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Abstract

The paradigm shift toward structure-driven molecule generation has been propelled by
advances in deep generative models, such as variational auto-encoders and diffusion mod-
els. However, these generative models for molecular design remain constrained by exposure
bias, error accumulation, and suboptimal handling of activity cliffs. Here, we introduce Dif-
fGap, a diffusion-based framework that integrates adaptive sampling and pseudo-molecule
estimation to bridge the gap between training objectives and inference dynamics in 3D
molecule generation. By dynamically aligning intermediate denoising steps with realis-
tic generation trajectories, DiffGap enables the diffusion model to adapt to input biases
in advance during the training phase. A temperature annealing module further controls
the aligning strength of the adaptive alignment process, ensuring stable learning of the
data distribution. Evaluated on the CrossDocked2020 benchmark, DiffGap outperforms
existing methods in docking scores and binding affinity, demonstrating superior fidelity in
generating drug-like molecules. Our work establishes a principled approach to harmonize
generative training with inference mechanics, offering a robust computational toolkit for
accelerating structure-based therapeutic discovery. The source code of DiffGap is available
at https://github.com/neusymlab/DiffGap.

Keywords: generative model;diffusion model;exposure bias;3D molecule generation

1. Introduction

The pursuit of targeted therapeutic agents represents a cornerstone of modern pharmaceu-
tical research, where molecular design is guided by precise three-dimensional interactions
between ligands and disease-associated proteins (Sneader, 2005). This paradigm shift from
serendipitous discovery to structure-driven design has been accelerated by advancements
in structural biology (Batool et al., 2019; Liu et al., 2021) and computer-aided rational
design(Mandal et al., 2009; Jumper et al., 2021; Abramson et al., 2024). In particu-
lar, structure-based drug design typically employs molecular docking simulations, phar-
macophore modeling, and free energy perturbation calculations to virtual screen promising
compounds from curated chemical libraries. While virtual screening (Mayr and Bojanic,
2009; Zhang et al., 2022) remains prevalent, its efficacy is fundamentally constrained by the
combinatorial explosion of drug-like chemical space (~ 10°° potential molecules) (Bohacek
et al., 1996).
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Generative approaches have emerged as promising alternatives to exhaustive screen-
ing. Deep generative models (DGMs) attempt to navigate chemical space to generate 2D
molecules from learned latent representations (Jin et al., 2018), yet their performance de-
grades when target properties diverge from training data distributions (Ning et al., 2023).
Combinatorial optimization methods (You et al., 2018; Jensen, 2019; Paaflen et al., 2022)
show superior potential but remain underexplored for target-specific design. Recent at-
tempts using simulated annealing (Xue et al., 2025) demonstrate limitations in handling
activity cliffs—abrupt property changes from minor structural modifications (Pemasinghe
and Abeygunawardhana, 2021) due to their myopic optimization strategies.

The integration of geometric deep learning has revolutionized molecular representation
learning. Early 2D approaches (Jin et al., 2018; Walters and Barzilay, 2020; Lim et al.,
2020) gave way to 3D-equivariant architectures (Fuchs et al., 2020; Satorras et al., 2021) that
preserve rotational and translational symmetries critical for molecular geometric structures.
Diffusion models leveraging 3D-equivariant networks (Guan et al., 2022, 2023; Huang et al.,
2024) to gradually perform the de-noising of the geometric topological structures, achieving
state-of-the-art performance in 3D molecule generation. However, the iterative denoising
process (typically requiring >1,000 steps) introduces error accumulation and exposure bias
between training objectives and inference conditions analogous to autoregressive sequence
generation (Ning et al., 2024).

However, the success of these diffusion models masks a critical vulnerability rooted in
their iterative generation process. This vulnerability stems from a fundamental discrepancy
between how the models are trained and how they perform inference, and is known as
exposure bias. During training, the model always learns to denoise a perfectly conditioned
state M; to a pristine, ground-truth molecule Mj. In contrast, during inference, the model
must denoise a state M; which is the result of its own prediction from the previous step,
Mt—&—l' The model is therefore never exposed to its own errors during training, making it
fragile when faced with them when autoregressive-style generation (Ning et al., 2024).

To address these limitations, we present DiffGap, a novel diffusion framework incorpo-
rating adaptive sampling through pseudo-molecule estimation. Our key insight of the adap-
tive sampling lies in dynamically aligning the training inputs with the realistic generation
trajectories, rather than following teacher-forcing denoising computations. This approach
reduces the train-inference discrepancy by treating intermediate predictions as conditional
inputs for subsequent steps. We also introduce a temperature annealing module to con-
trol the aligning strength of the adaptive sampling process. Extensive evaluations on the
CrossDocked2020 benchmark (Francoeur et al., 2020) demonstrate DiffGap’s superiority in
generating molecules with optimized binding affinities and 3D complementarity.

In summary, our principal contributions are threefold:

e We propose a generative framework, called DiffGap, to address the exposure bias issue
of diffusion models by an adaptive sampling strategy.

e The DiffGap framework introduces the construction strategy of pseudo-molecules for
training, which is an optimal estimation of the input condition to mimic the inference
computations.

e Empirical results show that the molecules generated by DiffGap achieve state-of-the-
art docking scores and superior quality on the binding affinity.
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2. Related work

2.1. Molecule generation

Existing molecular generation models can be categorized into four groups: string-based,
image-based, 2D graph-based, and 3D structure-based. The most common molecular string
representation is SMILES (Weininger, 1988), where researchers can reuse language models
like RNN and Transformer and quickly apply them to molecular generation tasks follow-
ing the text approach (Schoenmaker et al., 2023; Brahmavar et al., 2024). For example,
researchers trained RNN and its variants on randomized SMILES strings to improve the
uniqueness of generated molecules (Grisoni et al., 2020; Aris-Pous et al., 2019) and ChatMol
empowered large language model for conversational molecular design diagram (Zeng et al.,
2024). 2D molecular image representations (Walters and Barzilay, 2020) and 2D graph rep-
resentations (Lim et al., 2020; Jin et al., 2018) employed CNNs and GNNs respectively for
more atom connection information than string representations. Recently, structure-based
models like GraphBP, Pocket2Mol, and diffusion models took the 3D structure and equiv-
ariant properties of molecules into account, showing advantages in molecular affinity (Liu
et al., 2022; Peng et al., 2022; Guan et al., 2022, 2023; Huang et al., 2024). Our work follows
the same denoising theory of diffusion models, but adopts a new training framework (i.e.,
the adaptive sampling strategy) to improve the generation quality.

2.2. Diffusion models

Introduced by (Sohl-Dickstein et al., 2015) and developed by (Ho et al., 2020; Song
et al., 2021), diffusion models have been applied in various fields like unconditional im-
age generation (Ho et al., 2020), text-to-image generation (Nichol et al., 2022). Recently,
diffusion models have also been applied to molecular generation tasks, particularly in the
field of Structure-Based Drug Design (SBDD). For instance, TargetDiff (Guan et al., 2022)
combined with an SE(3)-equivalent network, has surpassed the previous SOTA method,
Pocket2Mol (Peng et al., 2022), with a significant docking score on the CrossDock2020
dataset. BindDM adaptively extracted subcomplex and captured the protein-ligand in-
teractions exactly to obtain higher docking affinity than the above models (Huang et al.,
2024). The aforementioned models primarily focus on adapting molecular data and prop-
erties, proposing various strategies to process such inputs. In contrast, our work centers
on the universal sampling strategy of the diffusion models for molecule generation, which
is effective for multiple diffusion-based methods, as validated by the empirical results.

2.3. Exposure bias

Exposure bias has been widely studied in sequence generation tasks, particularly in natural
language processing (NLP) applications and recommendation algorithms (Yang et al., 2018;
Lamb et al., 2016; Zhang et al., 2019). The term exposure bias refers to the discrepancy
between training and inference conditions in sequence models. During training, models are
conditioned on ground truth data (teacher forcing), while during inference, they generate
sequences based on previous predictions, leading to error accumulation (Lamb et al., 2016).
Diffusion models share the same problem, but are few solutions (Ning et al., 2023, 2024). To
complement research in this domain, we provide a precise prediction of the input condition
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to narrow the input gap between training and generation. Different from it, our method
provides a more precise prediction of the input condition by Bayesian estimation to narrow
the input gap between training and generation.

3. Problem definition

The problem of structure-based 3D molecular generation is defined as a conditional gener-
ation process under the specific protein pocket. Formally speaking, a data point consists
of pairs of proteins P and molecular conformations M. The molecular conformation is
represented by the concatenation of its atomic 3D Cartesian coordinates x € R™*3 and
one-hot encoded atomic types v € R™** (m denotes the number of atoms in a molecule
and k shows the number of potential atomic types), and so is the protein. That is, the goal
of structure-based 3D molecular generation is to generate a reasonable molecular confor-
mation M = [z,v] given the protein P = [zp,vp] using a novel diffusion model with less
bias.

4. Methodology

4.1. Classic diffusion process

The diffusion model defines the diffusion process with the data xg ~ ¢(x¢), which is a
Markov chain that incrementally adds Gaussian noise in equation 1 using schedule hyper-
parameters (1, ..., 8.
T
g(x1lx0) = [ [ alxexi-), a(xelxi—1) = N(x¢; V1 = Bixe—1, BiI) (1)
t=1
Based on the properties of the Gaussian distribution, this process of incrementally adding
noise q(x¢|x¢) can be simplified in equation 2 with notations ay = 1 — 5¢; ay = H’;Zl .

q(x¢|x0) = N (x4; Varxo, (1 — ay)T) (2)
The diffusion model is a parameterized Markov chain that models a latent variable model
of the form py(x9) = [ po(xo.7)dx1.7, used to learn the reverse Gaussian denoising process
of the diffusion process pg(x¢—1|%x¢), i.e., the reverse process. The reverse process can be
formalized as a normal distribution in equation 3 because the forward process consists of
thousands of steps and each one q(x¢|x;—1) follows a Gaussian distribution. Consequently,
we can utilize pg(x¢,t) and 3g(x¢,t) to denote the parameters of the normal distribution
for a single-step reverse process under the neural network.
T
po(x0:1) = p(XT) HPG(Xt—l‘Xt)v po(xt—1]xt) = N (x1-1; po(xt, 1), Bp(xt, 1)) (3)
t=1
Intuitively, what we need to know is the denoising distribution ¢(x;—;|x;) of the data,
but it is not tractable. Instead, we can compute the posterior probability of the data point
q(x¢—1|x¢,%0) given the original data point as in equation 4.

q(x¢—1]x¢t,%0) = N (4—1; fir (X¢, X0), BT (4)

In this way, the ground truth of the denoising probability can be accurately approximated.
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4.2. DiffGap framework

Diff Gap adopts the diffusion process to learn the conformations M of a molecule in the 3D
space, where the molecule state M; at step t can be determined by the previous state M;_
and the protein structure P.

Q(Mt’Mt—hP) = P($t|$t—1;P)P(’0t’Uzﬁ—1aP) (5)

where M; = [x¢,v;] is the molecule state at step ¢t. To reduce the computational complexity,
we assume the atom coordinates x; and the identity v; are independent in the estimation
of the transformation probability q(M;|M;—1,P). Similar to equation 1, we model the
transformation probability of atomic positions P(x¢|xy—1,P) and that of the atomic types
P(v|vi—1,P) using a normal distribution and a categorical distribution (K represents the
number of categories), respectively.

The objective of diffusion models is to narrow the divergence between the denoising
Gaussian distribution (i.e., ground truth) q(M;_1| M, My, P) and the predicted distribution
po(My—1| My, P), where the condition M is sampled from the unbiased Gaussian distribu-
tion.

Li-1 =By | Y Dic(g(Me—1| My, Mo, P)||po(Me—1|M;, P)) (6)
t>1
1

=y [ (M 0) — o0, + -

where C' is a constant and is independent of the neural network.
As for the inference of DiffGap, it starts with Gaussian noises Mp and iteratively de-
noises from the previous result, finally achieving the goal. That is,

Condition varies from equation 6.

T —_———
po(Mo:r|P) = p(Mr) [ | po(Mi—1| M, P) : My ~ pg(M|Mi11,P)  (8)
t=1

where the condition M; of the denoising process is generated in the last step pg(M|M11),
instead of the sample from the unbiased Gaussian distribution.

However, the above inference process of DiffGap will suffer serious exposure bias due to
the discrepancy between training and inference. In 3D molecule generation, the conforma-
tion space of 3D molecules is huge and rough, with most breaking the chemical and physical
rules. A small atom-type shift could result in an unrealistic molecule. During inference,
the reverse process can be viewed as an autoregressive generative process iterated multiple
times in time steps, generating My by gradually denoising M; sampled randomly according
to equation 3. However, general diffusion models require a large number of iteration steps
(typically 1000), leading to error accumulation and exposure bias issues.

Adaptive sampling strategy. To address the exposure bias issue in traditional dif-
fusion models, we propose an adaptive sampling strategy, which reduces the discrepancy
in data distribution between training and inference by introducing reasonable noise into
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Figure 1: The overview of DiffGap pipeline under target-aware molecule generation task.
DiffGap is consistent with the logic of DDPM, with the difference lying in the
reverse process during training, shown in Figure (a). In the reverse process of
training, the ground truth is selected probabilistically between the original ground
truth (denoted as M; like M;) and the model’s real-time predicted value (denoted
as M; like Mt) with a probability pr favoring the original value in Figure (b).
What’s more, the probability pr is periodically updated by temperature anneal-
ing. Figures (c) and (d) display the two training pathways guided by pr and we
will discuss it further in section 4.

PG(M0|Mt+1 ?)q(MHMo fp)

Pseudo molecule estimation

(b) Training branch choice (d) DiffGap training

the training phase. The core idea of DiffGap is to utilize model-predicted conformations as
ground truth during training probabilistically. In particular, we denote M} as a perturbed
condition in the denoising probability q(M;_1|My, My) to replace the ground truth sample
My, which is unavailable in the inference phase. Therefore, the objective function of DiffGap
is

Ly =By | Y Dxu(g(Me1|M;, Mo, P)l|po(M;—1|M;,P)) |, M; = Perturbation(M,)

i (9)

Since molecule M; = [z, v;] has two components, we need to compute the atom coor-
dinate loss and the atom type loss respectively using equation 6. We measure the distance
between the predicted atom coordinates and the ground truth for coordinate loss, and take
the KL-divergence of categorical distributions (i.e., ¢(vt, vp)) for the atom type loss. Then
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the objective function can be further transformed to

L= L@ o \p® 1@ _ a2 1o _ Log E(0t: Vo)
t—1 t—1 T ALy, i1 = Yellro — @ol|* + C, 1 Zk:c(”t7”0)k Ogc(vt,@o)k

(10)

where zg and vy are the atom coordinate and atom type of My, respectively!. & and

= 2
0o are the predictions of the diffusion model ¢, given by ~; = % and C is
a constant. Note that, we adopt ¢o(M[,t,P) as the diffusion model and the denoising

probability pg(M;_1|M;,P)) can be derived based on it.
My = [0, 0] = ¢o(M;' 1, P) (11)

Pseudo molecule estimation. The main focus of this paper is to figure out an
approximated sample representation M} that can bridge the gap between the training and
inference of diffusion-based molecule generation. Therefore, M;" should satisfy the following
two properties. On the one hand, M;" is expected to contain the key information of estimated
pseudo molecule at the ¢-th step (i.e., M;). On the other hand, M; must resemble the
iterative output of the diffusion model.

To this end, we propose pseudo molecule estimation, whose core idea is to regard the
model’s current predictions as the ground truth instead of using the standard noisy sample
in training time. Using this estimate allows the model to make the data distribution during
training a weighted average over the true distribution and the model’s learned distribution,
thus reducing the gap between training and inference.

Concretely, the pseudo molecule estimation leverages the diffusion model to re-predict
the original molecule state based on the molecule state at step t. As a result, an estimated
original molecule state is obtained.

My = ¢o(My,t,P) (12)

Next, we apply Bayesian theory and add noises into the estimated original molecule ]Tjo,
thus yielding a new variable M; that describes the molecule state at step t.

M; ~ q(M;| My, P) (13)

In this way, the estimated original molecule state ]\70 mimics the scenario in the infer-
ence stage where the true molecule state is not available. And M; is a pseudo molecule
state at step ¢, which can satisfy the two properties of M;. However, we do not directly
use the estimated molecule state MO as M}, because purely adopting the model prediction
as the condition would contaminate the training process. Instead, M;" picks M; with prob-
ability pr, otherwise chooses the estimated molecule ]\/\/ﬁ Hence, the training process of the
diffusion model can be controlled by the pre-defined probability pr.

Note that although the pseudo molecule estimation applies the diffusion model ¢ to
produce the condition M, this process does not need to receive gradients and optimize.

1. xo and xg are different here. The former represents a general data sample in the classic diffusion process
while the latter stands for the atom coordinate of the original molecule My
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That is, the pseudo molecule estimation will dynamically use the diffusion model ¢ to add
noises into the condition in the training stage and thus narrow the difference between the
learning and inference.

P(M:>={ pr.  Mi=M, (14)

1—pr, My=M,
Probability temperature annealing. Hoping the model can learn the data distri-
bution more smoothly during training, we use monotonic decline functions to control the
selection probability. Intuitively, we need this probability curve to have a lower cooling rate
at the beginning of training, that is, a smaller derivative value, and a higher cooling rate
at the end of training, so that it can quickly adapt to changes from training to inference.
We take the OR (Zhang et al., 2019) model’s curve as the first one, which goes with a
hyperparameter (equation 15) and is borrowed from Bengio (Bengio et al., 2015). However,
under its default setting (shown in Setup), the probability ppr cools too quickly, which is
not conducive to learning a robust data distribution.

I
p+ exp(e/n)
To make the learning process more stable, we propose two other temperature anneals,
one is linear annealing (equation 16 left) and the other is arc annealing (equation 16 right).
For the sake of conciseness, this can also be regarded as p = V12 — €2 /r), we use a modified
quarter circle curve as the cooling curve, make the result a real number and finally regularize
it to ensure that the curve value range is in [0, 1]). In order to avoid pr being too low in the
later stages of training, the model basically enters the self-verification learning stage, which
has been reinforcing bias and making it difficult to learn the original distribution. We use
min(p, lower_bound) to obtain the probability of actual use.

T (15)

pr = 1 + slope * e, pr = /max(r2 — (¢/100)2,0)/r (16)

5. Experiments

5.1. Setup

Data. We use CrossDocked2020 (Francoeur et al., 2020), the commonly used protein-ligand
pairs dataset, as a benchmark dataset for both training and evaluation. Similar to (Luo
et al., 2021; Guan et al., 2022, 2023; Huang et al., 2024), we filter the complexes with RMSD
(Root Mean Square Deviation, the measure of the average distance between the atoms of
superimposed molecules) higher than 1 A and remains 100,000 pairs for training, 100 pairs
for testing.

Baseline. We use our model to compare the affinity of the generated molecules with
LiGAN (Ragoza et al., 2022), AR (Luo et al., 2021), Pocket2Mol (Peng et al., 2022),
GraphBP (Liu et al., 2022), TargetDiff (Guan et al., 2022), DecompDiff (Guan et al., 2023)
and BindDM (Huang et al., 2024). In particular, TargetDiff, DecompDiff, and BindDM
represent previous state-of-the-art performance in 3D molecule generation to a given pro-
tein structure with diffusion process and equivariant graph neural network, considering
rotational and translational equivariance.
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Table 1: We compared our models with +Ours sequentially with all other models, indicating
the best performing method in each case in bold and highlighting the metrics
where our method achieved second place with underlining. In the subsequent
text, we will use DIFFGAP to represent BindDM+Ours.

Vina Score({) Vina Min({) Vina Dock(]) High Affinity(1) QED(?1) SA(T) Div(1)

Models Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.
Reference -6.36 -6.46 6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -
liGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78
AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70

Pocket2Mol [-5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.1% 0.56 0.57 0.74 0.75 0.69 0.71
DecompDiff |-5.67 -6.04 -7.04 -7.09 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68

TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
+Ours -6.51 -7.18 -7.50 -7.38 -8.54 -8.38 59.0% 62.8% 0.46 0.46 0.56 0.56 0.79 0.77

BindDM -5.92 -6.81 -7.29 -7.34 -841 -837 64.8% 71.6% 0.51 0.52 0.58 0.58 0.75 0.74
+Ours (DiffGap)|-6.28 -6.90 -7.39 -7.45 -8.43 -8.47 68.9% 72.2% 0.51 0.52 0.59 0.58 0.75 0.75

DiffGap. We employ the E(n)-Equivariant GNN (Satorras et al., 2021) as the backbone
model, which contains 9 equivariant layers and makes diffusion steps 7" = 1000 the same as
DDPM. As liGAN and AR do, we choose OpenBabel (O’Boyle et al., 2011) to reconstruct
the 3D molecule from atom coordinates. We use the Adam optimizer, with 8 = (0.95,0.999)
and a learning rate of le-4, without weight decay. We set the max training step to 200K
and the batch size to 4 for all the models. In the scenario, the probability of not computing
the prediction P(t = T — 1)Patehsize i5 0. 996, which is acceptable and can be ignored. More
details can be found in the README file within the code repository.

5.2. Results

We conduct several experiments to compare our method against the aforementioned base-
line models, primarily evaluating the performance of our approach in terms of the quality
of generated molecules. The main data are presented in four aspects: chemical bond dis-
tributions, binding affinity, and molecular properties of DiffGap. Additionally, we perform
ablation experiments to verify the rationale behind the hyperparameter selection of the
adaptive sampling strategy.

Bond distribution. First, we consider the distribution of atomic coordinates and
the most common types of bonds connected to carbon atoms after applying the adaptive
sampling strategy. In particular, the bond types include carbon-carbon bonds, carbon-
nitrogen bonds, and carbon-oxygen bonds, covering single bonds(‘-’), double bonds(‘="),
and aromatic bonds(“:’). We evaluate the difference between the generated bonds and
the reference bonds using the Jensen-Shannon divergence (Lin, 1991), where a lower value
indicates better performance.

As shown in Table 2, the molecules generated by our method are among the best three
results, comparable to BindDM and surpassing other models. Meanwhile, our approach
exhibits a significant advantage across all carbon bonds, particularly in double and aromatic
bonds, where the latter achieves a twofold improvement over the previous best result. We
see in Figure 2 that DIFFGAP achieves the lowest JSD of 0.065 to reference in all-atom pairs
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Figure 2: Comparing the distribution for distances of all-atom for reference molecules in
the test set (gray) and generated molecules (color). Jensen-Shannon divergence
(JSDJ) between two distributions is reported.

distance distribution of the ligands in test sets, exceeding notably TargetDiff and others.
Moreover, TargetDiff+Ours beats TargetDiff-r (the reproduced TargetDiff). That is to say,
the molecules generated by DIFFGAP surpass those produced by prior methods overall.

Table 2: Jensen-Shannon divergence between the bond distance for reference and the gen-
erated. And we highlight the best 3 results with bold text, underlined text, and
italic text respectively.

Bond({) | lIGAN AR  Pocket2Mol TargetDiff DecompDiff BindDM DIFFGAP
C-C 0.601  0.609 0.496 0.369 0.359 0.380 0.357
C-N | 0634 0.474 0.416 0.363 0.844 0.265 0.253
C-0 0.656  0.492 0.454 0.421 0.376 0.329 0.388
C=C 0.665  0.620 0.561 0.505 0.537 0.229 0.189
C=N 0.749  0.635 0.629 0.550 0.584 0.245 0.260
Cc=0 0.661  0.558 0.516 0.461 0.374 0.249 0.376
C:C 0.497 0.451 0.416 0.263 0.251 0.282 0.141
C:N 0.638  0.552 0.487 0.235 0.269 0.130 0.240

Binding affinity. The binding affinity between a molecule and a protein is measured
by the energy released after binding. AutoDock Vina (Eberhardt et al., 2021) is usually
used to calculate the energy, which acts as a crucial evaluation metric. Therefore, we
use the docking scores and the results compared with the reference as metrics to compare
and evaluate all the models,: Vina Score, Vina Min, Vina Dock, and High Affinity. Vina
Score is used to evaluate the stability of the small molecule-protein binding, Vina Min
represents the minimum value during the docking process, Vina Dock energy attempts to
find the lowest energy binding conformation, and High Affinity exhibits the proportion of
superiority over the reference on Vina Dock. As indicated in Table 1, DIFFGAP obtains
higher mean and median in all affinity-related metrics compared to the baselines with the
highest improvement reaching 4.1% in the mean of High Affinity. Otherwise, we reorder
the median Vina Dock in ascending order according to our method for eight methods. As
evidenced by Figure 3, DiffGap enables substantially superior performance compared to
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existing methods, yielding a minimum 20% enhancement over TargetDiff and exceeding
BindDM by more than 30%.

Molecular properties. As for property-related metrics, drug-likeness QED (Bickerton
et al., 2012), synthesizability SA (Ertl and Schuffenhauer, 2009) and diversity are commonly
used for evaluation. Unlike that DecompDiff accepts a trade-off between property-related
metrics and affinity-related metrics, we maintain proper properties and make somewhat
progress in the mean of SA and the median of diversity in Table 1. Nevertheless, we put
less attention on QED and SA because many invalid molecules will be filtered out by virtual
screening and it would be acceptable in a reasonable range.
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Figure 3: Median Vina dock energy for five models across 100 testing targets. The percent-
age represents the proportion of the model achieving the best binding affinity.

5.3. Ablation study

These are two ablation studies to validate the rationality of our method. The first study
focuses on the selection of annealing strategies, while the second involves the specific pa-
rameter settings of the selected annealing method.

Choice of annealing strategy. We employ ablation experiments for comparison to
filter out the best method, which considers the impact of both the lower bound and the
annealing method. Due to the time-consuming nature of sampling and evaluating the full
test dataset of 100 targets, we randomly selected 10 targets for the ablation experiments.
Then we used the docking scores as the evaluation metrics and calculated the time cost
multiplier of DiffGap compared to the classic way (marked as Cost in Table 3).

Overall, arc annealing outperformed the others at both lower bounds of 0.5 and 0.8,
with it performing best when the lower bound was set to 0.5 in Table 3. Consequently, we
ultimately choose arc annealing and set the lower bound to 0.5, and we think the extra time
cost is acceptable.

Arc annealing comparison. We initially hypothesized that the arc annealing curve
would yield the best results when r = 2, although it remains to be validated. Therefore,
we design a series of ablation experiments, selecting the values 1.5, 2, 3, 4, 8, and infinity
to empirically determine the optimal value for the hyperparameter r. The experimental
outcomes confirm our initial hypothesis.

When r equals infinity, pr is 1, which corresponds to not using our method at all,
resulting in the lowest Vina scores, thereby proving the effectiveness of our method. When
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Table 3: Annealing methods comparison across 10 testing targets.

Metrics Lower Vina Score({) Vina Min(]) Vina Dock(]) Cost({)
Mﬁg\ Bound Avg. Med. Avg. Med. Avg. Med. Avg. Avg.
Original (equation 15) 0.5 -4.588 -4.705 -4.898 -4.893 -5.661 -5.540 -5.047 1.38
0.8 -4.209 -4.343 -4.544 -4.580 -5471 -5.392 -4.757 1.18
Linear (equation 16 left)| 0.5 -6.564 -6.499 -6.617 -6.241 -7.421 -7.249 -6.765 1.37
0.8 -6.662 -6.418 -6.593 -6.223 -7.317 -7.146 -6.727 1.18
Arc (equation 16 right) 0.5 -6.496 -6.384 -6.780 -6.525 -7.470 -7.369 -6.837 1.19
0.8 -6.413 -6.189 -6.719 -6.445 -7.463 -7.398 -6.771 1.12

r is set to 1.5, 3, 4, or 8, the results are comparable, indicating that even with the early
introduction of estimation or fewer opportunities for estimation, there is still a certain degree
of improvement. When r equals 2, the best results are achieved, surpassing TargetDiff.

Table 4: Annealing comparison for better hyper-parameter.
Metrics | Vina Score()) Vina Min(}) Vina Dock(]) Cost({)
r Avg. Med. Avg. Med. Avg. Med. Avg.
-5.41  -6.01 -6.32 -6.28 -7.28 -7.39 1
-5.55 -6.27 -6.49 -6.54 -7.35 -7.51 1.01
-5.58 -6.10 -6.49 -6.54 -7.35 -7.51 1.04
-5.61 -6.27 -6.49 -6.48 -7.53 -7.53 1.08
-6.51 -7.18 -7.50 -7.38 -8.54 -8.38 1.12
-5.63 -6.12 -6.41 -6.37 -7.32 -7.42 1.14

—
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6. Conclusion

DiffGap addresses critical limitations in diffusion-based molecular generation through adap-
tive sampling and pseudo-molecule estimation. By dynamically aligning training trajecto-
ries with inference dynamics to mitigate exposure bias and error accumulation, the frame-
work ensures stable learning of 3D molecular distributions while preemptively adapting
to input biases.Evaluations on CrossDocked2020 confirm DiffGap’s superiority in generat-
ing molecules with enhanced docking scores and binding affinities, outperforming existing
methods. The primary impact of this work is its versatility as a general-purpose framework
that can be integrated as a plug-in to enhance various diffusion-based architectures. By
generating molecules with superior docking scores and binding affinities, DiffGap offers a
robust computational toolkit to accelerate structure-driven drug discovery. However, we
acknowledge that this mechanism is specific to the diffusion model and that the underlying
principles are not yet understood, making it difficult to continue optimizing.
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