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Abstract

When we experience a visual stimulus as beautiful, how much of that ex-
perience derives from perceptual computations we cannot describe versus
conceptual knowledge we can readily translate into natural language? Disen-
tangling perception from language in visually-evoked affective and aesthetic
experiences through behavioral paradigms or neuroimaging is often empir-
ically intractable. Here, we circumnavigate this challenge by using linear
decoding over the learned representations of unimodal vision, unimodal
language, and multimodal (language-aligned) deep neural network (DNN)
models to predict human beauty ratings of naturalistic images. We find
that unimodal vision models (e.g. SimCLR) account for the vast majority of
explainable variance in these ratings. Language-aligned vision models (e.g.
SLIP) yield small gains relative to unimodal vision. Unimodal language
models (e.g. GPT2) conditioned on visual embeddings to generate captions
(via CLIPCap) yield no further gains. Caption embeddings alone yield
less accurate predictions than image and caption embeddings combined
(concatenated). Taken together, these results suggest that whatever words
we may eventually find to describe our experience of beauty, the ineffable
computations of feedforward perception may provide sufficient foundation
for that experience.

1 Background

Imagine a beautiful sunset; then imagine how you might describe it to your friends. What
words might you use to capture what made this particular sunset beautiful, compared to other
sunsets that you’ve seen before? How confident would you be that those words accurately
convey the ”feeling” of that experience? How much would your friends experience that
beauty through your words?

Aesthetic experience (the experience of beauty) is a universal phenomenon without a universal
definition. Centuries of debate, from antiquity onwards, have asked why we experience
beauty, and where it comes from (Ross, 1951; Tatarkiewicz, 2006; Reber, 2012; Chatterjee,
2014; Palmer et al., 2013; Menninghaus et al., 2019; Graham, 2019; Skov and Nadal, 2020;
Redies et al., 2020; Isik and Vessel, 2021; Vessel, 2022). A central theme in these debates is
the notion of ineffability: the extent to which our experience of beauty can be adequately
described in natural language (Kant, 1987). Given the inherent subjectivity of affective
self-report, researchers have in many cases attempted to better operationalize ineffability by
localizing or attributing our experience of beauty to various points along an axis, which at
one end conceptualizes aesthetic experience as the product of a highly encapsulated process
that is inaccessible to language and at the other assumes beauty is the product of conscious,
deliberative, verbalizable thought (Vessel and Rubin, 2010; Schepman et al., 2015; Shimamura
and Shimamura, 2012; Redies, 2015; Brielmann and Pelli, 2017).

These debates are challenging and difficult to arbitrate with behavior (i.e. empirical aesthetics)
or neuroimaging (i.e. neuroaesthetics). In this work, we suggest that one potential route
for moving this debate forward is with the use of computational models (i.e. computational
aesthetics) in the form of deep neural networks (Brielmann and Dayan, 2022). Deep neural
network models trained on canonical computer vision and natural language processing tasks
allow us to systematically control the kinds of computations and information processing

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

mechanisms a given system can use to make inferences about aesthetic stimuli. Here, we use
a linear decoding method to assess how well we can predict human ratings of beauty for a
diverse set of naturalistic images from the features of unimodal and multimodal deep neural
network models never trained explicitly on predictions of beauty. Our main goal in this is to
better understand the relationship between representation learning and aesthetic experience,
and how various task modalities modulate that relationship.

2 Methods

Our main source of human ratings in these experiments is the OASIS dataset (Kurdi et al.,
2017), a set of 900 images curated to span a 7-point scale of arousal and valence ratings,
and to which ratings of aesthetics were later added (Brielmann and Pelli, 2019). Each
image comes with a rating that is the average of 100 to 110 human raters. To predict
these group-average affect ratings, we use cross-validated regularized (linear) regression over
features extracted from (pretrained) deep neural network models, none of which receive
any prior training on aesthetic targets. To compute these regressions, we proceed layer by
layer through each network, extracting the features and decoding the aesthetic ratings from
these features in a procedure designed to mimic standard methods (e.g. MVPA (Haxby,
2012)) for (supervised) linear decoding from brain recordings. That is to say, we use each
feature map to predict how subjects will rate an image, then correlate those predicted ratings
with the actual ratings provided by the participants. The higher the correlation, the more
information about aesthetics is available in a given feature map, with no more than a linear
regression necessary to convert network activity into an aesthetic prediction. See Figure 2A
and Appendix A.2 for details.

The logic here is one of representational sufficiency: If the predictions of our feature regressions
are accurate, it suggests that whatever the underlying computations producing aesthetics
in the human brain may be, they need not be any more sophisticated than a single affine
transformation of the kinds of representation produced by the feedforward, hierarchical
operations of a deep neural network. In this analysis, we use this logic to probe what kinds
of deep net representations are sufficient for predicting aesthetics, and better triangulate the
computational pressures (i.e. tasks) that produce them.

In this particular analysis, the pressures of interest are primarily at the level of the train-
ing data (i.e. image pixels or tokenized words) – which define a given model’s modality.
”Unimodal vision” models in this schematic are models that learn solely from images via
self-supervision. (Category-supervision, in the form of explicit training on one-hot category
labels, introduces a linguistic confound). ”Unimodal language” models in this schematic
are models that learn solely from tokenized text, again via self supervision (masked or next
word prediction). ”Multimodal models” are models that learn from vision and alike, usually,
but not exclusively through self-supervision. By the logic of representational sufficiency,
comparing these models in controlled experiments allows us to more directly isolate the
kinds of information – visual, linguistic, and mixed – that are sufficient for the prediction of
human beauty judgments.

3 Results

All scores reported in these results are in units of ‘explainable variance explained’: the
squared Pearson correlation coefficient between predicted and actual ratings divided by
the squared Spearman-Brown splithalf reliability of the ratings across subjects (the ‘noise
ceiling’). Given the quantity of subjects underlying the average, the noise ceiling for this
data is extremely high at rPearson = 0.988 [0.984, 0.991]. Unless otherwise noted, we report
the score of a model’s (cross-validated) maximally predictive layer as that model’s overall
score.

Unimodal Vision Models In line with previous work, we first show that pure unimodal
vision models, in the form of contrastive (self-supervised) image models, are capable of
predicting up to 75% of the explainable variance in the group-average beauty ratings. From
a sample of 18 contrastive learning models that learn only over augmented image instances

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Schematic of our feature regression pipeline for decoding affective information
from deep net responses. Our target in these experiments are group-average beauty ratings,
which we predict by extracting image features from a candidate deep neural network model,
(optionally) reducing their dimensionality, then employing them as predictors in a cross-
validated ridge regression with the group-average beauty ratings as output. This method
gives us a beauty decoding score per layer per candidate model.

(e.g. Dino, SimCLR, SWaV), the average explained variance is 0.607 [0.566, 0.641]. The most
predictive model, a RegNet64 trained using the SEER pretraining technique (Goyal et al.,
2021) explains 74.6% of explainable variance. While trained using roughly a billion images,
this model’s representations are learned without any form of symbolic (i.e. linguistic) training
targets. This means that models trained on images alone can account for the majority of
explainable variance in human beauty ratings.

Multimodal Vision Models The CLIP models (Radford et al., 2021) are a series of models
trained on the task of linguistic alignment: given an image and a caption paired with that
image, the model encodes both in an equidimensional latent space, computes the cosine
similarity between them, then (during training) back-propagates any similarity less than 1 as
a loss term. The representations of the visual encoder are thus directly shaped by language.
OpenAI’s CLIP models (S/16, B/32, L/14, et cetera) all show small, but significant gains
over the best-performing unimodal image model (RegNet64-SEER), with 80.5% to 87% of
explainable variance explained.

The problem, however, with comparing the CLIP model directly to other models is that
CLIP is trained on a proprietary dataset of 400 million image-text pairs not yet available
to the public. To address this discrepancy, we use the SLIP models (Mu et al., 2021) – a
series of Vision Transformers (Small [ViT-S], Base [ViT-B], & Large [ViT-L]), all trained
on the YFCC15M dataset (15 million image-text pairs), but only on 1 of 3 tasks: pure
SimCLR-style self-supervision; pure CLIP-style language alignment; or the eponymous SLIP
– a combination of self-supervision and language alignment. The SLIP models allow us to
control for the influence of language, holding architecture and dataset constant. (A schematic
of this controlled modeling procedure involving the SLIP models may be found in Figure
3A).

The pattern of results across the SLIP models (Figure 3B) (and in particular the comparison
between SimCLR and SLIP) suggests adding language to purely visual learning does indeed
increase the downstream predictive accuracy of aesthetic ratings. Specifically, while pure
CLIP-training shows discrepant gains over pure SIMCLR-training across the 3 vision trans-
former sizes (performing slightly better in ViT-S and ViT-B, and slightly worse in ViT-L),
SLIP-training outperforms its pure SimCLR counterpart across all 3 transformer sizes by a
significant, at least midsize margin. A bootstrapping analysis using 1000 resamples of the
human subject pool (averaging across model size) shows the difference between SimCLR and
CLIP to be nonsignificant, with a bootstrapped mean of 0.0098 [-0.027, 0.041] (p = 0.67),
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Figure 2: A Schematic of our controlled modeling experiment using the SLIP model family
(Mu et al., 2021). ”Controlled” in this case refers to the isolation of singular axes of interest
across distinct sets of model that vary exclusively along these axes (with other possible
variations held constant). In SLIP, both the training dataset (YFCC15M) and architecture
(ViT-[S,B,L]) are held constant across 3 variants of model (SimCLR, CLIP, and SLIP). The
difference between SimCLR and SLIP (a combination of SimCLR’s visual augmentation
regime with CLIP’s language alignment in a unified contrastive learning pipeline) are a
direct empirical instantiation of variation in the presence or absence of training provided by
language. B Results from our feature regression pipeline as applied to SimCLR (a unimodal
vision model), CLIP (a language-aligned model) and SLIP (a model that combines unimdal
vision training and language alignment) – holding dataset and architecture constant. B1 In
the top plot, we see results across layers (the semitransparent jagged lines are individual
layer scores; the curves are the output of a generalized additive smoother across layers;
the SLIP models each have 3 variants: ViT-[Small, Base, Large]). The takeaway here is
that for all models, predictive accuracy is generally higher in deeper layers (with the final
embedding layer often the highest). B2 In the bottom plot, we see the results from the
maximally predictive layers of each model. Error bars are 95% confidence intervals across
1000 bootstrap resamples of the human subject pool. The takeaway here is that adding
language alignment (without taking away unimodal vision training) in the form of the SLIP
objective does significantly increase downstream readout of aesthetic information.

while the difference between SimCLR and SLIP is significant, with a bootstrapped mean of
0.067 [0.037, 0.096] (p ¡ 0.001).

Language Models via Captions Adding language to visual representations by way of
CLIP-style alignment (in concert with contrastive visual augmentation regimes) does seem
to facilitate better downstream prediction of aesthetic ratings. But what exactly is language
doing here? Is it really just adding to the visual representation or is it changing that
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representation in some fundamental way? To assess this, we opted to test the outputs of a
unimodal language model conditioned on CLIP’s visual encoder using our feature regression
pipeline. This required first converting the visual embedding generated by CLIP into an
embedding suitable for a language model. For this, we used an adapter module called
CLIP-Cap (Mokady et al., 2021). CLIP-Cap is a closed-loop system that employs a small
multilayer perceptron (MLP) or transformer model to project the visual embedding from
a CLIP model to a token embedding – called a ‘prefix embedding’ – that can be used by
GPT2 (Radford et al., 2019) to generate a natural language caption.

For this experiment (summarized with detail in Figure 3), we use CLIP-Cap’s MLP method
of projection, which defaults to a prefix embedding length of 10 and uses CLIP-ViT-B/32 as
its visual backbone. In the same way we decode aesthetics from features evoked by images
in visual models, here we decode aesthetics from features evoked by the ‘embeddings’ (for
prefix and caption alike) in the language model: that is to say, layer by layer, and using
the same regression method. We find first and foremost that while the projected visual
prefix embedding preserves all the information necessary to decode aesthetics as accurately
as in the CLIP visual encoder, the hierarchical language processing of GPT2 facilitates
no additional decoding. (The accuracy of CLIP’s visual encoder is 84.8% [83.2%, 85.6%]
explainable variance explained; the accuracy of GPT2 operating over the prefix embedding
never exceeds 85.3%.).

In this case, then, the features evoked across the language model do not seem to be adding
information – though neither do they seem to be losing it. This invites the question of
whether language alone might be sufficient for capturing the variance explained with the
prefix embedding. To test this, we took the most probable caption generated from the GPT2
model for each prefix embedding, and passed that caption back through the model with
the prefix removed. While we found these captions were unable to account for the full 85%
of explainable variance explained by the vision-conditioned prefix embeddings, we found
them capable of explaining a nontrivial 38.6% [37.2, 40.1] of explainable variance in aesthetic
ratings. Count-vectorized embeddings of these same captions explain only 19.4% [18.6, 20.1]
of the explainable variance – suggesting the predictive power of these language features is
not attributable to single-word concepts (or confounds) alone.

Better Captions, Better Language Models Our experiment with the translation
(machine to machine) of vision into language via end-to-end captioning does leave open
the possibility that better language models and better (more accurate, or more descriptive)
machine-generated captions could close the gap on the variance explained by visual models
per se. Even state-of-the-art captioning models make consistent, common-sense errors no
human would make in describing an image (Wang et al., 2022a). What does this mean for
our current experiment with automated captioning?

One point to consider is that we are not necessarily interested in the accuracy of the caption
per se, but the extent to which that caption reflects the information content available in the
visual embeddings of CLIP, which themselves may not accurately reflect category-level or
more generally semantic content. The issue then is not whether CLIP-Cap (or other systems
that interpret CLIP’s visual embeddings in service of caption generation, such as Cho et al.
(2022) provides accurate human-legible captions, but whether those captions reflect a coherent
summary function of CLIP’s visual embeddings. This is admittedly difficult to measure,
but because CLIP-Cap and similar models are gradient-based, we can say definitively, at
least, that the resultant captions are literal functions of CLIP’s vision. Another potential
issue with the use of machine-generated captions specifically in this pipeline are the large
language models we use to transform those captions into embeddings appropriate for our
feature regression pipeline. CLIP-Cap uses as its language transformer a standard (midsize)
GPT2 model. Language models are known to be far more accurate with scale (Kaplan et al.,
2020). Could other language models (in conjunction with better captions) facilitate greater
decoding accuracy?

While by no means an exhaustive experiment, we explored this question by expanding our
caption-based decoding paradigm to two other sets of captions and two other large language
models. For captions, we considered CLIP-Caption-Reward (Cho et al., 2022) (another
CLIP-based caption-generation algorithm that uses CLIP similarity as a reward function)
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Figure 3: A Schematic of our experiment using CLIPCap (Mokady et al., 2021) to translate
the visual embeddings of CLIP into natural language by way of a GPT2 text decoder:
The process begins with the embedding of an image (red line) into the latent space of
a CLIP-ViT-B32 model. These embeddings contain only feedforward visual information.
CLIP’s latent visual embedding is then piped into GPT2 by way of CLIPCap’s MLP adapter,
and in the first pass through GPT (blue line), the only context available to GPT2 for next
token generation is the visual information instantiated in CLIPCap’s ”prefix” tokens. Once
a caption is produced, we concatenate (purple line) this caption with the original visual
prefix and pipe it once again through GPT2 to extract embeddings that instantiate both the
original visual information in the prefix, as well as any added information instantiated in
the caption. Finally, we remove the visual prefix from the caption, and extract the GPT2
embeddings for the generated caption alone, effectively extracting the pure linguistic context
provided by this caption. B Results of the CLIPCap translation experiment: The red line
in the facet on the left are the scores across the layers of the CLIP visual encoder used to
generate an image ‘prefix’ embedding that is subsequently passed to GPT2 for captioning.
The line in blue in the facet on the right is the predictive power of that prefix embedding as
it is processed across the layers of GPT2. In other words, this blue line tracks the potential
of GPT2 to facilitate better aesthetic decoding by extracting further information from the
visual prefix. The line in green is the predictive power of the generated caption passed back
through GPT2 without the prefix embedding. This line tracks how well (machine-generated,
image-conditioned) language alone might predict aesthetic ratings. The line in purple is
the predictive power of the generated caption passed back through GPT2 with the prefix
embedding. This line tracks whether visual embeddings and image-conditioned language
together might outperform either one alone. The difference between the blue line and
the green line represents the difference in predictive power between CLIP’s visual features
and GPT2’s linguistic features – the difference, in other words, between language-aligned
perception and language alone. This gap is substantial. The negative slope on the purple
line seems to be an artifact of the feature regression overfitting to the embedding complexity
added by the caption. Each line in this plot may be thought of as instantiating a form of
”context window” – a term used in natural language processing to describe one information
provides precedent for any given ”next token” prediction in the language-generating process.
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and GIT (Generative Image-to-Text Transformer) (Wang et al., 2022a). For language
models, we considered GPT2-XL (the larger version of the GPT2 used by CLIPCap for
caption generation) and the All-MPNet-Base-V2 variant of S-BERT (Reimers and Gurevych,
2019) (the largest thereof). While no single caption and model combination exceeds 58% of
explainable explained variance (compared to the visual encoder’s 82%), the best combination
(SBERT-over-GIT captions), improves nearly 20% over the baseline we test in the main
results (GPT2-over-CLIPCap) at 38.5%. This latter caption-model combination notably
does not involve CLIP, which makes it irrelevant as a method of interpreting the CLIP visual
encoder’s predictive accuracy, but it does suggest one potential route forward for assessing
the impact of language on aesthetic judgment. A more detailed summary of these experiment
results may be found in Table 1 below.

Table 1: Model Results with Confidence Intervals and Scores

Score

Model Mean Lower CI Upper CI

CLIP-ViT-B/32-over-Images 0.827 0.818 0.835
GPT2-over-CLIPCap 0.386 0.372 0.401
GPT2-over-CLIPReward 0.464 0.447 0.481
GPT2-over-GIT 0.424 0.407 0.440
GPT2XL-over-CLIPCap 0.385 0.368 0.401
GPT2XL-over-CLIPReward 0.452 0.435 0.469
GPT2XL-over-GIT 0.478 0.457 0.496
SBERT-over-CLIPCap 0.516 0.505 0.527
SBERT-over-CLIPReward 0.548 0.536 0.560
SBERT-over-GIT 0.599 0.586 0.610

( Colored row corresponds to the reference (vision) model.)

4 Conclusion

Aesthetic experience is no single phenomenon, but a pluralistic combination of multiple
different factors: our sensory and social ecologies, our bodies, our idiosyncratic developmental
trajectories, our beliefs, and our perceptions (Biederman and Vessel, 2006; Shimamura and
Shimamura, 2012; Redies, 2015; Germine et al., 2015). An overarching goal of this and
similar works is in some sense to approximate what percentage of aesthetic experience may be
attributable to certain kinds of computational processes (Brielmann and Pelli, 2017; Redies
et al., 2020). Here, we show that while perceptual processes in the form of feedforward,
hierarchical, subsymbolic visual feature extraction are so far the best predictors of how people
on average will rate the aesthetics of naturalistic image stimuli, language (alignment) may
play a statistically meaningful role in shaping these representations. Furthermore, it seems
that whatever the nature of the visual semantics that undergird the successful prediction of
aesthetic responses in multimodal models like CLIP, at least a nontrivial portion of these
semantics may be translated to machine-generated natural language descriptions. Aesthetic
ineffability in this sense may be less of a binary (effable or ineffable) and more of a gradient.
The difference between the predictive power of an image in visual feature space and its
description in natural language space could serve as a direct quantification of this gap.

Of course, this exact same point makes clear a few inherent limitations to some of the
methods we’ve used here: simply put, not all image descriptions are made equal. Just as
an expert orator may be more capable of evoking emotion with language than a novice, so
too might certain descriptions communicate aesthetic value more effectively than others –
even without explicitly affective qualifiers. (Our experiment with better caption models
certainly suggests as much). Exposition of key details or interactions in a scene might be
essential to communicating its aesthetic quality. To the extent that this is true adds immense
complexity to the endeavor of disentangling vision from language, but the use of machine
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vision and language models does potentially allow us to pursue this disentanglement in ways
that weren’t necessarily available to experimentalists before.

An important caveat to the use of these models in empirical pipelines, however, is that it
requires a great deal of conservatism that may (at first glance) seem somewhat out of step
with the current zeitgeist of large-scale generative artificial intelligence (e.g. the development
of powerful, and increasingly multimodal, LLM-based chatbots such as ChatGPT) (c.f. Zador,
2019; Bowers et al., 2022), and the near-daily production of state-of-the-art models whose
latent embeddings may subserve highly accurate predictions of a wide range of phenomena
in behavior and brains alike (e.g. (Wang et al., 2022b; Haskins et al., 2023)) – including
aesthetics (Hentschel et al., 2022; Xu et al., 2023). This conservatism need not necessarily
be applied to the further development of these models (whose applied competence suffices
as evidence of progress), but it should be applied to any inferences we make about the
computations of the human mind based on the computational internals of these models.
We believe that such inferences can in most cases be made more rigorously on the basis of
controlled model rearing (c.f. (Wood et al., 2020)) like the ones allowed for by distinct ”sets”
of models like the SLIP family.

In terms of future work for this particular application of multimodal DNNs to aesthetics
research, one immediate priority to assess the extent to which methods like consensus-
based caption-scoring (Vedantam et al., 2015) could be used to reconcile divergent natural
language descriptions of the same stimulus into a single representation – something that might
allow us to supplement our machine-generated captions with crowdsourced human captions.
Aggregating multiple natural language descriptions into a single coherent embedding might
also be the key to closing the distance between visual representations and natural language
descriptions that match these representations in terms of their downstream predictive power.
Other, less proximate work should reconsider what it would mean for an affective experience
(like the experience of beauty) to be communicated effectively between one agent and another,
and whether this kind of communication has implications for learning.
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A Appendix

A.1 Code, Data, & Compute Specifications

The OASIS dataset is publicly available available under a Creative Commons License at
the following URL: https://osf.io/6pnd7/ All code will be made available upon publication.
All experiments were run on a single Linux machine with 8 RTX3090 GPUs and 756GB of
RAM. Most computations were CPU intensive and GPU use could be avoided entirely.

A.2 Method Details: Feature Regression

Our feature regression pipeline consists of 4 distinct phases: feature extraction; dimensionality
reduction; ridge regression; cross-validation and scoring.

Feature Extraction We consider feature extraction from ‘every layer’ to mean the sampling
of network activity generated after each distinct computational suboperation in a deep neural
network model. This means, for example, that we consider a convolution and the nonlinearity
that follows it as two distinct operations that produce two distinct feature spaces, both
of which we consider candidates for decoding. If a layer returns a tensor with multiple
components (such as a convolutional layer) we first flatten the tensor to a single component,
such that the layer represents any given image as a feature vector. The layer thus represents
a dataset of n images as an array F ∈ Rn×D, where D is the dimensions of the feature vector.

Sparse Random Projection For some deep-net layers D is very large, and as such
performing ridge regression directly on F is prohibitively expensive, with at best linear
complexity with D, O(n2D) (Hastie and Tibshirani, 2004). Fortunately it follows from the
Johnson-Lindenstrauss lemma (Johnson, 1984; Dasgupta and Gupta, 2003) that F can be
projected down to a low-dimensional embedding P ∈ Rn×p that preserves pair-wise distances
of points in F with errors bounded by a factor ϵ. If u and v are any two feature vectors from
F, and up and vp are the low-dimensional projected vectors, then;

(1− ϵ)||u− v||2 < ||up − vp||2 < (1 + ϵ)||u− v||2 (1)

1 holds provided that p ≥ 4 ln(n)
ϵ2/2−ϵ3/3 (Achlioptas, 2001). With n = 900 for our dataset, to

preserve distances with a distortion factor of ϵ = .1 requires ≥ 5830 dimensions. Thus we
chose to project F to P ∈ Rn×5830 in instances where D >> 5830. To find the mapping from
F to P we used sparse random projections following Li et al. (2006). The authors show a P
satisfying 1 can be found by P = FR, where R is a sparse, n× p matrix, with i.i.d elements

rji =



√√
D

p
with prob.

1

2
√
D

0 with prob. 1− 1√
D

−

√√
D

p
with prob.

1

2
√
D

(2)
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Ridge Regression with LOOCV We used regularized (ridge) regression to predict the
average human ratings of images, Y, from their associated (dimensionality-reduced) deep net
features, P. As our goal was not to identify a particular regression model for later use, but
rather get a best estimate for the linear read-out of beauty scores from deepnet feature spaces,
we utilized all the data at our disposal with a leave-one-out (generalized) cross-validation
procedure. For every image in our dataset (∀i ∈ {1 . . . 900}) we fit the coefficients βi of

a regression model on the remaining data, such that Y−i = P−iβ̂i + ϵ with minimal ∥ϵ∥
(error). Ridge regression penalizes large ∥β̂∥ proportional to a hyper-parameter λ, which
is useful to prevent overfitting when regressors are high-dimensional (as with P). We first
standardized Y and the columns of P to have a mean of 0 and standard deviation of 1. Let
P−i and Y−i denote P and Y with row i missing, then each β̂i is calculated by;

β̂i =
(
P′

−iP−i + λIp
)−1

P′
−iY−i (3)

Each β̂i is then used to predict the beauty rating from the deepnet feature projection of each
left out image;

ŷi = Piβ̂i, Ŷ = {ŷi}900i=1 (4)

The hyper-parameter λ we set at 1e4, a value we determined using a logarithmic grid
search over 1e-1 - 1e6 on an AlexNet model that we subsequently exclude from the main
analysis. λ = 1e4 yielded the smallest cross-validated error (∥Y− Ŷ∥) when averaging across
layers. We used the RidgeCV function from (Pedregosa et al., 2011) to implement this

cross-validated ridge regression, as its matrix algebraic implementation identifies each β̂i in
parallel, resulting in significant speedups (Rifkin and Lippert, 2007).

Scoring In this analysis, we score each deepnet layer by computing the Pearson correlation
coefficient between its predicted ratings, Ŷ, and the actual group-average affect ratings from
the human subjects, Y. To convert this Pearson correlation coefficient into a score that
represents the percentage of explainable variance explained, we divide the square of this
coefficient by the square of the Spearman-Brown split-half reliability that constitutes the
noise ceiling.

Note that previous empirical work suggests the sparse random projection step in this pipeline
is largely optional and can, without substantial decrease in accuracy, be eliminated in favor
of directly using the full-size, flattened feature maps in the regression.
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