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ABSTRACT

Recent advancements in large language models (LLMs) have opened new possibil-
ities for generative molecular drug design. In molecular optimization, LLMs are
promising candidates to augment traditional modeling and rule-based approaches
for refining molecular structures toward design criteria. We present a novel ap-
proach to molecular optimization using LLMs trained on a hand-crafted corpus
of over 100 million molecules and their properties. We trained three new models,
Chemlactica-125M, Chemlactica-1.3B, and Chemma-2B, with a demonstrated
ability to generate molecules with specified properties and learn new molecular
characteristics from limited samples, competitive with the state-of-the-art (SOTA)
in property prediction tasks on experimental data. Our optimization method, eluci-
dated by these capabilities, combines the models’ generative power with concepts
from prompt optimization, evolutionary algorithms, and rejection sampling to
solve molecular optimization problems more efficiently. The approach surpasses
previous SOTA results on the Practical Molecular Optimization (PMO) benchmark
and exceeds or is competitive with the SOTA in multi-property optimization tasks
involving docking simulations. We release the training data, language models, and
optimization algorithm to facilitate further research and reproducibility.

1 INTRODUCTION

Molecular optimization is a cornerstone of drug discovery, involving identifying compounds with
specific desirable properties(Hughes et al., 2011). This process traditionally requires extensive
laboratory experimentation, making it time-consuming and costly. Computational methods have
emerged as powerful tools to accelerate this process, yet they often struggle with the vast and discrete
nature of chemical space (Wu et al., 2018; Schneider, 2018).

Large language models (LLMs) have recently demonstrated remarkable capabilities across various
domains, from natural language processing to code generation (Brown et al., 2020; OpenAI, 2023;
Zhang et al., 2023). While there have been initial attempts to apply LLMs to chemical tasks (Irwin
et al., 2022; Edwards et al., 2022; Chilingaryan et al., 2024), these efforts were often limited in scope
or performance. Our work represents a significant leap forward, leveraging the full power of LLMs
to revolutionize molecular optimization for drug discovery.

We present a novel approach that harnesses LLMs to generate and optimize small molecules with
unprecedented efficiency and accuracy. Our method uniquely combines LLMs’ generative capabilities
with evolutionary strategies, enabling more effective exploration of chemical space than traditional
graph-based or SMILES-based models.

Our research makes several contributions to the field:

1. We develop a comprehensive molecular corpus derived from PubChem (Kim et al., 2015),
encompassing over 110 million molecules and their properties. This corpus, richer in
chemical information compared to SMILES-only corpora used in previous studies, serves as
the foundation for training our specialized LLMs: Chemlactica (125M and 1.3B parameters)
and Chemma (2B parameters). These models demonstrate a deep understanding of molecular
structures and properties, enabling more accurate predictions and generations.

2. We illustrate the adaptability of our models through efficient fine-tuning for various molecu-
lar property prediction tasks. With just a few hundred training examples, our models achieve
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competitive performance on standard benchmarks like ESOL and FreeSolv, showcasing
their potential for rapid adaptation to new tasks in drug discovery pipelines incorporating
experimental data.

3. We introduce a new molecule optimization algorithm that unifies concepts from genetic
algorithms, rejection sampling, and prompt optimization. This algorithm leverages our
trained LLMs to navigate the vast chemical space efficiently, generating molecules with
targeted properties with high sample efficiency. It achieves state-of-the-art performance on
multiple molecular optimization benchmarks. On the PMO benchmark tasks (Gao et al.,
2022), we achieved an average improvement of 8% over the previous best method. In drug
discovery case studies involving protein-ligand docking, our method generates viable drug
candidates up to 4 times faster than existing approaches.

2 RELATED WORK

Language Models for Molecular Representation While graph-based representations are common
for molecules, string-based representations, particularly the Simplified Molecular Input Line Entry
System (SMILES) (Weininger, 1988), have gained new traction in molecular modeling due to their
compatibility with language models(Guo et al., 2023c; Ramos et al., 2024). This approach leverages
the power of pretrained language models and enables efficient processing of molecular data. Notable
examples include ChemFormer (Irwin et al., 2022), MolT5 (Edwards et al., 2022), BARTSmiles
(Chilingaryan et al., 2024), and LM-Desgin for proteins (Zheng et al., 2023), which adapt traditional
language model architectures to chemical tasks. These models demonstrate the potential of applying
natural language processing techniques to molecular design and property prediction.

Molecular Optimization Techniques Molecular optimization, a key challenge in drug discov-
ery(Schneider and Fechner, 2005; Zhou et al., 2019), involves navigating a vast combinatorial space
of potential drugs while satisfying multiple constraints. Traditional approaches include genetic
algorithms adapted for molecular graphs (Yoshikawa et al., 2018) and Monte Carlo tree search
over molecular graphs (Jensen, 2019). Recent methods increasingly make use of machine learning,
especially deep learning techniques(van Tilborg et al., 2024). For instance, variational autoencoders
(Kingma and Welling, 2013) have been applied to generate and optimize molecules in latent space,
including (Gómez-Bombarelli et al., 2018) and (Jin et al., 2018). The GFlowNet (Bengio et al., 2021)
represents a novel approach designed to sample compositional objects (like molecules) with reward-
proportional probability, making it well-suited for optimization tasks. Extensions of GFlowNets (Kim
et al., 2024) incorporating genetic search have shown promising results in molecular optimization.

Large Language Models in Optimization The success of large language models (LLMs) has led
to their application in various optimization tasks beyond text generation. For instance, Chen et al.
(2023) combined prompt tuning with evolutionary algorithms to design neural network architectures,
outperforming human experts on specific tasks. Similarly, EvoPrompt (Guo et al., 2023b) developed
a general evolutionary algorithm using language models, optimizing task-specific prompts for various
downstream applications. Recently, generalized methods from discrete prompt optimization have been
introduced(Guo et al., 2023a). Another work where optimization is performed via human-machine
dialogue with a finetuned LM is DrugAssist (Ye et al., 2023). Our method uniquely combines discrete
prompt optimization style evolutionary methods and LLM-based optimization to the molecular
optimization problem setting. The work most similar and parallel to ours is (Wang et al., 2024),
which also combines evolutionary algorithms with prompt tuning for molecular generation but does
not train models on custom corpora or perform additional finetuning during optimization as is done
in this work. These studies demonstrate the potential of LLMs in complex optimization problems,
paving the way for their application in molecular design and optimization.

Our work builds upon these foundations, uniquely combining the strengths of large language models
with evolutionary strategies for molecular optimization. We extend the application of LLMs beyond
simple property prediction or generation, developing a comprehensive framework for navigating the
complex landscape of molecular design.
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[WEIGHT]180.16[/WEIGHT][TPSA]63.60[/TPSA][CLOGP]1.31[/CLOGP]
[START_SMILES]CC(=O)OC1=CC=CC=C1C(=O)O[END_SMILES]
[SAS]1.58[/SAS][QED]0.92[/QED]
[SIMILAR]O=C(Oc1ccccc1C(=O)O)c1ccccc1O 0.59[/SIMILAR]
[SYNONYM]aspirin[/SYNONYM][PROPERTY]Vapor Pressure
2.52X10-5 mm Hg at 25 °C (calc)[/PROPERTY][CID]2244[/CID]

Figure 1: Aspirin’s molecular structure (left) and it’s representation in our dataset (right)

3 TRAINING CORPUS

For our training data, we extract information on molecules from PubChem(Kim et al., 2015), en-
compassing information on the molecules, similar molecule pairs, experimental properties, and
bioassays; we store the data in a database. We randomly reserve approximately 10,000 molecules
to monitor during training and for select experiments in 4, where the validation set is mentioned.
We used rdkit (Landrum et al., 2013) to compute key molecular properties, get more precise simi-
larity measurements, and standardize SMILES strings. We transformed our database into a corpus
of molecular documents with key-value pairs representing identifiers and information for a given
molecule. To provide this as input to the language models, we developed a template system using
paired tags to delimit each property and data point for the final string representation of molecules that
we derive from their intermediate key-value representations. For instance, the string representation for
a molecule’s quantitative estimated drug-likeness (QED) value is [QED]0.84[/QED]. To enable
property prediction and property-conditioned molecular generation, we randomized the property
order and either set the position of the primary molecule at the start of the document or in between
other tags with equal probability. Figure 1 illustrates the document corresponding to aspirin. We
provide more details on the training data in the appendix section A.4 and open-source the key-value
representation of our data on huggingface.

4 MODEL TRAINING AND EVALUATION

Selection of Pretrained Language Models We chose models for continued pretraining based on
their general-purpose performance and domain-specific knowledge. At its release, Galactica (Taylor
et al., 2022) outperformed models like OPT (Zhang et al., 2022), Chinchilla (Hoffmann et al., 2022),
and BLOOM (Workshop et al., 2022) on tasks such as BIG-bench (bench authors, 2023), MMLU
(Hendrycks et al., 2020), and TruthfulQA (Lin et al., 2021). Its pretraining included two million
PubChem molecules, SMILES-specific tagging, and a scientific corpus, making it well-suited for
molecular data. Gemma (Team et al., 2024), while not explicitly trained on molecular data, underwent
extensive pretraining (2 trillion tokens for Gemma-2B) and demonstrated state-of-the-art performance
on benchmarks like MMLU, HellaSwag (Zellers et al., 2019), and Human eval (Chen et al., 2021),
comparable to larger models like LLaMA 2 (Touvron et al., 2023) and Mistral 7B (Jiang et al., 2023).
We used the Galactica and Gemma tokenizers with minor modifications, and performed standard
language model training for both models. Additional details on tokenization and training are supplied
in appendix sections A.5.

4.1 BENEFITS OF CONTINUED PRETRAINING

To assess the efficacy of continued pretraining, we conducted two experiments designed to demon-
strate (a) the potential advantages of initiating from a pretrained model versus training from scratch
and (b) whether our continued pretraining methodology enhances molecular comprehension. For the
first experiment, we randomly initialized a 125M parameter Galactica model and trained it following
the protocol recommended in the Galactica paper (Taylor et al., 2022) on our entire dataset. The
results of the downstream evaluations, presented in Table 1, demonstrate that the randomly initialized
model yielded inferior performance on all conditional generation and property prediction tasks

3
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Table 1: RMSE (RSME corrected for mean) ↓ for Property Prediction (PP) and Conditional Generation
(CG) for different tasks and models.

QED SIM SAS
PP CG PP CG PP CG

Random Init-125M 0.030 0.110 (0.119) 0.068 0.239 0.092 0.442 (0.736)
Chemlactica-125M 0.016 0.084 (0.084) 0.046 0.181 0.082 0.432 (0.432)
Chemlactica-1.3B 0.004 0.069 (0.096) 0.043 0.172 0.064 0.281 (0.281)
Chemma-2B-2.1B 0.015 0.095 (0.095) 0.049 0.147 0.057 0.482 (0.482)
Chemma-2B-39B 0.003 0.059 (0.059) 0.045 0.167 0.049 0.277 (0.277)

CLOGP TPSA WEIGHT
PP CG PP CG PP CG

Random Init-125M 0.543 1.096 (1.096) 2.415 9.628 (10.218) 11.934 58.091 (58.091)
Chemlactica-125M 0.101 0.429 (0.482) 1.326 7.876 (8.774) 6.996 17.267 (17.267)
Chemlactica-1.3B 0.094 0.507 (0.507) 1.032 5.579 (5.579) 5.699 13.494 (13.679)
Chemma-2B-2.1B 0.055 0.700 (0.700) 1.662 6.307 (6.307) 4.187 19.565 (19.565)
Chemma-2B-39B 0.037 0.454 (0.454) 0.933 7.091 (7.091) 0.640 15.429 (15.429)

compared to Chemlactica-125M, which leveraged Galactica’s pretraining. To address the second
point, we performed supervised fine-tuning on a molecular property classification task using both
Galactica-125M and Chemlactica-125M, demonstrating the superior capacity of our model to adapt
to new downstream tasks. More details on this experiment can be found in Appendix A.7

4.2 EVALUATION OF COMPUTED PROPERTY PREDICTION AND CONDITIONAL GENERATION

To assess our models’ proficiency in learning computed properties, we conducted two comprehensive
experiments:

Property Prediction We randomly sampled a fixed set of 100 molecules from the validation set. For
each property, we prompted the models with [START_SMILES]msmiles

i [END_SMILES][QED],
where msmiles

i represents the SMILES string of the molecule. We then calculated the Root Mean
Square Error (RMSE) between predicted and actual property values to evaluate performance.

Conditional Generation For each property, we sampled 100 values vi from the distribu-
tion of PubChem molecules. We then prompted the models to generate molecules with
[QED]vi[/QED][START_SMILES]. Using rdkit, we computed the actual property values of
the generated SMILES and calculated the RMSE against the target vi. To account for potential invalid
generations, we compute a corrected RMSE by substituting the property values of invalid SMILES
with the mean value of the respective property’s distribution in our dataset.

Table 1 demonstrates the results of these experiments for the three models and a compute-controlled
version of the Chemma-2B model (Chemma-2B-2.1B) and another controlled for the number
of molecules to match the 125M model trained on the full training set(Chemma-2B-39B). We
have utilized several techniques, including Chain-of-Thought (CoT)(Wei et al., 2022), repetition
penalty(Keskar et al., 2019), and undesired token suppression to enhance the quality of generations.
The details of these techniques, alongside an ablation study of the effect of each on generations, are
included in Appendix A.6.3. Furthermore, we show that our models are well calibrated in predicting
these properties in A.12.3. These experiments comprehensively demonstrate our models’ capabilities
in predicting molecular properties and generating molecules with specified properties. These are
crucial tasks in molecular design and will become the building blocks for our optimization algorithm.

Supervised Fine-Tuning A notable capability of our models is their adaptability to new datasets
and ability to learn novel molecular properties through supervised fine-tuning. To assess this feature,
we fine-tuned our models on 6 ADME tasks introduced by Fang et al. (2023a) and 3 others from
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Table 2: Regression tasks from MoleculeNet, all values are RMSE ↓.

ESOL FreeSolv Lipophilicity Avg

MoleculeNet GC 0.970 1.400 0.655 1.008
Chemformer 0.633 1.230 0.598 0.820
MoLFormer-XL 0.279 0.231 0.529 0.346
GROVER large 0.831 1.544 0.560 0.978
MolCLR 1.110 2.200 0.650 1.320
iMolCLR 1.130 2.090 0.640 1.287
BARTSmiles 0.308 0.338 0.540 0.395

Chemlactica-125M 0.276± 0.027 0.312± 0.016 0.486± 0.003 0.358± 0.012
Chemlactica-1.3B 0.251± 0.004 0.286± 0.009 0.463± 0.006 0.333± 0.005
Chemma-2B 0.297± 0.018 0.368± 0.010 0.531± 0.014 0.404± 0.020

MoleculeNet Wu et al. (2018). These tasks require the model to learn and predict different molecular
properties, such as hydration-free energy, water solubility, and human liver microsomal stability. Our
models demonstrate competitive performance, achieving state-of-the-art results for some tasks, as
shown in Table 2. Unlike some comparable methods Sirumalla et al. (2024), Glenn Northcutt (2005)
and Chilingaryan et al. (2024), we train and evaluate the model on regression tasks using next token
prediction, without utilizing a dedicated regression head. We provide further details regarding data
structuring, parameter choices, and results for ADME datasets in Appendix A.12.2.

5 MOLECULAR OPTIMIZATION ALGORITHM

We present a novel population-based algorithm for molecular optimization that leverages our trained
language models. The algorithm addresses the challenging task of navigating the vast chemical space
to find molecules with desired properties, subject to a limited evaluation budget. Formally, we define
the molecular optimization problem as:

m∗ = arg max
m∈M

O(m)

where m represents a molecule,M is the set of valid candidate molecules (estimated to be around
106 (Bohacek et al., 1996)), and O :M→ R is a black-box oracle function that evaluates molecular
properties. This oracle could represent complex processes such as lab experiments or quantum
simulations.

Our approach maintains a pool of P high-performing molecules and iteratively generates new
candidates using a language model. It is built on three key innovations:

LLM-enhanced genetic algorithm We leverage our language models to generate molecules similar
to the current pool. This process functions analogously to a genetic algorithm where language model
generations replace traditional crossover/mutation operations. For S randomly selected molecules
from the pool, we generate a new molecule using the prompt:

[SIMILAR]msmiles
1 0.9[/SIMILAR]...[SIMILAR]msmiles

S 0.8[/SIMILAR][START_SMILES]

Explicit oracle modeling Inspired by the rejection sampling technique (Bai et al., 2022; Touvron et al.,
2023), we incorporate oracle feedback directly into the language model by fine-tuning on high-performing
molecules. To accomplish this, we use prompts of the form:

[PROPERTY]O(m)[/PROPERTY][START_SMILES]msmiles[END_SMILES]

This explicit modeling allows the language model to learn the relationship between molecular structure and
oracle scores, enabling more targeted generation.

Algorithm 1 presents our complete optimization procedure, which includes the initialization of an empty
molecule pool, iterative generation of new molecules using the language model, evaluation of new molecules
using the oracle function, updating the pool to maintain the top-P molecules, and periodic fine-tuning of the
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Algorithm 1 molecular_optimization

Input: P , S, N , K
Initialize an empty Pool← {}
repeat

1. Generate prompts for molecule generation.
for i = 1 to N do

(mi,1,mi,2, . . . ,mi,S)← random_subset(Pool)
pi ← molecules2prompt((mi,1,mi,2, . . . ,mi,S), null)

end for

2. Generate N new and unique molecules with the language model.
mi ← LM(pi), i = 1, . . . , N

3. Update the pool with mis and keep only the top-P molecules.
Pool← Pool ∪ {m1, . . . ,mN}
Pool← top-P (Pool)

4. Fine-tune if necessary.
if the best molecule (in terms of oracle score) has not improved for K iterations then

5. Take all the molecules from the Pool with their corresponding similar molecules (using
which they have been generated), mi, (mi,1,mi,2, . . . ,mi,S), i = 1, . . . , P respectively.

train_samplesi ← molecules2prompt((mi,1,mi,2, . . . ,mi,S),mi), i = 1, . . . , P

6. Train LM on train_samplesi, i = 1, . . . , P .
end if

until optim. problem stopping condition

language model when progress stagnates. Algorithm 2 details our prompt construction process, which is crucial
for effective molecule generation and model fine-tuning. For generation, vanilla temperature sampling is used.

We employ a dynamic fine-tuning strategy to adapt the language model throughout the optimization process.
Fine-tuning is triggered if the best molecule does not improve for K consecutive iterations, with the maximum
number of fine-tuning rounds limited by the oracle budget. We use a learning rate scheduler with warm-up steps,
and each fine-tuning step consists of multiple epochs with a portion of data reserved for validation to prevent
overfitting.

Given the complexity of our algorithm, we adopt a focused hyperparameter tuning strategy, prioritizing the
most sensitive parameters while keeping others fixed. This approach balances computational efficiency with
optimization performance. Appendix A.6 provides the methodology and results of our hyperparameter tuning
experiments. By combining these elements, our algorithm effectively leverages the power of large language
models for molecular optimization, showing strong performance across a range of tasks as detailed in Section 6.

6 EXPERIMENTS

6.1 PRACTICAL MOLECULAR OPTIMIZATION

Problem formulation. Inspired by real-world molecular design settings Gao et al. (2022) proposes the prac-
tical molecular optimization (PMO) benchmark consisting of 23 molecular optimization problems. PMO focuses
on sample efficiency, generalizability to different optimization objectives, and robustness to hyperparameter
selection of molecular optimization algorithms. To assess optimization ability and sample efficiency, Gao et al.
(2022) put a limit on the number of oracle calls for each task to 10000 and measures the area under the curve
(AUC) of the top-10 average property values versus the number of oracle calls as the performance metric. AUC
values are calculated after every 100 oracle calls, combined, and normalized to the [0, 1] range.

Our approach. Using our proposed optimization algorithm we evaluate the Chemlactica-125M, Chemlactica-
1.3B and Chemma-2B models. The optimization algorithm’s hyperparameters are tuned for each model separately
according to the hyperparameter tuning methodology described in (Gao et al., 2022) and A.6. For this experiment,
we keep model parameters in bfloat16 for more rapid evaluation.
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Table 3: PMO benchmark with Chemlactica-125M, Chemlactica-1.3B and Chemma-2B in compari-
son with other methods. REINVENT results are taken from Gao et al. (2022), Augmented memory
is taken from Guo and Schwaller (2023a), and Genetic-guided (GG) GFlowNets are taken from
Kim et al. (2024). Values are the average of 5 runs with different seeds, metric is Top-10 AUC ↑ ±
standard deviation

jnk3 median1 scaffold_hop sitagliptin_mpo sum of 4 sum of 23

REINVENT 0.783 ± 0.023 0.356 ± 0.009 0.560 ± 0.019 0.021 ± 0.003 1.720 14.196
Augmented memory 0.739 ± 0.110 0.326 ± 0.013 0.567 ± 0.008 0.284 ± 0.050 1.916 15.002
GG GFlowNets 0.764 ± 0.069 0.379 ± 0.010 0.615 ± 0.100 0.634 ± 0.039 2.392 16.213

Chemlactica-125M 0.881 ± 0.058 0.359 ± 0.060 0.626 ± 0.016 0.649 ± 0.051 2.515 ± 0.119 17.170 ± 0.424
Chemlactica-1.3B 0.866 ± 0.021 0.382 ± 0.047 0.673 ± 0.080 0.586 ± 0.062 2.506 ± 0.155 17.284 ± 0.284
Chemma-2B 0.891 ± 0.032 0.382 ± 0.022 0.669 ± 0.110 0.613 ± 0.018 2.555 ± 0.099 17.534 ± 0.214

Results. Our method performs strongly, surpassing the existing approaches. The algorithm powered by
our smallest model (Chemlactica-125M) already improves over the state-of-the-art by a significant margin,
with an AUC Top-10 of 17.170 (Chemlactica-125M) vs 16.213 (Genetic-guided GFlowNets). Additionally,
strengthening the generator model improves the performance. Chemlactica-1.3B and Chemma-2B achieve AUC
Top-10 of 17.284 and 17.534, respectively. For a more comprehensive understanding of optimization dynamics,
Figures 5-7 illustrate visualizations of the optimization processes for sitagliptin_mpo task with different
seeds and different models.

Furthermore, to investigate the novelty of generated molecules, we visualize the distance of the molecules
generated by the model from the closest molecule in the training dataset (PubChem) throughout the optimization
procedure. Figure 2 represents the molecules generated during the optimization along with their oracle scores
and distances from the closest molecule in PubChem computed with Tanimoto similarity. Even though we did
not explicitly guide the model to generate molecules distant from PubChem, we observe that the model generates
molecules far from PubChem to optimize the given objective. In both multi-property optimization (MPO) tasks
across all seeds, the model finds high-scoring molecules with less than 0.3 similarity to their nearest neighbor
in PubChem, and we observe a similar pattern in nearly all MPO problems from PMO. We conclude that our
method does not retrieve molecules from the training dataset and is able to explore the chemical space beyond
PubChem to solve molecular design tasks.

Unlike most other methods, our language models can leverage additional information about the oracle if the
oracle internally calculates common molecular properties. These properties can be explicitly written in the
prompts used in the optimization loop. In Appendix A.11.2, we show that such enriched prompts can significantly
improve the metrics for several PMO tasks.

6.2 MULTI-PROPERTY OPTIMIZATION WITH DOCKING

6.2.1 INTRODUCTION TO MPO WITH DOCKING

Molecular optimization tasks incorporating docking simulation evaluate a model’s capability to generate viable
molecules for practical drug discovery. These benchmarks assess the model’s ability to generate plausible
molecules that optimize docking scores (minimize docking energy) against specified protein targets while
adhering to other desired structural or physicochemical constraints. The additional constraints help to prevent
exploitation of the docking algorithms used. The primary objective of these benchmarks is maximizing the reward
function with minimal oracle calls, emphasizing sample efficiency. Below, we present our approach and results
on two benchmarks involving suites of MPO tasks with docking components, using different hyperparameter
tuning approaches and evaluation metrics. We illustrate how generated molecules’ docking scores change
throughout the optimization process in A.13.2. In other experiments, we found that numerical precision is
important for molecular optimization tasks (see A.11.3), so we keep model parameters in full floating-point
precision for docking MPO experiments.

6.2.2 DOCKING MPO ON DRD2, ACHE, AND MK2

Problem formulation. This benchmark was initially proposed in the Augmented Memory paper (Guo
and Schwaller, 2023a). It focuses on three targets with extensive real-world applications: the dopamine type 2
receptor (DRD2), MK2-kinase, and acetylcholinesterase (AChE). To ensure the generation of realistic molecules,
the oracle reward function incorporates additional constraints, including the maximization of QED and a
molecular weight limit of 500 Da.

Consistent with other works, we quantify sample efficiency using two metrics: oracle burden and generative
yield. Oracle burden measures the number of oracle calls required to generate N unique molecules above a
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Table 4: Docking MPO experiments run with a maximum oracle budget of 5000 oracle calls. Note
that both oracle burden and generative yield values are reward-threshold dependent, and mean values
from the reported baseline works are reported. The numbers next to the metrics correspond to the
thresholds, and the values in parentheses for oracle burden indicate how many unique molecules
need to be generated. The best performance on each task-metric combination is bolded. We use the
best-performing hyperparameters from the PMO benchmark.

Metric Target Reinvent Beam Chemlactica Chemlactica Chemma
Baseline Structure 15 125M 1.3B 2B

Generative Yield 0.7 ↑ DRD2 1879 ± 16 3474 ± 158 3733 ± 512 3659 ± 288 3848 ± 98
MK2 879 ± 10 3127 ± 138 3772 ± 578 3660 ± 535 3578 ± 452
AChE 2437 ± 53 3824 ± 162 4108 ± 67 4193 ± 128 4092 ± 284

Generative Yield 0.8 ↑
DRD2 102 ± 6 1780 ± 439 2827 ± 510 2621 ± 614 2985 ± 194
MK2 2 ± 0 987 ± 211 2569 ± 1156 2216 ± 522 1058 ± 465
AChE 147 ± 11 2059 ± 327 3246 ± 168 3652 ± 349 3096 ± 372

Oracle burden 0.8 (1) ↓
DRD2 168 ± 149 126 ± 90 20 ± 29 11 ± 10 74 ± 62
MK2 1724 ± 802 736 ± 166 345 ± 312 78 ± 125 189 ± 278
AChE 83 ± 29 105 ± 29 22 ± 28 15 ± 23 74 ± 72

Oracle burden 0.8 (10) ↓
DRD2 883 ± 105 582 ± 83 114 ± 08 160 ± 130 240 ± 11
MK2 Failed 1122 ± 154 493 ± 418 248 ± 261 440 ± 548
AChE 481 ± 108 462 224 ± 17 91 ± 103 168 ± 94

Oracle burden 0.8 (100) ↓
DRD2 4595 ± 0 1120 ± 25 364 ± 119 430 ± 250 518 ± 41
MK2 Failed 2189 ± 181 865 ± 533 486 ± 346 934 ± 918
AChE 3931 ± 286 1110 ± 265 497 ± 58 333 ± 131 433 ± 143

predefined reward threshold, and generative yield represents the number of unique molecules generated above a
reward threshold for a fixed number of oracle calls. To maintain consistency in implementations, we adopt the
molecular preprocessing, conformational generation, docking parameters, and aggregate reward function from
the (Guo and Schwaller, 2023b), specifically comparing our results with the beam structure 15 method, which
demonstrated superior average-case performance relative to other benchmarked methods. We used the same
hyperparameters as those selected for the PMO experiment with no modifications.

Results. Table 4 presents our approach’s performance on this benchmark. None of our models consistently
outperforms the others for generative yield across the evaluated receptors. Conversely, Chemlactica-1.3B
generally demonstrates superior performance for oracle burden, aside from oracle burden 1 and 10 for DRD2,
where Chemlactica-125M is superior. Appendix A.13.3 shows the set of molecules generated at the beginning
and at the end of the optimization trajectory for DRD2 docking. Furthermore, in A.13.2, we show that the
average docking score of molecules consistently decreases throughout optimization, suggesting that the model
learns to not only generate molecules that improve the scores of the easier properties but can generate molecules
with low docking energies for the DRD2 pocket as well.

6.2.3 DOCKING MPO; HITS ON PARP1, FA7, 5HT1B, BRAF, AND JAK2

Problem formulation. Following Lee et al. (2024), we formulate the MPO objective as the product of a
normalized docking score, normalized SA score, and QED score. The docking is performed on the parp1,
fa7, 5ht1b, braf, and jak2 target proteins.

Our approach. To ensure comparability of the results with other methods, we employ the oracle function
implementation used in Guo and Schwaller (2024), run our method with ten different seeds (0-9), and use an
oracle budget of 3000 for each task. For hyperparameter tuning, we use an illustrative experiment that does
not use the same oracle function as the docking MPO tasks (for a more detailed discussion on hyperparameter
selection, refer to the Appendix A.6. Following Lee et al. (2024) and Guo and Schwaller (2024), we compute
the Hit Ratio (%), that is, the percentage of molecules with QED > 0.5, SA score < 5, and docking score better
than the median of the known actives, as well as the Strict Hit Ratio (%), which requires QED > 0.7 and SA
score < 3.).

Results. Table 5 and 6 illustrate the results of our method in comparison with the baselines. We observe that
our algorithm powered by our language models performs comparably with others. In terms of the Hit Ratio
(%), our approach performs significantly better with the targets fa7 and jak2, while in terms of the Strict Hit
Ratio (%), it is significantly better with the target fa7. Notably, for the target 5ht1b, our approach is inferior
to Saturn for both metrics and shows statistically similar performance with the rest of the target proteins. The
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outcomes illustrate the efficiency of our approach and its transferability to physics-based simulations using the
illustrative experiment. The results also demonstrate the applicability of our method to MPO problems with a
costly oracle, which are more prevalent in industrial drug discovery settings. We present analyses of generated
molecule diversity in A.9.

Table 5: Comparision of our approach with other methods. The values represent the Hit Ratio (%)
↑ ± standard deviation across 10 independent runs. The results of Augmented Memory, GEAM, and
Saturn are taken from Guo and Schwaller (2023a), Lee et al. (2024), and Guo and Schwaller (2024),
respectively. Results within one standard deviation from the best one are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

Augmented Memory 16.966 ± 3.224 2.637 ± 0.860 52.016 ± 2.302 8.307 ± 1.714 21.548 ± 4.938
GEAM 45.158 ± 2.408 20.552 ± 2.357 47.664 ± 1.198 30.444 ± 1.610 46.129 ± 2.073
Saturn 57.981 ± 18.537 14.527 ± 9.961 68.185 ± 3.400 38.999 ± 10.114 60.827 ± 11.502

Chemlactica-125M 37.117 ± 7.325 70.392 ± 17.584 31.927 ± 2.697 30.107 ± 8.071 54.657 ± 12.759
Chemlactica-1.3B 52.333 ± 12.669 87.03 ± 5.37 40.541 ± 3.373 49.471 ± 12.055 75.02 ± 8.04

Chemma-2B 52.063 ± 6.935 79.97 ± 11.154 38.233 ± 5.846 44.81 ± 12.14 71.03 ± 9.074

Table 6: Comparison of our approach with other methods. The values represent the Strict Hit Ratio
(%) ↑ ± standard deviation across 10 independent runs. The results of GEAM and Saturn are taken
from Lee et al. (2024) and Guo and Schwaller (2024), respectively. Results within one standard
deviation from the best one are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
Saturn 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613

Chemlactica-125M 28.907 ± 7.185 58.596 ± 18.698 25.523 ± 2.865 22.86 ± 7.239 45.943 ± 12.408
Chemlactica-1.3B 35.33 ± 12.837 68.22 ± 6.438 28.074 ± 3.641 34.583 ± 9.856 58.133 ± 8.404

Chemma-2B 37.117 ± 5.712 63.933 ± 11.794 26.757 ± 5.345 31.783 ± 10.171 54.79 ± 8.946

6.2.4 DISCUSSION OF MPO WITH DOCKING

Our findings validate the effectiveness of our approach, demonstrating that our models can leverage pretraining
information and iterative fine-tuning to optimize complex reward functions, even with limited data not seen
during pretraining. Furthermore, successfully transferring training parameters and sampling strategies from
the PMO benchmark and illustrative experiment to the MPO docking tasks in 6.2.2 and 6.2.3, respectively,
underscores our method’s flexibility and robustness. This adaptability suggests that our approach could be
particularly valuable when extensive hyperparameter tuning is impractical or undesirable. Specifically, the results
demonstrate the applicability of our method to MPO problems with costly oracles, which are more prevalent in
industrial drug discovery settings. However, our method does not directly generate 3D conformations used by
the docking scoring function, has not universally outperformed the baselines across tasks, and is sensitive to
numerical precision. Future work will further improve sample efficiency and apply the algorithm to even more
challenging MPO problems inspired by applications within the industry.

7 CONCLUSION

This paper presents three language models: Chemlactica-125M, Chemlactica-1.3B, and Chemma-2B, trained
on a novel corpus encompassing over 100 million molecules and their properties. We demonstrate the efficacy
of these models on multiple tasks inspired by industrial drug design, with a particular focus on molecular
optimization. Our proposed optimization algorithm combines the capabilities of language models with concepts
from genetic algorithms. This approach has shown strong performance across various benchmarks, indicating
its potential for addressing complex molecular design challenges. We publicly release our training corpus,
pretrained models, optimization algorithm, and associated training recipes to support reproducibility, making an
early step toward applying language models to chemical research. We hope our contributions provide a valuable
foundation for future work in this domain, enabling new approaches for molecular design and analysis.
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Figure 2: Visualization of the oracle score vs. distance from the closest molecule in PubChem
of the current 50 best molecules throughout the optimization process. The plots are obtained for
sitagliptin_mpo (top) and ranolazine_mpo (bottom) tasks from PMO benchmark with the
Chemma-2B model with four different seeds.
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A APPENDIX

A.1 BROADER RELATED WORK

Recurrent Neural Networks in Molecular Design Recurrent neural networks (RNNs) have been applied
to molecular optimization as parameter-efficient alternatives to transformer architectures. A notable example is
REINVENT (Olivecrona et al., 2017), which uses policy-based reinforcement learning to generate molecules
with desired properties. Another attempt at employing RNNs in drug design is ReLeaSE (Popova et al., 2018),
which combines multi-phase training with small RNNs for molecular drug design. Another work that proposes a
framework for drug optimization and utilizes finetuned RNNs is DrugImprover (Liu et al., 2023). Finally, recent
enhancements to REINVENT, such as augmented memory and beam enumeration (Guo and Schwaller, 2023b),
have further improved its performance. These approaches combine surrogate models, molecular diversity filters,
experience replay mechanisms, and substructure filtering to increase sample efficiency; but these methods do not
leverage the scale, generative capabilities and flexibility afforded by LLMs.

A.2 LIMITATIONS

The language models introduced in this paper operate only on SMILES representations and do not support 3D
coordinates of atoms, limiting their reliability in scenarios where 3D conformation is critical. Furthermore, the
models have a very limited understanding of biological entities like proteins, constraining their practical appli-
cability in particular biochemistry and drug discovery use-cases. While effective, the optimization algorithms
presented in this paper are not exhaustively tuned, suggesting potential room for improvement. Finally, our
current approach does not directly account for or consider synthetic accessibility or other practical considerations
in drug design, which limits its immediate applicability in real-world drug discovery pipelines.

A.3 BROADER IMPACT

The methods presented in this work have the potential for both positive and negative societal impacts. On the
positive side, these models could significantly benefit the drug discovery and healthcare industries by accelerating
the development of new therapeutic compounds. This acceleration may lead to faster responses to emerging
health challenges and potentially reduce the cost of drug development.

However, as with many dual-use technologies, there is a risk that sufficiently advanced versions of these models
could lower the barriers for malicious actors attempting to develop chemical or biological weapons. This risk
underscores the importance of responsible development and deployment of such technologies.

Given these potential impacts, we recommend that future work in this area include rigorous evaluation of these
algorithms and language models in designing potentially harmful substances to better understand and mitigate
risks. Developing safeguards and ethical guidelines for using and disseminating molecular optimization models
is crucial. Collaboration with experts in biosecurity and ethics will be essential to ensure that the development of
these technologies proceeds in a manner that maximizes benefits while minimizing the potential for harm.

A.4 DATASET GENERATION

Data Collection We first constructed a comprehensive SQL database using PubChem dumps to generate our
training corpus. Then, using rdkit (Landrum et al., 2013), we computed key molecular properties, including
synthesizability score (SAS), quantitatively estimated drug-likeness (QED), molecular weight (MW), total
polar surface area (TPSA), partition coefficient (CLogP), and various structural features such as hydrogen
donors/acceptors and ring counts. Due to differences in SMILES canonicalization between PubChem and rdkit,
we standardized all SMILES strings using rdkit’s implementation.

Our dataset’s cutoff date is January 26th, 2023, thus excluding any subsequent additions or modifications to
PubChem. To ensure data integrity, molecules that failed rdkit’s MolFromSmiles parsing were discarded. To
incorporate similarity information, we utilized PubChem’s related molecule data, which includes pairs with
Tanimoto similarity ≥0.8 based on PubChem fingerprints. From the resulting 200 billion pairs, we sampled 4
billion and recalculated their similarities using the ECFC4 fingerprint for improved accuracy and consistency
with other methods.

JSONL Corpus Generation We transformed our database into a corpus of JSONL files, with each
molecule represented as a single JSON object. This representation includes molecular identifiers, computed
properties, similarity data, synonyms, experimental properties, and the PubChem compound identifier (CID).
This representation allows for more flexible manipulation of molecules’ text representation, which we describe
in 3.
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A.5 TRAINING DETAILS

A.5.1 TOKENIZATION

We utilized the original tokenizers from Gemma and Galactica, adding chemistry-specific tokens
[START_SMILES] and [END_SMILES] to Gemma’s tokenizer for consistency. To optimize training effi-
ciency, we included all opening and closing tags as special tokens (e.g., [QED]). Samples of varying lengths
were tokenized and grouped into blocks of 2048 tokens, separated by model-specific separator tokens (EOS
"</s>" for Chemlactica, BOS "<bos>" for Chemma).

A.5.2 TRAINING IMPLEMENTATION

Chemma and Chemlactica were trained using the AdamW optimizer (Loshchilov and Hutter, 2019) with cross-
entropy loss and a causal language modeling objective. We applied dropout only to Chemlactica, maintaining
consistency with the original model training regimes. For computational efficiency, we train Chemma-2B in full
bfloat16. We leveraged PyTorch’s (Paszke et al., 2019) Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023)
and Flash Attention (Dao, 2024) for optimized training. The training was conducted locally (Chemlactica-125M:
306 A100 hours) and on Nebius.ai cloud (Chemma-2B: 488 H100 GPU hours, Chemlactica-1.3B: 288 H100
GPU hours). Preparatory work before the final training runs consumed multiple thousands of A100 hours.

A.5.3 MODEL TRAINING HYPERPARAMETERS

Table 7 lists the hyperparameters we used for pretraining the aforementioned models.

A.6 HYPERPARAMETER TUNING AND SELECTION

A.6.1 OPTIMIZATION ALGORITHM HYPERPARAMETER TUNING FOR PMO.

Given our optimization algorithm’s large number of hyperparameters, we adopt a two-phase approach. First, we
identify and freeze the hyperparameters that empirically show less sensitivity to the algorithm’s performance.
Then, we focus on tuning the more sensitive hyperparameters using grid search. We tune the hyperparameters
separately for Chemlactica-125M, Chemlactica-1.3B, and Chemma-2B to account for model-specific optimal
settings. For searching the nearest neighbor with Tanimoto similarity in PubChem, we utilized the USearch
similarity search engine for vectors (Vardanian, 2023).

Selection criteria. For tuning, we utilize the perindopril_mpo and zaleplon_mpo tasks from the PMO
benchmark, following the methodology in (Gao et al., 2022). We report the AUC Top-10 metric from three
independent runs with different seeds for each hyperparameter configuration.

Fixed hyperparameters and grid. A key hyperparameter, N , which determines the number of molecules
generated before updating the pool, is set to 200. We implement a dynamic temperature scheduling strategy to
increase the diversity of generated molecules. The sampling temperature starts at 1 and linearly increases to 1.5
as the number of oracle evaluations grows. This gradual temperature increase promotes the generation of more
diverse molecules over time, reducing repetition and encouraging exploration of the chemical space.

Table 7: Hyperparameters of our language models. All cross-entropy losses use mean reduction.

Chemlactica-125M Chemlactica-1.3B Chemma-2B

Peak learning rate 1.4e-3 1.0e-4 1.0e-3
Warmup steps 500 500 500
Context length 2048 2048 2048
ADAM β1 0.9 0.9 0.9
ADAM β2 0.95 0.95 0.95
ADAM ϵ 1e-8 1e-8 1e-8
Weight Decay 0.1 0.1 0.1
Dropout 0.1 0.1 None
Attention Dropout 0.1 0.1 None
Precision Mixed Mixed BF16
Loss Function CE Loss CE Loss CE Loss
Vocabulary Size 50066 50066 256000
Gradient Clipping 1.0 1.0 1.0
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We perform grid search on P (pool size), S (number of similar molecules), K (fine-tuning tolerance level), and
lr (fine-tuning peak learning rate) with the following grid:

• P = [10, 30, 50]

• S = [0, 1, 2, 5]

• K = [3, 5, 7]

• lr = [10−4, 10−5]

A.6.2 OPTIMIZATION ALGORITHM HYPERPARAMETER TUNING FOR MPO WITH DOCKING
ON PARP1, FA7, 5HY1B, BRAF, AND JAK2 TARGETS.

Consistent with the hyperparameter tuning used for PMO, we select the most sensitive hyper-parameters and
then tune them separately for each model via grid search.

Selection criteria. Motivated by the illustrative experiment for hyperparameter tuning used in Guo and Schwaller
(2023b), we formulate a problem of maximizing the TPSA of a molecule while keeping its weight under
350 Da and having more than one ring. We use this molecular design task and the oracle burden metric for
hyperparameter selection.

Hyperparameter grid. Since the illustrative experiment takes less time to evaluate (compared to the PMO tasks),
we expand the number of hyperparameters used in the grid to allow for a more extensive search.

We perform a grid search on P (pool size), S (number of similar molecules), N (the number of molecules
generated to update the pool), temp_schedule (the starting and ending temperature for linearly changing it
during the optimization process), K (fine-tuning tolerance level) and lr (fine-tuning peak learning rate) with the
following grid:

• P = [10, 30, 50]

• S = [1, 2]

• N = [100, 200]

• temp_schedule = [[1.5, 1.0], [1.3, 1.0], [1.0, 1.0], [1.0, 1.3], [1.0, 1.5]]

• K = [2, 3, 5]

• lr = [10−4, 10−5]

A.6.3 CONDITIONAL GENERATION HYPERPARAMETERS

Our generation process benefits from the following techniques to improve output quality:

• Chain-of-Thought (CoT): We omit [START_SMILES] from the initial prompt, enabling the model
to generate more property values before the molecule itself.

• Repetition Penalty: Applied to discourage repetitive outputs.
• Undesired Token Suppression: Employed to ensure the model eventually generates
[START_SMILES].

Table 9 provides an ablation study of these sampling components across our three models, demonstrating their
individual and combined impacts on generation quality. Surprisingly, the best combination of hyperparameters,
as chosen by lowest corrected RMSE (RMSE(c)), coincides with all three models. DNF (Did Not Finish) trial
exceeded 30 minutes of runtime when it was manually terminated.

A.7 CHEMLACTICA VS. GALACTICA COMPARISON

To evaluate the efficacy of our pretraining approach in comparison to the base Galactica model, we utilized the
BBBP task, introduced by Wu et al. (2018). The BBBP task is a binary classification problem that requires the
model to predict whether a given molecule can penetrate the blood-brain barrier. Notably, the pretraining dataset
for the base Galactica model included the training set of the BBBP dataset in a question answering format,
hence enabling BBBP prediction without further fine-tuning. We show the model’s performance as reported in
the original publication as well as our reproduction. We conducted supervised fine-tuning on base Galactica-
125M and Chemlactica-125M, each using their respective data formats. It is important to note that supervised
fine-tuning is necessary, as the general capabilities of our models do not inherently enable the prediction of
specific downstream tasks. The results, presented in Table 8, demonstrate that although hyperparameter tuning
of Galactica improved model performance significantly, Chemlactica demonstrated better performance without
any tuning. With the best hyperparameters, Chemlactica’s results further improve. These results suggest that our
continued pretraining improves the models’ ability to adapt to downstream tasks with fine-tuning.
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Table 8: Comparison of Galactica-125M vs Chemlactica-125M on BBBP binary classification.

ROC ↑
Galactica-125M (original paper) 0.393
Galactica-125M (our reproduction) 0.417

Galactica-125M (SFT) 0.512
Chemlactica-125M (SFT) 0.729
Galactica-125M (SFT - HP tuned) 0.695
Chemlactica-125M (SFT - HP tuned) 0.739

Table 9: Ablation study on Conditional Generation hyperparameters. Each row represents one
combination of Chain-of-Thought (CoT), repetition penalty (rep.), and suppression (supp.). All
experiments are done on the molecular weight (top) and SAS (bottom) prediction tasks.

Chemlactica-125M Chemlactica-1.3B Chemma-2B
CoT rep. supp. RMSE (c) ↓ Invalids ↓ RMSE (c) ↓ Invalids ↓ RMSE (c) ↓ Invalids ↓
No 1.0 No 70.11 (70.11) 0/100 15.81 (65.32) 1/100 12.15 (64.54) 1/100
Yes 1.0 No 112.52 (112.52) 0/100 187.26 (187.26) 0/100 198.48 (191.89) 46/100
Yes 1.010 No 82.28 (82.28) 0/100 137.19 (137.19) 0/100 170.02 (170.02) 0/100
Yes 1.0 Yes 33.46 (33.46) 0/100 18.53 (25.22) 1/100 31.98 (31.85) 1/100
Yes 1.005 Yes 34.52 (34.52) 0/100 17.14 (17.14) 0/100 29.71 (29.71) 0/100
Yes 1.010 Yes 30.27 (30.27) 0/100 16.87 (16.87) 0/100 18.93 (20.39) 1/100
Yes 1.015 Yes 30.27 (30.27) 0/100 18.07 (19.61) 1/100 18.99 (20.44) 1/100
Yes 1.020 Yes 31.17 (31.17) 1/100 16.33 (18.03) 1/100 24.16 (25.27) 1/100
Yes 1.050 Yes 45.38 (45.38) 1/100 16.49 (34.48) 1/100 74.78 (130.11) 63/100
Yes 1.100 Yes 35.20 (35.20) 0/100 16.61 (32.37) 1/100 740.28 (488.73) 59/100

No 1.0 No 0.268 (0.769) 19/100 0.395 (0.395) 1/100 0.391 (0.431 4/100
Yes 1.0 No 0.887 (0.887) 0/100 0.866 (0.866) 0/100 DNF 46/100
Yes 1.010 No 0.951 (0.951) 0/100 0.691 (0.691) 0/100 0.769 (0.769) 0/100
Yes 1.0 Yes 0.436 (0.436) 0/100 0.470 (0.470) 2/100 0.253 (0.253) 1/100
Yes 1.005 Yes 0.439 (0.439) 0/100 0.475 (0.475) 0/100 0.348 (0.363) 1/100
Yes 1.010 Yes 0.432 (0.432) 0/100 0.281 (0.281) 0/100 0.275 (0.275) 0/100
Yes 1.015 Yes 0.373 (0.378) 1/100 0.540 (0.536) 2/100 0.331 (0.347) 2/100
Yes 1.020 Yes 0.432 (0.432) 0/100 0.369 (0.369) 0/100 0.325 (0.341) 2/100
Yes 1.050 Yes 0.294 (0.733) 3/100 0.843 (0.951) 10/100 DNF 63/100
Yes 1.100 Yes 0.381 (0.381) 0/100 0.449 (0.449) 1/100 DNF 59/100

A.8 THE ALGORITHM FOR CONVERTING MOLECULES TO PROMPT

Algorithm 2 shows the procedure of converting a molecule and its similar molecule into either a prompt for new
molecule generation or a training sample. The separator token represented by <sep> corresponds to the eos
token "</s>" for the Chemlactica models and the bos token "<bos>" for Chemma. This keeps consistency with
models’ training data described in 4.

A.9 DIVERSITY RESULTS FOR DOCKING MPO; PARP1, FA7, 5HT1B, BRAF, AND JAK2

Table 10 presents the #Circles metric for molecules satisfying the Strict Hit Ratio conditions(Xie et al., 2023).
We display the results for our methods alongside the baselines to facilitate comparison. The results demonstrate
that our approach generates more diverse high-reward molecules than other methods.
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Algorithm 2 molecules2prompt

Input: (m1,m2, . . . ,mS),m
1. Check if the outcome should be a molecule generation prompt or a training sample.
if m is null then

1.1. Sample similarity values for molecules in the prompt, desirable oracle score and set the
suffix for a molecule generation.

vsimi ∼ U(0.4, 0.9), i = 1, . . . , S
vmax ← the maximum oracle score achieved thus far
vprop ∼ U(vmax, oracle_max)
suffix← [START_SMILES]

else
1.3. Compute the correct similarity values for the molecules in the prompt and the correct

oracle score, set the suffix for a training sample.
vsimi = similar(mi,m), i = 1, . . . , S
vprop = O(m)
suffix← [START_SMILES]msmiles[END_SMILES]<sep>

end if
2. Concatenate all molecules in the prompt with their similarity values.
p← [SIMILAR]msmiles

1 vsim1 [/SIMILAR]...[SIMILAR]msmiles
S vsimS [/SIMILAR]

if at least one fine-tuning has been performed then
2.1. Add the oracle score to the prompt.
p← concat(p, [PROPERTY]vprop[/PROPERTY])

end if
3. Add the appropriate suffix.
return concat(p, suffix)

Table 10: Comparison of our approach with other methods. The values represent the #Circles
(↑) ± standard deviation for molecules which satisfy the criteria for the Strict Hit Ratio across 10
independent runs. The results of GEAM and Saturn are taken from Lee et al. (2024) and Guo and
Schwaller (2024), respectively. Results within one standard deviation from the best one are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2
Saturn 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1

Chemlactica-125M 41 ± 7 40 ± 15 38 ± 7 42 ± 6 41 ± 5
Chemlactica-1.3B 59 ± 10 61 ± 9 53 ± 7 62 ± 7 63 ± 15

Chemma-2B 66 ± 16 73 ± 14 64 ± 14 72 ± 14 72 ± 19

A.10 DETAILED RESULTS FOR PRACTICAL MOLECULAR OPTIMIZATION

Table 11 shows the evaluations of Chemlactica-125M, Chemlactica-1.3B and Gemma-2B, along with other
methods on 23 tasks of the PMO benchmark. No method uniformly beats all others on every task. Our (and
many other) methods get a zero result on valsartan_smarts. The reason is that the oracle has a binary
multiplier term usually equal to zero, so there is no supervision signal for the entire generation process.We
separately provide a comparison with MolLEO in Table 12, as the source work did not run the method on all
PMO tasks. We present results of our method Chemlactica-125M, Chemlactica-1.3B and Gemma-2B, alongside
the MolLEO variants.
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Table 11: Comparision of different methods on PMO. The values represent the AUC Top-10 ↑ metric
averaged over five independent runs with different seeds.

Oracle REINVENT Augmented Genetic Chemlactica Chemlactica Chemma
Memory GFN 125M 1.3B 2B

albuterol_similarity 0.882 ± 0.006 0.913 ± 0.009 0.949 ± 0.010 0.951 ± 0.011 0.947 ± 0.012 0.951 ± 0.009
amlodipine_mpo 0.635 ± 0.035 0.691 ± 0.047 0.761 ± 0.019 0.772 ± 0.091 0.769 ± 0.083 0.766 ± 0.107

celecoxib_rediscover 0.713 ± 0.067 0.796 ± 0.008 0.802 ± 0.029 0.906 ± 0.046 0.911 ± 0.013 0.920 ± 0.011
deco_hop 0.666 ± 0.044 0.658 ± 0.024 0.733 ± 0.109 0.801 ± 0.101 0.836 ± 0.117 0.831 ± 0.123

drd2 0.945 ± 0.007 0.963 ± 0.006 0.974 ± 0.006 0.965 ± 0.007 0.968 ± 0.005 0.972 ± 0.006
fexofenadine_mpo 0.784 ± 0.006 0.859 ± 0.009 0.856 ± 0.039 0.881 ± 0.031 0.891 ± 0.039 0.931 ± 0.014

gsk3 0.865 ± 0.043 0.881 ± 0.021 0.881 ± 0.042 0.926 ± 0.022 0.916 ± 0.027 0.928 ± 0.021
isomers_c7h8n2o2 0.852 ± 0.036 0.853 ± 0.087 0.969 ± 0.003 0.951 ± 0.012 0.933 ± 0.017 0.947 ± 0.009

isomers_c9h10n2o2pf2cl 0.642 ± 0.054 0.736 ± 0.051 0.897 ± 0.007 0.927 ± 0.006 0.929 ± 0.012 0.914 ± 0.017
jnk3 0.783 ± 0.023 0.739 ± 0.110 0.764 ± 0.069 0.881 ± 0.058 0.866 ± 0.021 0.891 ± 0.032

median1 0.356 ± 0.009 0.326 ± 0.013 0.379 ± 0.010 0.359 ± 0.060 0.382 ± 0.047 0.382 ± 0.022
median2 0.276 ± 0.008 0.291 ± 0.008 0.294 ± 0.007 0.328 ± 0.032 0.329 ± 0.016 0.366 ± 0.018

mestranol_similarity 0.618 ± 0.048 0.750 ± 0.049 0.708 ± 0.057 0.896 ± 0.064 0.850 ± 0.051 0.926 ± 0.023
osimertinib_mpo 0.837 ± 0.009 0.855 ± 0.004 0.860 ± 0.008 0.907 ± 0.015 0.892 ± 0.013 0.879 ± 0.016
perindopril_mpo 0.537 ± 0.016 0.613 ± 0.015 0.595 ± 0.014 0.709 ± 0.052 0.755 ± 0.066 0.711 ± 0.062

qed 0.941 ± 0.000 0.942 ± 0.000 0.942 ± 0.000 0.942 ± 0.000 0.942 ± 0.000 0.941 ± 0.000
ranolazine_mpo 0.760 ± 0.009 0.801 ± 0.006 0.819 ± 0.018 0.864 ± 0.014 0.883 ± 0.017 0.868 ± 0.015

scaffold_hop 0.560 ± 0.019 0.567 ± 0.008 0.615 ± 0.100 0.626 ± 0.016 0.673 ± 0.080 0.669 ± 0.110
sitagliptin_mpo 0.021 ± 0.003 0.284 ± 0.050 0.634 ± 0.039 0.649 ± 0.051 0.586 ± 0.062 0.613 ± 0.018

thiothixene_rediscovery 0.534 ± 0.013 0.550 ± 0.041 0.583 ± 0.034 0.624 ± 0.102 0.693 ± 0.119 0.698 ± 0.121
troglitazone_rediscovery 0.441 ± 0.032 0.540 ± 0.048 0.511 ± 0.054 0.734 ± 0.130 0.765 ± 0.138 0.824 ± 0.049

valsartan_smarts 0.178 ± 0.358 0.000 ± 0.000 0.135 ± 0.271 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon_mpo 0.358 ± 0.062 0.394 ± 0.026 0.552 ± 0.033 0.569 ± 0.047 0.569 ± 0.020 0.608 ± 0.055

sum 14.196 15.002 16.213 17.170 ± 0.424 17.284 ± 0.284 17.534 ± 0.214

Table 12: Comparision with MolLEO variants on PMO tasks reported in the source work (Wang
et al., 2024). The values represent the AUC Top-10 ↑ metric averaged over five independent runs
with different seeds.

Method MolLEO MolLEO MolLEO Chemlactica Chemlactica Chemma
(MolSTM) (MolT5) (GPT-4) 125M 1.3B 2B

QED 0.937 ± 0.002 0.937 ± 0.002 0.948 ± 0.004 0.942 ± 0.000 0.942 ± 0.000 0.941 ± 0.000
JNK3 0.643 ± 0.226 0.728 ± 0.079 0.790 ± 0.027 0.881 ± 0.058 0.866 ± 0.021 0.891 ± 0.032
DRD2 0.975 ± 0.003 0.981 ± 0.002 0.968 ± 0.012 0.965 ± 0.007 0.968 ± 0.005 0.972 ± 0.006

GSK3β 0.898 ± 0.041 0.889 ± 0.015 0.863 ± 0.047 0.926 ± 0.022 0.916 ± 0.027 0.928 ± 0.021
mestranol_similarity 0.596 ± 0.018 0.717 ± 0.104 0.972 ± 0.009 0.896 ± 0.064 0.850 ± 0.051 0.926 ± 0.023

thiothixene_rediscovery 0.508 ± 0.035 0.696 ± 0.081 0.727 ± 0.052 0.624 ± 0.102 0.693 ± 0.119 0.698 ± 0.121
perindopril_mpo 0.554 ± 0.037 0.738 ± 0.016 0.600 ± 0.031 0.709 ± 0.052 0.755 ± 0.066 0.711 ± 0.062
ranolazine_mpo 0.725 ± 0.040 0.749 ± 0.012 0.769 ± 0.022 0.864 ± 0.014 0.883 ± 0.017 0.868 ± 0.015
sitagliptin_mpo 0.548 ± 0.065 0.506 ± 0.100 0.584 ± 0.067 0.649 ± 0.051 0.586 ± 0.062 0.613 ± 0.018

isomers_c9h10n2o2pf2cl 0.871 ± 0.039 0.873 ± 0.019 0.874 ± 0.053 0.927 ± 0.006 0.929 ± 0.012 0.914 ± 0.017
deco_hop 0.613 ± 0.016 0.827 ± 0.093 0.942 ± 0.013 0.801 ± 0.101 0.836 ± 0.117 0.831 ± 0.123

scaffold_hop 0.527 ± 0.019 0.559 ± 0.102 0.971 ± 0.004 0.626 ± 0.016 0.673 ± 0.080 0.669 ± 0.110

sum 8.395 9.202 10.008 9.81 9.893 9.962

A.11 ANALYSIS OF MOLECULAR OPTIMIZATION

A.11.1 ABLATION ON FINETUNING DURING OPTIMIZATION

A key component of our proposed optimization algorithm is the fine-tuning step, initiated when the algorithm’s
progress stagnates. To assess the impact of this fine-tuning step, we conducted a comparative analysis of
optimization processes both with and without this feature. For this evaluation, we selected four representative
tasks from the PMO benchmark: jnk3, median1, sitagliptin_mpo, and scaffold_hop. We select
these tasks to provide diverse challenges and adequately represent the full suite of PMO tasks.

Table 13 presents the quantitative results of these experiments. To provide a more comprehensive understanding
of the fine-tuning effect, we visualize the optimization trajectories in Figures 8 through 10. These visualizations
aggregate data from five independent runs, offering insights into both the mean performance and its variance
across different initializations.

This ablation study allows us to isolate the impact of the fine-tuning step and understand its contribution to the
overall performance of our optimization algorithm across different types of molecular optimization tasks.
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Table 13: Illustration of the results of ablation study on the fine-tuning step in the optimization
algorithm. The values represent AUC Top-10 ↑ obtained from five independent runs.

Chemlactica-125M Chemlactica-1.3B Chemma-2B
fine-tuning no fine-tuning fine-tuning no fine-tuning fine-tuning no fine-tuning

jnk3 0.881 ± 0.058 0.878 ± 0.040 0.866 ± 0.021 0.867 ± 0.036 0.891 ± 0.032 0.869 ± 0.033
median1 0.359 ± 0.060 0.371 ± 0.006 0.382 ± 0.047 0.395 ± 0.027 0.382 ± 0.022 0.380 ± 0.034

scaffold_hop 0.626 ± 0.016 0.648 ± 0.017 0.673 ± 0.080 0.721 ± 0.121 0.669 ± 0.110 0.700 ± 0.122
sitagliptin_mpo 0.649 ± 0.051 0.607 ± 0.051 0.586 ± 0.062 0.576 ± 0.082 0.613 ± 0.018 0.563 ± 0.059

sum 2.515 ± 0.119 2.504 ± 0.068 2.506 ± 0.155 2.559 ± 0.062 2.555 ± 0.099 2.512 ± 0.160

Table 14: The performance of the extended version of our optimization algorithm on selected PMO
tasks. The prompts used in the optimization contain the description of the tasks in the format our
language models has seen during pretraining. See Table 15 for the additional tags used in the prompts.

Chemlactica-125M Chemlactica-1.3B Chemma-2B
no add. props. add. props. no add. props. add. props. no add. props. add. props.

jnk3 0.881 ± 0.058 0.881 ± 0.058 0.866 ± 0.021 0.866 ± 0.021 0.891 ± 0.032 0.891 ± 0.032
median1 0.359 ± 0.060 0.479 ± 0.004 0.382 ± 0.047 0.488 ± 0.000 0.382 ± 0.022 0.479 ± 0.002

scaffold_hop 0.626 ± 0.016 0.983 ± 0.004 0.673 ± 0.080 0.975 ± 0.006 0.669 ± 0.110 0.983 ± 0.003
sitagliptin_mpo 0.649 ± 0.051 0.534 ± 0.041 0.586 ± 0.062 0.495 ± 0.035 0.613 ± 0.018 0.576 ± 0.055

sum 2.515 ± 0.119 2.920 ± 0.096 2.506 ± 0.155 2.824 ± 0.034 2.555 ± 0.099 2.887 ± 0.040

A.11.2 LEVERAGING KNOWN MOLECULAR PROPERTIES IN OPTIMIZATION TASKS

Our language models possess knowledge of various molecular properties such as QED, CLogP, and TPSA.
However, we deliberately avoid utilizing this information in Algorithm 1 to maintain fair comparison with other
methods. This decision stems from the fact that our models have been trained on properties that are components
of the oracle functions we optimize against (e.g., those in PMO). Exploiting this partial oracle information could
potentially give our method an unfair advantage.

We conducted a separate set of experiments to explore the models’ capacity to utilize additional infor-
mation in solving optimization problems using four tasks from the PMO benchmark: jnk3, median1,
sitagliptin_mpo, and scaffold_hop. For these tasks, we modified Algorithm 2 to incorporate relevant
known properties into the prompt p between steps 2 and 3.

Table 14 presents a performance comparison between our standard approach and this property-augmented
version. The specific syntax used for adding these properties to the prompts is detailed in Table 15. Notably, no
additional properties were added for the jnk3 docking function as our models lack specific knowledge about
this component.

The results demonstrate a significant performance improvement across all models when these additional
properties are incorporated. This finding suggests that our models can effectively leverage their pre-existing
knowledge of molecular properties to enhance their performance in molecular design tasks. However, it is
important to note that while this approach showcases the potential of our models, it may not provide a fair
comparison with methods that do not have access to such property information.

Table 15: The descriptions of tasks used in the prompts in the extended version of our optimization
algorithm. The results are in Table 14. See Section A.11.2 for details.

the syntax of additional properties added to the prompts

jnk3 (nothing added)

median1 [SIMILAR]camphor_smiles 0.55[/SIMILAR][SIMILAR]menthol_smiles 0.55[/SIMILAR]

scaffold_hop [SIMILAR]pharmacophor_smiles 0.80[/SIMILAR]

sitagliptin_mpo [SIMILAR]sitagliptin_smiles 0.99[/SIMILAR][CLOGP]2.02[/CLOGP][TPSA]77.04[/TPSA]
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Table 16: Impact of numerical precision on Docking MPO experiments from 6.2.2. Oracle burden and
generative yield values are reward-threshold dependent. The numbers next to the metrics correspond
to the thresholds, and the values in parentheses for oracle burden indicate how many unique molecules
need to be generated. The best performance on each task-metric combination is bolded. We use the
best-performing hyperparameters from the PMO benchmark.

Metric Target Chemlactica-125M Chemlactica-125M
BF16 FP32

Generative Yield 0.7 ↑ DRD2 3501 ± 252 3733 ± 512
MK2 3000 ± 80 3772 ± 578
AChE 4337 ± 133 4108 ± 67

Generative Yield 0.8 ↑
DRD2 2574 ± 103 2827 ± 510
MK2 1223 ± 519 2569 ± 1156
AChE 3877 ± 272 3246 ± 168

Oracle burden 0.8 (1) ↓
DRD2 156 ± 100 20 ± 29
MK2 320 ± 83 345 ± 312
AChE 10 ± 8 22 ± 28

Oracle burden 0.8 (10) ↓
DRD2 283 ± 61 114 ± 08
MK2 631 ± 100 493 ± 418
AChE 123 ± 119 224 ± 17

Oracle burden 0.8 (100) ↓
DRD2 577 ± 71 364 ± 119
MK2 1134 ± 178 865 ± 533
AChE 350 ± 137 497 ± 58

A.11.3 THE IMPACT OF FLOATING POINT PRECISION ON MOLECULAR OPTIMIZATION

Numerical Precision in Model Training Lower precision training, including mixed and half-precision
methods, is commonly used to increase training throughput. These techniques, employed during our models’
pretraining stages, typically have negligible impact on performance and may even provide a regularizing
effect(Micikevicius et al., 2017). However, in molecular optimization involving multiple rounds of fine-tuning,
lower numerical precision leads to significantly degraded performance. Several factors contribute to this
phenomenon in the specific case of molecular optimization with language models.

Challenges in Batched Generation Molecular optimization pipelines require repeated model calls for
generation, followed by oracle function scoring. While batched processing accelerates this process through
GPU parallelization, it introduces complications. The necessary padding for batch processing alters matrix sizes,
affecting multiply-accumulate operations within the model. These small errors accumulate as they propagate
through the model’s layers. Lower precision exacerbates these errors, leading to larger discrepancies in logit
values and, consequently, more significant impacts on the generated molecules.

Cascading Effects of Sub-optimal Generations In our approach, high-scoring generated molecules
are leveraged for fine-tuning and generating similar structures that steer the optimization processs. Thus, when
lower precision leads to sub-optimal molecule generation, it creates a positive feedback loop. The model is
fine-tuned on and guided by these lower-quality molecules, hindering the generation of higher-scoring molecules
in subsequent iterations. This causal relationship between successive generations underlies the adverse effects of
low-precision training and inference in molecular optimization pipelines.

Precision Ablation Study To quantify the impact of numerical precision on the optimization process, we
conducted an ablation study comparing 32-bit floating point precision with bfloat16 precision. Table 16 presents
the results of this comparison across all drug discovery case studies described in Section 6.2.2. We show that for
the majority of task-metric combinations, optimization results were better when model parameters were in full
floating point precision. Despite the potential computational costs, these results demonstrate the importance of
maintaining higher numerical precision in molecular optimization tasks.

A.12 ADDITIONAL EXPERIMENTS

A.12.1 QED MAXIMIZATION WITH SIMILARITY CONSTRAINED MOLECULAR DESIGN

Problem formulation. This optimization problem aims to generate a molecule with a high QED, similar to
another given molecule. More formally, given a molecule M , the objective is to generate a new molecule M ′

such that sim(M ′,M) ≥ 0.4 and qed(M ′) ≥ 0.9. Following Wang et al. (2023), 800 molecules are selected
with QED in the range [0.7, 0.8] as the inputs to the optimization problem, and the measure of performance
is the percentage of the molecules that have been optimized (satisfy the QED and similarity constraints). In
addition, a maximum number of QED evaluations is chosen to optimize each lead molecule.
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Our approach. Since this is a lead optimization problem, we add the lead molecule to all prompts in addition
to the molecules added from the pool. The lead molecule is added by enclosing it in [SIMILAR] tag. For this
task, we design an oracle function by combining the QED value of the generated molecule with the similarity
value of the lead molecule with the generated molecule. Additionally, we decreased the maximum number of
QED evaluations to 10000, compared to the baselines, which used 50000.

Results. For this task, we only evaluate the Chemlactica-125M model, which achieves better success rates
compared to the best existing approaches, 99.0% (Chemlactica-125M) versus 94.6% (RetMol), while being
constrained to use five times less QED evaluations at maximum. Since the performance of the Chemlactica-125M
saturates the benchmark, we have not evaluated other models for this task. Table 17 illustrates the performance
of different algorithms.

A.12.2 PROPERTY PREDICTION

Supervised fine-tuning recipe. Inspired by instruction tuning methodologies and Zhou et al. (2023), we
generated a specialized training corpus formatted as follows:

[START_SMILES]msmiles[END_SMILES][PROPERTY]activity <VALUE>[/PROPERTY].

Hyperparameters. We only trained the model on generated responses following the [PROPERTY] tag
during the fine-tuning process. Our initial experiments indicated that a general fine-tuning recipe of 15 epochs
yielded satisfactory results with a peak learning rate of 10e − 4, 3 epochs of warmup and a NEFTune noise
(Jain et al., 2023) of 5. To further improve model performance, we conducted an extensive hyperparameter
tuning study, exploring a grid of values within the following ranges: Learning rate: [0.00001, 0.00005, 0.0001,
0.0002], Number of epochs: [10, 15, 20], Warmup epochs: [0, 1, 2, 3], NEFTune noise : [0.0, 5.0, 10.0]. In our
experiments, we employed a batch size of 32 and a maximum sequence length of 128, except in cases where
GPU memory limitations necessitated reducing the batch size to 16 while maintaining the established sequence
length. Table 18 shows the best values for all tasks and models.

Results. Table 2 lists the results for three regression tasks from MoleculeNet (Wu et al., 2018) alongside other
comparable methods like Chilingaryan et al. (2024) and Ross et al. (2021). For all Moleculenet tasks, we have
utilized the DeepChem library Ramsundar et al. (2019) and the original recommended splits to load the datasets.
.Fang et al. (2023b) introduces a novel dataset encompassing six ADME targets. The assessment of ADME
properties is crucial for understanding how potential drug candidates interact with the human body, aspects of
which are absorption, distribution, metabolism, and excretion. This knowledge is essential for evaluating efficacy,
safety, and clinical potential, guiding drug development toward optimal therapeutic outcomes. The authors have
disclosed DMPK datasets collected over a 20-month period, focusing on six ADME in vitro endpoints: human
and rat liver microsomal stability, MDR1-MDCK efflux ratio, solubility, and human and rat plasma protein
binding. The dataset comprises between 885 and 3087 measurements for each corresponding endpoint. For this
series of tasks, we utilized Polaris Hub Wognum et al. (2024) as a centralized platform for dataset loading and
result sharing. To promote standardized benchmarks in the field, we employed the datasets as presented, with
default preprocessing. We limited our comparisons to the results available at the time, including the baselines
provided by the original authors. We generated a randomly split validation set for this series of tasks, comprising
20 percent of the training data. After identifying the optimal hyperparameters, we trained on the entire training
set to maximize performance. Table 19 presents the results for ADME tasks. The presented results showcase the
abilities of our models after the hyperparameter tuning stage.

A.12.3 MODEL CALIBRATION

Methodology Model calibration in language modeling refers to the alignment between a model’s predicted
probabilities for generating specific text and the actual likelihood of that text being correct. To assess the
calibration of our models, we developed a suite of multiple-choice property prediction questions based on our
training data format.

Table 17: Performance comparison of different algorithms on QED and Similarity constrained
molecular optimization problem.

Success Rate (%) ↑
QMO 92.8
RetMol 94.5

Chemlactica-125M 99.0
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We generated 2000 questions for each computed property, resulting in 10,000 responses. Each question presented
a SMILES string as input:

[START_SMILES]msmiles[END_SMILES]

and was followed by five potential continuations, with only one being correct. An example of such a continuation
for a question testing QED could be: [QED]0.78[/QED].

This methodology is inspired by the calibration analysis in the GPT-4 technical report (OpenAI, 2023), which
highlights calibration as a key indicator of high-quality pretraining. For each response, we calculated the model’s
predicted probability from the perplexity of the text, normalizing it against other responses for the same question.
These probabilities were then aggregated and sorted into 10 equal-width bins. We plotted the fraction of correct
responses for each bin, allowing us to visualize the relationship between the model’s confidence and accuracy.

Results Figures 3a and 3b present the calibration plots for Chemma-2B and Chemlactica-125M, respectively.
The x-axis represents the 10 probability bins, while the left y-axis shows the correct response fraction. The right
y-axis and red bars indicate the number of occurrences within each bin.

Chemlactica and Chemma models demonstrate robust calibration, as evidenced by the near-linear relationship
between assigned probabilities and correct outcomes across all computed properties. This relationship closely
follows the diagonal grey line, which represents perfect calibration.

These results suggest that the perplexity scores generated by our models serve as reliable confidence indicators
for molecular data predictions (averaged over a set of molecules), provided the data falls within the distribution
of the training corpus. This calibration is crucial for practical applications, as it allows users to accurately gauge
the reliability of the models’ outputs in simple molecular prediction and generation tasks. However, finetuning,
like that performed in the optimization algorithm, likely leads to a loss of model calibration(OpenAI, 2023).

A.13 ADDITIONAL FIGURES

A.13.1 VISUALIZATION OF THE MODEL OUTPUTS ON PROPERTY PREDICTION AND
CONDITIONAL GENERATION TASKS

Figures 4e-4e show the performance of Chemma-2B for property prediction and conditional molecular generation
tasks. Each dot in the scatter plot corresponds to one molecule. The histogram in the background is the
distribution of those properties in our training set. The purple line represents the RMSE between the property’s
ground truth and predicted values.

Table 18: Selected hyperparameters for property prediction tasks as a result of the grid search. We
report learning rate (LR), warmup ratio (WU), number of epochs (Ep.) and Neftune noise (Nef.).

Chemlactica-125M Chemlactica-1B Chemma-2B
Task LR WU Ep. Nef. LR WU Ep. Nef. LR WU Ep. Nef.

RLM 5.0e-5 0 15 0 1.0e-5 3 10 5 2.0e-4 1 20 10
HLM 5.0e-5 1 10 5 1.0e-5 3 10 0 1.0e-4 3 20 0
MDR 5.0e-5 2 20 0 1.0e-5 1 15 0 2.0e-4 1 20 5
RPPB 1.0e-4 1 15 0 1.0e-5 3 10 0 1.0e-4 1 15 5
HPPB 2.0e-4 3 20 10 1.0e-4 2 15 10 2.0e-4 2 15 0
SOL 1.0e-4 2 10 0 5.0e-5 0 20 5 2.0e-4 1 15 10

FREESOLV 1.0e-4 0 15 5 1.0e-5 3 10 10 1.0e-4 2 15 0
ESOL 1.0e-4 0 10 0 1.0e-5 3 10 5 2.0e-4 3 10 0
LIPO 5.0e-5 1 2 0 1.0e-5 0 10 0 2.0e-4 2 10 0
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Table 19: Regression tasks from the ADME benchmark. All numbers are Pearson correlation ↑.
RandomForestRegressors use task-specific features: a desc2D, b fcfp4, c atompair.

HLM MDR SOL RLM HPPB RPPB

1B_MPNN
(LargeMix-and-Phenomics) 0.778 0.860 0.764 0.784 0.888 0.908

adme-fang-RandomForestRegressor 0.639a 0.716a 0.439b 0.640a 0.690c 0.722a

Chemlactica-125M 0.717 0.714 0.608 0.714 0.774 0.442
Chemlactica-1.3B 0.720 0.762 0.574 0.698 0.635 0.614
Chemma-2B 0.674 0.709 0.558 0.660 0.636 0.747
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(a) Calibration of Chemma-2B.
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(b) Calibration of Chemlactica-125M.

Figure 3: Model calibration on synthetic multiple choice question where y=x represents perfect
calibration.
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(c) SAS-conditioned generation of molecules.
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(d) TPSA-conditioned generation of molecules.
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Figure 4: Illustration of errors made by Chemma-2B during property prediction and conditional
generation for various properties.
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Figure 5: Optimization process visualization using Chemlactica-125M model for
sitagliptin_mpo task with four different seeds.
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Figure 6: Optimization process visualization using Chemlactica-1.3B model for
sitagliptin_mpo task with four different seeds.
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Figure 7: Optimization process visualization using Chemma-2B model for sitagliptin_mpo
task with four different seeds.
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Figure 8: Mean oracle score ± standard deviation of the generated molecule for Chemlactica-125M.
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Figure 9: Mean oracle score ± standard deviation of the generated molecule for Chemlactica-1.3B.
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Figure 10: Mean oracle score ± standard deviation of the generated molecule for Chemma-2B.
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A.13.2 DOCKING SCORES THROUGHOUT DRD2 MPO
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Figure 11: Autodock Vina energy scores for molecules generated through DRD2 MPO process; note
that molecules which did not dock at all are not included.

A.13.3 GENERATED MOLECULES FROM THE DOCKING EXPERIMENTS
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