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Abstract

Mixup is a popular data augmentation technique
for training deep neural networks where additional
samples are generated by linearly interpolating
pairs of inputs and their labels. This technique
is known to improve the generalization perfor-
mance in many learning paradigms and applica-
tions. In this work, we first analyze Mixup and
show that it implicitly regularizes infinitely many
directional derivatives of all orders. Based on this
new insight, we propose an improved version of
Mixup, theoretically justified to deliver better gen-
eralization performance than the vanilla Mixup.
To demonstrate the effectiveness of the proposed
method, we conduct experiments across various
domains such as images, tabular data, speech, and
graphs. Our results show that the proposed method
improves Mixup across multiple datasets using
a variety of architectures, for instance, exhibit-
ing an improvement over Mixup by 0.8% in Im-
ageNet top-1 accuracy. The code is available at
https://github.com/oneHuster/MixupE.

1 INTRODUCTION

Deep Neural Networks (DNNs) represent a class of very
powerful function approximators, and large-scale DNNs
have achieved state-of-the-art performance in many applica-
tion areas such as computer vision [Krizhevsky et al., 2012],
natural language understanding [Devlin et al., 2018], speech
recognition [Hinton et al., 2012], reinforcement learning
[Silver et al., 2016], and natural sciences [Jumper et al.,
2021]. In a supervised learning setting, DNNs are typically
trained to minimize their average error on the training sam-
ples. This training principle is known as Empirical Risk
Minimization (ERM) [Vapnick, 1998].

*indicates equal contribution.

Although being a simple training principle, training neural
networks with ERM has a major problem: in the absence
of regularization techniques, instead of learning meaning-
ful concepts, neural networks trained with ERM are prone
to memorize training data [Arpit et al., 2017]. This results
in poor generalization to test samples, which come from a
distribution slightly different from the training samples. To
address this limitation of ERM, Mixup [Zhang et al., 2018]
has recently been proposed as an alternative training prin-
ciple. In a nutshell, instead of training a neural network on
individual samples and their corresponding outputs, Mixup
trains a neural network on the linear interpolation of the
samples and the corresponding linear interpolation of the
outputs. It fosters a smoother decision boundary and reduces
the risk of overfitting. Therefore, understanding its implicit
regularization helps shed light on generalization.

Mathematically, let us suppose that xi and xj are input
vectors corresponding to two randomly drawn samples i
and j from the training distribution, and yi and yj are their
one-hot encoded labels. Then, Mixup constructs a training
sample as x̃ = λxi + (1− λ)xj and ỹ = λyi + (1− λ)yj ,
where λ ∈ [0, 1]. Training with this kind of synthetic sam-
ples encourages the model to learn a function where linear
interpolation in the input vectors leads to the linear interpo-
lation of the corresponding targets. This kind of constraint
limits the model complexity, thus limiting their ability to
memorize training samples. Mixup can be interpreted as a
data-agnostic data augmentation technique that does not
require expert knowledge to create additional training sam-
ples. Mixup can also be interpreted from the viewpoint of
the Vicinal Risk Minimization (VRM) principle [Chapelle
et al., 2000]. In this view, Mixup proposes a generic vicinal
distribution based on the interpolation of training samples
and their associated targets, and the additional training sam-
ples are drawn from such vicinal distribution around each
training sample [Zhang et al., 2018].

Despite its simplicity and minimal computation overhead,
Mixup and its variants have been shown to achieve state-
of-the-art in many tasks such as but not limited to, image
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classification [Yun et al., 2019, Kim et al., 2020, Faramarzi
et al., 2020], object detection [Jeong et al., 2021], speech
recognition [Lam et al., 2020, Tomashenko et al., 2018],
text classification [Guo et al., 2019, Zhang et al., 2020],
and medical image segmentation [Panfilov et al., 2019]. Re-
cently, Mixup was theoretically analyzed and shown to be
approximately equivalent to adding a second-order regu-
larization term to the standard loss function [Zhang et al.,
2021]. However, if the benefit of Mixup can be explained
by a second-order regularization, the following natural ques-
tion arises: why can we not replace Mixup with this second-
order regularization directly? Unfortunately, the answer is
no because the second-order terms are input-specific, thus
yielding a complicated form.

In this paper, we show that Mixup is equivalent to implicitly
adding infinitely many regularization terms on the direc-
tional derivatives of all orders instead of a complex second-
order form as [Zhang et al., 2021] for ERM. Our analysis
provides a feasible insight to design the regularization in
practice. Based on this novel insight, this paper proposes
to explicitly enhance the implicit regularization effect of
Mixup on the directional derivatives. Instead of computing
all infinite regularization terms, we efficiently approximate
the dominant term using accessible results during each for-
ward propagation, ensuring computational efficiency. We
name this method as MixupE (Mixup Enhanced). Further-
more, we give a generalization guarantee of MixupE, which
reveals that it achieves lower complexity compared to vanilla
Mixup. Figure 1 shows the training and test loss of ERM,
Mixup, and MixupE. We can see that MixupE has higher
training loss, implying that it works as a stronger regularizer
than Mixup and ERM. This subsequently results in better
generalization (i.e. lower test loss) than Mixup and ERM.

To understand the benefits of MixupE empirically, we con-
duct experiments on a variety of datasets, such as images,
tabular data and speech data, using various architectures
such as LeNet [LeCun et al., 1998], VGG [Simonyan and
Zisserman, 2014], ResNet [He et al., 2016], Vision Trans-
former [ViT, Dosovitskiy et al., 2020], and CoAtNet [Dai
et al., 2021]. In our experiments, we consistently see that
MixupE has better generalization error than Mixup and
ERM, as well as the robustness of test set deformation.

2 METHODS

In this section, we derive our method with a new mathe-
matical understanding of Mixup. We begin in Section 2.1
with the notation used to present our theory and method.
Mixup is then shown to implicitly regularize infinitely many
directional derivatives of all orders in Section 2.2. This
theoretical insight allows us to enhance the regularization
effect on the directional derivatives. We also demonstrate
that the proposed explicit regularization reduces the algo-
rithmic complexity, thus improving the generalization. In

Section 2.3, we present an algorithm to strengthen the regu-
larization effect of Mixup based on a theoretical derivation
and justify the theoretical improvement over Mixup.

2.1 NOTATION

We denote the input and output pair as x ∈ X ⊆ Rd and
y ∈ Y ⊆ RC , respectively. Let fθ(x) ∈ RC be the output of
the logits (i.e., the last layer before the softmax or sigmoid)
of the model parameterized by θ. We use ℓ(θ, (x,y)) =
h(fθ(x))− y⊤fθ(x) to denote the loss function where

h(fθ(x)) =

{
log

(∑
j exp(fθ(x)(j))

)
Softmax

log (1 + exp (fθ(x))) Sigmoid
(1)

where exp(·) is the exponential function applied to every
element. Let g(·) be the activation function. We use x(i) to
index i-th element of the vector x and xj to represent j-th
variable in a set. Jk denotes the k-th Jacobian operator.

Mixup Given a training dataset S = {(xi,yi)}ni=1 of size
n with xi ∈ X and yi ∈ Y , we define the Mixup version
of the input and output pair by x̃i,j(λ) = λxi + (1− λ)xj

and ỹi,j(λ) = λyi + (1− λ)yj with the Mixup coefficient
λ ∈ [0, 1]. Then, we denote the standard empirical loss by
Lstd
n (θ, S) = 1

n

∑n
i=1 l(θ, (xi,yi)) and the Mixup loss by

Lmix
n (θ, S) :=

1

n2

n∑
i,j=1

E
λ∼Beta(α,β)

l(θ, x̃i,j(λ), ỹi,j(λ))

where Beta(α, β) represents the beta distribution with its
parameters α, β > 0. We define a mixture of beta distribu-
tions as Dλ = α

α+βBeta(α + 1, β) + β
α+βBeta(β + 1, α)

where the coefficients are the drawing probabilities. Let
aλ = 1− λ and [n] = {1, . . . , n}.

2.2 MOTIVATION FROM IMPLICIT
REGULARIZATION OF MIXUP

Here we show a theorem that optimizing the vanilla Mixup
loss induces an implicit regularization on directional deriva-
tives of the model fθ.

Theorem 1. Let ℓ(θ, (x,y)) ≜ h(fθ(x))−y⊤fθ(x) be the
loss function and ∀θ ∈ Θ functions fθ(·) in a CK manifold.
Then the implicit regularization of Mixup is:

Lmix
n (θ, S) = Lstd

n (θ, S)

+
1

n

n∑
i=1

E λ∼Dλ

x′∼DX

( K∑
k=1

akλ
k!

Jk
h◦fθ (xi)∆

⊗k
i

− aλy⊤
i ∆i + aKλ ψ̂i,x′(aλ)

) (2)



Figure 1: Comparison of train and test loss of ERM, Mixup, and MixupE trained with Wide-Resnet-28-10 [Zagoruyko and
Komodakis, 2016] architecture. We can see that MixupE has a higher training loss but lower test loss than Mixup and ERM.

where Jh◦fθ (xi) = g(fθ(xi))
⊤Jfθ (xi) and

∆i =

K∑
k=1

ak−1
λ

k!
Jk
fθ
(xi)(x

′−xi)
⊗k+aK−1

λ ψi,x′(aλ). (3)

Remark 1. ψ̂i,x′ and ψi,x′ are the remainder terms
in Taylor expansion of order O(K) and with probabil-
ity 1, limaλ→0 ψ̂i,x′(aλ) = 0, limaλ→0 ψi,x′(aλ) = 0.
For cross-entropy loss, given input z ∈ Rd, h(z) =

log
(∑

j exp(z(j))
)

, the derivative of each element is
∂h(z)
∂z(t)

= [
∑

j exp(z(j))]
−1 exp(z(t)) = g(z)(t), Simi-

larly, the logistic loss has same derivative form ∂h(z)
∂z(i)

=

(1 + exp(z(i)))
−1 exp(z(i)) = g(z)(i). Therefore, for both

cases, we have the Jacobian w.r.t xi that Jh◦fθ (xi) =
g(fθ(xi))

⊤Jfθ (xi) ∈ R1×d.

The proof of Theorem 1 is given in Appendix B. Theorem 1
provides the following novel insights: (1) Implicit regular-
ization of Mixup is to add a series of directional derivatives
with ascending orders to ERM. (2) To minimize the error
brought by remainder terms, we need a large expansion
order K, or even infinite. Obviously, in this case, explic-
itly computing the regularizer involves O(K2) high-order
derivative terms and thus suffers a heavy computational
burden. Therefore, instead of replacing Mixup with all ex-
plicit regularizers, it is more advantageous to retain Mixup
with an extra regularization as it provides a computationally
efficient alternative.

In this view, Theorem 1 provides a theoretical motivation
to further improve Mixup by enhancing its regularization
effect in terms of directional derivatives D1

θ,S , ..., D
K
θ,S . For

computational efficiency, we propose to strengthen the first-
order term while letting Mixup implicitly take care of the
higher-order terms. In Theorem 1, the regularization effect
of Mixup on the first-order directional derivatives (k = 1)

is captured byD1
θ,S := 1

nEλ∼Dλ
[aλ]

∑n
i=1 q(xi), where

q(xi) = (g(fθ(xi))− yi)
⊤Jfθ (xi)(E[x′]− xi) (4)

and Jfθ (xi) ∈ RC×d. Since 0 < aλ < 1 and small enough,
the first-order derivativeD1

θ,S dominates the rest termsDk
θ,S

(k > 1). Therefore, it turns out to be a stitch in time saves
nine if we only use D1

θ,S as the regularization term. Un-
fortunately, computing Jacobian in deep models at each
iteration step is still impractical. Furthermore, q(xi) can be
approximated by

q̂(xi) = (yi − g(fθ(xi)))
⊤fθ(xi), (5)

which lessens the computational burden by removing the
derivatives of fθ. This approximation q(xi) = q̂(xi) holds
true when Ex′∼DX

[x′] = 0 and Jfθ (xi)xi = fθ(xi). To
this end, we can normalize the training dataset with zero
means to realize the first condition. The second condition
can be guaranteed from the linear model, i.e. deep neural
networks with ReLU activation. Thus we have the approxi-
mation that q(xi) ≈ q̂(xi) and Jfθ (xi)xi ≈ fθ(xi).

However, there is an issue of negativity in the first-order reg-
ularization term D1

θ,S of Mixup. Let αk,i = (g(f(xi)(k))−
yi)ζk,i, (4) can be rewritten as

q(xi) =

C∑
j=1

αj,i∥Jfθ (xi)(j)∥2∥Ex′∼DX
[x′]− xi∥2 (6)

where f(xi)(j) is the j-th coordinate of f(xi) and coef-
ficient ζj,i is the cosine similarity between j-th row vec-
tor Jfθ (xi)(j) and Ex′∼DX

[x′] − xi. If αj,i is positive,
then Mixup tends to minimize all first-order directional
derivatives ∥Jfθ (xi)(j)∥2, j ∈ [C]. However, if αj,i is
negative, Mixup has an unintended effect of maximizing
∥Jfθ (xi)(j)∥2. Figure 2 shows that the minimum values of
α are negative for some sample xi and coordinate k in the
initial phase of Mixup training. We show these values for
both Preactresnet18 and Preactresnet50 architectures on the
CIFAR-10 dataset.



Figure 2: Minimum value of α over the coordinate k and
sample i for different iterations during the training.

Algorithm 1 Algorithm of MixupE

Require: Model fθ : Rd → RC . Hyperparameters α, β for
beta distribution (mean λ). Loss function ℓ.

1: while Training epochs < N do
2: for Batch of data X ∈ Rm×d, Y ∈ Rm×C in train-

ing set of size m do
3: Sample λ ∼ Beta(α, β)
4: Mixup data with X̃, Ỹ ← λ(X,Y ) +
aλPermute(X,Y )

5: Mixup Loss Lmix
n (θ,X) = ℓ(fθ(X̃), Ỹ )

6: Compute first-order directional derivatives that
q̂(X) = fθ(X)⊗ (Y − Softmax(fθ(X)))

7: Get additional loss R(θ,X) via (5)
8: L ← η̂

(
Lmix
n (θ, S) + ηR(θ, S)

)
via (7)

9: Optimize parameters θ with loss L
10: end for
11: end while

2.3 PROPOSED MIXUPE

To avoid the unintended effect of maximizing ∥Jfθ (xi)(j)∥2
in the initial phase of Mixup training, the proposed method
uses the following alternative form to ensure the positivity
and strengthen the vanilla Mixup:

R(θ, S) =
Eλ∼Dλ

[aλ]

n

n∑
i=1

|q̃(xi)|, (7)

where q̃ = q for the accurate version and q̃ = q̂ for the
approximate version. The functions q and q̂ are defined in
equations (4) and (5). The approximate version does not
require computation of the directional derivatives, and the
additional computational cost is negligible because fθ(xi)
is known for the original loss and the value of Eλ∼Dλ

[aλ] is
a fixed number over epochs: e.g., Eλ∼Dλ

[aλ] = 1− α+1
2α+1

when Beta(α, α) is used for Mixup. To justify the rational-
ity of our proposed regularization, we consider a degenerate
case. Given a mixup distribution Beta(α, β), if α, β → 0,
we have that R(θ, S)→ 0 as Eλ∼Dλ

[aλ]→ 0. In this case,

Mixup behaves closely to ERM (i.e., mixup coefficient λ
goes to 0). Then additional term R(θ, S) vanishes and is
consistent with the behavior of vanilla Mixup. However,
introducing R(θ, S) brings the artifacts when computing
the training loss. In line with the original mixup training,
we rescale the loss magnitude as before. Overall, we pro-
pose an explicit regularization R(θ, S) for vanilla Mixup to
strengthen the implicit effect, namely MixupE, where the
total loss is defined as:

L(θ, S) := η̂
(
Lmix
n (θ, S) + ηR(θ, S)

)
, (8)

η̂ =
|Lmix

n (θ, S)|
|Lmix

n (θ, S) + ηR(θ, S)|
, (9)

where η̂ is a scaling factor that depends on the magnitudes
of Lmix

n (θ, S) and R(θ, S). Note that η > 0 is the only
hyperparameter of the proposed method.

The whole algorithm of MixupE is shown in Algorithm 1.
Extending Mixup to MixupE requires one additional forward
pass on the original (non-mixed) sample for computing the
additional loss term and requires one additional hyperparam-
eter η in comparison to Mixup. We note that Algorithm 1
shows how to apply MixupE when the training sample is in
the form of a fixed-shape tensor (for example, images or tab-
ular data). When applying MixupE to training samples with
irregular (not fixed) topology, such as graphs, sequences,
and trees, we first need to project the input samples to a
fixed shape hidden states using an encoder network. After
this projection, MixupE can be applied in the usual form.

Theoretical justification: To validate the rationality of
the MixupE, we justify the generalization improvement over
Mixup. Regarding the vanilla Mixup as an original uncon-
strained problem, for some γ > 0, then the constraint Θ in
the dual problem of MixupE will be

Θ = {x→ fθ(x)| sup
x
[q̂(x)] ≤ γ}. (10)

Following Zhang et al. [2021], we consider Generalized
Linear Model (GLM) h(fθ(x)) = A(θ⊤x) for MixupE.
For simplicity, we assume y can be represented by (θ∗)⊤x.
Thus, there exists a diagonal matrix Σ of size d such that
θ∗ = Σθ. We proved the following generalization gap:

Theorem 2. Suppose A(·) is LA-Lipchitz continuous, X ,Y
and Θ are all bounded, the label of GLM is y = (Σθ)⊤x,
then there exist constants L,B > 0, such that for all θ ∈ Θ,
we have

L(θ, S) ≤ η̂Lmix
n (θ, S) +

2η̂ηLLA(LA +
√
γσ)

σ
√
n

+B

√
log(1/δ)

2n

(11)

and σ = supΣ
tr(Σ)

d with probability at least 1− δ.



See proof in Appendix C. In the context of Rademacher com-
plexity, the smaller size of function classes will guarantee
better generalization, which is reflected by the complexity
exemplified as the second term in (11). It is worth noting
that for vanilla Mixup, a general parameter constraint can be
set, such as ∥θ∥2 ≤ γ. In this case, the complexity term can
be as high as

√
γ ·MaxNorm(x)/n, depending on the max-

imum norm of the data. This maximum norm can often be
much larger than the second term in the abovementioned in-
equality. The regularization of MixupE enforces a constraint
on q̂(x), which involves the product of the "calibration"
error and the representations. On the one hand, σ represents
the average value of the maximum correction matrix to the
ground truth, which can also be large. Consequently, as
σ →∞, the second term tends to shrink towards zero. On
the other hand, the norm of the representation scales with
the norm of the input in the GLM. Therefore, q̂(x) also
constrains the norm of the data, denoted as Norm(x). In
summary, these observations indicate that the regularized
version of Mixup, MixupE, leads to better generalization due
to the stronger constraint imposed on the parameter space.
This validates the rationale behind MixupE and highlights
its efficacy in promoting improved generalization perfor-
mance. Further details and a comprehensive discussion of
these findings are in Appendix C.

3 RELATED WORK

Mixup [Zhang et al., 2018, Tokozume et al., 2017] and its
numerous variants have seen remarkable success in super-
vised learning problems, as well as other problems such
as semi-supervised learning [Verma et al., 2021a, Berth-
elot et al., 2019], unsupervised learning using autoencoders
[Beckham et al., 2019, Berthelot* et al., 2019], adversarial
learning [Lamb et al., 2019, Lee et al., 2020, Pang* et al.,
2020], graph-based learning [Verma et al., 2019b], computer
vision [Yun et al., 2019, Jeong et al., 2021, Panfilov et al.,
2019, Faramarzi et al., 2020], natural language [Guo et al.,
2019, Zhang et al., 2020] and speech [Lam et al., 2020,
Tomashenko et al., 2018].

Mixup [Zhang et al., 2018] creates synthetic training sam-
ples by linear interpolation in the input vectors and their
corresponding labels. The follow-up work of Mixup can
be categorized into two main categories: (a) methods that
propose a non-linear interpolation in the input vector (or
hidden vectors): examples of this category include Yun et al.
[2019], Faramarzi et al. [2020], Kim et al. [2020], Zhang
et al. [2020], Verma et al. [2021b]. (b) methods that ex-
tend linear interpolation based Mixup training to various
learning paradigms or applications: examples of this class in-
clude Mixup based training for supervised learning [Verma
et al., 2019a], semi-supervised learning [Verma et al., 2021a,
Berthelot et al., 2019], for adversarial training [Lamb et al.,
2019], for node classification [Verma et al., 2019b], and for

natural language processing [Guo et al., 2019]. The method
proposed in this work can be applied to any of the methods
in the latter category, and we leave experimental evaluation
of MixupE applied to these methods for future work.

Theoretically, Mixup has been analyzed by Zhang et al.
[2021], in which the authors show that it is approximately
equivalent to adding a second-order regularizer to improve
robustness and generalization. However, they did not pro-
pose a method based on the theory. In contrast, this paper
shows that it is equivalent to adding infinite regularizations
on the directional derivatives of all orders and uses this
theory to propose a new method.

4 EXPERIMENTS

We present a range of experiments to back up the method-
ological claims, demonstrate versatility across benchmark
problems, and show practical applicability on images, tabu-
lar data, and speech problems.

4.1 IMAGE DATASETS

For small-scale image datasets, we consider the CIFAR-
10, CIFAR-100, SVHN, and Tiny-ImageNet. We run our
experiments using a variety of architectures, including
PreActResNet18, PreActResNet34, PreActResNet50, Pre-
ActResNet101 [He et al., 2016], and Wide-Resnet-28-10
[Zagoruyko and Komodakis, 2016].

Throughout our experiments, we use SGD+Momentum opti-
mizer with batch-size 100, learning rate 0.1, momentum 0.9
and weight-decay 10−4, with step-wise learning rate decay.
We train all the networks for all the datasets for 200 epochs,
and the learning rate is annealed by a factor of 10 at epochs
100 and 150.

Hyperparameters α and η: For Mixup on the CIFAR-
10 and CIFAR-100 datasets, we used the value α = 1.0
as recommended by Zhang et al. [2018]. For Mixup on
SVHN and Tiny-ImageNet datasets, we experimented with
the α values 1.0 and 0.2, respectively, as recommended
by Verma et al. [2019a]. We experimented with the η ∈
{0.0001, 0.001, 0.01, 0.1} and obtained the best results us-
ing η = 0.001 for most of the experiments and using
η = 0.0001 for the remaining experiments.

Results: We show results for the CIFAR-10 (Table 1a),
CIFAR-100 (Table 1b), SVHN (Table 2a), and Tiny-
ImageNet (Table 2b) datasets. We see that MixupE con-
sistently outperforms baseline methods ERM and Mixup
across all the datasets and architectures.

Sensitivity to hyperparameter η: To validate that the
method is not overly sensitive to the newly introduced hyper-
parameter η, we conducted experiments for MixupE with the
value of η ∈ {0.0001, 0.001, 0.01, 0.1} with Preactresnet50



Table 1: Classification errors on (a) CIFAR-10 and (b) CIFAR-100. Standard deviations over five repetitions. Best performing
methods in bold.

(a) CIFAR-10

PreActResNet50 Test Error (%)

ERM 4.71±0.062
Mixup 4.53±0.041
MixupE 3.53±0.047

PreActResNet101

ERM 4.21±0.069
Mixup 4.43±0.049
MixupE 3.35±0.049

Wide-Resnet-28-10

ERM 4.24±0.101
Mixup 3.03±0.091
MixupE 2.94±0.048

(b) CIFAR-100

PreActResNet50 Test Error (%)

ERM 24.68±0.349
Mixup 23.03±0.471
MixupE 20.23±0.507

PreActResNet101

ERM 23.20±0.362
Mixup 23.05±0.383
MixupE 18.86±0.376

Wide-Resnet-28-10

ERM 22.20±0.108
Mixup 19.38±0.113
MixupE 17.12±0.111

Table 2: Classification error on SVHN and classification accuracy on Tiny-Imagenet. Standard deviations over five repetitions.
Best performing methods in bold.

(a) Classification Error on SVHN

PreActResNet50 Test Error (%)

ERM 2.80±0.201
Mixup 2.65±0.017
MixupE 2.42±0.021

PreActResNet101

ERM 2.95±0.019
Mixup 2.79±0.015
MixupE 2.35±0.019

Wide-Resnet-28-10

ERM 2.82±0.049
Mixup 2.48±0.117
MixupE 2.29±0.168

(b) Classification Accuracy on Tiny-ImageNet

PreActResNet18 top-1 top-5

ERM 54.97±0.52 72.71±0.48
Mixup 54.64±0.43 72.53±0.51
MixupE 62.21±0.39 82.09±0.41

PreActResNet34

ERM 57.25±0.48 72.58±0.53
Mixup 57.79±0.39 76.15±0.42
MixupE 65.37±0.31 83.77±0.35

PreActResNet50

ERM 55.91±0.61 73.50±0.57
Mixup 54.86±0.46 73.11±0.43
MixupE 67.22±0.38 85.14±0.36

architecture and the CIFAR-100 dataset. This experiment
was repeated five times with different initializations. We
got the mean test error (in %) of 20.23, 20.84, 21.01, 20.87
for the η values of 0.0001, 0.001, 0.01, 0.1, respectively, vs
the mean test-error 23.03 for Mixup. This suggests that the
proposed method MixupE is not overly sensitive to the hy-
perparameter η and works better than Mixup for a large
range of η values.

For a large-scale image classification dataset, we con-
sider ImageNet [Deng et al., 2009], using three architec-
tures: ResNet [He et al., 2016], Vision Transformer [ViT,
Dosovitskiy et al., 2020], and CoAtNet [Dai et al., 2021].
In particular, we use ResNet-50, ViT-B/16, and CoAtNet-0.
We choose these architectures for experiments because they
are fast to train, and they respectively represent the three

families of image classification models: convolution-based
models, attention-based models, and hybrid models.

Except for the Mixup-related hyperparameters α and
η, all training hyperparameters for these models follow
their original paper. Specifically, all models are trained
and evaluated at the resolution of 224x224. Our ResNet-
50 is trained with a SGD+Momentum with the momentum
coefficient of 0.9, while our ViT-B/16 and CoAtNet-0 are
both trained with AdamW [Loshchilov and Hutter, 2018],
β1 = 0.9 and β2 = 0.99. An L2 weight decay of 10−4 is
applied to our ResNet-50, while the larger weight decays
of 0.05 and 0.3 are applied to our CoAtNet-0 and ViT-B/16,
respectively.

All models were trained for 100K steps, with a global batch



size of 4096. Throughout these 100K training steps, the
learning rate starts from 0 and warms up linearly to its peak
value – which is 1.6 for ResNet-50 and 0.001 for ViT and
CoAtNet – and then decreases to 1/1000 times the peak
value following the cosine schedule. For models with batch
normalization, i.e., ResNet-50 and CoAtNet-0, the batch
statistics during training are computed globally. We also
apply a Polyak moving average with the rate of 0.999 on all
parameters, including the batch normalization cumulative
statistics in the case of ResNet-50 and CoAtNet-0.

Hyperparameters α and η: we use the Mixup rate α = 0.2
for ResNet-50, following the suggestions from Zhang et al.
[2018]. Since ViT-B/16 and CoAtNet-0 were invented after
Mixup, we first tune the value of α and found that α = 0.4
offers a sweet spot for these models. Fixing α = 0.2 for
ResNet-50 and α = 0.4 for ViT-B/16 and CoAtNet-0, we
then tune the values for η with ResNet-50. We find that
η = 10−3 is best for ResNet-50 while the smaller value of
η = 5× 10−4 is best for ViT-B/16 and CoAtNet-0.

ImageNet results: Table 3 presents our results. We observe
that MixupE consistently outperforms Mixup across the
three architectures in our experiments. Notably, the gains of
MixupE – in terms of top-1 accuracy – are larger for ViT-
B/16 and CoAtNet-0 than for ResNet-50, i.e. +0.7 and +0.8
compared to +0.5, even though the top-1 accuracy of the
Mixup baselines for ViT-B/16 and CoAtNet-0 are higher. We
note that other extensions of Mixup, such as CutMix [Yun
et al., 2019], PuzzleMix [Kim et al., 2020], and PatchUp
[Faramarzi et al., 2020] use non-linear mixing of samples,
thus they are not directly comparable with MixupE. We leave
an experimental comparison of MixupE with these methods
using a common implementation scheme (architecture and
training/validation protocol) as future work.

Table 3: ImageNet accuracy of various models.
Each experiment was run for 3 times.

Models MixUp Type Top-1 Top-5

ResNet-50
None 76.2±0.5 93.6±0.3

MixUp 77.2±0.2 94.0±0.1
MixupE 77.7±0.2 94.4±0.1

ViT-B/16
None 79.1±0.2 95.1±0.1

MixUp 79.7±0.2 95.4±0.1
MixupE 80.4±0.1 95.8±0.1

CoAtNet-0
None 79.8±0.2 95.1±0.1

MixUp 80.8±0.3 95.5±0.1
MixupE 81.6±0.2 95.7±0.2

A note on implementation and runtime. Despite these im-
provements, MixupE requires twice as many forward passes
as normal Mixup. As shown in Algorithm 1, the extra com-
putation stems from the forward pass through the original
(non-mixed) samples X , i.e. fθ(X). For larger models run-

ning on ImageNet, this cost can lead to significantly slower
experiment time. To alleviate the computational burden, we
“batch” this extra pass through the non-mixup data into the
pass through the mixup data. Thanks to this trick, our imple-
mentation of MixupE is only 1.3 times slower than Mixup.

4.2 TABULAR DATASETS

We consider a number of tabular environments drawn from
the UCI dataset [Lichman et al., 2013], namely Arrhythmia,
Letter, Balance-scale, Mfeat-factors, Mfeat-fourier, Mfeat-
karhunen, Mfeat-morphological, Mfeat-zernike, CMC, Opt-
digits, Pendigits, Iris, Mnist_784, Abalone and Volkert.

We consider the same setting as Zhang et al. [2018], where
the network is a fully-connected multi-layer perceptron
(MLP) with two hidden layers, each with 128 dimensions,
with ReLU activations for non-linearity. We train this net-
work with the Adam optimizer using the cross-entropy loss
with the default learning rate of 0.001 and a batch size of
100, for 25 epochs. We feed in the categorical part of the
data as one-hot inputs, and for any samples with missing fea-
tures in the dataset, we fill it with the mean (for continuous)
or mode (for discrete) of those features.

Table 4: Classification Test Error (%) on tabular datasets
from UCI repository. Results are averaged over five trials.

Dataset Method
ERM Mixup MixupE

Arrhythmia 34.60±3.10 35.49±3.88 34.85±3.99

Letter 4.56±0.27 3.71±0.18 4.04±0.20

Balance-scale 3.87±1.03 3.70±1.00 3.68±0.97

Mfeat-factors 2.74±0.81 2.44±0.42 2.56±0.64

Mfeat-fourier 17.69±1.76 17.80±1.56 17.57±1.60

Mfeat-karhunen 3.74±0.58 3.06±0.29 2.47±0.32

Mfeat-morph 25.00±2.10 24.62±1.83 24.66±1.30

Mfeat-zernike 17.58±1.72 15.19±1.73 15.55±0.62

CMC 45.77±1.49 46.67±1.83 45.42±2.05

Optdigits 1.48±0.19 1.15±0.21 1.33±0.14

Pendigits 1.03±0.25 0.76±0.19 0.72±0.16

Iris 9.06±7.01 8.14±6.48 7.29±6.95

Mnist_784 2.83±0.11 2.57±0.05 2.56±0.14

Abalone 35.05±0.61 35.07±0.69 34.91±0.70

Volkert 33.26±0.62 32.74±0.76 32.54±0.61

Hyperparameters α and η: We consider the hyper-
parameters from the set α ∈ {0.01, 0.02, 0.05, 0.1,
0.2, 0.5, 1.0, 2.0, 5.0} and η ∈ {0.0001, 0.001, 0.01,
0.1, 1.0} and run five seeds for each of the combinations
and algorithms. Then, the value of (α, η) is chosen based



on the best validation accuracy, corresponding to which we
report the test accuracy for that particular dataset.

Results: Table 4 presents our results for a subset of the
tabular datasets. We observe that MixupE outperforms the
standard Mixup as well as ERM across multiple datasets.
Among these 15 datasets, MixupE surpasses the baselines
substantially (9 datasets) and achieves comparable perfor-
mances as the best, such as Arrhythmia, Letter, Mfeat-
zernike and Mfeat-morph (4 datasets). On the whole, Mix-
upE has demonstrated considerable improvements over
vanilla Mixup by considering the relative improvements
of MixupE compared to the standard ERM training scheme.

4.3 SPEECH DATASET

To have a rigorous comparison with Zhang et al. [2018],
similar to their work for the speech dataset, we use the
Google commands dataset [Warden, 2018]. This dataset
consists of 65000 one-second long utterances of 30 short
words, such as yes, no, up, down, left, right, stop, go, on, off,
by thousands of different people. 30 short words correspond
to 30 classes. We preprocess the utterances by first extracting
the normalized spectrograms from the original waveform
at a sampling rate of 16 kHz, followed by zero-padding
the spectrograms to equalize their size at 160× 101. This
preprocessing step is exactly the same as Zhang et al. [2018].
Furthermore, similar to Zhang et al. [2018], we use LeNet
[LeCun et al., 1998] and VGG-11 and VGG-13 [Simonyan
and Zisserman, 2014] architectures. We train all the models
for 20 epochs using Adam optimizer with a learning rate of
0.001 and batch size of 100.

Table 5: Classification Test Error (%) on Google Speech
Command Dataset [Warden, 2018]. We run each experiment
five times

Architecture Method
ERM Mixup MixupE

LeNet 10.43±0.052 10.12±0.041 10.02±0.042

VGG-11 6.04±0.059 4.63±0.047 3.93±0.050

VGG-13 5.77±0.053 4.68±0.039 3.84±0.040

Hyperparameters α and η: For all the architectures, we
first find the best value of hyperparameter α for Mixup from
the set α ∈ {0.1, 0.2, 0.5, 1.0, 2.0}. We observed that α =
0.2 works best consistently for all architectures. For MixupE,
we used the best α values from Mixup and only fine-tuned
the η hyperparameter using η ∈ {0.001, 0.01, 0.1, 1.0}. In
our experiments, η = 0.01 works best for all the experi-
ments.

Results: In Table 5, we observe that MixupE improves the
test error of Mixup for different architectures. Moreover,

the improvement is more significant for larger architectures
such as VGG-11 and VGG-13 than LeNet.

4.4 GRAPH DATASETS

For graph classification, we consider the MUTAG, NCI1,
PTC, PROTEINS, IMDB-BINARY and IMDB-MULTI
datasets. We use the experimental settings defined in Xu
et al. [2018] as the baseline system, where Mixup and Mix-
upE are performed after encoding the graph to a fixed di-
mensional vector, that is, at the graph-level readout stage.
Each system here relies on 5 graph neural network layers
that give rise to the readout, which a non-linear MLP then
operates on. The models are trained for 350 epochs using
the Adam optimizer with a learning rate of 0.01, which is
halved every 50 epochs. For the hyperparameters, we con-
sider α ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0} and
η ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}. Corresponding to each
model setting, we perform 10-fold validation, identify which
epoch and hyperparameters give the best test accuracy, and
report the algorithm’s final mean and standard deviation
over the ten folds. We refer the readers to Table 6, which
shows the benefits of using MixupE on the graph datasets.

In conclusion, MixupE outperforms than vanilla Mixup on
different types of datasets. The proposed regularizer effec-
tively improve the generalization of Mixup.

Table 6: Classification Test Error (%) on graph datasets from
the TUDatasets benchmark when following the setup of Xu
et al. [2018]. Results are obtained from 10-fold validation.

Dataset Method
ERM Mixup MixupE

MUTAG 10.15±0.06 10.67±0.05 10.06±0.06

NCI1 17.79±0.02 18.59±0.02 17.74±0.01

PTC 38.37±0.09 34.87±0.08 35.50±0.08

PROTEINS 25.43±0.04 24.44±0.04 23.72±0.04

IMDBBINARY 25.60±0.03 25.30±0.03 25.20±0.03

IMDBMULTI 50.33±0.03 49.27±0.04 48.53±0.03

Table 7: Ablation experiments to understand the effect of
the additional loss term in Equation 7. Each experiment was
run 5 times.

Method Test Error

ERM 24.68
Mixup 23.03
ERM+additional loss 22.42
Mixup+additional loss (MixupE) 20.23



Table 8: Test accuracy on novel deformations. All models are trained on normal CIFAR-100.

Test Set Deformation Mixup (α = 1) Mixup (α = 2) Manifold Mixup (α = 2) Ours (α = 1)

Rotation U(−20, 20) 55.55 56.48 60.08 62.23
Rotation U(−40, 40) 37.73 36.78 42.13 43.08
Shearing U(−28.6, 28.6) 58.16 60.01 62.85 63.94
Shearing U(−57.3, 57.3) 39.34 39.70 44.27 43.87
Zoom In (60% rescale) 13.75 13.12 11.49 15.66
Zoom In (80% rescale) 52.18 50.47 52.70 54.22
Zoom Out (120% rescale) 60.02 61.62 63.59 61.39
Zoom Out (140% rescale) 41.81 42.02 45.29 36.58

4.5 ABLATION EXPERIMENTS

In MixupE, we have proposed to add an additional loss term
derived from the first-order derivative (7) to the Mixup Loss
8. A natural question arises: what would be the performance
of adding this term to the ERM loss? We conduct an ab-
lation study to investigate this question. Specifically, we
compare the following four methods : 1) ERM, 2) Mixup, 3)
ERM+additional loss, and 4) Mixup+additional loss (Mix-
upE). The test error on the CIFAR-100 dataset using the
Preactresnet50 architecture for the abovementioned method
is shown in Table 7.

Results in Table 7 show that adding the additional loss term
of Eqn (7) improves the test accuracy in Mixup. This is con-
sistent with our argument in Section 2.2 that Mixup can have
an unintended effect of maximizing ∥Jfθ (xi)(j)∥2. Further-
more, we observe that Mixup+additional loss ( MixupE)
performs better than ERM+additional loss; this indicates
that the implicit regularization of higher order directional
derivative through Mixup training is important for better
test errors, thus justifying our proposed method.

4.6 GENERALIZATION TO NOVEL
DEFORMATIONS

Following Verma et al. [2019a], we also evaluate the robust-
ness of the representations learned by MixupE and compare
it to other baselines. For our method, we use the PreActRes-
Net18 only trained with 400 epochs instead of 1200 epochs
of Manifold Mixup, which means fewer training epochs
were used to obtain our results than other baselines reported
in Verma et al. [2019a]. As shown in Table 8, the results
indicate that our method consistently outperforms the other
methods in most test set deformations. Specifically, for ro-
tation in the range of U(−20, 20) and Zoom In (Rows 1,
5, 6), our method significantly improved over all baselines,
which is the highest among all methods. MixupE again out-
performs the other methods in Rows 2 and 3 for the rest
settings and achieves similar accuracy to the previous SOTA
in Row 4. These results suggest that MixupE has a better
generalization to novel deformation test data.

5 CONCLUSION AND LIMITATIONS

In this work, we have theoretically derived a new method to
improve Mixup. Our theory shows that Mixup is a compu-
tationally efficient way to regularize directional derivatives
of all orders (see Theorem 1). Based on this intuition, we
propose a new Mixup variant, termed MixupE, a simple
and one-line code modification of the original Mixup. Our
proposed method is mathematically designed to strengthen
the regularization effect of Mixup with a generalization im-
provement guarantee (see Theorem 2). Empirically, MixupE
outperforms Mixup on several datasets, such as image, tabu-
lar, and speech datasets, trained with various networks. The
improvement in test error is more significant for networks
with larger capacities. As a limitation, our method requires
one additional forward pass in the network during training
than Mixup but only suffers an extra 30% time cost than
Mixup. While we only approximate the first-order term for
the computational efficiency, our results suggest a promis-
ing future research direction to enhance Mixup by studying
higher-order terms in Theorem 1.
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