard,a1:d

E0[N
a
ψ,ι,a1:d

(K)]
)
≤ |Aexplore|−1 ·K.

Let K0 be the largest number such that with this choice of a∗1:d and a∗explore, equation (9) does not hold, i.e.,

Eθ0 [N
explore
ψ,ιhard,a∗1:d

(K0 + 1)] ≳
1

ϵ2
, or

∑
ι̸=ιhard,a1:d

Eθ0 [N
explore
ψ,ι,a1:d

(K0 + 1)] ≳
1

α2ϵ2
.

We also note that

Na
ψ,ι,a1:d

(K ′) ≥ Na
ψ,ι,a1:d

(K), (15)

for any K ′ > K with probability 1.

Note that if we play a /∈ Aexploit whenever ι ̸= ιhard, we incur at least (1/8)-regret. On the other hand, if we do not
play a∗explore or a1:d ̸= a∗1:d when ι = ιhard, we incur at least ϵ/(2M)-regret. Thus, the total regret of the algorithm in the
hard-instance θ ∈ Θhard is given by

Regretθ(K) ≥
∑

a∈A,a1:d ̸=a∗1:d

Eθ[Na
ψ,ιhard,a1:d

(K)] · ϵ

2M
+

∑
ι ̸=ιhard,a∈Aexplore,a1:d

Eθ[Na
ψ,ι,a1:d

(K)] · 1
8
.

On the other hand, the regret in the reference model satisfies

Regret0(K) ≥
∑

ι ̸=ιhard,a∈Aexplore,a1:d

E0[N
a
ψ,ι,a1:d

(K)] · 1
8
.

Now we consider three cases:
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Case (1). If (A/3)−dK0 ≤ K ≤ K0, then the condition in equation (9) cannot be satisfied and therefore, (with proper
absolute constants) KL

(
P
ψ
0 (τ

1:K),Pψhard(τ
1:K)

)
≤ 1/128, implying dTV

(
P
ψ
0 (τ

1:K),Pψhard(τ
1:K)

)
≤ 1/16 by Pinsker’s

inequality. Note that ∑
a∈A,a1:d ̸=a∗1:d

E0[N
a
ψ,ιhard,a1:d

(K)] =
K

2
− E0[N

explore
ψ,ιhard,a∗1:d

(K)] ≥ 1

3
K,

and thus, since the sum is always bounded by K, with probability at least 1/6,∑
a∈A,a1:d ̸=a∗1:d

Na
ψ,ιhard,a1:d

(K) ≥ K/6,

in the reference model. Here, we used the fact that for any non-negative random variable A that is almost surely bounded by
K, for all 0 ≤ x ≤ K,

E[A] = E[A|A > x] · P(A > x) + E[A|A ≤ x] · P(A ≤ x) ≤ KP(A > x) + x.

Therefore in the hard instanceM: ∑
a∈A,a1:d ̸=a∗1:d

Na
ψ,ιhard,a1:d

(K) ≥ K/6,

with probability at least 1/16, confirming
∑
a∈A,a1:d ̸=a∗1:d

E[Na
ψ,ιhard,a1:d

(K)] ≥ K/256. Thus in this case,

Regretθ(K) ≳
Kϵ

M
.

Case (2). Suppose K > K0 and E0[N
explore
ψ,ιhard,a∗1:d

(K0 + 1)] ≳ 1
ϵ2 but E0[N

explore
ψ,ιhard,a∗1:d

(K0)] ≲ 1
ϵ2 . Note that by the same

argument, we know that ∑
a∈A,a1:d ̸=a∗1:d

E[Na
ψ,ιhard,a1:d

(K0)] ≥ K0/256,

and since equation (15) holds with probability 1, we have∑
a∈A,a1:d ̸=a∗1:d

E[Na
ψ,ιhard,a1:d

(K)] ≥ K0/256.

On the other hand, to satisfy this condition, we need at least K0 ≥ (A/3)d

ϵ2 . Thus, plugging this to the regret bound, we have
that

Regretθ(K) ≥ K0

256

ϵ

2M
≳

(A/3)d

Mϵ
.

Case (3). Finally, suppose K > K0 and E0[N
explore
ψ,ι,a1:d

(K0 + 1)] ≳ 1
α2ϵ2 but E0[N

explore
ψ,ι,a1:d

(K0)] ≲ 1
α2ϵ2 . Then by

construction (due to the choice of a∗explore), we have∑
ι ̸=ιhard,a∈Aexplore,a1:d

E0[N
a
ψ,ι,a1:d

(K)] ≥ (A/3)

α2ϵ2
,

and thus the regret incurred in the reference model is

Regret0(K) ≥ (A/3)

α2ϵ2
1

8
≳

A

α2ϵ2
.

Combining the three cases, for any algorithm ψ, we can conclude that

max
θ∈Θhard∪{θ0}

Regretθ(K) ≳ min

(
(A/3)d

Mϵ
,
A

α2ϵ2
,Kϵ

)
.
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