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ABSTRACT

Model-based and model-free reinforcement learning (RL) each possess relative
strengths that prevent either algorithm from strictly dominating the other. Model-
based RL often offers greater data efficiency, as it can use models to evaluate
many possible behaviors before choosing one to enact. However, because models
cannot perfectly represent complex environments, agents that rely too heavily on
models may suffer from poor asymptotic performance. Model-free RL avoids
this problem at the expense of data efficiency. In this work, we seek a unified
approach to RL that combines the strengths of both algorithms. To this end, we
propose equivalent policy sets (EPS), a novel tool for quantifying the limitations
of models for the purposes of decision making. Based on this concept, we propose
Unified RL, a novel RL algorithm that uses models to constrain model-free RL to
the set of policies that are not provably suboptimal, according to model-based
bounds on policy performance. We demonstrate across a range of benchmarks
that Unified RL effectively combines the relative strengths of both model-based
and model-free RL, in that it achieves comparable data efficiency to model-based
RL and exceeds the data efficiency of model-free RL, while achieving asymptotic
performance similar or superior to that of model-free RL. Additionally, we show
that Unified RL outperforms a number of existing state-of-the-art model-based
and model-free RL algorithms, and can learn effective policies in situations where
either model-free or model-based RL alone fail.

1 INTRODUCTION

Recent successes in model-based reinforcement learning (MBRL) have demonstrated the enor-
mous value that learned representations of environmental dynamics (i.e., models) can confer to
autonomous decision making. For example, models allow agents to evaluate many possible future
behaviors, without requiring additional expensive and potentially dangerous environmental interac-
tions. This process is referred to as planning, and is a cornerstone of autonomous decision making.
Models also hold the potential to facilitate cross-task knowledge transfer (Killian et al., 2017) and
intelligent exploration (Lowrey et al., 2018; Sekar et al., 2020; Mehta et al., 2021; 2022). In practice,
MBRL algorithms often achieve higher data efficiency than their model-free counterparts (Deisen-
roth & Rasmussen, 2011; Heess et al., 2015; Gal et al., 2016a; Chua et al., 2018; Janner et al., 2019;
Hafner et al., 2019; 2020; Lin et al., 2023).

Although useful, models come with their own set of drawbacks. Because models typically posses
limited representational capacity, they will always fall short of capturing the full complexity of the
real environmental dynamics, which may help explain why MBRL often fails to match the asymp-
totic performance of model-free RL (MFRL) (Wang et al., 2019). This limitation of models is
exacerbated by the objective mismatch problem (Lambert et al., 2020): model-learning objectives
typically used in MBRL, which are based on some generic measure of accuracy, are often misaligned
with the overall goal of increasing reward, which has been shown to negatively impact MBRL per-
formance in practice (Agarwal et al., 2021).

Several recent approaches have attempted to address objective mismatch by deriving model-learning
objectives that are more aligned with the overall RL objective, to enable learned models to be more
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useful for policy improvement (Joseph et al., 2013; Luo et al., 2018; Lambert et al., 2020; Ra-
jeswaran et al., 2020; Chow et al., 2020; Grimm et al., 2020; D’Oro et al., 2020; Eysenbach et al.,
2022; Ghugare et al., 2022). However, because practical models will always differ from the true dy-
namics by some degree, we hypothesize that over-reliance on models will invariably result in some
degree of suboptimality. For this reason, we take an alternative approach to addressing the objec-
tive mismatch problem. We seek to develop agents that understand the limitations of their models,
allowing them to switch to an alternative (e.g., a model-free) learning paradigm in situations where
models are not useful for policy improvement. We hypothesize that such an agent would enjoy the
benefits of both model-based and model-free learning. To this end, we propose equivalent policy
sets (EPS), a novel tool for quantifying the limitations of a model for estimating optimal behaviors.
We define the EPS as the set of all policies that are not provably suboptimal, using bounds on the
performance of candidate policies, computed using the model. Intuitively, the EPS captures the
usefulness of a particular model class for discerning optimal from suboptimal policies.

Based on the concept of the EPS, we propose Unified RL, a principled approach to combining MBRL
and MFRL that takes advantage of their relative strengths. Unified RL constrains the policy found
by MFRL (e.g., soft actor-critic) to lie within the set of non-provably suboptimal policies (the EPS).
Here, models are used as a sort of “pre-filtering” step that eliminates provably suboptimal policies
from consideration by MFRL. Unified RL leverages the ability of models to rapidly rule-out subopti-
mal candidate behaviors, while avoiding limitations on asymptotic performance that they introduce.

We show empirically that Unified RL is able to combine the benefits of both model-based and
model-free RL on a range of challenging continuous control benchmarks. Furthermore, we show
that Unified RL outperforms a wide range of state-of-the-art model-based and model-free RL algo-
rithms. Finally we show that Unified RL is robust to failure of either its model-based or model-free
components. Specifically, when distractors are introduced that prevent the agent from learning well-
aligned models, Unified RL continues to make learning progress using model-free policy updates.
On the other hand, when poorly selected model-free hyperparameters are used that cause MFRL to
fail, Unified RL resorts to MBRL.

2 BACKGROUND

We represent the environment with which the agent interacts as a Markov decision process (MDP)
with initial state distribution s0 ∼ p0(s0), state transition dynamics st+1 ∼ T (st+1|st, at), reward
function rt ∼ R(rt|st, at) for t ∈ {0, ..., T}, and discount factor γ ∈ [0, 1]. For simplicity, we
assume γ = 1 and hence ignore it in future exposition. We consider continuous control problems,
wherein the agent learns a policy π ∈ Π where π : S ×A → [0,∞) is a state-dependent probability
density function over a real-valued action space.

In this work, we formulate the RL problem in Bayesian terms, although the approach is not restricted
to using Bayesian algorithms. We are therefore concerned with the Bayesian posterior over state
transition and reward functions, given by p(w|D) = p(D|w)p(w)/p(D), where D is comprised of
data observed thus far in the environment, w denotes a parameter vector that parameterizes both
the state transition and reward functions, and p(w) is our prior. The prior represents our belief
about the dynamics before observing data D, and can be informed by domain-specific knowledge
or from previous tasks. In this work we do not assume that we possess any prior knowledge, and
therefore choose a generic prior (Sec. 3.2). We denote our models of the state transition function
and reward function, conditioned on a certain parameter vector w, as p(s′|s, a, w) and p(r|s, a, w),
respectively. The distribution of trajectories τ given a particular policy π and parameters w is given
by p(τ |π,w) = p(s0)π(a0|s0)p(r0|s0, a0, w)

∏T
t=1 p(st|st−1, at−1, w)π(at|st)p(rt|st, at, w). Our

inferred posterior distribution over trajectories given the available data D and a policy π is given by
p(τ |D) = Ep(w|D)p(τ |π,w). We denote the expected return of π given a particular parameter

vector w as J(π|w) = Ep(τ |π,w)

[∑T
t=0 rt

∣∣∣π,w]. Finally, we define the Bayesian return of a policy
π to be the expected sum of rewards achieved by π, in expectation over our Bayesian posterior over
trajectories

J(π|D) = Ep(τ |D,π)

[
T∑

t=0

rt

∣∣∣∣∣π,D
]
. (1)
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This is the quantity that our approach to Bayesian RL attempts to maximize. We refer to a policy that
maximizes the Bayesian return π∗ ∈ argmaxπ∈Π J(π|D) as the Bayes-optimal policy. Similarly,
we refer to any policy π /∈ argmaxπ∈Π J(π|D) as Bayes-suboptimal.

For many interesting model classes, exact Bayesian posteriors are intractable, and must therefore
be approximated with some tractable distribution family. We denote approximate posteriors with
q(w; θ) ∈ Q, where θ denotes the parameters of the distribution. For example, if q is a multivariate
normal distribution, θ may contain the mean vector and variance matrix. We henceforth refer to q as
our model, because it encodes our learned representation of (our posterior over) the environmental
dynamics.

3 UNIFYING MODEL-BASED AND MODEL-FREE REINFORCEMENT
LEARNING

MBRL

MFRL

Data

Unified RL Agent Environment

Figure 1: Unified RL combines model-based and
model-free RL using the equivalent policy set
(EPS). At each iteration, data from a shared buffer
are used to update a model-based policy and a
model-free policy. We then check whether the
model-free policy is contained within the EPS,
that is, the set of policies that cannot be proven
to be suboptimal, according to bounds on policy
performance computed using the model. If the
model-free policy is within the EPS, it is used to
collect another episode of data in the environment,
which is added to the data buffer. Otherwise, the
model-based policy is used to collect more data.

Here we introduce the notion of equivalent pol-
icy sets (EPS) as a tool for quantifying the lim-
itations of models for the purposes of approxi-
mating optimal policies. Subsequently, we de-
scribe Unified Reinforcement Learning, which
builds on the concept of the EPS to combine the
strengths of model-based and model-free RL.

3.1 EQUIVALENT POLICY SETS

To achieve our ultimate goal of developing
agents that can flexibly switch between model-
free and model-based learning, agents must un-
derstand the limitations of models for evaluat-
ing and improving policies. To this end, we
propose equivalent policy sets (EPS) as a tool
for quantifying the usefulness of a model for
discerning optimal from suboptimal policies.
More precisely, we define the EPS ΠE(θ,D) ⊆
Π to be the set of policies that are not provably
Bayes-suboptimal, using a model with parame-
ters θ and available data D. To prove the sub-
optimality of a particular policy π, we use our
model to compute a lower bound on (a function
f of) the improvement in Bayesian return of a
new policy π′ over π,

L(π, π′, θ,D) ≤ f((J(π′|D)− J(π|D))) , (2)

where f is a monotonically increasing function. Although one could use any such L, in this work
we take L to be of the form

L(π, π′, θ,D) = E
[
f

(
p(D|w)p(w)

q(w; θ)
(J(π′|w)− J(π|w))

) ]
, (3)

which we derive in the Sec. A.1 of the Appendix using Jensen’s inequality. This particular form of
L requires f to be concave, and is closely related to f -divergences, a generalization of the widely
used KL and Réyni divergences (Li & Turner, 2016; Wan et al., 2020). In the closely-related field
of variational inference, the effect of the choice of f is an active area of research, and gives rise
to various divergence metrics Kingma & Welling (2013); Burda et al. (2015); Li & Turner (2016);
Dieng et al. (2017); Chen et al. (2018); Wan et al. (2020). In this work we primarily consider
f = log, as this is the most well-studied choice of f Blei et al. (2017). L is tight (i.e., inequality
2 holds with equality) when q(w; θ) ∝ p(D|w)p(w)(J(π′|w) − J(π|w)). Note that, although L
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depends on the parameters θ of the approximate posterior q, inequality 2 bounds the exact difference
in Bayesian return between π′ and π.

Inequality 2 allows us to prove the suboptimality of any policy π for which there exists a new policy
π′ (in the same domain as π) such that L(π, π′, θ,D) > f(0), because this condition implies that π′

achieves higher Bayesian return than π, and therefore π is not Bayes-optimal. We can therefore use
L to construct the EPS, which we define to be the set of all policies π for which there does not exist
a provably better π′ ∈ Π, using model parameters θ and data D,

ΠE(θ,D) = {π : max
π′∈Π

L(π, π′, θ,D) ≤ f(0)} . (4)

Equivalent Policy Sets for Understanding the Limitations of Models In the limit of an infinitely
expressive model (that is, q can represent any posterior over w), L is tight, meaning that the EPS
reduces to a singleton set that contains only the Bayes-optimal policy. However, limitations in
modeling resources make this practically infeasible, and in general the model will always contain
some inaccuracies. Existing approaches to MBRL largely have not dealt with this problem, and
instead treat the model’s approximation of the optimal policy as ground-truth. This can result in
highly suboptimal policies, especially when the model is misaligned (Lambert et al., 2020; Agarwal
et al., 2021). The EPS addresses this problem by quantifying how inaccuracies in our imperfect
model translate into uncertainty about the optimal policy, where this uncertainty is represented as a
set of policies that may be optimal, according to our model. Limitations in model class prevent q
from matching the ideal posterior, causing L to be loose and thereby increasing the size of the EPS.
By maintaining this set, we avoid over-reliance on the model, and open the possibility of using an
alternative learning paradigm such as MFRL to choose a policy to deploy. This intuition provides
the basis for Unified RL, which we describe in the next section.

3.2 UNIFIED REINFORCEMENT LEARNING

Algorithm 1 Unified RL
1: Given: initial dataset D
2: for each iteration do
3: πMB , θ =MBRL(D)
4: πMF =SAC(D)

5: Estimate L̂(πMF , πMB , θ,D)

6: if L̂ > −∞ then
7: π = πMB

8: else
9: π = πMF

10: end if
11: for time step t=0,...,T do
12: at ∼ π(at|st)
13: st+1, rt = env.step(at)
14: D ← D ∪ {st, at, rt, st+1}
15: end for
16: end for

Unified RL builds on the concept of the EPS
introduced in the previous section, and is sum-
marized in Alg. 1 and Fig. 1. Unified RL
can be thought of as a model-free RL algo-
rithm, where the policy is constrained to lie
within the EPS. Through this constraint, Uni-
fied RL is able to eliminate many provably sub-
optimal policies from consideration, thus re-
taining the data-efficiency benefits of MBRL.
However, because Unified RL uses the model
only to identify the set of policies that may be
optimal rather than to estimate a single opti-
mal policy, it avoids over-reliance on the model,
and thus avoids the objective mismatch prob-
lem associated with typical MBRL approaches.
Constraining the model-free policy to lie within
the EPS does not in principle prevent MFRL
from discovering the Bayes-optimal policy, as
the Bayes-optimal policy will always lie within
the EPS regardless of the model used to compute the EPS.

We take a simple approach to combining model-based and model-free RL using the EPS, and leave
more complex variants to future work. Before each episode, an MBRL and an off-policy MFRL
algorithm use the available data D to compute what we refer to as the model-based policy πMB and
the model-free policy πMF , respectively. Subsequently, the agent checks whether the model-free
policy is within the EPS; that is, it checks whether or not a lower bound can be constructed using the
model that proves that the model-based policy achieves higher Bayesian return than the model-free
policy. If the model-free policy is within the EPS, the agent executes it in the real environment to
collect one episode of new data. If not, the agent instead executes the model-based policy, which
is guaranteed to be within the EPS. The new data are then added to the shared data buffer, and the
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entire process repeats. Note that this approach does not require the EPS to be represented explicitly.
Instead, the EPS is maintained implicitly in the sense that the lower bound in equation 2 provides
a condition that allows one to check whether a given policy is within the EPS. We describe the
individual components of our approach in more detail below, with additional details in Sec. A.2 of
the Appendix.

Model-Based RL The MBRL component of our algorithm proceeds in two distinct steps: model
training and policy training. During the model training step, we estimate the posterior parameters θ
by fitting a Bayesian LSTM dynamics model to our environmental data D, by maximizing an evi-
dence lower bound on data log likelihood (Kingma et al., 2015; Gal & Ghahramani, 2016b;a),

Lmodel(θ,D) = Ew∼q(w;θ)

 |D|∑
i=1

T∑
t=1

log p(s
(i)
t+1, r

(i)
t |s

(i)
≤t, a

(i)
≤t, w)

−DKL

(
q(w; θ)||p(w)

)
. (5)

Specifically, we use the binary dropout formulation of Bayesian LSTMs (Gal & Ghahramani,
2016a), wherein sampling a weight from the posterior w ∼ q(w; θ) is accomplished by sampling a
binary dropout mask from a fixed Bernoulli distribution (Gal & Ghahramani, 2016b). In this for-
mulation, the prior p(w) is approximately a Normal distribution, while the posterior is a Bernoulli
Gal et al. (2016b). Our dynamics model p(s(i)t+1, r

(i)
t |s

(i)
≤t, a≤t, w) is a Gaussian distribution over

next state st+1 and reward rt with a diagonal covariance matrix, given the states s≤t and actions
a≤t at all previous timesteps. The choice to represent state transition dynamics as Gaussians with
diagonal covariance matrices is similar to past work (Gal et al., 2016a; Chua et al., 2018; Gam-
boa Higuera et al., 2018; Chow et al., 2020; Eysenbach et al., 2022; Freed et al., 2023), with the
primary difference being that our dynamics model is recurrent. Specifically, we use an LSMT dy-
namics model, as we found this to yield more stable gradient-based policy optimization compared
to a simple feed-forward MLP.

During the policy training step, we train a Tanh-Gaussian policy (Haarnoja et al., 2018) to maximize
the expected cumulative reward predicted by our model. Depending on the environment, we found
that one of two methods yielded the best results. In both methods, we start by sampling a set of
weights from our approximate posterior (which corresponds to sampling a set of dropout masks). In
the first method, for each weight, we sample a set of initial states from the initial state distribution,
which we assume to be known. Subsequently, we sample a full T -length trajectory, starting from
each initial state, by iteratively sampling actions from the policy, followed by a reward and state
transition from the model. Given a batch of sampled trajectories, we compute the policy loss as the
negative total reward along the trajectory averaged across sampled trajectories, plus a policy entropy
bonus. Similar to Gamboa Higuera et al. (2018), we found that gradient clipping stabilized policy
optimization and improved results. We refer to this method as full-trajectory policy training, because
full-length trajectories are rolled out.

The second method of policy training that we employ is identical to that used by Hafner et al.
(2019), with the slight modification that trajectories are sampled using various dropout masks, and
trajectories are sampled in raw state space as opposed to latent space. In summary, states are sampled
uniformly from the data buffer, and trajectory segments of length H = 16 are sampled starting from
those states. Value estimates are then computed using a critic network and the predicted trajectory
rewards. The critic is then updated to produce more accurate value estimates, and the policy is
updated to produce higher value estimates. In either case, the dropout mask that we use to sample
a particular trajectory is held constant during the entire trajectory; this is to reflect the fact that
even though there is uncertainty in the dynamics model parameters w, the parameters do not change
during a single trajectory (Gal & Ghahramani, 2016a).

Model-Free RL We use Soft Actor-Critic (Haarnoja et al., 2018) as the off-policy MFRL compo-
nent of our algorithm. We found that standard SAC performed poorly when run off-policy; therefore,
we incorporate two modifications suggested by Ball et al. (2023) that we found yielded superior off-
policy performance while preserving SAC’s on-policy performance. Specifically, we used layer
normalization in our Q networks, and omit the entropy term from the Q network loss.
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Lower Bound Estimation Using the posterior parameters θ obtained during the model learning
process and f = log, it is possible to compute a Monte-Carlo estimate of L as

L̂(πMF , πMB , θ,D) =

K∑
i=1

(
log

p(D|wi)p(wi)

q(wi; θ)
+ log

(
Ĵ(πMB |wi)− Ĵ(πMF |wi)

))
, (6)

for w1, ..., wK ∼ q(w; θ). Here, p(D|wi) is the probability of all state transitions and rewards
in the dataset given parameters wi, and Ĵ(πMB |w)i and Ĵ(πMF |wi) are themselves Monte-Carlo
estimates of the expected return for the model-based and model-free policies respectively, computed
by rolling out a batch of M trajectories from the model using parameters wi and policies πMB and
πMF , respectively. More details on the estimation of this bound are provided in Sec. A.2 of the
Appendix.

We review some useful properties of L̂. As K → ∞ and M → ∞, by the law of large numbers,
L̂ → L. However, for K →∞ and finite M , by Jensen’s inequality, L̂ ≤ L. This property does not
change our algorithm in principle, because L̂ for finite M is still a lower bound on log(J(πMB |D)−
J(πMF |D)). The only practical implication in using L̂ in place of L is that the algorithm becomes
more conservative, preferring model-free RL more often, as it becomes more difficult to prove that
the model-based policy achieves a higher Bayesian return. When K is also finite, L̂ is stochastic,
and we can no longer say it is strictly a lower bound on log(J(πMB |D)− J(πMF |D)), though on
average it is. Practically, the stochasticity of L̂ injects some randomness into policy selection. We
did not find this to be an issue as long as a large enough value of K and M were used.

To check if the model-free policy is in the EPS, we must check whether L̂(πMB , πMF , θ,D) >

log(0) = −∞. Note that in equation 6, all terms except log
(
Ĵ(πMB |wi)− Ĵ(πMF |wi)

))
will be defined and finite. However, as Ĵ(πMB |wi) − Ĵ(πMF |wi) → 0 from the right,
log

(
J(πMB |wi)− J(πMF |wi)

)
→ −∞. Therefore, this term dominates L̂ when the model-

free policy is on or near the boundary of the relevant set, allowing us to simply check whether
Ĵ(πMB |wi) − Ĵ(πMF |wi) > 0, ∀i = 1, ...,K. This property is particularly convenient because
it allows us to ignore the log p(D|wi) term, which would normally require calling the model on the
entire dataset.

4 EXPERIMENTS

Our experiments seek to answer three questions:

1. Can Unified RL successfully combine the strengths of model-based and model-free RL?
2. Does Unified RL perform favorably compared to state-of-the-art prior work?
3. Is Unified RL effective in situations where either MBRL or MFRL alone fail?

We address questions 1 and 2 in Sec. 4.1, and question 3 in Sec. 4.2 and Sec. 4.3. In our experiments,
we consider a range of challenging continuous control tasks from the OpenAI gym benchmark
suite Brockman et al. (2016), Deepmind Control Suite (DMC) Tassa et al. (2018), and the ROBEL
robotics benchmark suite Ahn et al. (2020). Specifically, we consider OpenAI gym Hopper, Walker,
Ant, and Half-Cheetah, as well as DMC Cartpole Swingup and ROBEL DClawTurnFixed. We make
two modifications to the standard environments for the sake of simplicity. First, we disabled early
episode termination in the OpenAI gym tasks, as early termination has been shown to cause issues
for MBRL (Wang et al., 2019). Second, we focus on short time horizon tasks; specifically, we
consider episodes of length T = 100 for all OpenAI gym and DMC tasks, except for Hopper and
Cartpole, which we considered episodes of length T = 200. We found that these episodes were
sufficiently long to allow agents to learn the desired behaviors.

4.1 DATA EFFICIENCY AND ASYMPTOTIC PERFORMANCE

To empirically evaluate the effectiveness of Unified RL at combining the strengths of model-based
and model- free RL, we compare Unified RL to its constituent model-based and model-free compo-
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Figure 2: Training curves on benchmark tasks. Solid lines indicate the average return per episode
across 5 runs, while shaded regions denote 95% confidence intervals. We find that Unified RL
successfully combines the strengths of both model-based and model-free RL. In environments where
either MBRL or SAC strictly dominates the other, Unified RL at least matches the better of these
two algorithms. In situations where MBRL learns faster initially but is eventually surpassed by
SAC, Unified RL achieves higher performance than either algorithm alone. Additionally, Unified
RL also performs favorably compared to the other baselines, and is the only algorithm we tested that
consistently performs well across all tasks.

Table 1: Mean episode return on benchmark tasks. Reported below are episodes returns averaged
across the entire training process for 5 distinct random seeds, with 95% confidence intervals. The
final column is the average rank that each algorithm achieves across all environments. We find that
Unified RL often achieves higher mean episode return compared to either MBRL or SAC, indicating
that Unified RL is able to combine the strengths of both algorithms. Additionally, Unified RL is the
only algorithm we tested that performed consistently well across all tasks, being the most high-
ranking algorithm on average.

Ant Hopper Walker Half Cheetah Cartpole DClawTurnFixed Avg Rank
Unified RL 493 ± 9.9 750 ± 2.4 267 ± 5.9 571 ± 3.5 66.7 ± 0.3 963 ± 11 2.33

SAC 457 ± 7.9 633 ± 14 229 ± 2.1 540 ± 12 67.5 ± 0.9 970 ± 11 3.5
MBRL 311 ± 10 705 ± 16 253.2 ± 0.8 263 ± 48 64.6 ± 0.2 989 ± 16 4.5
ALM 188 ± 77 563 ± 6.2 127 ± 7.6 520 ± 27 31.5 ± 2.9 −177 ± 111 7.33
DDPG 76 ± 6.4 542 ± 42 293 ± 21 422 ± 34 25.3 ± 3.7 877 ± 17 6.83
SVG 443 ± 15 684 ± 14 163 ± 6.6 582 ± 21 65.0 ± 0.3 −705 ± 14 4.83
TD3 204 ± 3.8 632 ± 27 250 ± 4.2 412 ± 23 32.6 ± 7.8 902 ± 26 5.83
HL 319 ± 12 616 ± 4.5 280 ± 19 569 ± 8.2 66.6 ± 1.8 889 ± 29 4.16

PPO 85 ± 1.6 582 ± 18 356 ± 12 104 ± 16 69.2 ± 0.1 −404 ± 56 5.16

nents alone. We also compare to several prior state-of-the-art approaches: Aligned Latent Models
(ALM) (Ghugare et al., 2022), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015),
Twin Delayed DDPG (TD3) (Fujimoto et al., 2018), Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), Stochastic Value Gradient (SVG) (Heess et al., 2015), and Hybrid Learning (HL)
(Pinosky et al., 2023). DDPG, TD3, and PPO are state-of-the-art model-free methods. ALM, SVG
and HL are high-performing algorithms that combine aspects of model-based and model-free RL.

We report our results in two ways. First, we show mean episode return vs. number of environmental
steps in Fig. 2. Here, solid lines indicate average episode return averaged across 5 independent
random seeds, while shaded regions denote 95% confidence intervals. Second, we report the average
episode return across the entire training process for each algorithm, which is equivalent to area
under the learning curve normalized by number of training episodes, in Table ??. This statistic
is relevant because it blends both data efficiency and asymptotic performance into a single scalar
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performance metric. Here again we report the average return across 5 random seeds, with 95%
confidence intervals.

Our first observation is that Unified RL succeeds at combining the strengths of its two constituent
algorithms. In cases where one algorithm strictly dominates, such as Hopper and Walker, we see
that Unified RL does at least as well as the better-performing constituent. Moreover, we find that
in environments such as Ant and Half-Cheetah, where MBRL learns rapidly initially but is eventu-
ally surpassed by SAC, Unified RL achieves higher performance than either algorithm alone. This
finding indicates that Unified RL enables a synergy between MBRL and MFRL that is superior to
simply running both algorithms separately and picking the best one at each timestep. We addition-
ally observe that of all the algorithms we tested, Unified RL was unique in that it performed well
across all tasks. Interestingly, ALM seemed to suffer from instability, possibly due to issues in Q
learning caused by the shorter episode lengths that we use in our experiments.
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4.2 ROBUSTNESS TO MODEL MISALIGNMENT
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Figure 3: Unified RL is robust to both failures in model-based and
model-free RL. (Left) We induce model misalignment by intro-
ducing distractors into the observations of the Ant environment,
which prevents model-based RL from learning effectively. We
find that, in this situation, Unified RL matches the performance
of model-free RL, indicating that Unified RL is robust to failure
of model-based RL. (Right) We induce failure of model-free RL
(SAC) by increasing the entropy bonus to a suboptimal value. In
this situation, we find that Unified RL matches the performance of
model-based RL, indicating that Unified RL is robust to failure of
model-free RL.

One of our central claims is
that Unified RL helps avoid the
objective mismatch problem by
allowing the agent to switch
to MFRL when the model is
misaligned (that is, ill-suited
to helping the agent improve
its policy). To test this claim,
we evaluate Unified RL on a
task that we designed to in-
duce model misalignment in
MBRL. Recall that distractors
are components of the obser-
vation that are predictable but
task-irrelevant. Distractors ex-
acerbate model misalignment,
because typical model-learning
objectives do not prioritize
the modeling of task-relevant
observation components over
the task-irrelevant distractors.
This results in models that
do not accurately represent the
task-relevant components. In
our experiments, we appended
time-dependent sinusoids of fixed frequency to the observations. Sinusoids were grouped together
into groups of 10, where all 10 sinusoids in a group had the same phase. Each group was assigned
a random phase, preventing the model from simply memorizing the distractors. Five such groups
were appended to the observations. The hyperparameters used for SAC, MBRL, and Unified RL for
this experiment were identical to those used in the original Ant environment.

The reward curves for this experiment are shown in Fig. 3. We observe that MBRL utterly fails to
make learning progress in the presence of distractors, while MFRL is relatively unphased. Unified
RL performs slightly better than MFRL, indicating that it is able to effectively fall back on MFRL
when its model is misaligned.

4.3 ROBUSTNESS TO FAILURES OF MODEL-FREE RL

We do not expect MFRL to always achieve higher asymptotic performance than MBRL in all en-
vironments; for example, MFRL may fail to escape a poor local minimum or have poorly tuned
hyperparameters. Unified RL has the advantage over other approaches such as MBRL with Model-
Free Fine Tuning Nagabandi et al. (2018), which runs MBRL for a manually specified number of
episodes before switching to MFRL, in that Unified RL only switches to MFRL when the model-
based policy isn’t provably superior. Therefore, in situations where MFRL fails to learn effectively,
we expect Unified RL to utilize model-based learning exclusively. To test this claim, we compare the
performance of Unified RL to MBRL and SAC in the Ant environment, where the entropy penalty
for both SAC and the SAC component of Unified RL was set far higher than its ideal value. As
expected, this prevented SAC from learning effectively, both alone and within Unified RL. Indeed
we found that Unified RL recognized that SAC was ineffective at solving the task, instead relied
exclusively on MBRL.

5 RELATED WORK

Similar to Duff (2002); Deisenroth & Rasmussen (2011); Gal et al. (2016a); Chua et al. (2018);
Gamboa Higuera et al. (2018); Mehta et al. (2021; 2022), we consider a Bayesian formulation of
MBRL. The characteristic feature of these approaches is an explicit representation of uncertainty in
their estimate of the environmental dynamics. Gal et al. (2016a), Depeweg et al. (2017), and Gam-
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boa Higuera et al. (2018) are most similar to our approach, in that they use Bayesian neural networks
(BNNs) to represent beliefs over dynamics, and learn policies by backpropagating gradients through
model rollouts.

Several recent approaches have been proposed for combining model-based and model-free RL. For
example, Hybrid Learning (Pinosky et al., 2023) used a learned dynamics model to determine an op-
timal time to switch between a planned action sequence and a policy learned using MFRL. Stochastic
Value Gradients (Heess et al., 2015) proposed a spectrum of policy gradient algorithms that range
from model-free methods with value functions to model-based methods without value functions.
Finally, Model-Based RL with Model-Free Fine Tuning initialized MFRL with a policy trained for a
fixed number of episodes using MBRL. The primary drawback to these approaches that is addressed
in our work is that they use hard-coded or heuristic methods for selecting which learning modality to
use in a given situation, rather than switching based on a measure of the model’s ability to contribute
to policy improvement.

Recent approaches for improving model alignment in MBRL optimized policies with respect to
lower bounds similar to L. For example, Luo et al. (2018) considered iteratively constructing lower
bounds that hold locally in policy space, which is then optimized jointly with respect to both the
model and policy. Eysenbach et al. (2022) and Ghugare et al. (2022) considered jointly optimizing
a global lower bound on policy performance with respect to both the model and policy parameters.
Chow et al. (2020) proposed an EM algorithm to jointly improve the model and the policy with
respect to a variational lower bound. One fundamental limitation of these approaches is that they do
not address the suboptimalities introduced by the fact that models have limited representational ca-
pacity. In environments with complex dynamics that the model class is ill-suited to represent, a lower
bound on policy performance may differ significantly from the true objective we wish to optimize
(i.e., L will be a loose bound for the true objective J), resulting in a poorly aligned policy-learning
objective and suboptimal policies. Our approach builds on these ideas, but takes a fundamentally
different approach: rather than using the model to approximate a single optimal policy, we maintain
a set of policies that may be optimal, which is then refined by model-free RL, thereby avoiding
over-reliance on potentially inaccurate models.

6 LIMITATIONS

Our approach has a few limitations that are worth noting. First, our approach does not incorporate
intelligent exploration, and simply assume that the best policy at any given iteration is the ideal
policy to collect new data, be it model-based or model-free. This assumption is potentially disad-
vantageous in environments that require extensive exploration, where short-term reward should be
sacrificed for the purposes of information gain. This limitation could potentially be circumvented
with a slight modification to the bound in equation 3 to include an exploration bonus corresponding
to an approximation of the amount of information gained by executing a particular policy, similar to
that used in Houthooft et al. (2016).

Another important limitaiton is that because Unified RL maintains two separate (model-based and
model-free policies, but only collects data from one in a given episode, at least one of the two policies
will be performing some amount of off-policy learning. This restricts our choice of model-free RL
algorithm to off-policy algorithms, such as SAC or Q-learning. Even though SAC is in principle an
off-policy algorithm, we found standard SAC to perform poorly when learning off-policy, requiring
modifications to the Q learning process (Sec. 3.2) (Ball et al., 2023). This limitation could potentialy
be avoided by modifying the Unified RL algorithm to maintain one policy, that is updated with
model-free RL, but constrained to lie within the equivalent policy set. This could be accomplished
by incorporating a constraint into the model-free policy updates, similar to a trust region as used in
PPO (Schulman et al., 2017).

7 DISCUSSION AND FUTURE WORK

In this work, we propose equivalent policy sets (EPS), which we define as the set of policies that
are not provably Bayes-suboptimal, according to bounds on policy performance constructed using
a model. The EPS provides a valuable tool for quantifying how inaccuracies in the model translate
into uncertainty in their estimate of the optimal policy. Using this tool, agents can better understand
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in what situations models are useful, and when models should be abandoned in favor of model-
free learning updates. Based on this concept, we proposed Unified RL, a novel RL algorithm that
combines the relative strengths of model-based and model-free RL. Unified RL can be thought
of as a model-free RL algorithm, where the enacted policy is constrained to lie within the EPS.
Unified RL retains the data-efficiency benefits of model-based approaches by leveraging models
to rule out provably suboptimal policies. However, by maintaining a set of candidate policies that
may be optimal according to the model, which is then refined using MFRL, Unified RL avoids
over-reliance on models and leverages the asymptotic performance benefits of MFRL. We show
empirically on a wide range of challenging continuous control RL benchmarks that Unified RL
successfully combines the strengths of both MBRL and MFRL, often exceeding the performance
of either algorithm alone. We also find that Unified RL outperforms a number of state-of-the-art
model-based and model-free prior approaches. Finally, we show that Unified RL learns effective
policies in situations where either model-based or model-free RL alone fail.

In this work, we explore one strategy for combining MFRL and MBRL using the EPS, wherein the
agent chooses between a model-based and model-free policy at each iteration. However, other alter-
native approaches exist, which we plan to explore in future work. One alternative that more tightly
integrates the model-based and model-free components would be to incorporate the EPS constraint
directly into the model-free learning updates. We also plan to explore using latent dynamics mod-
els, similar to those used in Dreamer, for Unified RL, as they have been shown to scale well to
high-dimensional observation spaces and complex dynamics Hafner et al. (2019; 2020); Lin et al.
(2023).
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Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with Bayesian neural networks. In Interna-
tional Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=H1fl8S9ee.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Variational
inference via χ upper bound minimization. Advances in Neural Information Processing Systems,
30, 2017.

Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni, Matteo Papini, and Marcello Restelli.
Gradient-aware model-based policy search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 3801–3808, 2020.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230–23243, 2022.

Benjamin Freed, Siddarth Venkatraman, Guillaume Adrien Sartoretti, Jeff Schneider, and Howie
Choset. Learning temporally abstractworld models without online experimentation. 2023.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. Advances in neural information processing systems, 29, 2016a.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016b.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving PILCO with Bayesian neural
network dynamics models. In Data-efficient machine learning workshop, ICML, volume 4, pp.
25, 2016a.

Yarin Gal et al. Uncertainty in deep learning, 2016b.

Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek. Synthesizing neural network
controllers with probabilistic model-based reinforcement learning. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 2538–2544, 2018. doi:
10.1109/IROS.2018.8594018.

Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Russ Salakhutdinov.
Simplifying model-based rl: Learning representations, latent-space models, and policies with one
objective. In The Eleventh International Conference on Learning Representations, 2022.
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A APPENDIX

A.1 DERIVATION OF LOWER BOUND IN EQUATION 3

The difference in Bayesian return between policies π′ and π is given by

J(π′|D)− J(π|D) =

∫
W

p(D|w)p(w)
p(D)

(J(π′|w)− J(π|w)) dw. (7)

By introducing an approximate posterior q(w; θ), we can write the above expression as an expecta-
tion over q,

J(π′|D)− J(π|D) = Eq

[
p(D|w)p(w)
q(w; θ)p(D)

(J(π′|w)− J(π|w))
]
. (8)

Let f̃ be a concave, monotonically increasing function. Taking f̃ of both sides and applying Jensen’s
inequality, we arrive at arrive at a lower bound on f̃(J(π′|D)− J(π|D)),

f̃(J(π′|D)− J(π|D)) = f̃

(
Eq

[
p(D|w)p(w)
q(w; θ)p(D)

(J(π′|w)− J(π|w))
])

(9)

≥ Eq

[
f̃

(
p(D|w)p(w)
q(w; θ)p(D)

(J(π′|w)− J(π|w))
)]

. (10)

Finally, to arrive at L, we define a new concave monotonically increasing function f(x) =

f̃(p(D)x) and substitute this into the above expression to eliminate the constant p(D) term,

f̃(J(π′|D)− J(π|D)) ≥ Eq

[
f

(
p(D|w)p(w)

q(w; θ)
(J(π′|w)− J(π|w))

)]
(11)

= L(π, π′, θ,D). (12)

To prove that π′ achieves higher Bayesian return than π, it is sufficient to show that L(π, π′, θ,D) >

f̃(0) = f(0), thus the data likelihood term p(D) is irrelevant in constructing the EPS.
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A.2 IMPLEMENTATION DETAILS

A.2.1 MODEL ARCHITECTURE AND TRAINING

The dynamics model we used for all tasks consisted of a single linear input layer, followed by
a single-directional, single-layer LSTM cell Hochreiter & Schmidhuber (1997), followed by two
linear layers, and an output layer. The output layer consisted of four separate output heads, one each
for state mean, reward mean, state standard deviation, and reward standard deviation. The standard
deviation output heads used softplus activations to ensure their output was positive, while the mean
layers did not an activation function. ReLU activations were used for all other layers other than the
LSTM cell. State means were represented as learned deltas from previous states. That is, the state
mean output predicts the mean in the difference between the current and last state. All inputs (states
and actions) and outputs (state deltas and rewards) of the dynamics model were normalized before
each period of model training to be of mean zero and unit variance.

Before each layer other than the initial input layer, including each internal layer within the LSTM
cell, a binary dropout mask Srivastava et al. (2014) was applied, which was used by Gal & Ghahra-
mani (2016a) and Gal & Ghahramani (2016b) to represent uncertainty in neural network parame-
ters. Crucially, both in training and when sampling rollouts, the dropout mask is held fixed across
all timesteps in a trajectory Gal & Ghahramani (2016b), while different dropout masks are sampled
across trajectories. The dynamics model was trained with the following loss computed on a batch of
trajectories sampled from the data buffer:

Lmodel =
1

B

B∑
i=1

T∑
t=0

(log p(st+1|st, at, wi) + log p(rt|st, at, wi)) +
η

N
||W ||22 (13)

where B = 100 is the batch size, T is the episode length, wi is the dropout mask corresponding
to the ith trajectory, η is a factor that determines the length-scale of the prior Gal & Ghahramani
(2016b), N is the number of trajectories in the training dataset, Mand W is the set of all learnable
parameters in the network.

A.2.2 POLICY ARCHITECTURE

Both model-based RL and SAC use a Tanh-Gaussian MLP policy with three layers with Tanh activa-
tions between layers. Policies used in MBRL have 1024 units in their hidden layers, while policies
used for SAC have 256. The policies have two output heads, one for mean and one for standard
deviation. The mean output head uses no activation function, while the standard deviation head
uses either a softplus activation to ensure that standard deviation is positive, or a sigmoid activation
to force the standard deviation to be bounded. To force samples from the policy to fall within the
specified action range of the environment, samples are passed through a tanh function.

A.2.3 CRITIC ARCHITECTURE

The critic network used for SAC was a state-action value function, while the critic used for MBRL
was a state value function. In either case, critics consisted of 3 layers with ReLU activations between
layers, with 256 units in each hidden layer.

A.2.4 LOWER BOUND ESTIMATION

As discussed in Sec. A.2.4, to check whether the model-free policy πMF is within the EPS, we need
only check whether Ĵ(πMB |wi) − Ĵ(πMF |wi) > 0, ∀i = 1, ...,K, where Ĵ(π|wi) is a Monte-
Carlo estimate of J(π|wi), the expected return for policy π given dynamics model parameters wi.
In the dropout formulation of BNNs, sampling wi corresponds to sampling a dropout mask, so we
use wi to denote a particular dropout mask. Therefore, to compute Ĵ(π|wi), we sample one dropout
mask, and sample M state-action-reward trajectories from our dynamics model and policy, from
timesteps t = 0 to T using that dropout mask, and average the return across those trajectories:

Ĵ(π|wi) =
1

M

T∑
t=0

rt, (14)
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for at ∼ π(at|st), rt ∼ p(rt|st, at, wi), and st+1 ∼ p(st+1|st, at, wi). Note that the dropout mask
wi is held constant across timesteps.

A.2.5 HYPERPARAMETERS

Table 2 contains the hyperparameters used for Unified RL for each task.

• K=Number of dropout masks sampled when computing L̂ (equation 6)

• M=Number of trajectories sampled when computing L̂ (equation 6)
• Policy training: whether the model-based policy is trained using full-trajectory policy train-

ing or Dreamer-style policy training, as described in Sec. 3.
• σmax: In some cases, we found it useful to bound the maximum value that the policy

standard deviation could take, by placing a sigmoid activation on the standard deviation
output of the policy and multiplying by a constant. We refer to this upper bound as σmax

• αMB : entropy bonus used for the model-based policy training
• αMF : entropy bonus used for SAC
• Automatic Entropy Tuning (MB policy): whether automatic entropy tuning is used for the

model-based policy (makes αMB irrelevant)
• Automatic Entropy Tuning (MF policy): whether automatic entropy tuning is used for the

SAC policy (makes αMF irrelevant)
• T: episode length

We additionally found it necessary to provide SAC with enough on-policy data by enforcing that at
least one out of every 10 episodes was run using the MFRL policy.

Table 2: Hyperparameters used in Unified RL
Environment K M Policy Training σmax αMB αMF Automatic

Entropy
Tuning (MB
policy)

Automatic
Entropy
Tuning (MF
policy)

T η

Ant 50 5 Dreamer None 0.2 - False True 100 200
Hopper 50 100 Full trajectory None 0.2 0.2 False False 200 100
Walker 50 100 Full trajectory 0.1 0.2 0.2 False False 100 100

Half Cheetah 50 5 Dreamer None 0.1 - False True 100 100
Cartpole 50 default Dreamer None 0.2 - False True 200 100

DClaw-TurnFixed 50 10 Full Trajectory None 0.2 0.2 False False 40 200
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