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Abstract. Multi-agent learning is intrinsically harder, more unstable and unpredictable than

single agent optimization. For this reason, numerous specialized heuristics and techniques have

been designed towards the goal of achieving convergence to equilibria in self-play. One such

celebrated approach is the use of dynamically adaptive learning rates. Although such techniques

are known to allow for improved convergence guarantees in small games, it has been much harder

to analyze them in more relevant settings with large populations of agents. These settings are

particularly hard as recent work has established that learning with fixed rates will become chaotic

given large enough populations [9, 17]. In this work, we show that chaos persists in large population

congestion games despite using adaptive learning rates even for the ubiquitous Multiplicative

Weight Updates algorithm, even in the presence of only two strategies. At a technical level, due to

the non-autonomous nature of the system, our approach goes beyond conventional period-three

techniques [29] by studying fundamental properties of the dynamics including invariant sets, volume

expansion and turbulent sets. We complement our theoretical insights with experiments showcasing

that slight variations to system parameters lead to a wide variety of unpredictable behaviors.
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1. Introduction

Arguably one of the most thorny problems on the intersection of learning and games is the
development of simple and practical algorithms that converge to Nash equilibria. The problem in its
full generality is known to be intractable [18, 23], however, recent developments in Machine Learning
have lead to a revived interest in the problem even in special classes of games. Unfortunately,
the additional scrutiny has only helped crystallize the severity of the problem at hand through a
diverse set of non-convergence, instability results even in well motivated special classes of games [2, 4–
7, 19, 22, 24, 28, 31]. Worse yet, standard online learning meta-algorithms, such as Multiplicative
Weights Updates (MWU), have been shown to exhibit chaos [9, 13–15, 17, 33], which has be shown
to be rather common in more complex games, e.g., as we increase the number of agents [9, 17, 21, 37].
Given this proliferation of negative results, what other approaches are left to explore?

An interesting hint can be found in some of the earliest AI work on the subject. [42] established
arguably one of the first non-convergence results in the area, showing that gradient dynamics do not
suffice to achieve point-wise convergence even in the trivial case of two agent, two strategy games.
On the positive side, when those dynamics are non-convergent, time-average convergence results
can be established. Building up on their work, [12] showed that a modification of these standard
dynamics where the agents can dynamically update their step-size based on payoff cues from their
environment suffices to stabilize these dynamics in all 2⇥ 2 games. Informally, the specific heuristic,
Win or Learn Fast (WoLF), has the agents increase their learning rate when they are "losing" in
an effort to escape from a non-promising region of the state space. Unfortunately, WoLF requires
that each agent has knowledge to a Nash equilibrium strategy for themselves, which means it can
only be applied in small games. On the positive side, this first result has led to several other more
similar heuristics, with promising results in small games [1, 8, 10, 11, 25, 26]. While staying in the
realm of small games, such heuristics have been shown to robustly improve the stability of other
popular learning heuristics such as Proximal Policy Optimization [35, 38]. On the negative side, even
for slightly larger games most positive results are largely empirical in nature and effectively very
little is known about the behavior of such techniques in games with many agents. These works raise
our key motivating question:

Does the simple idea of judiciously increasing the learning rate to “escape" barren regions of the
state space scale to games with a large number of agents? If not, what type of formal instability
results can be established?

Our approach. We focus on one of the most well studied class of large population games,
non-atomic congestion games [32, 36] where the agents learn using the ubiquitous MWU update
rule [3, 20, 30]. Furthermore, given the recent works of [9, 17], we focus on games with exactly
two strategies/routes and linear cost functions, since such settings are already sufficiently hard
for dynamics. Specifically, given fixed, non-adaptive learning rates, MWU dynamics typically will
bifurcate to chaotic behavior for a large enough population size. Critically, however, these previous
results are based on the celebrated "Period three implies chaos" methodology pioneered by Li-Yorke
[29], which is only applicable in autonomous, i.e., time-invariant systems. In contrast, understanding
the emergent behavior in our case will require totally different techniques.

Our model will allow for a wide range of dynamically adaptive learning rates. In particular, instead
of having only two learning rates, fast and slow, as, e.g., in [12], we will allow for a continuous range
of learning rates. Moreover, the decision to increase/decrease the learning rate will be driven by a
regret-like measure [39]. Intuitively, each agent compares the historical time-average performance of
both routes available to them. If both routes appear very similar to each other then the agents favor
large learning rates so as to reach sufficiently different configurations where they can hopefully find
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informative payoff signals to exploit. On the other hand, if one route is significantly better than the
other then the agents will take smaller but non-vanishing step sizes so as to take advantage of such
opportunities without overcorrecting.

Our main result. We prove that our class of dynamics exhibits Li-Yorke chaotic behavior,
implying the existence of an uncountable set of initial conditions that become “scrambled" by the
dynamics (Theorem 4). Formally, for any two initial conditions from this set, the trajectories of the
game dynamics come arbitrarily close to each other and move away from each other infinitely often.

Figure 1: An assortment of bifurcation diagrams for different adaptive learning rate
schemes. Larger volatility (larger limit step-size) leads to more prominently unpredictable,
chaotic behavior (dense limit-sets for large fraction of the parameter space).

Our techniques. Despite the intense recent interest in developing formal arguments about chaos
in game settings [9, 17, 27, 34] proving chaos in non-autonomous dynamical systems is a challenging
endeavor, as the departure from one-dimensional autonomous systems gives up from many established
equivalences among different notions of chaos, such as volume expansion, topological entropy, and
arbitrarily long periodic points.

One possible approach to addressing this challenge would be to first establish that the sequence of
employed maps converges uniformly to a fixed chaotic map, and then transfer the resulting scrambled
set of the limit system to the non-autonomous one.

Although this property is not true for our system, it suffices to use a slightly relaxed version of it.
We establish uniform convergence guarantees for initialization sets that are confined to the interior
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of the strategy space (Lemma 10), while tolerating the discrepancy between the varying-step and
the corresponding MWU map in the limit. To confirm the existence of an uncountable scrambled
set, we propose a novel connection between the behavior of MWU maps with varying learning rates
and symbolic dynamics. Essentially, our proof strategy entails assigning every binary sequence to a
different initialization such that scrambled binary strings correspond to scrambled initializations of
the our non-autonomous dynamical system (Proof of Theorem 4).

The first part of our analysis (Section 3) involves enhancing previously existing results for the
case of fixed learning rate dynamics. Specifically, we present an explicit construction of a perpetual
set F(a), i.e., a forward invariant set where our dynamical system is surjective, fa(F(a)) = F(a),
where fa represents the MWU system with fixed learning rate a. (Lemma 3). Next we further show
that, even in the presence of agent volatility due to their high learning rates, if their initial strategies
lie within the interior of the strategy space, their strategies will eventually be absorbed into the
perpetual set we have constructed (Lemma 4).

In the case of fixed learning rate, we are able to quantify an even stronger volume expansion result.
Specifically, we show that the image of any arbitrarily small neighborhood of the mixed equilibrium
of our game will converge exactly to the perpetual set we have constructed (Theorem 2).

Turning our attention to the adaptively dynamic learning rate (Section 4), we show that thanks
to F(a), while learning rate may vary over iterations and initializations, there exists a set � –the
closure of all perpetual sets F(an) –to which our dynamics eventually will be absorbed (Lemmas 5,6),
provided the initialization set lies in the interior of solution space. Leveraging this property, we
show that despite the volatility due to agents employing potentially high learning rates, our average
regret-like concepts converge for nearly all initial conditions (Lemmas 7,8,9). It is noteworthy that
this result requires a substantial degree of additional technicality in contrast to its analogue for the
fixed rate regime [17].

Before developing our machinery for the symbolic dynamics reduction in Section 5, our proof
strategy includes an additional step of demonstrating that our system does not collapse early in
any fixed point or subspace of strategies that lacks volume expansion, as this would eliminate chaos.
To achieve this, we rely on Theorem 3 which guarantees that almost all neighborhoods of mixed
equilibrium will avoid this scenario by volume expanding and approximately covering F( lim

n!1
an).

Putting everything together our main result about chaotic limit behavior follows.

2. Problem setup and preliminaries

2.1. Dynamical systems & Li Yorke chaos. A discrete autonomous m-dimensional dynamical
system is described by an equation xn+1 = f(xn) for a function f : Rm ! Rm. In contrast a discrete
m-dimensional non-autonomous dynamical system is described by an equation xn+1 = f(xn, n) for a
function f : Rm⇥N ! Rm. In both of these cases we can view the xn(x0) iterate as a function of the
initialization x0. We thus term the sequence {xn(x0)}n2N the orbit of the dynamical system of x0.

We call two initializations p, q of a dynamical system scrambled if lim supn!1 kxn(p)�xn(q)k > 0
and lim infn!1 kxn(p) � xn(q)k = 0. Intuitively the orbits of p, q continuously alternate between
moving apart and arbitrarily close respectively. A set S is scrambled if every pair p, q 2 S is scrambled.
We are now ready to define the notion of Li Yorke chaos for both autonomous and non-autonomous
dynamical systems.

Definition 1. An autonomous/non-autonomous dynamical system is called Li Yorke chaotic if there
is an uncountably infinite set S that is scrambled.

A famous result for the case of one dimensional autonomous dynamical systems provides a simple
and easily verified sufficient condition for chaos based on periodic orbits:

Theorem 1 ([29]). Let J be an interval and f : J ! J be a continuous map of a dynamical system.
If f has a period-three orbit, then it is Li-Yorke chaotic.
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2.2. Linear congestion games. In this work we consider the case of non-atomic two strategy linear
congestion games. In a non-atomic congestion game, there is a continuum of agents each of which
controls an infinitesimal fraction of the total flow N . In each iteration, a fraction of agents x choose
the first action and 1 � x the second one, suffering costs c1(x) = �Nx and c2(1 � x) = �N(1 � x)
respectively where �, � > 0 are the linear cost coefficients of each action respectively.

2.3. Multiplicative Weights Update. The dynamics of the MWU meta-algorithm correspond to
an autonomous dynamical system. Given the common learning rate of all agents ⌘ > 0, the MWU
update is as follows

xn+1 =
xne�⌘c1(xn)

xne�⌘c1(xn) + (1� xn)e�⌘c2(1�xn)
=

xn

xn + (1� xn)e�⌘(c2(1�xn)�c1(xn))

We can further simplify the MWU update rule by making the following changes of variables

a =
N⌘

� + �
b =

�

� + �

where a corresponds to a normalized learning rate that accounts for the scale of c1 and c2 and
(b, 1 � b) is the Nash equilibrium of the game. The simplified update rule can be expressed via a
parametric map f over a and b that captures the whole class of games we are interested in

xn+1 = f(xn, a, b) =
xn

xn + (1� xn) exp(a(xn � b))
. (1)

When a, b are fixed we may skip them from the notation of MWU map and use just f(x).

2.4. Dynamic Learning Rate Model. Here we extend the MWU meta-algorithm to adaptive
learning rates ⌘. The basis of our adapting dynamics is a notion of pseudo-regret that the agents suffer
when choosing the first action over the second one. The definition captures the average difference of
costs between the two actions weighted by the learning rate at each iteration ⌘i:

rn+1 =
1

n+ 1

nX

i=0

⌘i[c1(xi)� c2(1� xi)].

Based on this calculation of pseudo-regret, the agents may seek to adapt their learning rates ⌘i
in order to balance between exploration and exploitation. When |rn| is big then it is clear than
one action dominates over the other so the agents seek to move in the direction of improving costs
but hopefully not too aggressively so as not to overshoot, akin to a gradient-like dynamics. In
contrast, when |rn| is close to zero the average penalty of switching between actions is small since
they suffer the same weighted cost in average. Thus there is an opportunity for the agents to increase
their learning rate to encourage exploration while the cost differences are low. To hedge between
exploration and exploitation as above, agents can pick appropriate function h : R ! R+ that peaks
at 0 and setting ⌘n = h(rn).

This dynamics of adapting ⌘i to the pseudo-regret can be implemented as a 2-dimensional
non-autonomous dynamical system with xn and rn as its state variables:

xn+1 = f

✓
xn,

Ng(rn)

� + �
, b

◆
rn+1 =

nrn + h(rn)(c1(xn)� c2(1� xn))

n+ 1
. (2)

The system is non-autonomous in the 2-dimensional space as the update rule of rn depends on n. We
can always view d-dimensional non-autonomous systems as autonomous systems in d+ 1 dimensions
by treating n as an additional dimension. However, this does not really simplify things as Theorem 1
does not apply beyond a single dimension.

For simplicity, we rewrite the dynamics in terms of the normalized learning rates ai. Let ai be the
normalized learning rates corresponding to ⌘i based on Eq. (1). We can then rewrite rn+1 as

rn+1 =
1

n+ 1

nX

i=0

ai[xi � b].
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Similarly, given that ⌘i and ↵i are equivalent up to game specific scale parameters, we can always
find a g such that an = g(rn) . Instead of working in terms of the cumbersome dynamical system
update rule Eq. (2), we will be be performing our analysis in terms of these simpler equations

xn+1 = f(xn, an, b) an+1 = g

✓Pn
i=0 ai(xi � b)

n+ 1

◆
.

In the following sections we will make some assumptions on g. We will chose g to be a continuous
function bounded in [amin, amax] ⇢ R+. We will also assume that the initialization a0 is also a
constant in [amin, amax].

Throughout this work we will think of xn and an as functions of the initialization x0, a0. Thus,
the complete notation of the n-th iterate would be xn(x0, a0) and an(x0, a0), however, when it does
not hinder understanding we will drop the explicit description of all the dependencies.

3. Refinements in Fixed Learning rates

Figure 2: The order of fmin(a), xmax(a), b, xmin(a), fmax(a) in x-axis.

We start our analysis by providing a refined analysis in the regime of fixed learning rate as in [17].
In the following we will examine conditions of such systems under the assumption of a > 4. Let us
study the local minima and maxima of f :

xmin /max(a) =
1

2
±
r

1

4
� 1

a

Correspondingly we will denote fmax(a) = f(xmax(a), a, b) and fmin(a) = f(xmin(a), a, b). Our first
observation is connected with the order of these values for high enough learning rate:

Lemma 1. For every b 2 (0, 1), there is a ab such that for all a > ab

fmin(a) < xmax(a) < b < xmin(a) < fmax(a)

and fmin(a) is decreasing and fmax(a) is increasing.

Additionally, by construction, we can show that the interval F(a) = [fmin(a), fmax(a)] consists a
forward invariant set for our dynamical system. In other words, if the MWU map with fixed learning
rate a starts in a state that is within I, it will remain in that set for all future times.

Lemma 2. For every b 2 (0, 1) there is a sb such that F(a) is forward invariant for all a > sb, i.e.
x 2 F(a) ) f(x, a, b) 2 F(a).
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We can also prove that f is surjective on F(a) for high enough learning rates.

Lemma 3. For a > ab, f is surjective on F(a), i.e. f(F(a), a, b) = F(a).

When F(a) is both surjective and forward invariant as is the case for a > ab, sb, we will call F(a)
a perpetual set. Actually, F(a) is also an absorbing set for all x 2 (0, 1), in the following sense:

Lemma 4. Let a > sb, x0 2 [�, ⇣] ) 9n0 : 8n � n0 s.t xn 2 F(a), for every [�, ⇣] ⇢ (0, 1).

We now turn to the chaotic properties of f . Given that period-three orbits do not carry over to
the dynamic learning rate case, we choose to study an alternative property of chaotic maps, namely
volume expansion. In autonomous maps, the existence of period-three orbits together with Theorem 1
imply that there is an initialization set whose volume under the dynamics expands quickly. Intuitively,
the more volume this initialization set covers the more chaotic the dynamic is. While Theorem 1
guarantees the existence of volume expansion, it does not quantify how much volume it eventually
covers. We prove that any interval around b is sufficient to eventually cover F(a):

Theorem 2. For every b 2 (0, 1), there is a vb such that for all a > vb and any interval [�, �] :
{b} ⇢ [�, �] ⇢ (0, 1), it holds that

9n0 : 8n � n0 fn([�, �], a, b) = F(a).

The proof of this theorem, which notably has not been established in any prior work, relies on a
novel argument that is based on the monotonicity of f on D = [xmax(a), xmin(a)], the lack of period-2
trajectories in D and the instability of fixed point x = b.

The key takeaway for the next section is that we can focus our efforts on analyzing the behavior of
the non autonomous system in the interior of (0, 1) with special attention to neighborhoods of b that
alone can exhibit chaotic behavior. This is especially important because as we will see our notion of
pseudo-regret converges uniformly in closed intervals in the interior of (0, 1) but not on [0, 1].

4. Chaos in Uniformly Convergent Non-autonomous Dynamical Systems

Turning our attention to the dynamic learning rate setting, we will refer to xn(x0) as the n-th
iterate given the initialization x0, and an(x0) the learning rate at the same iteration, respectively.

Leveraging the existence of the perpetual set F(a) in the fixed rate case, we can construct a
forward invariant absorbing set. This set will be crucial in proving the Li-Yorke chaotic behavior for
the non-autonomous case. Intuitively, although the learning rate is varying both among different
initializations and iterations, there exists a set which corresponds to the closure of all perpetual sets
{F(an)}, to which our dynamics are always absorbed. This motivates the definition of set � as

� =


min

a2[amin,amax]
fmin(a), max

a2[amin,amax]
fmax(a)

�

where amin and amax are the minx02[0,1] g(x0) and maxx02[0,1] g(x0) correspondingly.

Lemma 5 (Forward Invariance Property). For all amin > sb we get that � is forward invariant, i.e.

xn(x0) 2 � =) xn+1(x0) 2 �.

More interestingly, we show that eventually, any subinterval of (0, 1) will be absorbsed within �.

Lemma 6 (Absorption Property). For all amin > sb and [�, ⇣] ⇢ (0, 1), there is an n0 � 0 so that

8n � n0 xn([�, ⇣]) ✓ �.

The key observation for the proof of the aforementioned lemmas is the fact that at any iteration
xn(x0) will always come closer to the perpetual absorbing set F(an(x0)) and thus to its closure �.

An immediate consequence of this lemma is the following corollary which will be dominant element
for the uniform convergence both of our proposed pseudo-regret notion and the Césaro mean of the
iterations. Analytically, for a given subinterval [�, ⇣] of (0, 1), we can always choose some � > 0 such
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that � [ [�, ⇣] ✓ (�, 1 � �). Again such choice of � is possible because the attraction to � is not
eventual phenomenon – at each iteration, dist(xn(x0),�) will be either zero or always decreasing .
This argumentation is expressed by the following statement:

Corollary 1. Let amin > sb, then for every [�, ⇣] ⇢ (0, 1), there is an � > 0 so that

8n � 0 xn([�, ⇣]) ✓ (�, 1� �).

Having established Corollary 1, we are now in a position to present our claims regarding the
average convergence for any initialization in (0, 1). Notably, while the individual iterates of the
system, as we shall demonstrate in the ensuing section, exhibit chaotic characteristics, the iterate
averages display stabilization over time.

Corollary 1 indicates that for any x0 2 (0, 1), xn(x0) will remain bounded away from the endpoints
0, 1. We now seek to connect how the boundness away from 0, 1 affects the average iterate of a
trajectory. By induction on xn+1 = f(xn, an, b) we can prove the following

xn =
x0

x0 + (1� x0) exp
⇣Pn�1

i=0 ai(xi � b)
⌘ . (3)

Observe that if we choose a x0 2 (0, 1), then xn is bounded away from 0, 1 if and only if
Pn�1

i=0 ai(xi�b)
is bounded. Specifically we can prove:

Lemma 7. Let amin > sb and x0 2 (0, 1), then

lim
n!1

1

n+ 1

nX

i=0

ai(x0)(xi(x0)� b) = 0.

Upon examination of the proof, a salient conclusion is that as x0 moves farther away from the
absorbing set � and closer to the endpoints 0, 1, the aforementioned convergence rate becomes
increasingly slow, and fails in the case that x0 2 {0, 1}, precluding a blanket result for the closed
interval [0, 1]. Conversely, if we restrict our attention to an arbitrary subinterval [�, ⇣], bounded away
from the endpoints, we can always exploit the minimum convergence rate of this interval to derive a
uniform convergence bound for the learning rate

Lemma 8. Let amin > sb. The sequence of functions an(·) is converging uniformly to the constant
function a?(·) = g(0) in every interval [�, ⇣] ⇢ (0, 1).

Having established that an(x0) converges to a? = g(0) for any x0 2 (0, 1), we are able to strengthen
Lemma 7, demonstrating that its unweighted version of the Césaro mean (i.e. the average iterate in
the limit of infinite time) also converges to b.

Lemma 9. Let amin > sb and x0 2 (0, 1), then

lim
n!1

1

n+ 1

nX

i=0

xi(x0) = b.

It is noteworthy that, despite this being equivalent to the guarantee provided in prior work, e.g.
[17], for the fixed learning rate case, the machinery developed here for the adaptive rate regime has
been more complex and involved.

The next lemma will be essential in our proofs of chaos and examines the relationship between
(xn(x0), an(x0)) and the MWU map with a fixed learning rate f(xn(x0), a?, b).

Lemma 10. Let amin > sb. For every k, ✏ > 0 and [�, ⇣] ⇢ (0, 1)

9n0 : 8n � n0 max
x02[�,⇣]

|xn+k(x0)� fk(xn(x0), a
?, b)|  ✏.
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We can intuitively think of this result as a form of uniform convergence result for the sequence of
MWU maps with varying learning rates to the fixed learning rate map. We establish this result by
showing that for small changes in the learning rate, i.e., a 2 (an(x0)� ✏̃, an(x0) + ✏̃), the sensitivity
of f(xn(x0), a, b) is independent of the choice of x0. It is thus not sufficient to prove that f(x, a, b)
is continuous in a. Instead we use the Mean Value Theorem to argue that f(x, a, b) is Lipschitz
continuous in a with a Lipschitz constant independent of x. It is crucial to note that this uniform
convergence result holds only in intervals [�, ⇣] ⇢ (0, 1) because only then does the learning rate an
converge uniformly to a(·) = a?.

We now prove our first volume expansion lemma for the dynamic learning rate case, namely that
neighborhoods of b within D(amin) eventually expand to at least F(amin). The intuition behind this
result is based on the monotonicity property of F(a). Specifically, for high enough learning rates
a1  a2, we have that F(a1) ✓ F(a2).

Lemma 11. For every b 2 (0, 1), there is an zb such that for all amin > zb it holds that for every
[�, �] such that {b} ⇢ [�, �] ✓ D(amin) = [xmax(amin), xmin(amin)]

9n0 : 8n � n0 xn([�, �]) ◆ F(amin).

Remark 1. It is worth mentioning that the series of Lemmas 6,5,7 and 9,11 of this section –pertaining
to forward invariance, absorption, volume expansion, and convergence of Césaro means –hold actually
regardless of the choice of the update rule and are of independent interest.

For the case of the fixed learning rate, Theorem 2 makes a more refined prediction compared
to Lemma 11 as the former provides an equality. In the dynamic learning rate case there is a gap
between the eventual image upper bound, � and the volume expansion lower bound F(amin). In
order to close this gap we will make use of the fact that the learning rate converges to g(0).

Building upon the full range of the developed machinery of this section, we will strengthen the
above volume expansion result by showing that amin could be actually substituted by any ã = a? � ✏
for any sufficient small ✏ > 0 such that a? � ✏ > amin > zb. Our first observation is that thanks to
the uniform convergence of an ! a? in [�, �] ⇢ (0, 1) there exists a n† such that

8n > n† 8x 2 [�, �] an(x) > a? � ✏ = ã

This strengthens the previous volume expansion result to at least the set F(ã) for any ã close to
a?.

Theorem 3. For amin > zb and for any sufficient small ✏ > 0 such that a? � ✏ > amin > zb we have
that for all [�, �] such that {b} ⇢ [�, �] ⇢ (0, 1), it holds that

9n0 : 8n � n0 xn([�, �]) ◆ F(a? � ✏).

In a completely similar fashion we can show that the absorbing set � can also be refined. For
a given interval [�, �] ⇢ (0, 1), as the learning rates converge to a⇤, the trajectories will tend to
be absorbed by F(a?). Thus the dynamic learning rate volume expansion behavior matches fixed
learning rate case in the long run.

5. Turbulent Sets and Chaos in MWU map

The roadmap of this section is our construction of the turbulent sets and their connection with
the symbolic dynamics in order to prove Li-Yorke chaos in our non-autonomous dynamical system.
It should be noticed that our novel approach is a major departure from the standard techniques of
3-period orbit arguments that have been extensively used in the case of fixed learning rates.

We start with some useful definition for our reduction.

Definition 2 ([40]). A continuous map f : I ! I is called turbulent if there exist compact subintervals
J,K with at most one common point such that J [K ✓ f(J)\ J(K) Additionally, the map is called
strictly turbulent if the subintervals can be chosen to be disjoint. Finally, the corresponding set J,K
are called turbulent sets.
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KaJa

f2
�
V 0
a = Ka, a, b

�

f4
�
V 1
a = Z2, a, b

�
f4(Z1, a, b)

...
...

F(a)

fmax(a)fmin(a) KaJa

⌅1 ⌅2 Z1 Z2

KaJa KaJa

Figure 3: Illustration of the inductive construction of V k
a sets. In order to construct an

exponential decaying sequence, we choose as V 1
a = argminZ2{Z1,Z2} diam(Z)  diam(V 0

a =
Ka).

Delving into the proof of [29], it becomes clear that the chaotic map f(x, a, b) has a periodic orbit
of period 3 that exists within the interior of F(a). We take advantage of this property to demonstrate
that f2(·, a, b) is in fact a strictly turbulent map.

Lemma 12. For every b 2 (0, 1), there is a ub such that for all a > ub, there exist closed and disjoint
intervals Ka and Ja in the interior of F(a) such that f2(Ka, a, b) and f2(Ja, a, b) are neighborhoods
of Ka [ Ja.

We begin by examining the properties of a fixed learning rate MWU map and its ability to create
exponential decaying volume (length) turbulent sets. Our analysis centers around the key observation
that since f2(Ka) covers Ka [ Ja, then there exist necessarily, by continuity of f2, at least two
distinct subintervals, Z1, Z2, within Ka whose f2-image is precisely Ka and Ja, respectively. By
repeatedly applying this principle, we demonstrate that the f4-image of these subintervals cover
again Ka [ Ja, and through induction, we can extend this property to higher compositions of f .

Lemma 13. For every a > ub, there exist closed intervals V k
a ✓ Ka and Uk

a ✓ Ja such that

lim
k!1

diam(V k
a ) = lim

k!1
diam(Uk

a ) = 0

and for every k � 0 it holds that f2k+2(V k
a , a, b) and f2k+2(Uk

a , a, b) are neighborhoods of Ka [ Ja.

The following lemma plays an essential role in our symbolic dynamic proof of the Li-Yorke chaotic
behavior. It allows us to construct a scrambled set of initial conditions through a set of abstract
symbolic orbits.

On a technical level, we utilize a range of machinery developed in this paper to prove this lemma.
Specifically, we use Theorem 3 to firstly describe turbulent sets Ja? [Ka? that lie within the interior
of F(a?) and, for small enough ✏, within F(a? � ✏), and secondly to ensure that the non-autonomous
dynamical system covers Ja? [Ka? . Furthermore, to extend the implication of Lemma 13 for the
turbulent map f2(·, a?, b) to the non-autonomous system xn map for the sets Ja? ,Ka? , we employ
the uniform convergence guarantee provided by Lemma 10, which controls the discrepancy between
xn+2(S) and f2(xn(S), a?, b) for any subinterval S of Ja? ,Ka? .

Lemma 14 (Tracking Lemma). If b 2 (0, 1) \ { 1
2}, there exists a db such that if amin > db, we can

construct an increasing sequence ni with the following properties. For every sequence of intervals Ai

with Ai = V i
a⇤ or Ai = U i

a⇤ , there exists a x0 2 [0, 1] such that for all i � 0 it holds that xni(x0) 2 Ai

.
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It is important to note that Lemma 14 ensures the ability to construct the same sequence of ni

for any distinct sequence of Ai. Our approach to demonstrate the Li-Yorke chaotic behavior through
symbolic dynamics is summarized in the following high-level steps:

• Assume that we can construct an uncountable set S of scrambled infinite length binary sequences,
i.e., for every pair of sequences �, ⌧ 2 S there exist (i) an infinite length subsequence (ki)i2N
where the two sequences differ, i.e., �ki 6= ⌧ki and (ii) an infinite length subsequence (`i)i2N
where the two sequences are equal, i.e., �`i = ⌧`i .

• For each element of � 2 S we construct a sequence of sets A� = (Ai)i2N as follows: If the k-th
place element is 0 we use V k

a⇤ , whereas if it is 1 we pick Uk
a⇤ . We now apply Lemma 14 for each

of the sequence of sets to get a corresponding initialization x�
0 . We call this set of initializations

Q.
• Since every pair of strings �, ⌧ is scrambled, we know that we can construct two infinite

subsequences (µi)i2N, (⌫i)i2N such that {xµi(x
�
0 )}, {xµi(x

⌧
0)} belong to the same turbulent sets

and {x⌫i(x
�
0 )}, {x⌫i(x

⌧
0)} belong to the disjoint turbulent ones. Therefore, we can show that for

every pair �, ⌧ 2 Q: (i) lim inf k{xn(x�
0 )� xn(x⌧

0)}k = 0 (ii) lim sup k{xn(x�
0 )� xn(x⌧

0)}k > 0

Formalizing the outlined proof sketch, our final result follows:
Theorem 4. If b 2 (0, 1) \ { 1

2}, there exists a db such that if amin > db, the dynamics of Equation 2
are Li-Yorke chaotic.

In this work we have focused on the dynamics of Eq. (2). But our proof strategy can be readily
generalized to any rule an(·) as long as it uniformly converges to a sufficiently high constant rate.
Corollary 2. Let an(·) be a sequence of maps uniformly converging in [0, 1] to a⇤ > db. Then the
resulting dynamic learning rate system is Li-Yorke chaotic.

6. Conclusion

We have formally analyzed and established chaotic behavior for a class of multi-agent learning
systems with a heuristically updated, variable learning rate. At the technical crux of all prior formal
analysis of Li-Yorke chaos in games (e.g., [9, 16, 17, 27, 34]) lied the celebrated methodology based
on period three orbits [29], which is only applicable in autonomous, i.e., time-invariant systems. In
contrast, we had to delve deeper into the geometry and structural properties of these dynamics,
which itself evolve with time showing that formal analysis of chaos is still possible. This opens the
possibility of extending prior results to more realistic time-varying models.
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Appendix A. Omitted Proofs of Section 3

In this section we will focus on the case where the dynamical system has a fixed learning rate.

xn+1 = f(xn, a, b) =
xn

xn + (1� xn) exp(a(xn � b))

The derivative of f for a fixed a and b is

f 0(x, a, b) =
(ax2 � ax+ 1) exp(a(x� b))

(x+ (1� x) exp(a(x� b)))2

Critical/stationary points of f are solutions of ax2 � ax+ 1 = 0. By taking the determinant, we get
than for 0 < a  4, there is no solution so f is increasing and no chaos can exist, instead the system
converges to equilibrium. We will thus require a > 4 to enable chaotic behaviour in the system. Let
us study the local minima and maxima of f :

xmax(a) =
1

2
�
r

1

4
� 1

a
xmin(a) =

1

2
+

r
1

4
� 1

a

A.1. The order of {fmin(a), xmax(a), b, xmin(a), fmax(a)} in the fixed learning rate regime.

The following facts establish the preliminary necessary observation to prove structural Lemma 1.
More precisely, we can show the following straightforward facts:

Fact A.1. For every b 2 (0, 1), there is a sb > 4 such that for all a > sb

xmax(a) < b < xmin(a).

Proof. We have xmax(a) is decreasing and lima!1 xmax(a) = 0. Symmetrically we have xmin(a) is
increasing and lima!1 xmin(a) = 1. The fact follows immediately. ⌅

Fact A.2. If a > 4, then f(xmin(a), a, b) = fmin(a) < f(xmax(a), a, b) = fmax(a).

Proof. Since the function is decreasing after the local maximum and there is no stationary point
until the local minimum, the local minimum has smaller value. ⌅

Fact A.3. If a > sb, then fmin(a) < b < fmax(a).

Proof. For a > sb we know that fmin(a) < f(b, a, b) = b since f is decreasing in [b, xmin(a)].
Symmetrically, fmax(a) > f(b, a, b) = b since again f is decreasing in [xmax(a), b]. ⌅

Having presented the aforementioned intuitive facts, we are ready to prove Lemma 1

Lemma A.1. [Restate Lemma 1] For every b 2 (0, 1), there is a ab such that for all a > ab

fmin(a) < xmax(a) < b < xmin(a) < fmax(a)

and fmin(a) is decreasing and fmax(a) is increasing.

Proof. fmin(a) < xmax(a) is equivalent to

xmin(a)� xmin(a)xmax(a)� x2
max(a) exp [↵(xmin(a)� b)] < 0

Observe that the first two terms are bounded and that for the third term we have

lim
a!1

x2
max(a) exp [↵(xmin(a)� b)] = 1

So we can pick an ab large enough so that a > ab implies that the inequality holds. The case of
xmin(a) < fmax(a) is symmetric. Moving on to the monotonicity of fmin(a), to avoid overloading
notation let us call x1 the x argument of f and x2 its a argument

@fmin(a)

@a
=

@f(xmin(a), a, b)

@x1

@xmin(a)

@a
+

@f(xmin(a), a, b)

@x2
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Observe that since xmin(a) is a local minimum, we have that
@f(xmin(a), a, b)

@x1
= 0

Additionally we can pick ab large enough so that a > ab implies xmin(a) > b. Let us write
f(xmin(a), a, b)

f(xmin(a), a, b) =
xmin(a)

xmin(a) + (1� xmin(a)) exp(a(xmin(a)� b))
.

Treating xmin(a) as a constant independent of a, the exponential in the denominator is an increasing
function of a so f(xmin(a), a, b) is decreasing with respect to a. This makes

8a > ab
@f(xmin(a), a, b)

@x2
< 0

As a result we have that
8a > ab

@fmin(a)

@a
< 0 (A.1)

and fmin(a) is decreasing. The case of fmax(a) is symmetric. We take the maximum of all the
required ab to get the result. ⌅
A.2. Forward invariant, Perpetual & Absorbing sets for fixed learning rate. Having
settled the order among {fmin(a), xmax(a), b, xmin(a), fmax(a)} for high enough learning rates, we
are ready to prove the (i) forward invariant, (ii) perpetual and (iii) absorbing property of F(a) =
[fmin(a), fmax(a)].

For the sake of readability, we recall first the formal definitions of these properties:
(1) A forward invariant set: a set of states such that if the system starts in any state in the

set, it will remain in the set for all future time.
(2) A perpetual set: a special case of a forward invariant set, whose image consists itself.
(3) An (global/local) absorbing set: a forward invariant set that also includes (globally/locally)

all possible future states of the system.

Lemma A.2. [Restated Lemma 2] For every b 2 (0, 1) there is a sb such that F(a) is forward
invariant for all a > sb, i.e.

x 2 F(a) ) f(x, a, b) 2 F(a).

Proof. By continuity of f , we only need to consider four points to determine the image of [fmin(a), fmax(a)]:
fmin(a), fmax(a) as well as xmax(a), xmin(a). Since f(x, a, b) � x in (0, b) and fmax(a) is the maximum
in this interval, we know that

fmax(a) � f(fmin(a), a, b) � fmin(a)

Since f(x, a, b)  x in (b, 1) and fmin(a) is the minimum in this interval, we know that

fmax(a) � f(fmax(a), a, b) � fmin(a)

Of course the images of the local optima xmax(a), xmin(a) trivially belong to [fmin(a), fmax(a)]. ⌅
But even points that are outside of this interval are monotonically attracted to it without

overshooting. We have the following lemma that shows this monotic attracting property

Lemma A.3. Let a > sb, then

x 2 (0, fmin(a)) =) f(x, a, b) 2 (x, fmax(a)]

x 2 (fmax(a), 1) =) f(x, a, b) 2 [fmin(a), x).

Proof. We will prove the first one, the second one is entirely symmetric. If x < fmin(a) then x < b
and thus f(x, a, b) > x and f(x, a, b)  fmax(a). The first implication follows immediately. ⌅
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Consequently, we have the following lemma:

Lemma A.4 (Restated Lemma 3). For a > ab, F(a) is surjective, i.e. f(F(a), a, b) = F(a).

Proof. We already know that the right hand side is a super set of the left hand side by Lemma A.2.
But by Lemma A.1 we have that xmax(a) and xmin(a) belong to [fmin(a), fmax(a)]. So the left hand
is a super set of the left hand side. Thus the result follows. ⌅

More generally we can prove the following absorbing condition:

Lemma A.5 (Restated Lemma 4). Let a > sb, x0 2 [�, ⇣] ) 9n0 : 8n � n0 s.t xn 2 F(a), for
every [�, ⇣] ⇢ (0, 1).

Proof. If x0 2 [fmin(a), fmax(a)] then the results follows trivially for n0 = 0. Let us take the case
x0 2 [�, fmin(a)) = �0

We know that in �0 we have that f(x, a, b) > x. We can define a uniform bound on their difference
min
x2�0

[f(x, a, b)� x] = ⇠ > 0

We now know that
x1 2 [� + ⇠, fmax(a))

If x1 2 � then the result follows trivially for n0 = 1. Otherwise we have that
x1 2 [� + ⇠, fmin(a)) ⇢ �0

Applying recursively, either there is a n0 such that xn0 2 � and the theorem follows trivially or for
all n we have that xn stays in a subset of �0

xn 2 [� + n⇠, fmin(a)) ⇢ �0

But this is impossible since there is a n0 > 0 such that
8n � n0 : � + n⇠ > fmin(a)

We are now left with the symmetric case of
x0 2 (fmax(a), ⇣]

which we can handle just like above. ⌅
A.3. Two period trajectories in MWU maps. We start with a fundamental observation from
Calculus of continuous injective function

Claim 1. Let g be a continuous decreasing function on a closed interval I and that there exists a
x0 2 I such that 8n : gn(x0) 2 I. Then either gn(x0) converges to a fixed point x? or to a 2-period
trajectory.

Proof. Let us take gnj (x0) a subsequence that converges to lim infn!1 gn(x0).

lim sup
n!1

gn(x0) � lim
j!1

gnj+1(x0) = g(lim inf
n!1

gn(x0))

Now let us take gnk(x0) a subsequence that converges to lim supn!1 gn(x0). Since g is decreasing
and thus invertible in I we know that gnk�1(x0) also converges

lim sup
n!1

gn(x0) = g( lim
k!1

gnk�1(x0))  g(lim inf
n!1

gn(x0))

The two steps clearly imply that
lim sup
n!1

gn(x0) = g(lim inf
n!1

gn(x0))

Symmetrically, with the same arguments we have that
lim inf
n!1

gn(x0) = g(lim sup
n!1

gn(x0))
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Thus, if we denote x1 = g(lim supn!1 gn(x0)) = lim infn!1 gn(x0) and x2 = g(lim infn!1 gn(x0)) =
lim supn!1 gn(x0) then either x1 = x2 = x?, which consists a fixed point for map g –g(x?) = x?, or
x1 6= x2 consist a 2-period trajectory {x1 = g(x2), x2 = g(x1)}. ⌅

Interestingly, if we restrict our attention to the interval D = [xmax(a), xmin(a)], we can show that
there is no 2-period trajectory:

Lemma A.6. For every b 2 (0, 1), there is a `b such that for all a > `b, there is no period two
trajectory for which both endpoints belong to [xmax(a), xmin(a)].

Proof. Endpoints of period two trajectories satisfy the equation f2(x, a, b) = x

f2(x, a, b) =
x

x+ (1� x) exp(a(x+ f(x, a, b)� 2b))
= x

Ignoring x = 0 and x = 1, which are merely fixed points, this is equivalent to

x+ f(x, a, b) = 2b

After some manipulation, the formula above is equivalent to

�a,b(x) = (2b� x� 1)x+ (2b� x)(1� x) exp(a(x� b)) = 0

We take the first and second and third derivative of this function

�0
a,b(x) = 2b� 2x� 1 + exp(a(x� b)) [(2x� 2b� 1) + a(2b� x)(1� x))]

�00
a,b(x) = �2 + exp(a(x� b))

⇥
a2(2b� x)(1� x) + 2a(2x� 2b� 1) + 2

⇤

�000
a,b(x) = a exp(a(x� b))

⇥
a2(2b� x)(1� x) + 3a(2x� 2b� 1) + 6

⇤

Let us define the following finite quantity

µb =
maxx2[0,b] 3(2b+ 1� 2x)

minx2[0,b](2b� x)(1� x)

For a > µb, we have that �000
a,b(x) > 0 in [0, b]. Moving on to �00

a,b(x), it is increasing in [0, b] and

�00
a,b(0) = �2 + exp(�ab)

⇥
2ba2 � 2a(2b� 1) + 2

⇤
�00
a,b(b) = a2b(1� b)� 2a

Clearly we have
lim
a!1

�00
a,b(0) = �2 lim

a!1
�00
a,b(b) = 1

We can thus pick an b > µb such that for all a > b

�00
a,b(0) < 0 �00

a,b(b) > 0.

Thus �00
a,b(x) has exactly one root in [0, b] given its monotonicity. Moving on to �0

a,b(x), it starts of as
decreasing and moves to increasing in [0, b] with

�0
a,b(0) = 2b� 1 + exp(�ab) [(�2b� 1) + 2ab]

�0
a,b(b) = �2 + ab(1� b)

To continue our analysis we will study the following cases: b < 1
2 , b = 1

2 , b > 1
2 .

Case: b < 1
2 . For the first case

lim
a!1

�0
a,b(0) = 2b� 1 < 0 lim

a!1
�0
a,b(b) = 1

Thus we can pick a ⌫b > b such that for a > ⌫b, �0
a,b(0) < 0 and �0

a,b(b) > 0. Since �0
a,b(x) starts

decreasing and moves to increasing, it has exactly one root. Moving on to �a,b(x) we have

�a,b(0) = 2b exp(�ab) > 0 �a,b(b) = 0
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Given that �a,b(x) starts decreasing and moves to increasing in [0, b], it can have up to two roots in
[0, b], one of which is b. We can observe that

lim
a!1

�a,b

✓
b

2

◆
=

✓
3b

2
� 1

◆✓
b

2

◆
< 0.

We can pick a ⇠b > ⌫b such that for all a > ⇠b it holds that �a,b
�
b
2

�
< 0. For a > ⇠b we have that

�a,b(x) has exactly one root in [0, b) that is located in [0, b
2 ].

Case: b = 1
2 . For the second case we have that

�0
a,b(0) = exp

⇣
�a

2

⌘
(a� 2) lim

a!1
�0
a,b

✓
b

2

◆
= b� 1 < 0 lim

a!1
�0
a,b(b) = 1

So we can pick a ⌫b > b such that for a > ⌫b, �0
a,b(0) > 0 and �0

a,b

�
b
2

�
< 0 and �0

a,b(b) > 0. Since
�0
a,b(x) starts decreasing and moves to increasing, it has exactly two roots. Moving on to �a,b(x) we

have
�a,b(0) = 2b exp(�ab) > 0 �a,b(b) = 0

In [0, b], we have that �a,b(x) starts increasing and positive, then switches to decreasing and then to
increasing. In the first section it cannot have any root. In the second section it can have at most one
root and in the third section it has exactly one root b. Just like above we can observe that

lim
a!1

�a,b

✓
b

2

◆
=

✓
3

4
� 1

◆✓
1

4

◆
< 0.

Following the same steps as above, we can pick a ⇠b such that for a > ⇠b we have that �a,b(x) has
exactly one root in [0, b) that is located in [0, b

2 ].
Case: b > 1

2 . For the last case we have that

lim
a!1

�0
a,b(0) = 2b� 1 > 0 lim

a!1
�0
a,b

✓
b

2

◆
= b� 1 < 0 lim

a!1
�0
a,b(b) = 1

Just like before we can pick a ⌫b > b such that for a > ⌫b, �0
a,b(0) > 0 and �0

a,b

�
b
2

�
< 0 and

�0
a,b(b) > 0. Since �0

a,b(x) starts decreasing and moves to increasing, it has exactly two roots. Moving
on to �a,b(x)

�a,b(0) = 2b exp(�ab) > 0 �a,b(b) = 0

In [0, b], we have that �a,b(x) starts increasing and positive, then switches to decreasing and then to
increasing. In the first section it cannot have any root. In the second section it can have at most one
root and in the third section it has exactly one root b. We can observe that

�a,b

✓
3b� 1

2

◆
=

✓
b� 1

2

◆✓
3b� 1

2

◆
< 0.

Following the same steps as above, we can pick a ⇠b such that for a > ⇠b we have that �a,b(x) has
exactly one root in [0, b) that is located in [0, 3b�1

2 ].
Solution pairs. In all cases, we have identified an ⇠b such that for a > ⇠b we have that �a,b(x) has exactly
one root in [0, b). If �a,b(x) = 0, then we know that �a,b(f(x, a, b)) = 0. Since x+ f(x, a, b) = 2b, we
know that f(x, a, b) needs to be in (b, 2b]. Symmetrically, any root of �a,b(x) = 0 with x > b can only
form a periodic trajectory with an f(x, a, b) = 2b�x < b that is also satisfies �a,b(f(x, a, b)) = 0. But
since there is only one root in [0, b) and points cannot participate in multiple periodic trajectories,
we have a unique solution for �a,b(x) = 0 in (b, 1). Let us define xl(a) < b < xr(a) the points of the
unique two-periodic trajectory as functions of a. These functions are bounded and thus they need to
have at least one limit point. We can use the following equations

lim
a!1

�a,b(xl(a)) = lim
a!1

�a,b(xr(a)) = 0
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to derive the properties of these limit points. In all three cases above, we proved that the solution
xl(a) is bounded away from b for a > ⇠b. As a result all limit points must satisfy

(2b� x� 1)x = 0 =) x = 0 or x = 2b� 1.

Similarly, since xl(a) + xr(a) = 2b and xl(a) is bounded away from b , it must be the case that xr(a)
is bounded away from b. As such all limit points of xr(a) must satisfy

(2b� x)(1� x) =) x = 2b or x = 1.

Observe that the limit points of xl(a) and xr(a) must come in pairs that sum to 2b as xl(a)+xr(a) = 2b.
We will once again do a case by case study. For b < 1

2 , the only viable pair is (0, 2b) since 2b� 1 < 0.
For b = 1

2 , there is only one pair (0, 1). For the case of b > 1
2 , the only viable pair is (2b� 1, 1) since

2b > 1. In all of the cases, the limit points of xr(a) and xl(a) are unique and thus xr(a) and xl(a)
converge.
Convergence rate. We are now ready to argue why at least one of xr(a) and xl(a) do not belong in
[xmax(a), xmin(a)] for sufficiently large a. Once again we will do a case by case analysis on b. For
b < 1

2 , we will argue that there is a `b such that for a > `b we have that xl(a) < xmax(a). We know
that xl(a) = f(xr(a), a, b). Thus xl(a) < xmax(a) is equivalent to

xr(a)� xmax(a)xr(a)� xmax(a)(1� xr(a)) exp [↵(xr(a)� b)] < 0

Observe that the first two terms are bounded but for the third term we have

lim
a!1

xmax(a)(1� xr(a)) exp [↵(xr(a)� b)] = 1

given that lima!1 xr(a) = 2b and the exponential goes to 1 much faster than xmax(a) goes to 0.
Thus we can choose a `b such that for a > `b we have xl(a) < xmax(a). For the case of b > 1

2 , we use
the same arguments to prove that there is an is an `b such that for a > `b we have xr(a) > xmin(a).
For the case of b = 1

2 , we will argue that there is a `b such that for a > `b we have that xl(a) < xmax(a).
We need study the convergence rate of xr(a) to 1. We have that

�a, 12 (xr(a)) = 0 =) xr(a) = (1� xr(a)) exp


↵

2

✓
xr(a)�

1

2

◆�

We can apply the same argument as in the b < 1
2 case and use the equation above to prove that

lim
a!1

xmax(a)(1� xr(a)) exp


↵

✓
xr(a)�

1

2

◆�
= lim

a!1
xmax(a)xr(a) exp


↵

2

✓
xr(a)�

1

2

◆�
= 1

because lima!1 xr(a) = 1 and the exponential goes to 1 much faster than xmax(a) goes to 0. The
resulting `b in all cases satisfy the requirements of the theorem. ⌅
A.4. Volume Expansion & Instability of mixed equilibrium x? = b.

Lemma A.7. For every b 2 (0, 1), there is a kb such that for a > kb it holds that there exists some
neighborhood N� = (b � �, b + �), such that almost all initializations from N� do not converge to
x? = b.

Proof. We can write down f 0(b, a, b) as

f 0(b, a, b) = ab2 � ab+ 1

Since lima!1 f 0(b, a, b) = �1, thus there is a kb such that for a > kb it holds that there exists some
neighborhood N� = (b � �, b + �) where |f 0(x, a, b)| > 1 8 x 2 N�. Leveraging Unstable Manifold
Theorem (See [41]), the result immediately follows. ⌅

We are now ready to prove that any neighborhood of x? = b lemma

Lemma A.8. For every b 2 (0, 1), there is a zb such that for all a > zb.

{b} ⇢ [�, �] ✓ [xmax(a), xmin(a)] =) 9n0 : 8n � n0 fn([�, �], a, b) = [fmin(a), fmax(a)]
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Proof. Let us take the following interval
R = f([�, b], a, b) \ [b, �]

= [f(b, a, b), f(�, a, b)] \ [b, �]

= [b, f(�, a, b)] \ [b, �]

= [b,min{f(�, a, b), �}]
Let us pick an x0 2 R. Let us assume that

xmax(a)  fn(x0, a, b)  xmin(a)

By Lemma A.7 and picking a > kb we can always choose a x0 2 R such that fn(x0, a, b) does
not converge to b. Since b is the unique fixed point of f(x, a, b) in [xmax(a), xmin(a)], we have that
fn(x0, a, b) does not converge at all and as a result

lim inf
n!1

fn(x0, a, b) 6= lim sup
n!1

fn(x0, a, b)

By Claim 1 on f , which is decreasing on [xmax(a), xmin(a)], we have that the points above form a
two-period trajectory of f(x, a, b). By Lemma A.6, if we pick `b such that for a > `b no period two
trajectory can exist inside [xmax(a), xmin(a)] yielding a contradiction. As a result

9n⇤ : fn⇤
(x0, a, b) /2 [xmax(a), xmin(a)]

We will first study the case of fn⇤
(x0, a, b) > xmin(a). For this case, we have

fn⇤
([�, �], a, b) ◆ fn⇤

([b, x0], a, b) ◆ [b, xmin(a)].

In the next iteration
fn⇤+1([�, �], a, b) ◆ [fmin(a), b].

Observe though that because x0 2 R, we can pick a x1 2 [�, b] such that f(x1, a, b) = x0. We then
have

fn⇤+1(x1, a, b) = fn⇤
(x0, a, b) > xmin(a)

This yields
fn⇤+1([�, �], a, b) ◆ [fmin(a), xmin(a)]

For a > ab by Lemma 1 fmin(a) < xmax(a) and by Lemma 2 we have that [fmin(a), fmax(a)] is
forward invariant. As a result we have the following

[fmin(a), fmax(a)] ◆ fn⇤+2([�, �], a, b) ◆ [fmin(a), fmax(a)]

By Lemma A.4 we know that [fmin(a), fmax(a)] is perpetual. So we can choose n0 = n⇤ + 2 to fullfil
the requirements of the theorem. The case of fn⇤

(x0, a, b) < xmax(a) is symmetric. ⌅
We are ready now to prove the main volume expansion claims of the section.

Theorem A.1 (Restated Theorem 2). For every b 2 (0, 1), there is a vb such that for all a > vb and
any interval [�, �] : {b} ⇢ [�, �] ⇢ (0, 1), it holds that

9n0 : 8n � n0 fn([�, �], a, b) = F(a).

Proof. We can apply Lemma A.8 on s = [�, �] \ [xmax(a), xmin(a)] � {b}. Then there is a n⇤
1 such

that
8n � n⇤

1 fn([�, �], a, b) ◆ fn(s, a, b) = [fmin(a), fmax(a)]

But by Lemma 4, for a > rb there is a n⇤
2 such that

8n � n⇤
2 [fmin(a), fmax(a)] ◆ fn([�, �], a, b)

Taking vb = max{zb, rb} and n0 = max{n⇤
1, n

⇤
2} satisfies the theorem requirements. ⌅
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Appendix B. Omitted Proofs of Section 4

B.1. Forward & Absorbing Set in Dynamic Learning Rates. In this first part of this section
we prove the forward invariance and absorption property of set

� =


min

a2[amin,amax]
fmin(a), max

a2[amin,amax]
fmax(a)

�
.

Lemma B.1 (Restated Lemma 5). For all amin > sb, then for every n it holds that � is forward
invariant, i.e.

xn(x0) 2 � =) xn+1(x0) 2 �.

Proof. We have three cases to consider. The first one
xn(x0) 2 [fmin(an(x0)), fmax(an(x0))] =) xn+1(x0) 2 [fmin(an(x0)), fmax(an(x0))]

and the result follows trivially because of the perpetual set F(an(x0)). For the second case we get

xn(x0) 2


min
a2[amin,amax]

fmin(a), fmin(an(x0))

◆
=) xn+1(x0) 2


min

a2[amin,amax]
fmin(a), fmax(an(x0))

�

and thus the result follows for this one as well. The last case is

xn(x0) 2
✓
fmax(an(x0)), max

a2[amin,amax]
fmax(a)

�
=) xn+1(x0) 2


fmin(an(x0)), max

a2[amin,amax]
fmax(a)

�

Clearly the result holds for all cases. ⌅
Lemma B.2 (Restated Lemma 6). For all amin > sb and [�, ⇣] ⇢ (0, 1), there is an n0 � 0 so that

8n � n0 xn([�, ⇣]) ✓ �.

Proof. Let us define the three following sets

U0 =


�, min

a2[amin,amax]
fmin(a)

◆
�0 = � \ [�, ⇣] V0 =

✓
max

a2[amin,amax]
fmax(a), ⇣

�

It suffices to prove the theorem for each of them (if they are non-empty) because we can pick
n0 = max{n0(U0), n0(�0), n0(V0)}

(excluding any empty sets) to satisfy the theorem. Based on Lemma 5, it is clear that n0(�0) = 0.
Moving on to the case of U0, we know that in U0 we have that f(x, a, b) > x. We can define a uniform
bound on their difference

min
x2U0

min
a2[amin,amax]

[f(x, a, b)� x] = ⇠ > 0

We now know that
x1(U0) 2


� + ⇠, max

a2[amin,amax]
fmax(a)

◆

If x1(U0) ⇢ � then the result follows trivially for n0 = 1. Otherwise we have that

x1(U0) 2

� + ⇠, min

a2[amin,amax]
fmin(a)

◆
⇢ U0

Applying recursively, either there is a n0 such that xn0(U0) ⇢ � and the theorem holds for U0 or for
all n we have that xn(U0) stays in a subset of U0

xn(U0) 2

� + n⇠, min

a2[amin,amax]
fmin(a)

◆
⇢ U0

But this is impossible since there is a n0 > 0 such that
8n � n0 : � + n⇠ > min

a2[amin,amax]
fmin(a)

The case of V0 can be handled symmetrically. ⌅
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B.2. Uniform Convergence of Césaro means & Learning Rate. In this section, we prove the
uniform convergence of learning rate, pseudo-regret and the average iteration while n ! 1. We start
with the asymptotic behavior of the introduced notion of pseudo-regret

Lemma B.3 (Restated Lemma 7). Let amin > sb and x0 2 (0, 1), then

lim
n!1

1

n+ 1

nX

i=0

ai(x0)(xi(x0)� b) = 0.

Proof. Observe that x0 2 (0, 1), so by Lemma 1 there is a � > 0 such that � < xn < 1� �. Thus we
have

x0

1� �
< x0 + (1� x0) exp

 
n�1X

i=0

ai(x0)(xi(x0)� b)

!
<

x0

�

so we have that

�2 <
x0�

1� �
< (1� x0) exp

 
n�1X

i=0

ai(x0)(xi(x0)� b)

!
<

x0(1� �)

�
<

1

�

Clearly we have that

�2 < exp

 
n�1X

i=0

ai(x0)(xi(x0)� b)

!
<

1

�2

By talking the logarithm and diving by n we have

ln(�2)

n
<

1

n

n�1X

i=0

ai(x0)(xi(x0)� b) < � ln(�2)

n

By taking the limit, the result follows easily. ⌅

We proceed now to the uniform convergence of the adaptively changing learning rate

Lemma B.4 (Restated Lemma 8). Let amin > sb. The sequence of functions an(·) is converging
uniformly to the constant function a?(·) = g(0) in every interval [�, ⇣] ⇢ (0, 1).

Proof. By Lemma 1 x0 2 [�, ⇣] there is a � > 0 such � < xn < 1� �. Following the steps of Lemma 7

ln(�2)

n
<

1

n

n�1X

i=0

ai(x0)(xi(x0)� b) < � ln(�2)

n

Clearly this implies that for any n > 0

an(x0) = g

 
1

n

n�1X

i=0

ai(x0)(xi(x0)� b)

!
2 g

✓
ln(�2)

n
,� ln(�2)

n

�◆

Since g is continuous, for every ✏ > 0 there is a n0 such that 8n � n0 we have that

|an(x0)� g(0)|  ✏.

Uniform convergence follows immediately. ⌅

Next, we can prove the following uniform convergence result for the Césaro mean of the iterations
of our non-autonomous dynamical system

Lemma B.5 (Restated Lemma 9). Let amin > sb and x0 2 (0, 1), then

lim
n!1

1

n+ 1

nX

i=0

xi(x0) = b.
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Proof. Let us define ⇢n = an(x0)� a⇤. Obviously limt!1 ⇢n = 0. Then applying Lemma 7 we have

0 = lim
n!1

1

n+ 1

nX

i=0

ai(x0)(xi(x0)� b) = lim
n!1

"
a⇤

n+ 1

nX

i=0

(xi(x0)� b) +
1

n+ 1

nX

i=0

⇢i(xi(x0)� b)

#

It is easy to prove the following statement:

Fact B.1. Let limn!1 �n ! �. Then limn!1
Pn

i=0 �i

n+1 = �.

Clearly we have that limn!1 ⇢n(xn(x0)� b) = 0 since xn(x0) is bounded. And thus we obviously
have

0 = lim
n!1

"
a⇤

n+ 1

nX

i=0

(xi(x0)� b)

#

Given that a⇤ is positive, the theorem follows. ⌅
B.3. Uniform Convergence of varying step-size MWU map for uniform convergent update

step rule.

Lemma B.6 (Restated Lemma 10). Let amin > rb. For every k, ✏ > 0 and [�, ⇣] ⇢ (0, 1)

9n0 : 8n � n0 max
x02[�,⇣]

|xn+k(x0)� fk(xn(x0), a
⇤, b)|  ✏.

Proof. For the sake of readability, we will present the case k = 2 and with a completely similar
fashion we can prove the result for any iterate k.

Lemma B.7. Let amin > sb. For every ✏ > 0 and [�, ⇣] ⇢ (0, 1)

9n0 : 8n � n0 max
x02[�,⇣]

|xn+2(x0)� f2(xn(x0), a
⇤, b)|  ✏.

Proof. By Corollary 1 there is a � > 0 such that for any x0 2 [�, ⇣], we have that xn(x0) 2 (�, 1� �).
Let us define the following function that takes an x and applies f with learning rates a1 and a2

q(x, a1, a2, b) = f(f(x, a1, b), a2, b)

With this definition in mind we have that
D(x0) = xn+2(x0)� f2(xn(x0), a

⇤, b) = q(xn(x0), an(x0), an+1(x0), b)� q(xn(x0), a
⇤, a⇤, b)

By the mean value theorem we have that there exists an c 2 (0, 1) such that
(a1, a2) = c(an(x0), an+1(x0)) + (1� c)(a⇤, a⇤)

and also

D(x0) =
@q(xn(x0), a1, a2, b)

@a1
(an(x0)� a⇤) +

@q(xn(x0), a1, a2, b)

@a2
(an+1(x0)� a⇤)

The following value is finite

� = max
x2(�,1��),

a1,a22(amin,amax)

s✓
@q(x, a1, a2, b)

@a1

◆2

+

✓
@q(x, a1, a2, b)

@a2

◆2

.

Then we have
|xn+2(x0)� f2(xn(x0), a

⇤, b)|  �
p
(an(x0)� a⇤)2 + (an+1(x0)� a⇤)2

By the uniform convergence of an(x0) and an+1(x0) to a⇤, the result follows immediately. ⌅
⌅

Lemma B.8 (Restated Lemma 11). For every b 2 (0, 1), there is an zb such that for all amin > zb it
holds that for every [�, �] such that {b} ⇢ [�, �] ✓ D(amin) = [xmax(amin), xmin(amin)]

9n0 : 8n � n0 xn([�, �]) ◆ F(amin).
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Proof. Our first observation is that for two a1 > a2 > 0

1 > x > b =) f(x, a1, b) < f(x, a2, b)

0 < x < b =) f(x, a1, b) > f(x, a2, b)

x = b =) f(x, a1, b) = f(x, a2, b) = b

(B.1)

Let us define the following subset of [�, �]

[�0, �0] = [�,min{f(�, amin, b), �}]

Using the same arguments as in Lemma A.8 we know that there is a x0 2 (b, �0] and a minimal n⇤

such that
fn⇤

(x0, amin, b) 62 [xmax(amin), xmin(amin)]

We are going to assume fn⇤
(x0, amin, b) > xmin(amin). The case of fn⇤

(x0, amin, b) < xmax(amin) is
entirely symmetric. Since n⇤ is minimal we have that

80  n < n⇤ fn⇤
(x0, amin, b) 2 [xmax(amin), xmin(amin)]

As a result we have that

80  2n < n⇤ f2n([b, x0], amin, b) =[b, f2n(x0, amin, b)]

80 < 2n+ 1 < n⇤ f2n+1([b, x0], amin, b) =[f2n+1(x0, amin, b), b]

Using the above equations as well as Equation (B.1) we can recursively prove that

80  n < n⇤ xn([b, x
0]) ◆ fn([b, x0], amin, b)

We can deduce that
xn⇤([b, x0]) ◆ [b, fn⇤

(x0, amin, b)] ◆ [b, xmin(amin)]

With one more iteration we have

xn⇤+1([b, x
0]) ◆ [fmin(amin), b]

We can also pick a x00 2 [�0, b] such that f(x00, amin, b) = x0. By construction, we know that n⇤ + 1 is
the first iteration such that

fn⇤+1(x00, amin, b) 62 [xmax(amin), xmin(amin)].

By similar arguments as above we can prove that

xn⇤+1([x
00, b]) ◆ [b, fn⇤+1(x00, amin, b)] = [b, fn⇤

(x0, amin, b)] ◆ [b, xmin(amin)]

As a result we now have

xn⇤+1([x
00, x0]) ◆ [fmin(amin), xmin(amin)] ◆ [xmax(amin), xmin(amin)]

It follows directly that

xn⇤+2([�, �]) ◆ xn⇤+2([x
00, x0]) ◆ [fmin(amin), fmax(amin)] ◆ [xmax(amin), xmin(amin)]

Applying the above step recursively we get

8n � n⇤ + 2 xn([�, �]) ◆ [fmin(amin), fmax(amin)]

so n0 = n⇤ + 2 satisfies the requirements of the theorem. ⌅

Theorem B.1 (Restated Theorem 3). For amin > zb and for any sufficient small ✏ > 0 such that
a? � ✏ > amin > zb we have that for all [�, �] such that {b} ⇢ [�, �] ⇢ (0, 1), it holds that

9n0 : 8n � n0 xn([�, �]) ◆ F(a? � ✏).
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Proof. We will imitate the proof strategy of the above lemma by showing that amin could be substitute
by any ã = a⇤ � ✏ for any sufficient small ✏ > 0 such that a⇤ � ✏ > amin > zb. Our first observation is
that thanks to the uniform convergence of an ! a⇤ in [�, �] ⇢ [0, 1] there exists a n† such that

8n � n† an([�, �]) ✓ (a⇤ � ✏, a⇤ + ✏)

which implies that there exists a n† such that
8n > n† 8x 2 [�, �] an(x) > a⇤ � ✏ = ã (B.2)

Again notice that for any an(x) > ã > 0

1 > x > b =) f(x, an(x), b) < f(x, ã, b)

0 < x < b =) f(x, an(x), b) > f(x, ã, b)

x = b =) f(x, an(x), b) = f(x, ã, b) = b

(B.3)

Let us define the following intervals
[r, q] = xn†([�, �]) \ [xmax(ã), xmin(ã)] � {b}

[�0, �0] = [r,min{f(r, ã, b), q}]
Using the same arguments as in Lemma A.8 we know that there is a x0 2 (b, �0] and a minimal n⇤

such that
fn⇤

(x0, ã, b) 62 [xmax(ã), xmin(ã)]

We are going to assume fn⇤
(x0, ã, b) > xmin(ã). The case of fn⇤

(x0, ã, b) < xmax(ã) is entirely
symmetric. Since n⇤ is minimal we have that

80  n < n⇤ fn⇤
(x0, ã, b) 2 [xmax(ã), xmin(ã)]

As a result we have that
80  2n < n⇤ f2n([b, x0], ã, b) =[b, f2n(x0, ã, b)]

80 < 2n+ 1 < n⇤ f2n+1([b, x0], ã, b) =[f2n+1(x0, ã, b), b]

Using the above equations as well as Equations (B.2) and (B.3) we can recursively prove that
80  n < n⇤ xn+n†([b, x0]) ◆ fn([b, x0], ã, b)

We can deduce that
xn†+n⇤([b, x0]) ◆ [b, fn⇤

(x0, ã, b)] ◆ [b, xmin(ã)]

With one more iteration we have
xn†+n⇤+1([b, x

0]) ◆ [fmin(ã), b]

We can also pick a x00 2 [�0, b] such that f(x00, ã, b) = x0. By construction, we know that n⇤ + 1 is
the first iteration such that

fn†+n⇤+1(x00, ã, b) 62 [xmax(ã), xmin(ã)].

By similar arguments as above we can prove that

xn†+n⇤+1([x
00, b]) ◆ [b, fn†+n⇤+1(x00, ã, b)] = [b, fn†+n⇤

(x0, ã, b)] ◆ [b, xmin(ã)]

As a result we now have
xn†+n⇤+1([x

00, x0]) ◆ [fmin(ã), xmin(ã)] ◆ [xmax(ã), xmin(ã)]

It follows directly that
xn†+n⇤+2([�, �]) ◆ xn†+n⇤+2([x

00, x0]) ◆ [fmin(ã), fmax(ã)] ◆ [xmax(ã), xmin(ã)]

Applying the above step recursively we get
8n � n† + n⇤ + 2 xn([�, �]) ◆ [fmin(ã), fmax(ã)]

so n0 = n† + n⇤ + 2 satisfies the requirements of the theorem. ⌅
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Appendix C. Omitted Proofs of Section 5

We start this appendix by recalling the proof of 3-period focusing on the location the 3-period
orbit and the F(a).

Theorem C.1. If b 2 (0, 1) \ { 1
2}, then there exists ab such that for all a > ub it holds that the map

f(x, a, b) has periodic orbit of period 3 in the interior of F(a) = [fmin(a), fmax(a)].

Proof. If f(x, a, b) > x is equivalent to x < b and f3(x, a, b) < x is equivalent to x + f(a, b, x) +
f2(a, b, x) > 3b. Assume that 0 < b < 1/2. Then 3b � 1 < b, so we can take x > 0 such that
3b� 1 < x < b. Then f(x, a, b) > x. Moreover, exp(a(x� b)) goes to 0 as a goes to infinity, so

lim
a!+1

f(a, b, x) = lim
a!+1

x

x+ (1� x) exp(a(x� b))
= 1

Thus, since 3b � x < 1, there exists ub such that for all a > ub then f(x, a, b) > 3b � x, so
x + f(x, a, b) + f2(x, a, b) > 3b. Hence, if a > ub then f3(x, a, b) < x < f(x, a, b). Now, from the
main theorem in [29] it follows that if a > ub then f has a periodic point of period 3. Observe that
the chosen x depends only on b and not on a. Since

lim
a!1

fmin(a) = 0 lim
a!1

fmax(a) = 1

we can pick ub large enough such that for a > ub x 2 [fmin(a), fmax(a)]. Picking ub > ab we also
have that f(x, a, b) and f2(x, a, b) belong to [fmin(a), fmax(a)] as well for a > ub. The period 3
constructed by [29] has thus all its points in the interior of [fmin(a), fmax(a)]. The case of 1/2 < b < 1
is symmetric because f(x, a, b) = f(1� x, a, 1� b). ⌅

C.1. Decaying Volume Turbulent sets in Fixed Learning Rate Regime.

Lemma C.1 (Restated Lemma 12). For every a > ub, there exist closed and disjoint intervals Ka

and Ja in the interior of [fmin(a), fmax(a)] such that f2(Ka, a, b) and f2(Ja, a, b) are neighborhoods
of Ka [ Ja.

Proof. The orbit of period 3 has the form f2(x, a, b) < x < f(x, a, b) or its mirror image (See Theorem
1 in [29]). Without loss of generality, assume it has the form above. Then we can choose,

(1) d between x and f(x, a, b), so that f(d, a, b) = x and hence d < f2(d, a, b).
(2) z between f(x) and x, so close that f2(z, a, b) > d.
(3) q between z and x, so close to x that f2(z, a, b) < z.
(4) c between x and d, so close to x that f2(c, a, b) < z.

Then, Ja = [z, q] and Ka = [c, d] are disjoint and

[z, d] ⇢ [f2(q, a, b), f2(z, a, b)] ⇢ f2(Ja), [z, d] ⇢ [f2(c, a, b), f2(d, a, b)] ⇢ f2(Ka)

Observe that f2(Ka, a, b) and f2(Ja, a, b) are supersets of Ka and Ja that share no endpoints with
Ka and Ja so they are neighborhoods of Ka [ Ja. Also since x, f(x, a, b) and f2(x, a, b) are in the
interior of the interval [fmin(a), fmax(a)], we have that Ja and Ka have this property as well. ⌅

Moreover we can prove the following claim for the sets Ka, Ja

Lemma C.2 (Restated Lemma 13). For every a > sb, there exist closed intervals V k
a ✓ Ka and

Uk
a ✓ Ja such that

lim
k!1

diam(V k
a ) = lim

k!1
diam(Uk

a ) = 0

and for every k � 0 it holds that f2k+2(V k
a , a, b) and f2k+2(Uk

a , a, b) are neighborhoods of Ka [ Ja.
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Proof. We will prove the lemma by induction. Choosing V 0
a = Ka we know by Lemma 12 that

f2(V 0
a , a, b) is a neighborhood of Ka [ Ja. Now let us assume that we have a V k

a ✓ Ka such that
f2k+2(V k

a , a, b) is a neighborhood of Ka [ Ja. Since Ka and Ja are disjoint closed intervals , there
are two disjoint closed intervals Z1 and Z2 of V k

a such that f2k+2(Z1, a, b) is a neighborhood of
Ka and f2k+2(Z2, a, b) is a neighborhood of Ja. As a result f2k+4(Z1, a, b) and f2k+4(Z2, a, b) are
neighborhoods of Ka [ Ja. Given that Z1 and Z2 are disjoint intervals of V k

a it must be the case that

min{diam(Z1), diam(Z2)}  diam(V k
a )/2.

We pick the interval with the smallest diameter as V k+1
a and thus

0  diam(V k
a )  2�kdiam(Ka) =) lim

k!1
diam(V k

a ) = 0.

Choosing U0
a = Ja we can follow the same arguments for the rest of the Uk

a . ⌅

C.2. Tracking properties, make chaos explicit via symbolic dynamics. In this section, we
will demonstrate how to construct a scrambled set of initial conditions via a scrambled set of abstract
symbolic orbits. Symbolic dynamics is a mathematical method used in dynamical systems theory
to study the long-term behavior of a system. It involves representing the states of a system as a
sequence of symbols, typically taken from a finite alphabet –in our case {0, 1}⇤ –. In our proof, these
symbols are chosen based on position of the trajectory of a point in strategy space. The resulting
sequence of symbols is called a symbolic orbit, and the study of these orbits will provide the necessary
insight to establish the long-term chaotic behavior of MWU.

Below we present the tracking lemma that translates a binary sequence to the trajectory of an
initial condition inside the decaying sequence of turbulent sets V i

a⇤ , U i
a⇤ :

Lemma C.3 (Restated Lemma 14). If b 2 (0, 1) \ { 1
2}, there exists a db such that if amin > db,

we can construct an increasing sequence ni with the following properties. For every sequence of
intervals Ai with Ai = V i

a⇤ or Ai = U i
a⇤ , there exists a x0 2 [0, 1] such that for all i � 0 it holds that

xni(x0) 2 Ai .

Proof. By continuity of fmin and fmax we know that

lim
✏!0

fmin(a
⇤ � ✏) = fmin(a

⇤) lim
✏!0

fmax(a
⇤ � ✏) = fmax(a

⇤)

By Lemma 12 we know that Ka⇤ and Ja⇤ are in the interior of [fmin(a⇤), fmax(a⇤)]. As a result there
is a sufficiently small ✏ > 0 such that both of the following properties hold

a⇤ > a⇤ � ✏ > amin

[fmin(a
⇤ � ✏), fmax(a

⇤ � ✏)] ◆ Ka⇤ [ Ja⇤

Let us pick any interval [�, �] such that {b} ⇢ [�, �] ⇢ (0, 1). By Theorem B.1 and for the
aforementioned ✏, we know that there is a n⇤ such that

8n � n⇤ : xn([�, �]) ◆ [fmin(a
⇤ � ✏), fmax(a

⇤ � ✏)] ◆ Ka⇤ [ Ja⇤

We also know that for all i � 0, f2i+2(V i
a⇤ , a⇤, b) and f2i+2(U i

a⇤ , a⇤, b) are neighborhoods of Ka⇤ [Ja⇤ .
Thus for each i � 0 there must be an ✏i > 0 such that f2i+2(V i

a⇤ , a⇤, b) and f2i+2(U i
a⇤ , a⇤, b) are ✏i

neighborhoods of Ka⇤ [ Ja⇤ . By Lemma 10, there is a sequence of mi such that for all i � 0

8n � mi max
x02[�,�]

|xn+2i+2(x0)� f2i+2(xn(x0), a
⇤, b)|  ✏i

We are now ready to construct the sequence ni. We choose n0 = max{m0, n⇤}. For ni with i � 1,
we choose the minimum number with the following properties

(ni � ni�1 � 2i) mod 2 = 0

ni � ni�1 + 2i ni � mi
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It now remains to construct the required x0 2 [0, 1] for each potential sequence of Ai. Since xi0([�, �])
is a superset of the disjoint closed intervals Ka⇤ = V 0

a⇤ and Ja⇤ = U0
a⇤ we know that there are closed

minimal intervals I0 and I1 such that
xn0(I0) = V 0

a⇤ xn0(I1) = U0
a⇤

Since n0 � m0 we know that
max
x02I0

|xn0+2(x0)� f2(xn0(x0), a
⇤, b)|  ✏0

Given that xn0(I0) = V 0
a⇤ and f2(V 0

a⇤ , a⇤, b) is an ✏0 neighborhood of Ka⇤ [ Ja⇤ , we can infer that
xn0+2(I0) ◆ Ka⇤ [ Ja⇤

With a similar analysis we can prove that
xn0+2(I1) ◆ Ka⇤ [ Ja⇤

Following the same steps repeatedly we can prove for any k > 0 that
xn0+2k(I0) ◆ Ka⇤ [ Ja⇤ xn0+2k(I1) ◆ Ka⇤ [ Ja⇤

Since n1 = n0 + 2k for some k > 0 we can directly infer that
xn1(I0) ◆ Ka⇤ [ Ja⇤ xn1(I1) ◆ Ka⇤ [ Ja⇤

Hence we can construct minimal closed intervals I00, I01 ⇢ I0 and I10, I11 ⇢ I1 such that
xn1(I00) = V 1

a⇤ xn1(I01) = U1
a⇤ xn1(I10) = V 1

a⇤ xn1(I11) = U1
a⇤

By induction, for any binary sequence c of length i we can construct two minimal closed intervals
Ic0···ci�10 and Ic0···ci�11 subsets of Ic0···ci�1 such that

xni(Ic0···ci�10) = V i
a⇤ xni(Ic0···ci�11) = U i

a⇤

Now for any sequence Ai such that Ai = V i
a⇤ or Ai = U i

a⇤ we can construct the corresponding
sequence ci that has ci = 0 when Ai = V i

a⇤ and ci = 1 when Ai = U i
a⇤ . Let us define

Ic = \1
i=1Ic0···ci

By Cantor’s intersection theorem, Ic is non empty. Any x0 2 Ic satisfies the requirements of the
lemma

8i � 0 x0 2 Ic1···ci =) 8i � 0 xni(x0) 2 Ai

⌅
Theorem C.2 (Restated Theorem 4). If b 2 (0, 1) \ { 1

2}, there exists a db such that if amin > db,
the dynamics of Equation 2 are Li-Yorke chaotic.

Proof. We first prove that there is an uncountable set S of infinite length binary sequences with the
following property: For every pair of sequences i, j 2 S there is an infinite length subsequence where
the two sequences differ, i.e., one of i, j is 0 and the other is 1.

We first define the equivalence relation R over infinite length binary sequence such that two binary
sequences are equivalent if and only if they differ in finitely many places. The relation is clearly
reflexive, a sequence differs with itself in 0 places, it is by definition symmetric and it is transitive, if
a sequence i differs in k places with sequence j and j differs in m places with a sequence t then i
and t differ in up to m+ k places which is also finite. Thus we can partition all binary sequences in
equivalence classes where all pairs of all elements in the same class differ in finite places.

We now prove that each equivalence class has countably infinite binary sequences. Let us pick an
element � of the equivalence class. For each member of the equivalence class w we can construct a
finite subset of N by picking the indices where st 6= wt. Inversely, for each finite subset of N we can
construct a member of the equivalence by flipping the corresponding indices of �. Thus there is a
bijection between the members of the equivalence class and the finite subsets of N. Because the finite
subsets of N are countably infinite, so is each equivalence class.
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This allows us to prove that the relation R has uncountably infinite number of equivalence classes.
We proceed by contradiction. If we had countably finite equivalence classes each having countably
many elements then all of the binary sequences would be countable which is false.

To construct S we only need to pick one element from each equivalence class. Since each pair
belongs in a different equivalent class then they differ in infinite number of places which forms an
infinite length subsequence. The set S is uncountable because there are uncountably many equivalence
classes.

We now prove that there is an uncountable set S0 of infinite length binary sequences that has
the following two properties: First, for every pair of sequences i, j 2 S0 there is an infinite length
subsequence where the two sequences differ, i.e., one of i, j is 0 and the other is 1. Second, for every
pair of sequences i, j 2 S0 there is an infinite length subsequence where the two sequences are equal,
i.e., they are either both 0 or 1.

The construction works as follows: For each element of i 2 S we construct a new sequence. In its
even places the sequence is 0 and in its odd places we use the elements of i. Clearly by construction
S0 remains uncountable and satisfies the first property as we can pick the subsequences from the odd
places. The second property also holds because all sequences have the same elements in the even
places.

For each element of S0 we construct a sequence of sets T as follows: If the kth place element is 0
we use V k

a⇤ , whereas if it is 1 we pick Uk
a⇤ . We now apply Lemma 14 for each of the sequence of sets

to get a corresponding initialization x0 and a subsequence of iteration indices ni. We call this set of
initializations Q. By the construction in Lemma 14 all initializations use the same subsequence ni.

Let us pick two initializations µ, ⌫ 2 Q. By the construction of T and S0 we have the following:
There is an infinite subsequence of ni, which we call ht, where xnht

(µ) 2 V ht
a⇤ and xnht

(⌫) 2 Uht
a⇤ or

vice versa. Because V ht
a⇤ and Uht

a⇤ are disjoint we have that there is an infinite subsequence where the
trajectories of µ and ⌫ are bounded away from each other. In other words, we have that

lim sup
n!1

|xn(µ)� xn(⌫)| > 0

Again by construction of T and S0 we also have that there is an infinite subsequence of ni, which we
call ft such that either xnft

(µ) 2 V ft
a⇤ and xnft

(⌫) 2 V ft
a⇤ or xnft

(µ) 2 Uft
a⇤ and xnft

(⌫) 2 Uft
a⇤ . Thus

we have that
8t � 0 : |xnft

(µ)� xnft
(⌫)|  max{diam(Uft

a⇤), diam(V ft
a⇤ )}

By Lemma 13, we have that the right hand side converges to 0. As a result
lim
t!1

|xnft
(µ)� xnft

(⌫)| = 0

which directly implies that
lim inf
n!1

|xn(⌫)� xn(⌫)| = 0.

Technically our dynamics are expressed in terms of two state variables xn and rn so distances in
orbits need to account for both dimensions. Because rn ! 0 for all initializations x0 2 (0, 1), in all
cases above we have limn!1 |rn(µ)� rn(⌫)| = 0 so the distances in the limit are not affected by the
rn dimension.

Picking {(x, r) : x 2 Q and r = 0} as our scrambled set, which is equivalent to choosing a0 = g(0)
for all x 2 Q, we show that our dynamic learning rate dynamics are Li-Yorke chaotic.

⌅

Appendix D. Bifurcation Plots

In this section, we showcase a series of bifurcation diagrams illustrating the adaptive scheme’s
limit behavior in response to varying constraints on a1. These diagrams display the emergence of
periodic points as a function of the proportion of users favoring the first link in the equilibrium state
of the system (parameter b). A notable observation from these bifurcation plots is their symmetric
nature. For instance, we anticipate analogous behavior when the equilibrium state accommodates
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Figure 4: The cobweb diagram above displays the trajectory of iterates for the time-
varying learning rate dynamics in (2), considering various equilibrium choices. The patterns
formed by these paths reveal insights into the iterative behavior of the dynamics. Fixed
points are identified by the intersection of the y = x diagonal line and the limit function
graph MWU(x, limn!1 an,Equilibrium), with spirals converging towards these points.
Period-2 orbits create rectangles, while higher-period cycles generate increasingly complex
closed loops. Chaotic orbits, conversely, occupy an area, indicating an infinite sequence of
non-repeating values. This phenomenon intensifies as we move further from the boundaries.

80% of users favoring the first link in the congestion game and when it accommodates 20%. This
symmetry implies an inherent balance in the system’s response to changes in user preferences.

Figure 5: When the limit behavior a1 is small the only system attractors are equilibria
(roughly for b < 0.2 and b > 0.8) and period-two cycles.

(a) When the limit behavior a1 is significantly larger,

which signifies a more volatile, highly fluctuating sys-

tem, we see the emergence of more complex attractors,

i.e., periodic orbits of large period, chaos.

(b) Even more aggressive schemes imply the creation

of complex attractors even when the equilibrium b
is much closer to the boundary i.e. to 0 or 1, in

comparison with Fig. 6a.

Figure 6: Increased Limit behavior a1


