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Abstract

Large vision-language models (LVLMs) have001
achieved impressive results in visual question-002
answering and reasoning tasks through vision003
instruction tuning on specific datasets. How-004
ever, there remains significant room for im-005
provement in aligning visual and language006
modalities. Existing methods often depend on007
external models or data, leading to uncontrol-008
lable and unstable alignment results. In this009
paper, we propose SIMA, a self-improvement010
framework that enhances visual and language011
modality alignment without external dependen-012
cies. SIMA leverages existing vision instruc-013
tion tuning datasets to self-generate responses,014
incorporating an in-context self-critic mecha-015
nism that constructs preference pairs for tun-016
ing. Crucially, our approach allows LVLMs017
to act as critics by designing effective critic018
prompts, eliminating the need for additional019
fine-tuning with external instruction data. We020
introduce three novel visual metrics within the021
self-critic process to guide judgement, signif-022
icantly improving the accuracy of self-critic.023
Through extensive experiments across 14 hal-024
lucination and comprehensive benchmarks, we025
demonstrate that SIMA significantly improves026
LVLM’s performance and outperforms previ-027
ous approaches, achieving superior modality028
alignment.029

1 Introduction030

Large Language Models (LLMs) (Brown et al.,031

2020; Chowdhery et al., 2023; Touvron et al., 2023)032

have significantly advanced the development of033

Large Vision Language Models (LVLMs) through034

pre-training on image-text pairs (Alayrac et al.,035

2022; Xiao et al., 2023) or fine-tuning on special-036

ized vision instruction datasets (Liu et al., 2023a,037

2024; Zhu et al., 2023). Despite these advance-038

ments, effectively aligning visual and language039

modalities remains a critical challenge in LVLMs.040

Figure 1: Performance comparison between our propose
framework SIMA and LLaVA-1.5-7B on 14 hallucina-
tion and comprehensive benchmarks. After applying
SIMA, LLaVA’s performance is improved significantly
across all benchmarks, with an average performance
increase of 7.5%.

Figure 2: Normalized average performance across
14 hallucination and comprehensive benchmarks of
three different LVLMs before and after using SIMA.
SIMA demonstrates significant improvement on all
three LVLMs.

Recent works (Sun et al., 2023; Zhao et al., 2023; 041

Zhou et al., 2024) have attempted to enhance this 042

alignment through preference tuning methods such 043
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Pre-train

Image

Analyze the image in a 
comprehensive and 
detailed manner.

Prompt

Stage 1: Response Self-Generation

Response 1: The image depicts a woman 
and a brown horse in a grassy field. The 
woman appears to be giving the horse a ride 
or interacting with it. There are other people 
in the background, watching the scene or 
engaging in their own activities ...... 

Response 2: The image features a woman 
standing next to a brown horse in a grassy 
field. The woman appears to be engaged in a 
conversation with the horse, possibly 
discussing its training or care ...... 

Stage 2: In-Context Self-Critic

You are provided with a question about the image, a ground truth and two AI 
generated responses based on the image. Please review two AI generated responses 
carefully and compare the AI generated responses with the ground truth. You should 
consider the following factors:
1. Accuracy in Object Description: ......
2. Accuracy in Depicting Relationships: ...... 
3. Accuracy in Describing Attributes: ......
Image: <Image>
Question: <Question>
Ground truth: <Ground truth answer>

Critic Prompt

LVLM LVLM

Response 2: The image features a woman 
standing next to a brown horse in a grassy 
field. The woman appears to be engaged in a 
conversaFon with the horse, possibly 
discussing its training or care ...... 

Response 1: The image depicts a woman and 
a brown horse in a grassy field. The woman 
appears to be giving the horse a ride or 
interacting with it. There are other people in 
the background, watching the scene or 
engaging in their own activities ...... 

Positive Response Negative Response

Positive Response Negative Response

Stage 3: Preference Tuning

Finetuning LVLM using DPO with 
self rewarded response pairs

from Stage 2

Figure 3: Flowchart of the SIMA framework. SIMA consists of three parts: Response Self-Generation, In-Context
Self-Critic, and Preference Tuning.

as reinforcement learning from human feedback044

(RLHF) (Ouyang et al., 2022) and Direct Prefer-045

ence Optimization (DPO) (Rafailov et al., 2024).046

However, these methods often rely on external mod-047

els or human-labeled data, introducing issues of un-048

controllable and unstable alignment results. Specif-049

ically, they face two major challenges: (1) Distri-050

bution Shifts: Utilizing external LVLMs to gen-051

erate preference pairs can introduce hallucinations052

from external models that are not representative of053

the current model’s inference behavior (Li et al.,054

2023c; Zhao et al., 2023; Zhou et al., 2024). This055

discrepancy can lead to instability in the optimiza-056

tion process and potentially degrade performance.057

(2) High Costs: Dependence on human-labeled058

datasets or feedback from third-party AI models059

incurs significant annotation or API costs, making060

it difficult to scale high-quality preference datasets061

in resource-constrained environments (Sun et al.,062

2023; Yu et al., 2024a,b).063

To address these challenges, we propose the064

Self-Improvement Modality Alignment (SIMA)065

framework, designed to enhance the alignment066

between visual and language modalities within067

LVLMs through a self-improvement mechanism.068

SIMA eliminates the need for external data or mod-069

els by leveraging the intrinsic capabilities of the070

model itself to generate diverse responses. More-071

over, it utilizes the model’s own judgment for evalu-072

ating response quality, thus avoiding the high costs073

associated with external feedback and scaling up074

preference datasets efficiently.075

SIMA consists of three stages: response self-076

generation, in-context self-critic, and preference077

tuning. In the response self-generation stage, we078

sample prompts from the current LVLM’s visual 079

instruction tuning dataset to generate diverse re- 080

sponses without introducing external data or mod- 081

els. During the in-context self-critic stage, a care- 082

fully designed critic prompt allows the LVLM to 083

evaluate all self-generated responses and form pref- 084

erence pairs. Finally, preference tuning is applied 085

to update the LVLM based on these pairs. 086

The core innovation of SIMA lies in the in- 087

context self-critic process, which offers several 088

key advantages: (1) Self-Critic without Fine- 089

Tuning: Unlike previous self-rewarding methods 090

in LLMs that require additional instruction tun- 091

ing before the critic step (Yuan et al., 2024; Pang 092

et al., 2024; Wu et al., 2024), our approach shows 093

that by properly configuring the critic prompt, the 094

LVLM can accurately evaluate responses without 095

fine-tuning. (2) Visual Critic Metrics: To ensure 096

accurate evaluation of self-generated responses, 097

we introduce three visual critic metrics within the 098

prompt—Accuracy in Object Description, Accu- 099

racy in Depicting Relationships, and Accuracy in 100

Describing Attributes—each contributing to a more 101

precise evaluation of visual content. 102

We apply SIMA to LLaVA-1.5 (Liu et al., 2023a) 103

and VILA (Lin et al., 2024), evaluating it across 14 104

hallucination and comprehensive benchmarks. The 105

experimental results show that SIMA not only miti- 106

gates hallucinations but also significantly enhances 107

comprehension capabilities in LVLMs. As illus- 108

trated in Figure 1, the performance of LLaVA-1.5- 109

7B, LLaVA-1.5-13B, and VILA-7B improved by 110

7.5%, 4.5%, and 5.3%, respectively. Additionally, 111

our method outperforms other preference-tuning 112

approaches that rely on external models and data. 113
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The contribution of this paper can be sum-114

marized as follows: (1) We introduce Self-115

Improvement Modality Alignment SIMA, a novel116

framework designed to enhance alignment between117

visual and language modalities in LVLMs. To118

the best of our knowledge, SIMA is the first to119

achieve self-improvement in LVLMs without ex-120

ternal data or third-party AI models. (2) We pro-121

pose the in-context self-critic method, enabling122

LVLMs to accurately evaluate responses without123

instruction tuning, significantly improving judg-124

ment accuracy through three visual critic metrics.125

(3) SIMA demonstrates significant performance126

improvements in LLaVA-1.5-7B, LLaVA-1.5-13B127

and VILA-7B on 14 hallucination and comprehen-128

sive benchmarks, validating the effectiveness of129

our approach.130

2 Self-Improvement Modality Alignment131

In this section, we introduce the proposed Self-132

Improvement Modality Alignment (SIMA) frame-133

work. SIMA is consisted of three stages: response134

self-generation, in-context self-critic, and prefer-135

ence tuning. We will first explain how to obtain136

self-generated response candidates in Sec 2.1, then137

discuss how to use model itself πθ to critique the138

response candidates in Sec 2.2. Finally, we will139

introduce how to use self-rewarded responses to up-140

date the πθ in Sec 2.3. The pseudo-code of SIMA141

is provided in Algorithm 1.142

Algorithm 1 SIMA

Require: Prompt Dataset {xi, Ii}i∈[N ], Prefer-
ence dataset Dp = {} , Current optimized
LVLM πθ, Reference model πref ,

1: for i = 1, . . . , N do
2: // Stage 1: Response self-generation
3: Generate one response using greedy decod-

ing with πθ,
4: Generate one response using temperature

sampling with πθ,
5: // Stage 2: In-context self-critic
6: Criticizing two generated responses with πθ,

7: Add preference pair {yw, yl} into Dp,
8: // Stage 3: Preference tuning
9: Update πθ using Eq 1 with πref

2.1 Response self-generation 143

Previous works often require the introduction of ex- 144

ternal models to generate preference dataset to im- 145

prove current LVLM (Sun et al., 2023; Zhou et al., 146

2024). However, due to the significant distribution 147

shift between the external models and the currently 148

optimized LVLM, the generated dataset by these 149

approaches may not be helpful to the LVLM. For 150

example, a common method to obtain negative re- 151

sponses is to use external models to deliberately 152

modify the ground truth and inject object hallucina- 153

tions (Zhou et al., 2024), while the hallucinations 154

generated by external models do not necessarily 155

indicate that the currently optimized model would 156

produce. In this case, using such data for learning 157

can not enhance LVLM. 158

Based on our goal to identify and correct the po- 159

tential misunderstandings the current LVLM may 160

have about images and improve the modality align- 161

ment, we propose using the currently optimized 162

LVLM to self-generate responses. This approach 163

avoids the potential distribution shift introduced 164

by external models. As shown in Stage 1 of Fig- 165

ure 3, given an image and its corresponding prompt, 166

we use the currently optimized model to generate 167

two different response candidates for subsequent 168

ranking and preference tuning. Specifically, the 169

two responses are generated using greedy decod- 170

ing and temperature sampling to ensure diversity 171

between the responses. 172

2.2 In-context self-critic 173

The core part of SIMA is criticizing the self- 174

generated responses without introducing an ad- 175

ditional reward model. As shown in Stage 2 of 176

Figure 3, we directly input the self-generated re- 177

sponses and the critic prompt into the currently 178

optimized LVLM. The LVLM then selects the bet- 179

ter response as the positive response and the other 180

one as the negative response. The most critical 181

part of this stage is designing an appropriate critic 182

prompt, since the quality of the critic directly de- 183

termines the performance of the LVLM optimized 184

using the response pairs. If the worse response is 185

selected as the positive response, it will harm the 186

training of the LVLM. 187

Our critic prompt consists of the following parts: 188

• Image, Question, and Ground Truth Re- 189

sponse: Unlike LLMs, which primarily fo- 190

cus on aspects such as the format, helpful- 191

ness, and harmlessness of the textual response, 192
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Figure 4: Critic prompt structure used for in-context self-critic.

LVLMs primarily focus on the accuracy of the193

response’s understanding of the image content.194

This means there is a quantifiable accuracy195

metric to measure the quality of the response.196

Therefore, during in-context self-critic, we197

must provide the ground truth response as a198

reference to choose the positive response. It199

is worth noting that since the prompts used to200

generate responses are sampled from the train-201

ing data of the visual instruction tuning stage,202

the corresponding ground truth responses have203

all been used for visual instruction tuning.204

Hence, using the ground truth in the in-context205

self-critic stage is reasonable.206

• Three critic metrics: Although we provide207

the ground truth response as a reference, with-208

out proper guidance, the LVLM might still209

choose a response that aligns more with the210

ground truth in terms of output format or211

harmlessness rather than focusing on the accu-212

racy of visual comprehension. Therefore, we213

propose three metrics to guide LVLM ranking,214

ensuring it select the positive response from215

the visual comprehension perspective. The216

three critic metrics are: Accuracy in Object217

Description, Accuracy in Depicting Rela-218

tionships, and Accuracy in Describing At-219

tributes.220

Accuracy in Object Description aims to guide221

current LVLM in evaluating the accuracy of222

the descriptions concerning the objects men-223

tioned in the ground truth answer. The re-224

sponses should minimize the mention of ob-225

jects not present in the ground truth answer226

and inaccuracies in the description of existing227

objects. Accuracy in Depicting Relationships228

considers how accurately the relationships be- 229

tween objects are described compared to the 230

ground truth answer and aims to let LVLM 231

rank higher the responses that least misrep- 232

resent these relationships. Accuracy in De- 233

scribing Attributes assesses the accuracy in 234

depicting objects’ attributes compared to the 235

ground truth answer. The responses should 236

avoid inaccuracies in describing the character- 237

istics of the objects present. 238

• Demonstrations: To ensure the correct for- 239

mat of the ranking output, we also leverage 240

in-context learning by providing two rank- 241

ing demonstrations in the designed ranking 242

prompt for the LVLM to imitate. 243

In Figure 4, we provide the structure of the critic 244

prompt. For the detailed critic prompt, please refer 245

to the Appendix A. 246

2.3 Preference tuning 247

After obtaining the preference pairs through self- 248

ranking, we use these preference pairs to perform 249

preference tuning on the current LVLM. We choose 250

direct preference optimization (DPO) (Rafailov 251

et al., 2024) as the preference tuning method. 252

The preference dataset is denoted as Dp = 253

{(I, x, yw, yl)}, where I is the image, x is the cor- 254

responding question, yw is the positive response 255

and yl is the negative response, the DPO objective 256

is defined as below: 257

LDPO(πθ;πref) = −E(x,yu,yl)∼D[log σ(β log
πθ(yw|x, I)
πref(yw|x, I)

− β log
πθ(yl|x, I)
πref(yl|x, I)

)],

(1) 258
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where πθ is the current optimized LVLM and πref259

is the base reference model, both models are ini-260

tialized with visual instruction tuning weights. σ is261

the logistic function.262

3 Experiment263

In this section, we conduct experiments and aim to264

answer the following questions: 1. How much does265

SIMA improve baseline performance? 2. How sig-266

nificant are the three ranking metrics in the ranking267

prompt?268

3.1 Benchmark evaluation269

Implementation details Since LLaVA (Liu et al.,270

2024) is the most widely used open-source LVLM271

and following recent LVLM preference tuning stud-272

ies (Sun et al., 2023; Zhou et al., 2024; Yu et al.,273

2023a; Xiao et al., 2024), we select LLaVA-1.5-274

7B (Liu et al., 2023a) and LLaVA-1.5-13B (Liu275

et al., 2023a) as the backbone models and ap-276

ply SIMA on them. The prompts used to gener-277

ate preference data are randomly sampled from278

two categories, ‘complex_reasoning_77k’ and ‘de-279

tail_23k’, in LLaVA’s visual instruction tuning280

dataset, LLaVA-Instruct-150K, thus avoiding in-281

troducing additional data. We sample a total of 17k282

prompts. To demonstrate the generalizability of283

SIMA, we also choose VILA-7B (Lin et al., 2024),284

a recent LVLM, as the base model for our experi-285

ments. Similar to the LLAVA experimental setting,286

we randomly sample 17k prompts from the VILA287

visual instruction tuning dataset to generate pref-288

erence pairs for training. After obtaining the pref-289

erence pairs, we finetune LLaVA and VILA with290

SIMA on this data using LoRA (Hu et al., 2021)291

for three epochs on LLaVA-1.5-7B, one epoch on292

LLaVA-1.5-13B, and one epoch on VILA-7B since293

we find that LLaVA-1.5-13B and VILA-7B is prone294

to overfitting on the sampled dataset. All exper-295

iments are conducted on one A100 80GB GPU296

with 15 gpu hours for three epochs training on297

LLaVA-1.5-7B, 7 gpu hours for one epoch training298

on LLaVA-1.5-13B, and 6 gpu hours for one epoch299

training on VILA-7B.300

Baselines For the baselines, we compare with301

three previous methods that use preference opti-302

mization to improve LVLM performance: LLaVA-303

RLHF (Sun et al., 2023), HA-DPO (Zhao et al.,304

2023), and POVID (Zhou et al., 2024). LLaVA-305

RLHF trains a reward model by incorporating ad-306

ditional human-annotated preference data and then307

finetunes LLaVA using PPO. HA-DPO uses GPT 308

to rewrite AI-generated responses for hallucination 309

mitigation and data augmentation and then apply 310

DPO to fine-tune the LVLM. POVID introduces 311

GPT to inject hallucinations into the ground truth 312

answers and add noise to images to induce hallu- 313

cinations in the LVLM to obtain negative samples 314

and also uses DPO to finetune the LVLM. These 315

three methods are all based on LLaVA-1.5-7B. Be- 316

sides, we compare the method of using the ground 317

truth answer as the positive sample and the LVLM- 318

generated response as the negative sample for DPO 319

finetuning, which we refer to as GT-DPO. We also 320

report comparison with other popular open-source 321

LVLMs as a reference to demonstrate the superior- 322

ity of our experimental results in Appendix B.3. 323

Benchmarks We select 14 hallucination and 324

comprehensive benchmarks for evaluation. For 325

the hallucination benchmark, we randomly sam- 326

ple 5000 images from the COCO (Lin et al., 2014) 327

validation set and randomly pair them with 5 ques- 328

tions, resulting in 5000 <image, question> pairs. 329

We then evaluate the object hallucination rate on 330

these 5000 pairs using the CHAIR (Rohrbach et al., 331

2018) metric , calculated as follows: 332

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

,

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}|
.

(2) 333

We also use MM-Hal (Sun et al., 2023) and Me- 334

mentos (Wang et al., 2024) as benchmarks for 335

evaluating hallucination. In Mementos, we use 336

F1 score as the metric to assess the LVLM’s ob- 337

ject hallucination and behavior hallucination when 338

understanding multi-image inputs. For the com- 339

prehensive benchmark, we select nine commonly 340

used comprehensive benchmarks and general VQA 341

tasks: LLaVA in the Wild (Liu et al., 2024), Sci- 342

enceQA (Lu et al., 2022), TextVQA (Singh et al., 343

2019), MME Perception (Fu et al., 2024), MME 344

Cognition (Fu et al., 2024), MMBench (Liu et al., 345

2023b), MM-Vet (Yu et al., 2023b), SeedBench (Li 346

et al., 2023a), and VisWiz (Gurari et al., 2018). For 347

details on these benchmarks, please refer to the 348

Appendix C. 349

Experiment results (a) SIMA can significantly 350

reduce hallucinations of LVLMs. As shown 351

in Table 1, SIMA significantly improves the per- 352

formance of all three LVLMs on five hallucina- 353
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Table 1: Performance comparison between SIMA and other baselines on hallucination benchmarks

LVLMs CHAIRs ↓ CHAIRi ↓ MM-Hal ↑ MementosO ↑ MementosB ↑

LLaVA-1.5-7B 50.8 11.7 2.04 39.29% 23.02%
+ RLHF 45.3 11.1 2.11 40.53% 22.71%
+ GT-DPO 47.3 11.2 2.00 43.67% 24.35%
+ HA-DPO 46.5 10.7 1.97 41.07% 23.58%
+ POVID 48.4 11.3 2.28 42.95% 23.84%
+ SIMA (ours) 40.9 10.4 2.30 46.08% 26.03%

LLaVA-1.5-13B 48.6 10.8 2.19 40.37% 24.65%
+ GT-DPO 47.2 10.8 2.27 42.59% 25.84%
+ SIMA (ours) 45.8 10.6 2.41 45.84% 27.17%

VILA-7B 34.7 9.2 2.53 41.96% 25.88%
+ GT-DPO 32.4 8.9 2.61 44.25% 26.91%
+ SIMA (ours) 28.4 8.4 2.66 48.15% 27.04%

Table 2: Performance comparison between SIMA and other baselines on comprehensive benchmarks

LVLMs LLaVAW ↑ SQAI ↑ VQAT ↑ MMEP ↑ MMEC ↑ MMB ↑ MM-Vet ↑ SEED ↑ VisWiz ↑

LLaVA-1.5-7B 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ RLHF 63.7 65.8 58.3 1508.2 360.2 60.4 31.1 60.0 52.2
+ GT-DPO 64.7 67.4 58.1 1510.8 365.0 64.6 31.2 60.4 53.8
+ HA-DPO 64.2 68.1 58.0 1507.2 362.3 63.9 30.9 60.2 53.9
+ POVID 65.3 69.2 58.1 1493.5 363.5 64.1 31.3 60.3 54.0
+ SIMA (ours) 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

LLaVA-1.5-13B 66.5 71.6 61.3 1531.1 296.1 67.7 36.1 61.6 53.6
+ GT-DPO 66.9 72.3 61.2 1532.6 296.7 68.0 36.3 62.2 54.4
+ SIMA (ours) 67.4 72.5 61.2 1538.1 298.6 68.4 38.3 63.0 55.5

VILA-7B 69.7 68.2 64.4 1533.0 316.4 68.9 34.9 61.1 57.8
+ GT-DPO 71.4 70.6 65.9 1547.8 325.7 69.0 37.1 61.9 60.3
+ SIMA (ours) 73.5 72.2 66.1 1559.6 326.8 69.2 38.4 62.5 62.1

tion benchmarks. On the CHAIRs, CHAIRi, and354

Mementos-Object benchmarks, which test object355

hallucination, SIMA improves he performance of356

LLaVA-1.5-7B, LLaVA-1.5-13B, and VILA-7B357

by an average of 16.1%, 7.1%, and 8.4%, respec-358

tively. On the MM-Hal benchmark, which uses359

GPT as an evaluator for a more comprehensive as-360

sessment of hallucinations, SIMA achieves 12.7%,361

10.1%, and 5.1% performance improvement com-362

pared with LLaVA-1.5-7B, LLaVA-1.5-13B, and363

VILA-7B. Notably, despite our three critic metrics364

focusing primarily on object hallucination, SIMA365

also achieves the greatest improvement of 13.1%366

on the Mementos-Behavior benchmark based on367

LLaVA-1.5-7B model, which tests behavior hal-368

lucination arising from understanding sequential369

image inputs. This improvement is significant be-370

cause there is a correlation between object hallu-371

cination and behavior hallucination in sequential372

image understanding (Wang et al., 2024); reduc-373

ing object hallucination increases the likelihood of374

correctly inferring the corresponding behavior. (b)375

SIMA also enhances the comprehension capabil- 376

ities of LVLMs. As shown in Table 2, on the nine 377

comprehensive and VQA benchmarks, although 378

the improvements are not as pronounced as on the 379

hallucination benchmarks, SIMA still achieves an 380

average improvement of 3.5%, 2.1%, and 4.4% 381

compared to LLaVA-1.5-7B, LLaVA-1.5-13B, and 382

VILA-7B. This is superior to other preference tun- 383

ing methods. 384

3.2 Importance of our critic metric 385

In this section, our main objective is to demonstrate 386

the importance of the three critic metrics in the in- 387

context self-critic stage through experiments and 388

case studies. We use LLaVA-1.5-7B as base model 389

to conduct experiments. As in the experimental 390

setup described in Section 3.1, the prompts used 391

to generate response candidates are sampled from 392

LLaVA’s visual instruction tuning dataset. After 393

self-generating the response candidates, we keep 394

these candidates unchanged and use LLaVA to eval- 395

uate them with both metric-inclusive and metric- 396
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Table 3: The performance comparison between training LLaVA with preference pairs obtained using metric-inclusive
and metric-free critic prompts in the in-context self-critic process.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-7B 50.8 11.7 2.04 39.29% 23.02% 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ SIMA w/o metrics 41.5 10.8 2.12 41.55% 23.92% 63.3 68.9 58.3 1504.6 371.7 64.0 31.5 60.4 53.7
+ SIMA (ours) 40.9 10.4 2.30 46.08% 26.03% 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

free critic prompts, resulting in preference pairs397

that are then used to update the LLaVA. We test the398

performance of both methods on 14 benchmarks,399

with the results shown in Table 3. Upon compari-400

son, we find that removing the critic metrics still401

improved performance compared to the original402

LLaVA, but there remained a significant gap com-403

pared to SIMA with metrics. This disparity is par-404

ticularly notable in more challenging tasks like405

MM-Hal and Mementos, where the improvement406

from SIMA without critic metrics is quite limited.407

This demonstrates that with the correct design of408

critic prompts, LVLMs can gain critic capabilities409

and improve model performance without requiring410

instruction fine-tuning. Moreover, the three visual411

critic metrics are crucial for further enhancing per-412

formance.413

Table 4: Comparison of response critic results with
human judgment.

Select 1 Select 2 Align w. human

Human 183 317 -
GPT-4v 198 302 95.6%
SIMA 215 285 89.8%

SIMA w/o metrics 246 254 78.2%

Figure 5: Comparison of
critic results with and with-
out critic metrics in SIMA.

We compare the414

evaluation results415

distribution of416

response candidates417

with and without418

using metrics, as419

shown in Figure 5.420

It can be seen that421

approximately 20%422

of the response423

candidates have424

inconsistent evalua-425

tions between the two methods. Additionally, we426

randomly sample 500 response candidates and427

evaluate them both manually by the authors of this428

paper and with GPT-4v. For human evaluation, we429

provide 500 response pairs and asked individuals430

to directly select the better one. For GPT-4v, we431

use the same critic prompt with metrics as SIMA432

for the evaluation. Comparing these evaluations 433

with SIMA’s results in Table 4, we find that 434

without the critic metrics, SIMA’s evaluations 435

are only 78% consistent with human evaluations. 436

After incorporating metrics, this consistency 437

improved by 11.2% to 89.8%, which is very close 438

to the evaluation results of GPT-4v and human. 439

In Appendix E.2, we also present an example of 440

evaluation results with and without metrics to 441

further illustrate the magic of these three visual 442

metrics. 443

3.3 Ablation studies 444

(a) Average performance of LLaVA-1.5-13B with
SIMA at different iterations.

(b) Average performance of SIMA on LLaVA-1.5-
7B with different decoding temperature.

Figure 6: Ablation studies of SIMA.

In this section, we conduct ablation studies on 445

SIMA from two aspects: the performance varia- 446

tion of SIMA under multi-iteration finetuning and 447

the impact of different decoding temperatures on 448

performance when generating response candidates. 449
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Performance of multi-iteration finetuning Fig-450

ure 6(a) shows the average performance of the451

model on benchmarks across different training it-452

erations on LLaVA-1.5-13B. For detailed perfor-453

mance on each benchmark, please refer to Table 8454

in the Appendix B. In each iteration, we randomly455

resample 17k prompts from LLaVA’s visual in-456

struction tuning dataset for self-generation. We457

observe that the performance improvement is most458

noticeable in the first iteration compared to the base459

model. In the second iteration, there is an improve-460

ment, but it is not as pronounced. Although the461

average performance saturates in the third itera-462

tion, performance in some benchmarks continues463

to improve, as seen in Table 8.464

Different decoding temperatures We also con-465

duct an ablation study on the temperature used466

in temperature decoding during the response self-467

generation phase. The experimental results are468

shown in Figure 6(b). We find that as the tem-469

perature increases, the performance of SIMA also470

improves. We believe this is because, as the temper-471

ature increases, the responses generated by LVLM472

become more diverse and are more likely to exhibit473

hallucination. This increases the distribution shift474

between the responses generated by greedy decod-475

ing and those generated with higher temperature,476

leading to better performance improvements for477

LVLM during the preference tuning phase.478

4 Related Work479

Vision-Language Models Vision-Language480

Models (VLMs) (Li et al., 2019, 2020; Wang481

et al., 2021; Radford et al., 2021; Li et al., 2022)482

have emerged as critical tools in bridging visual483

and textual modalities, enabling advancements in484

multimodal understanding and reasoning tasks.485

Recent developments have been driven by the486

integration of large language models (LLMs) (Tou-487

vron et al., 2023; Jiang et al., 2023; Chiang et al.,488

2023) and sophisticated image encoders, leading to489

more robust and versatile Large Vision-Language490

Models (LVLMs) (Bai et al., 2023; Zhu et al.,491

2023; Chen et al., 2023; Dai et al., 2024; Lin492

et al., 2024; Yao et al., 2024; Liu et al., 2024). For493

instance, models like LLaVA (Liu et al., 2024) and494

InstructBLIP (Dai et al., 2024) combine advanced495

vision encoders with LLMs, enhancing their ability496

to follow vision-language instructions. In this497

work, we focus on further enhancing LVLM’s498

visual understanding and reasoning abilities based499

on LVLM’s visual instruction tuning data through 500

self-improvement. 501

Modality Alignment Vision-language modality 502

misalignment is a key challenge in LVLMs, where 503

the generated textual outputs may not fully corre- 504

spond to the input visual data. Preference learn- 505

ing (Rafailov et al., 2024; Azar et al., 2024; Etha- 506

yarajh et al., 2024) is generaly used to improve 507

modality alignment in LVLMs. Some methods, 508

such as using human annotation (Sun et al., 2023; 509

Yu et al., 2024a) and third-party AI model feed- 510

back (Li et al., 2023c; Zhao et al., 2023; Zhou 511

et al., 2024; Yu et al., 2024b; Jing and Du, 2024) 512

for preference learning, have been proposed. How- 513

ever, these methods are resource-intensive and may 514

introduce additional external hallucinations, lead- 515

ing to LVLM performance that is uncontrollable 516

and unstable after optimization. In this paper, we 517

addresses both issues through a self-improvement 518

approach, significantly enhancing modality align- 519

ment without introducing any external models or 520

data. 521

Self-Improvement in Large Language Models 522

Self-improvement is proposed in LLM to improve 523

LLM itself with self-generated data. Several papers 524

have explored self-improvement in LLM (Yuan 525

et al., 2024; Pang et al., 2024; Wu et al., 2024). To 526

the best of our knowledge, this paper is the first 527

to explore self-improvement in LVLMs. Different 528

from previous self-improvement methods in LLM 529

which need to finetune the LLM with additional 530

instruction tuning data before critic, our method 531

demonstrate that LVLM can acquire the ability to 532

act as a critic by properly configuring critic prompt 533

without fine-tuning. 534

5 Conclusion 535

In this paper, we introduce SIMA framework in en- 536

hancing the alignment between visual and language 537

modalities in LVLMs through self-improvement. 538

This is achieved through self-generated responses, 539

evaluating them via in-context self-critic, and em- 540

ploying preference tuning. SIMA bypasses the 541

need for the third-party AI model for data genera- 542

tion and response evaluation, making it more scal- 543

able and cost-effective. This approach not only im- 544

proves the modality alignment but also significantly 545

enhances the model’s comprehension abilities and 546

reduces hallucinations across various benchmarks. 547
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Limitations548

One limitation of this paper is that the reliance on549

self-generated responses and self-critic inherently550

ties the SIMA’s performance to the current capa-551

bilities of LVLM and does not address the inherent552

potential biases caused by the vision instruction553

tuning dataset. This can result in SIMA provid-554

ing less significant improvements for LVLMs on555

certain benchmarks, such as LLaVA-1.5-7B and556

LLaVA-1.5-13B on TextVQA. In future work, we557

will further explore this issue.558

Broader Impacts559

To the best of our knowledge, we are the first to560

apply self-rewarding in LVLMs. This approach561

avoids the introduction of external models and data,562

enhancing the alignment between visual and lan-563

guage modalities through the model itself. This564

significantly reduces hallucinations and improves565

reasoning capabilities, greatly increasing the relia-566

bility of LVLMs.567

From a societal impact perspective, while SIMA568

has made substantial progress, it has not entirely569

eliminated potential risks within LVLMs. For ex-570

ample, reliance on self-generated and self-critic571

data may unintentionally reinforce biases caused572

by distribution shifts in the training data. Therefore,573

despite SIMA’s significant advancements, it is cru-574

cial to implement ethical guidelines and safeguards575

to mitigate these risks and ensure responsible use576

of this technology.577
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A Detailed critic prompt 838

In this section, we provide detailed critic prompt 839

used during the in-context self-critic phase, as 840

shown in Figure 7. 841

B Detailed ablation studies 842

B.1 LLaVA-1.5-7B 843

In this section, we provide the performance of 844

LLaVA-1.5-7B-7B across all benchmarks at dif- 845

ferent training epochs, as shown in Table 5. Addi- 846

tionally, in Table 6, we present the performance of 847

SIMA across all benchmarks when using different 848

temperature coefficients for temperature decoding. 849

B.2 LLaVA-1.5-13B 850

In this section, we present the detailed performance 851

of LLaVA-1.5-13B across all benchmarks at dif- 852

ferent epochs and iterations in Tables 7 and Ta- 853

bles 8, respectively. It can be observed that the 854

best results for LLaVA-1.5-13B are achieved after 855

just one epoch. During multiple iteration training, 856

performance on some benchmarks continues to im- 857

prove in the third iteration while some declines due 858

to overfitting. 859

B.3 Comparison with other open-source 860

LVLMs 861

In this section, we report the performance of five 862

other popular open-source LVLMs (BLIP-2 (Li 863

et al., 2023b), InstructBLIP (Dai et al., 2024), 864

IDEFICS (Laurençon et al., 2024), Qwen-VL- 865

Chat (Bai et al., 2023), and mPLUG-Owl2 (Ye 866

et al., 2023)) as a reference to demonstrate the su- 867

periority of our experimental results in Table 9. 868
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Figure 7: Critic prompt used for in-context self-critic.

Table 5: Performance of different epochs on LLaVA-1.5-7B.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-7B 50.8 11.7 2.04 39.29% 23.02% 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ SIMA Epoch 1 43.9 10.8 2.17 42.39% 23.88% 65.3 68.9 58.2 1511.9 369.6 64.9 30.5 60.1 53.7
+ SIMA Epoch 2 41.6 10.4 2.28 45.71% 24.93% 66.1 69.2 58.2 1514.8 371.8 65.0 31.5 60.4 54.0
+ SIMA Epoch 3 40.9 10.4 2.30 46.08% 26.03% 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

Table 6: Performance of different decoding temperature.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

T=0.2 40.2 10.1 2.11 45.42% 24.99% 65.2 68.5 58.3 1505.0 371.8 64.7 31.1 60.1 53.7
T=0.4 40.7 10.2 2.19 45.93% 25.37% 64.9 68.9 58.3 1506.4 355.7 65.0 31.1 60.3 53.8
T=0.6 40.9 10.3 2.23 45.71% 25.61% 65.7 69.2 58.2 1504.8 371.8 64.9 31.3 60.3 54.1
T=0.8 40.9 10.4 2.30 46.08% 26.03% 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

Table 7: Performance of different epochs on LLaVA-1.5-13B.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-13B 48.6 10.8 2.19 40.37% 24.65% 66.5 71.6 61.3 1531.1 296.1 67.7 36.1 61.6 53.6
+ SIMA Epoch 1 45.8 10.6 2.41 45.84% 27.17% 67.4 72.5 61.2 1538.1 298.6 68.4 38.3 63.0 55.5
+ SIMA Epoch 2 46.1 10.6 2.26 45.53% 26.99% 67.2 72.4 61.2 1537.5 291.1 68.5 37.6 63.0 55.0
+ SIMA Epoch 3 45.9 10.6 2.21 45.61% 26.74% 66.0 72.4 61.1 1529.2 291.4 68.3 35.9 63.0 54.9

Compared to other open-source LVLMs, SIMA869

also significantly outperforms all except for Qwen-870

VL-Chat on MM-Vet. 871
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Table 8: Performance of different iterations on LLaVA-1.5-13B.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-13B 48.6 10.8 2.19 40.37% 24.65% 66.5 71.6 61.3 1531.1 296.1 67.7 36.1 61.6 53.6
+ SIMA Iter 1 45.8 10.6 2.41 45.84% 27.17% 67.4 72.5 61.2 1538.1 298.6 68.4 38.3 63.0 55.5
+ SIMA Iter 2 45.3 10.6 2.46 46.02% 27.58% 67.5 72.7 61.2 1528.9 298.6 68.5 38.3 62.9 55.9
+ SIMA Iter 3 45.4 10.6 2.42 46.91% 27.63% 67.3 72.6 61.1 1529.8 298.6 68.6 37.9 63.0 56.0

Table 9: Performance comparison between SIMA and other open-source LVLMs on comprehensive benchmarks

LVLMs LLaVAW ↑ SQAI ↑ VQAT ↑ MMEP ↑ MMEC ↑ MMB ↑ MM-Vet ↑ SEED ↑ VisWiz ↑

BLIP-2 38.1 61.0 42.5 1293.8 290.0 - 22.4 46.4 19.6
InstructBLIP 60.9 60.5 50.1 1212.8 291.8 36.0 26.2 53.4 34.5
IDEFICS 45.0 - 25.9 1177.3 - 30.0 30.0 45.0 35.5
Qwen-VL-Chat 67.7 68.2 61.5 1487.6 360.7 60.6 47.3 58.2 38.9
mPLUG-Owl2 59.9 68.7 58.2 1450.2 313.2 64.5 36.2 57.8 54.5

LLaVA-1.5-7B 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ SIMA (ours) 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

VILA-7B 69.7 68.2 64.4 1533.0 316.4 68.9 34.9 61.1 57.8
+ SIMA (ours) 73.5 72.2 66.1 1559.6 326.8 69.2 38.4 62.5 62.1

C Benchmark details872

LLaVAW is an extensive benchmark for assess-873

ing visual reasoning models. It includes 24 varied874

images accompanied by a total of 60 questions,875

encompassing scenarios from indoor and outdoor876

settings to abstract art.877

ScienceQA is a multi-modal benchmark de-878

signed to evaluate and diagnose the multi-hop rea-879

soning capabilities and interpretability of artificial880

intelligence systems in science. It provides an ex-881

tensive data set of approximately 21,000 multiple-882

choice questions covering a wide range of scientific883

topics, supported by detailed answer notes, relevant884

lectures and explanations.885

TextVQA is a dataset that benchmarks visual886

reasoning based on text in images. TextVQA re-887

quires models to read and reason about text in im-888

ages to answer questions about them. Specifically,889

the model needs to incorporate a new form of text890

into the image and reason about it to answer the891

TextVQA question.892

MME serves as a comprehensive benchmark for893

evaluating the capabilities of LVLMs in multimodal894

tasks. It evaluates models systematically across two895

main dimensions: perception and cognition, using896

14 carefully designed subtasks that test the models’897

interpretative and analytical abilities.898

MMBench introduces a two-pronged approach:899

a carefully curated dataset that significantly ex-900

pands the scope and diversity of evaluation ques-901

tions, and a groundbreaking CircularEval strategy902

that leverages ChatGPT to transform free-form pre-903

dictions for structured choices. 904

MM-Vet is an evaluation benchmark specially 905

designed to evaluate the multi-faceted capabilities 906

of LVLM. It systematically builds complex mul- 907

timodal tasks into 16 different ensembles derived 908

from combinations of 6 core visual language fea- 909

tures, providing granular analysis of model perfor- 910

mance across different question types and answer 911

styles. 912

SEEDBench is intended to rigorously assess the 913

generative comprehension capabilities of LVLMs. 914

It includes a comprehensive dataset of 19K 915

multiple-choice questions with accurate human an- 916

notations, spanning 12 distinct evaluation dimen- 917

sions that test both spatial and temporal understand- 918

ing across image and video modalities. 919

VizWiz is a dataset in the field of visual ques- 920

tion answering (VQA) derived from a naturalistic 921

setting containing over 31,000 visual questions. It 922

features a goal-oriented approach, featuring images 923

taken by blind people, accompanied by their verbal 924

queries, and crowdsourced answers. 925

D Hyperparameters 926

In this section, we provide the hyperparameters 927

used during training, as well as the GPT version 928

utilized during evaluation, as shown in Table 10. 929

930
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Prompt: Write a detailed description for the given image

SIMA: The image features a cat sitting on a wooden bench in a park. The bench is 
located near a dining table, which is surrounded by several chairs. The cat appears to be 
looking at the ground, possibly exploring the area or observing something of interest. 
The scene captures a peaceful and relaxing moment in the park.

LLaVA: The image features a white and black cat sitting on a wooden bench in a park. 
The bench is located near a dining table, which is surrounded by several chairs. The cat 
appears to be looking at the table, possibly intrigued by something on it. The scene is set 
in a garden, with a chair placed close to the bench and another chair further away. The 
overall atmosphere is calm and serene, with the cat enjoying its time outdoors.

Prompt: Describe the given image in detail

SIMA: The image features a large brown cow lying down on the ground, 
taking up a significant portion of the scene. The cow appears to be relaxed 
and comfortable in its position. In the background, there are two motorcycles 
parked nearby. One motorcycle is located on the left side of the cow, while 
the other is on the right side. The presence of the motorcycles suggests that 
the location might be a public space or a place where people gather.

LLaVA: The image features a large brown cow lying down on the ground, 
taking up a significant portion of the scene. The cow appears to be resting or 
relaxing in the outdoor area. In the background, there are two motorcycles 
parked, one on the left side and the other on the right side of the cow. 
Additionally, there is a scooter parked further back on the right side of the 
scene. The presence of these vehicles suggests that the location might be a 
busy street or a parking area.

Figure 8: Examples to illustrate the effect of SIMA on LVLM. SIMA is presented to be less hallucinated compared
with LLaVA.

Table 10: Hyperparameters of SIMA during training
and evaluation.

Parameter Value

lora r 128
lora alpha 256
mm projector lr 2e-5
learning rate 1e-7
model max length 2048
batch size 1
decoding temperature 0.8
GPT api version (Eval) gpt-4-turbo

E Case Study931

E.1 SIMA case study932

In Figure 8, we compare the detailed captions gen-933

erated from LLaVA and our method SIMA. For934

instance, in the above demonstration in Figure 8,935

LLaVA inaccurately describes the scene ‘with a936

chair close to the bench and another chair further937

away’, details that are not present in the provided938

image, while SIMA accurately captures the details939

in images. Both demonstrations in Figure 8 in-940

dicate that SIMA is capable of generating more 941

accurate descriptions with fewer hallucinations. 942

E.2 Critic prompt case study 943

In Figure 9, we present an example of evaluation re- 944

sults with and without metrics. The example shows 945

that after using the critic metrics, the SIMA’s eval- 946

uation is guided to focus more on the details of the 947

visual content, leading to correct judgments. There- 948

fore, based on the analysis and results above, it is 949

evident that critic metrics are crucial for improv- 950

ing the accuracy of response evaluations during 951

in-context self-critic. 952

F Status of Exemption from Institutional 953

Review Board 954

Before starting any segments of the study involving 955

human evaluation, the research team completed and 956

submitted a “Human Subjects Research Determina- 957

tion" form to the appropriate Institutional Review 958

Board (IRB). We obtained a determination letter 959

from the IRB before any human study activities 960

commenced, indicating that our project proposal 961

had been granted ‘Exempt’ status. This classifica- 962
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Prompt: Can you describe the main features of this image for me?

Greedy decode: The image depicts a lively outdoor market scene with a variety of fresh fruits and vegetables on display. 
There are numerous bananas, apples, and oranges spread across the market, attracting the attention of shoppers. Several 
people are present in the scene, browsing and shopping for the fresh produce. Some are standing close to the fruit stands, 
while others are scattered throughout the market area. A backpack can be seen in the background, likely belonging to one 
of the shoppers. The market appears to be a popular destination for people looking to purchase fresh, healthy food options.

Temperature decoding: The image depicts a lively market scene with several people shopping for various fruits and 
vegetables. There are at least four people visible in the scene, engaged in different activities related to the market. Among 
the produce, there are numerous apples and oranges, with several apples scattered throughout the scene. Oranges can also 
be seen, placed in different locations within the market. In addition to the fresh fruits, there is a backpack on the right side 
of the image, possibly belonging to one of the shoppers. A cell phone is also visible, likely being used by someone in the 
market.

SIMA with metrics : The reason: AI generated response 1 includes additional details about a cell phone and a backpack, which are not present in the 
ground truth. AI generated response 2 is more accurate in describing the market as lively and bustling with people, as well as the variety of fruits and 
vegetables available. It also provides more specific details about the produce, such as the presence of bananas, apples, and oranges. AI generated 
response 1 focuses more on the presence of a backpack and a cell phone, which are not relevant to the main features of the image. The better AI 
generated response: [[2]].

SIMA without metrics: The reason: AI generated response 1 includes additional details about a cell phone and a backpack, which are not present in the 
ground truth. AI generated response 2 is more accurate in describing the market as lively and filled with fresh produce, but it does not provide specific 
details about the people or the backpack. AI generated response 1 is more aligned with the ground truth, as it describes the market as lively and filled 
with people shopping for fruits and vegetables, and it provides specific details about the produce and the people present in the scene. The better AI 
generated response: [[1]].

Ground truth: The image captures a lively outdoor market, bustling with people browsing through the fruits and 
vegetables on display. Various individuals are present in the scene, with a man standing in front of a fruit stand close to the 
center, while another man wearing a backpack is nearby. Additional people can be seen in the background, possibly 
exploring the market or conversing with one another. The fruit stand is mainly filled with bananas, which come in different 
shapes and sizes, indicating a vast selection for shoppers. There are also apples available, located towards the bottom of 
the scene. The market provides a vibrant atmosphere, with its inviting array of fresh produce and the interactions of 
customers and vendors.

Self-Generation

Self-Critic

Figure 9: An example of the critic results with and without using critic metrics in the in-context self-critic stage.
The results show that after using metrics, the LVLM’s evaluation is more focused on the details of the visual content,
leading to a correct judgment.

tion implies that the proposed research was deemed963

‘Not Human Subjects Research’.964

15


	Introduction
	Self-Improvement Modality Alignment
	Response self-generation
	In-context self-critic
	Preference tuning

	Experiment
	Benchmark evaluation
	Importance of our critic metric
	Ablation studies

	Related Work
	Conclusion
	Detailed critic prompt
	Detailed ablation studies
	LLaVA-1.5-7B
	LLaVA-1.5-13B
	Comparison with other open-source LVLMs

	Benchmark details
	Hyperparameters
	Case Study
	SIMA case study
	Critic prompt case study

	Status of Exemption from Institutional Review Board

