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Abstract
Warm-Start reinforcement learning (RL), aided
by a prior policy obtained from offline training, is
emerging as a promising RL approach for prac-
tical applications. Recent empirical studies have
demonstrated that the performance of Warm-Start
RL can be improved quickly in some cases but
become stagnant in other cases, especially when
the function approximation is used. To this end,
the primary objective of this work is to build
a fundamental understanding on “whether and
when online learning can be significantly accel-
erated by a warm-start policy from offline RL?”.
Specifically, we consider the widely used Actor-
Critic (A-C) method with a prior policy. We first
quantify the approximation errors in the Actor up-
date and the Critic update, respectively. Next, we
cast the Warm-Start A-C algorithm as Newton’s
method with perturbation, and study the impact of
the approximation errors on the finite-time learn-
ing performance with inaccurate Actor/Critic up-
dates. Under some general technical conditions,
we derive the upper bounds, which shed light on
achieving the desired finite-learning performance
in the Warm-Start A-C algorithm. In particular,
our findings reveal that it is essential to reduce the
algorithm bias in online learning. We also obtain
lower bounds on the sub-optimality gap of the
Warm-Start A-C algorithm to quantify the impact
of the bias and error propagation.

1. Introduction
Online reinforcement learning (RL) (Kaelbling et al., 1996;
Sutton & Barto, 2018) often faces the formidable challenge
of high sample complexity and intensive computational cost
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(Kumar et al., 2020; Xie et al., 2021), which hinders its
applicability in real-world tasks. Indeed, this is the case in
portfolio management (Choi et al., 2009), vehicles control
(Wu et al., 2017; Shalev-Shwartz et al., 2016) and other time-
sensitive settings (Li, 2017; Garcıa & Fernández, 2015). To
tackle this challenge, Warm-Start RL has recently garnered
much attention (Nair et al., 2020; Gelly & Silver, 2007;
Uchendu et al., 2022), by enabling online policy adaptation
from an initial policy pre-trained using offline data (e.g.,
via behavior cloning or offline RL). One main insight of
Warm-Start RL is that online learning can be significantly
accelerated, thanks to the bootstrapping by an initial policy.

Despite the encouraging empirical successes (Silver et al.,
2017; 2018; Uchendu et al., 2022), a fundamental under-
standing of the learning performance of Warm-Start RL
is lacking, especially in the practical settings with func-
tion approximation by neural networks. In this work, we
focus on the widely used Actor-Critic (A-C) method (Grond-
man et al., 2012; Peters & Schaal, 2008), which combines
the merits of both policy iteration and value iteration ap-
proaches (Sutton & Barto, 2018) and has great potential
for RL applications (Uchendu et al., 2022). Notably, in the
framework of abstract dynamic programming (ADP) (Bert-
sekas, 2022a), the policy iteration method (Sutton et al.,
1999) has been studied extensively, for warm-start learning
under the assumption of accurate updates. In such a setting,
policy iteration can be regarded as a second-order method in
convex optimization (Grand-Clément, 2021) from the per-
spective of ADP, and can achieve super-linear convergence
rate (Santos & Rust, 2004; Puterman & Brumelle, 1979;
Boyd et al., 2004). Nevertheless, when the A-C method
is implemented in practical applications, the approxima-
tion errors are inevitable in the Actor/Critic updates due
to many implementation issues, including function approx-
imation using neural networks, the finite sample size, and
the finite number of gradient iterations. Moreover, the error
propagation from iteration to iteration may exacerbate the
‘slowing down’ of the convergence and have intricate impact
therein. Clearly, the (stochastic) accumulated errors may
throttle the convergence rate significantly and degrade the
learning performance dramatically (Fujimoto et al., 2018;
Farahmand et al., 2010; Dalal et al., 2020; Lazaric et al.,
2010). Thus, it is of great importance to characterize the
learning performance of Warm-Start RL in practical scenar-
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ios; and the primary objective of this study is to take steps
to build a fundamental understanding of the impact of the
approximation errors on the finite-time sub-optimality gap
for the Warm-Start A-C algorithm, i.e.,

Whether and when online learning can be significantly
accelerated by a warm-start policy from offline RL?

To this end, we address the question in two steps:

(1) We first focus on the characterization of the approxi-
mation errors via finite time analysis, based on which we
quantify its impact on the sub-optimality gap of the A-C
algorithm in Warm-Start RL. In particular, we analyze the
A-C algorithm in a more realistic setting where the samples
are Markovian in the rollout trajectories for the Critic update
(different from the widely used i.i.d. assumption). Further,
we consider that the Actor update and the Critic update take
place on the single-time scale, indicating that the time-scale
decomposition is not applicable to the finite-time analysis
here. We tackle these challenges using recent advances on
Bernstein’s Inequality for Markovian samples (Jiang et al.,
2018; Fan et al., 2021). By delving into the coupling due
to the interleaved updates of the Actor and the Critic, we
provide upper bounds on the approximation errors in the
Critic update and the Actor update of online exploration,
respectively, from which we pinpoint the root causes of the
approximation errors.

(2) We analyze the impact of the approximation errors on
the finite-time learning performance of Warm-Start A-C.
Based on the approximation error characterization, we treat
the Warm-Start A-C algorithm as Newton’s method with per-
turbation, and study the impact of the approximation errors
on the finite-time learning performance of Warm-Start A-C.
We first establish the upper bound of the bias term in the per-
turbation. Then we derive the upper bounds on the learning
performance gap for both biased and unbiased cases. Our
findings reveal that it is essential to reduce the algorithm
bias in online learning. When the approximation errors
are biased, we derive lower bounds on the sub-optimality
gap, which reveals that even with a sufficiently good warm-
start, the performance gap of online policy adaptation to
the optimal policy is still bounded away from zero when
the biases are not negligible. We present the experiments
results to further elucidate our findings in Appendix L. We
remark that the primary objective of this work is to under-
stand the convergence behavior, which is essential before
answering further questions related to the convergence rate
and sampling complexity.

Related Work. (Warm-Start RL) The Warm-start RL con-
sidered in our work has the same setup as in (Bertsekas,
2022a) and recent successful applications including Alp-
haZero (Silver et al., 2017), where the offline pretrained

Table 1. Related work in terms of (1) Warm-start setting, (2) Actor
function approximation and (3) Critic function approximation.

PAPER WARM-START ACTOR CRITIC

(MUNOS, 2003)
√

(FARAHMAND ET AL., 2010)
√ √

(LAZARIC ET AL., 2010)
√ √

(FU ET AL., 2020)
√ √

(XIE ET AL., 2021)
√

(BERTSEKAS, 2022B)
√ √

THIS WORK
√ √ √

policy is utilized as the initialization for online learning and
this policy is updated while interacting with the MDP online.
In a line of very recent works (Gupta et al., 2020)(Ijspeert
et al., 2002)(Kim et al., 2013) on Warm-Start RL, the pol-
icy is initialized via behavior cloning from offline data and
then is fine-tuned with online reinforcement learning. A
variant of this scheme is proposed in Advanced Weighted
Actor Critic (Nair et al., 2020) which enables quick learning
of skills across a suite of benchmark tasks. In the same
spirit, Offline-Online Ensemble (Lee et al., 2022) leverages
multiple Q-functions trained pessimistically offline as the
initial function approximation for online learning. However,
we remark the theoretical characterization of the finite-time
performance of Warm-Start RL is still lacking. Our work
aims to take steps to quantify the impact of approximation
error on online RL with a warm-start policy.

In particular, it is worth to mention that some works (Bagnell
et al., 2003)(Uchendu et al., 2022)(Xie et al., 2021) con-
sider a different warm-start setting from ours. For instance,
(Xie et al., 2021) considers the case where the reference
policy is used to collect samples but remains fixed during
the online learning. Under this setting, (Xie et al., 2021) pro-
vides a quantitative understanding on the policy fine-tuning
problem in episodic Markov Decision Processes (MDPs)
and establishes the lower bound for the sample complex-
ity, where function approximation is not used. Jump-start
RL (Uchendu et al., 2022) utilizes a guided-policy to ini-
tialize online RL in the early phase with a separate online
exploration-policy.

Meanwhile, we remark the major differences from “offline-
focus” works, which aim to derive conditions on the quality
of the offline part in the warm-start RL, e.g., coverage. No-
tably, the focus of (Wagenmaker & Pacchiano, 2022)(Song
et al., 2022) is on the offline policy quality while requiring
the online learning part to satisfy certain conditions (either
through delicate design or assumptions), e.g., (Song et al.,
2022) requires the Bellman error to be upper bounded and
(Wagenmaker & Pacchiano, 2022) requires the online ex-
ploration to satisfy certain conditions. In (Xie et al., 2021),
the online algorithm needs to output a lower value estimate
which is not available in standard online RL algorithms. On
the contrary, motivated by recent empirical studies, which
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have demonstrated that a “good” warm-start policy does not
necessary improve the online learning performance, espe-
cially when the function approximation is used (Nair et al.,
2020)(Uchendu et al., 2022), we consider the widely used
Actor-Critic (A-C) method for online learning and aim to
build a deep understanding on how the approximation errors
in the online Actor and Critic step has impact on the learning
performance. Furthermore, we summarize the comparison
between our work and related work in Table 1. The detailed
comparison in terms of the assumptions on the MDP and
the function approximation is available in Appendix B.

(Actor-Critic as Newton’s Method) The intrinsic connec-
tion between the A-C method and Newton’s method can be
traced back to the convergence analysis of policy iteration in
MDPs with continuous action spaces (Puterman & Brumelle,
1979). The connection is further examined later in a spe-
cial MDP with discretized continuous state space (Santos
& Rust, 2004). Recent work (Bertsekas, 2022b) points out
that the success of Warm-Start RL, e.g., AlphaZero, can be
attributed to the equivalence between policy iteration and
Newton’s method in the ADP framework, which leads to
the superlinear convergence rate for online policy adapta-
tion. Under the generalized differentiable assumption, it
has also been proved theoretically that policy iteration is
the instances of semi-smooth Newton-type methods to solve
the Bellman equation (Gargiani et al., 2022). While some
prior works (Grand-Clément, 2021) have provided theoreti-
cal investigation of the connections between policy iteration
and Newton’s Method, the studies are carried out in the
abstract dynamic programming (ADP) framework, assum-
ing accurate updates in iterations. Departing from the ADP
framework, this work treats the A-C algorithm as Newton’s
method in the presence of approximation errors, and focuses
on the finite-time learning performance of Warm-Start RL.

(Finite-time analysis for Actor-Critic methods) Among
the existing works on the finite time analysis of A-C meth-
ods with function approximation, (Yang et al., 2019) es-
tablishes the global convergence under the linear quadratic
regulator. (Kumar et al., 2023) considers the sample com-
plexity under i.i.d. assumptions where the Actor update
and Critic update can be ‘decoupled’. (Khodadadian et al.,
2022) considers the two-timescale setting with Markovian
samples. (Fu et al., 2020) focuses on the more general
single-time scale setting but constrains the policy function
approximation in the energy based function class. While
the analysis in approximate policy/value iteration (Lazaric
et al., 2010)(Munos, 2003)(Farahmand et al., 2010) present
the error propagation in the upper bound, it is unclear how
the error from each update step behave. In this work, we
provide the analysis on the approximation error for each
learning step explicitly and based on which we establish the
error propagation in both the upper bound and lower bound.

2. Background
Markov Decision Processes. We consider a MDP de-
fined by a tuple (S,A, P, r, γ), where S = {1, 2, · · · , n},
n < ∞ and A = {1, 2, · · · , A}, A < ∞ represent
the finite state space and finite action space, respectively.
P (s′|s, a) : S × A × S → [0, 1] is the probability of
the transition from state s to state s′ by applying action
a and r(s, a) : S × A → R is the corresponding reward.
γ ∈ (0, 1) is the discount factor. At each step t, an agent
moves from the current state st to next state st+1 by taking
an action at following the policy π ∈ Π : S → A and
receives the reward rt. In the Warm-Start RL, we assume
that the initial policy π0 is given, e.g., in the form of a neural
network (Li, 2017), and obtained by offline training. For
brevity, we use bold symbols rπ ∈ Rn : [rπ]s = r(s, π(s))
and P π ∈ Rn×n : [Pπ]s,s′ ≜ P (s′|s, π(s)) to denote
the reward vector and the transition matrix induced by
policy π. We further denote by dπ : S → [0, 1] and
ρπ : S × A → [0, 1] the stationary state distribution and
state-action transition distribution induced by policy π. We
use ρ0 to represent the initial state distribution. We use ∥ · ∥
or ∥ · ∥2 to represent the Euclidean norm.

Value Functions. For any policy π, define the
value function vπ(s) : S → R as vπ(s) =
Eat∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

trt|s0 = s] to measure
the average accumulative reward staring from state s by fol-
lowing policy π. We defineQ-functionQπ(s, a) : S×A →
R as Qπ(s, a) = E[

∑∞
t=0 γ

trt|s0 = s, a0 = a] to repre-
sent the expected return when the action a is chosen at
the state s. By using the transition matrix and reward vec-
tor defined above, we have the compact form of the value
function vπ = (I − γP π)

−1rπ, where I ∈ Rn×n is the
identity matrix and vπ ∈ Rn is the value vector with the
component-wise values [vπ]s ≜ vπ(s), with

vπ(s) ≜ Ea∼π(·|s)[Q
π(s, a)].

The main objective is to find an optimal policy π∗ such that
the value function is maximized, i.e.,

max
π

Es∼ρ0 [v
π(s)] ≜ max

π
Es∼ρ0,a∼π(·|s)[Q

π(s, a)]. (1)

In what follows, we use both Q-function and value function
v(s) for convenience, and the relation between the two is
given in Eqn. (1).

Bellman Operator. For v ∈ Rn, define the Bellman eval-
uation operator Tπ : Rn → Rn and the Bellman operator
T : Rn → Rn as

Tπ(v) =rπ + γP πv,

T (v) =max
π
{rπ + γP πv} = max

π
Tπ(v).

It is well known that the Bellman operator T is a contraction
mapping and has order-preserving property. Note that the
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Bellman operator T may not be differentiable everywhere
due to the max operator, and the value v∗ of the optimal
policy π∗ is the only fixed point of the Bellman operator
T (Puterman, 2014). From the definition of the Bellman
Evaluation Operator Tπ, we have vπ to be the fixed point
of Tπ , i.e., vπ = Tπ(vπ).

2.1. Policy Iteration as Newton’s Method in Abstract
Dynamic Programming

Policy iteration carries out policy learning by alternating be-
tween two steps: policy improvement and policy evaluation.
At time t, the policy evaluation step seeks to learn the value
function vπt for the current policy πt by solving the fixed
point equation of the Bellman evaluation operator:

v = Tπt(v).

Denote vt = vπt for simplicity. Then in the policy improve-
ment step, a new policy πt+1 is obtained by maximizing the
learnt value function vt in the policy evaluation step, in a
greedy manner, i.e.,

πt+1 = argmax
π

Tπ(vt). (2)

To introduce the connection between policy iteration and
Newton’s Method, we first define operator F : v →
v − T (v) for convenience. As in (Grand-Clément, 2021;
Puterman, 2014), F can be treated as the “gradient” of an
unknown function. Under the assumption that F (v) is dif-
ferentiable at v, the Jacobian Jv of F at v can be obtained
as Jv = I − γP π(v), where π(v) ≜ argmaxπ T

π(v).
Note that J−1

v =
∑∞
i=1(γP π(v))

i is invertible (Puter-
man, 2014). Since it can be shown that vπt+1 = (I −
γP πt+1

)−1rπt+1
= J−1

vπtrπt+1
for the policy evaluation of

πt+1, we have that,

vπt+1 = vπt − J−1
vπtF (v

πt), (3)

which indicates that the analytic representation of policy
iteration in the abstract dynamic programming framework
reduces to Newton’s Method. It is worth mentioning that the
convergence behavior of policy iteration near the optimal
value v∗ cannot be directly obtained by using the results
from convex optimization (Boyd et al., 2004) since the Bell-
man operator T may not be differentiable at any given value
vector v. The full proof is included in Appendix A.

2.2. An Illustrative Example of the Error Propagation
in Actor-Critic Updates

The A-C method can be viewed as a generalization of policy
iteration in ADP, where the Critic update corresponds to
the policy evaluation of the current policy and the Actor up-
date performs the policy improvement. In practice, function
approximation (e.g., via neural networks) is often used to

Figure 1. Illustration of error propagation effect in the A-C method:
The approximation errors from Critic update (Ec) and Actor update
(Ea) are carried forward and may get amplified due to accumu-
lation. (To distinguish the approximation errors between Critic
update and Actor update, we use tilde symbol ( ˜ ) above variables,
such as policy π̃ and value vector ṽ, to represent the policy and the
value vector obtained in the presence of Critic update error. We
use hat symbol ( ˆ ) above the variables to represent the results
with approximation error in Actor update.)

approximate both the Critic and the Actor, which inevitably
incurs approximation errors for the policy update and evalu-
ation. Moreover, the approximation errors could propagate
along with the iterative updates in the A-C method. We have
the illustrative example to get a more concrete sense of the
impact of the approximation errors on the policy update.

As illustrated in Figure 1, for a given policy πt with the
underlying true policy value vπt , we denote ṽπt as the
learnt value estimation of vπt in the Critic step. We further
denote πt+1 and π̃t+1 as the greedy policy obtained in the
Actor update Eqn. (2) by using vπt and ṽπt , respectively.
Let π̂t+1 be the policy estimation of π̃t+1 with function
approximation in the Actor step. Intuitively, πt+1 is the
underlying true policy update from πt using one step policy
iteration without any error, π̃t+1 is the policy update from
πt with approximation errors in the Critic update, and π̂t+1

is the policy update from πt with approximation errors in
both the Critic step and the Actor step. To characterize the
impact of the approximation errors on the policy update, i.e.,
the difference between vπt+1 and vπ̂t+1 , we evaluate the
Critic error, i.e., the difference between vπt+1 and vπ̃t+1 ,
and the Actor error, i.e., the difference between vπ̃t+1 and
vπ̂t+1 , in a separate manner. More specifically, to quantify
the Critic error, we can first have the following update based
on the same reasoning with Eqn. (3):

vπ̃t+1 =vt − J−1
ṽt

(
vt − (rπ̃t+1

+ γP π̃t+1
vt)
)

≜vt − J−1
ṽt

(
vt − T̃ (vt)

)
,

where T̃ (vt) = rπ̃t+1
+γP π̃t+1

vt and J ṽt
= I−γP π̃t+1

.
Denote the approximation error (random variable) in the
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Bellman operator and the Jacobian by ET,t and EJ,t, i.e.,

T̃ (vt)− T (vt) ≜ET,t, J−1
ṽt
− J−1

vt
≜ EJ,t,

where it is clear that both error terms stem from the function
approximation errors in the Critic update. To quantify the
Actor error, we assume that

vπ̂t+1 = vπ̃t+1 + Ea,t,

where Ea,t is the error term. Therefore, by casting the A-
C method as Newton’s method with perturbation, we can
characterize the approximation errors on the policy update:

vπ̂t+1 = vπt+1 + Ec,t + Ea,t,

where Ec,t ≜ −EJ,t(vt − T (vt)) + (J−1
vt

+ EJ,t)ET,t and
Ea,t capture the impact of the approximation error from
Critic update step and Actor update step, respectively. In-
tuitively, as illustrated in Figure 1, both errors from the
previous update in the A-C method may propagate to the
next update and thus affect the convergence behavior of
the algorithm substantially, in contrast to idealized policy
iteration without approximation errors. This phenomenon
has also been observed in the empirical results (Fujimoto
et al., 2018; Thrun & Schwartz, 1993). In this work, we
strive to systematically analyze the impact of the approx-
imation errors, through (1) a detailed characterization of
the approximation errors in the Critic update and the Actor
update in Section 3 and (2) a thorough analysis of the error
propagation effect and biases in Section 4. We also provide
the illustration on our theoretical results in Fig. 2.

3. Characterization of Approximation Errors
Actor-Critic Methods with Function Approximation. In
what follows, we consider that the policy is parameterized
by θ ∈ Θ, which in general corresponds to a non-linear
function class. Following (Konda & Tsitsiklis, 1999; Peters
& Schaal, 2008; Kumar et al., 2023; 2020; Santos & Rust,
2004), the Q-function is parameterized by a linear function
class with feature vector ϕ(s, a) : S ×A → Rd and param-
eter ω ∈ Ω ⊂ Rd, i.e., Qω(s, a) = ω⊤ϕ(s, a). We note that
the modeling of the Q-function via linear value function is
often used to extract insight in the A-C method. Similar to
the policy iteration, the update in the A-C method alternates
between the following two steps 1.

Critic update: The Critic updates its parameter ω to evaluate
the current policy πt, e.g., throughm-step (m ≥ 1) Bellman
evaluation operator Tπ to the current Q-function estimator
(namely,m-step return), which leads to the following update

1We remark that our analysis framework and theoretical results
are able to be applied to off-policy setting with the extra assumption
on the behavior policy. We include the details in Appendix M.

rule at time step t,

Qt+1(s, a)← Eπt [(1− γ) ·
∑m−1
i=0 γir (si, ai)

+ γm ·Qωt (sm, am) | s0 = s, a0 = a],

ωt+1 ← argminωE(s,a)∼ρπt

[
Qt+1 − ω⊤ϕ

]2
(s, a). (4)

Actor update: The Actor is updated through a greedy step
to maximize Q-function Qωt+1

, i.e.,

πt+1 ← argmax
π

E(s,a)∼ρπ
[
Qωt+1

(s, a)
]
. (5)

3.1. Approximation Error in the Critic Update

Solving the minimization problem in Eqn. (4) involves
the expectation over the stationary state-action distribution
ρπt induced by the current policy πt, which can be approxi-
mated by sample average in practice. Therefore, we consider
the Critic update below based on two groups of samples,
{(sl, al)}Nl=1 and {τl}Nl=1 where τl = {sl,t, al,t, rl,t}mt=0,
which are collected by following πt:

ωt+1 = ΓR

{(∑N
l=1 ϕ (sl, al)ϕ (sl, al)

⊤
)−1

·
∑N
l=1

(
(1− γ)

∑m−1
i=0 γirl,i + γmQωt

)
ϕ (sl,m, al,m)

}
,

(6)

where Γ is the projection operator onto the Critic parameter
space Ω with radius R in Rd. Since the samples in each tra-
jectory τl are obtained via rolllouts, in general the samples
in each trajectory follow a Markovian process (Dalal et al.,
2018; Kumar et al., 2023). We assume the samples are from
the stationary distribution induced by the current policy.

In what follows, we use ω and ω̃ to distinguish the difference
between the sample-based update and the solution from Eqn.
(4), such that the approximation error in the Critic update
can be quantified as |Qω̃t

− Qωt
|. We first impose the

following standard assumptions on the Bellman evaluation
operator Tπ , the feature vector ϕ(s, a) and the MDP.

Assumption 3.1. For given Critic parameter ω and policy
parameter θ, the following condition holds:

inf
ω̄∈Ω

Eρπθ [
(
(Tπθ )mQω − ω̄⊤ϕ

)
(s, a)] = 0,

where ρπθ is the stationary state-action transition probability
induced by policy πθ.

Assumption 3.1 (Fu et al., 2020) indicates that the solution
of the Critic update given in Eqn. (4) lies in the Critic pa-
rameter space Ω. We note that this assumption is used for
ease of exposition, and our results can be modified by incor-
porating an additional constant term when this assumption
does not hold. The proof sketch in this case can be found in
Appendix D.
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Assumption 3.2. The feature vector ϕ(s, a) in the Critic
satisfies the following two conditions: (1) ∥ϕ(s, a)∥2 ≤
1, ∀ (s, a) ∈ S × A; and (2) the smallest singular value
for Eρπθ [ϕ(s, a)ϕ(s, a)⊤] is lower bounded by a positive
constant σ∗ for policy πθ, where θ is the actor parameter
obtained from the Actor update.

Assumption 3.2 is widely used in the A-C method to guar-
antee that the minimization in Eqn. (4) can be attained by a
unique minimizer (Fu et al., 2020; Bhandari et al., 2018).

Assumption 3.3. The reward r(s, a) satisfies the follow-
ing two conditions: (1) The reward is upper bounded by a
positive constant rmax for all (s, a) ∈ S × A; and (2) the
stationary state-action transition matrix P π has non-zero
spectral gap 1− λ > 0 for all π.

The first condition in Assumption 3.3 is often used for
discounted MDPs to ensure a finite value function (e.g.,
Q(s, a) ≤ Qmax)(Thrun & Schwartz, 1993; Fujimoto et al.,
2018; Fu et al., 2020). Moreover, since the samples in the
same trajectories are generally correlated, the second condi-
tion is adopted to guarantee the concentration properties of
the Markov chain, which is generally true for the stationary
Markov chain (Jiang et al., 2018; Ortner, 2020).

For any λ ∈ (−1, 1), let α1(λ) = (1 + λ)/(1− λ),
α2(λ) = 5/(1 − λ) where α2(0) = 1/3
and α3(λ) = max {λ, 0}. Define r̃m =√
α2

2r
2
maxα

2
3 ln2 p−2mα1α3 ln p−α2α3 ln p

m + rmax and then we
can have the following main result on the approximation
error in the Critic update step.

Proposition 3.4 (Approximation Error in Critic Update).
Under Assumptions 3.1, 3.2, 3.3, the following inequal-
ity holds with probability at least 1 − p, for any t > 0,
(s, a) ∈ S ×A:

|Qωt
(s, a)−Qω̃t

(s, a)| ≤ 4((1−γ)r̃m+γmR)√
N(σ∗)2

· (− 2
3N log p

4d +
√

4
9N2 log

2 p
4d −

2
N log p

4d )

:= ϵp,

where d is the dimension of the Critic parameter ω and R
is the radius of Critic parameter space Ω as in Eqn. (6).

Proposition 3.4 establishes the upper bound for the approx-
imation error in the Critic update, which encapsulates the
impact of the finite sample size and the finite-step rollout
with Bellman evaluation operator Tπ. It can be seen from
Proposition 3.4 that in order to obtain an accurate evaluation
of the policy, we can increase the sample size N in the up-
date Eqn. (6) and have more steps of rollout with Bellman
evaluation operator Tπ. We remark that Proposition 3.4
considers the correlation across samples, and we appeal to
the recent advances in Bernstein’s Inequality for Markovian
samples (Jiang et al., 2018)(Fan et al., 2021) to tackle this

challenge. The proof of Proposition 3.4 can be found in
Appendix C and Appendix D.

3.2. Approximation Error in the Actor Update

In practice, the greedy search step for solving Eqn. (5) is
generally approximated by multiple (e.g., Na) steps of pol-
icy gradient. Based on the policy gradient theorem (Silver
et al., 2014; Sutton et al., 1999), we can have the following
update at gradient step k ∈ [1, Na] in the t-th Actor update:

θt,k+1 = θt,k + αE
(s,a)∼ρ

πθt,k [Qωt+1
(s, a)∇θπθt,k(a|s)],

θt,1 = θt, θt,Na
= θt+1, (7)

where α is the learning rate. For simplicity, we drop the
subscript t in θt,k when no confusion will arise and denote
ρk := ρπθk . As in the Critic update, we sample a trajec-
tory with length l by following the current policy πθk , i.e.,
{s1, a1, s2, a2, · · · , sl, al}, to approximate the expectation
in Eqn. (7). Then we can have that

θk+1 =θk + α 1
l

∑l
i=1[Qωt+1

(si, ai)∇θπθk(ai|si)]
:=θk + α(Ck,t,1 + Ck,t,2) + αfk,t, (8)

where Ck,t,1, Ck,t,2 and fk,t are defined as follows

Ck,t,1 :=1/l
∑l
i=1(Qωt+1

−Qω̃t+1
)(si, ai)∇θπθk(ai|si),

Ck,t,2 :=1/l
∑l
i=1(Qω̃t+1

−Qπθt )(si, ai)∇θπθk(ai|si),

fk,t :=1/l
∑l
i=1Q

πθt (si, ai)∇θπθk(ai|si).

Here Ck,t,1 captures the error resulted from using sam-
ples to estimate expectation in the Critic update. Based
on our result in Proposition 3.4, with high probability, this
term will go to 0 when we have infinite samples or infi-
nite rollout length m. Note that (Tπθt )mQωt = Qω̃t+1

(Critic update) and limm→∞(Tπθt )mQωt
= Qπθt . And

Ck,t,2 implies the approximation error when applying the
Bellman operator limited (m) times. This term will go
to 0 when m → ∞. fk,t is an unbiased estimation
of the gradient of E(s,a)∼ρk [Q

πθt (s, a)], i.e., E[fk,t] =
E(s,a)∼ρk [Q

πθt (s, a)∇θπθk(a|s)].

Based on Eqn. (8), it is clear that the Actor update with the
approximation error resulted from the Critic update can be
viewed as a stochastic gradient update with some perturba-
tion Ck,t = Ck,t,1 + Ck,t,2. For convenience, we define

h(ω, θ) := E(s,a)∼ρπθ [Qω(s, a)] = Es∼dπθ [vπω (s)].

Note that in the Actor update, the Critic parameter ω is fixed,
and the Actor parameter θ is updated. Let θ∗t+1 denote the
solution to Eqn. (5).

Denote the score function ψθ(a|s) := ∇θπθ(a|s). We have
the following assumptions on ψθ.
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Assumption 3.5. For any θ, θ′ ∈ Rd and state-action pair
(s, a) ∈ S×A, there exist positive constantsLψ ,Cψ andCπ
such that the following holds: (1) ∥ψθ−ψθ′∥ ≤ Lψ∥θ−θ′∥;
(2) ∥ψθ∥ ≤ Cψ and (3) ∥πθ(·|s)− πθ′(·|s)∥TV ≤ Cπ∥θ −
θ′∥, where ∥ · ∥TV is the total-variation distance.

The smoothness and bounded property of the score function
as stated in the (1) and (2) in Assumption 3.5 are widely
adopted in the literature (Xu et al., 2020b; Zou et al., 2019;
Agarwal et al., 2020; Kumar et al., 2023), and it has been
shown (Xu et al., 2020a) that (3) in Assumption 3.5 can be
satisfied for any smooth policy with bounded action space.

Let L0 = QmaxLψ, α ≤ 1
2L0

, κ = Cψ
rmax

1−γ , σ = 3κ,
µ = gmin

h∗
max−hmax

, where hmax = maxθ ̸=θ∗ h(θ, ω), h
∗
max =

maxθ=θ∗ h(θ, ω), gmin = minθ ̸=θ∗ ∥∇h(ω, θ)∥. Denote
Υ = (1 − αµ)Na . Finally, we present the upper bound of
the approximation error in the Actor update.

Proposition 3.6 (Approximation Error in Actor Update).
Given Actor parameter θt−1, the following inequality holds:

Eθt [h(ω, θ
∗
t )− h(ω, θt)|θt−1]

≤ Υ(h(ω, θ∗t )− h(ω, θt−1)) + Ξp,

where Ξp = ((Cψϵp + 2κ)2 + 2αLσ2)/2µ.

It can be seen in Proposition 3.6 that the Critic approxima-
tion error has direct impact on the Actor update through
Ξp. Proposition 3.6 reveals that due to the bias and noise
induced by the Critic approximation error, running more
gradient iterations (the first term on the RHS) do not neces-
sarily guarantee the convergence to the optimal policy πθ∗t .
The proof can be found in Appendix H.

4. The Impact of Approximation Errors on
Warm-Start Actor-Critic

We next quantify the impact of the approximations errors
on the sub-optimality gap of the Warm-Start A-C method
with inaccurate Actor/Critic updates. We first cast the A-C
method as Newton’s Method with perturbation, and then
present both the finite-time upper bound and lower bound
on the finite-time learning performance.

Actor-Critic Method as Newton’s Method with Pertur-
bation. As mentioned earlier, the Critic update follows Eqn.
(6) with finite samples and finite step rollout with Bellman
evaluation operator Tπ and the Actor update follows Eqn.
(8). Given the policy πt at time t, we denote the resulting
policy of one A-C update as π̂t+1. Recall that we use π̃t+1 to
denote the policy attained the max in T (vπt) as illustrated
in Figure 1. Furthermore, we define the following notations
for ease of our discussion: (1) Denote Ev,t = vπ̂t+1 −vπ̃t+1

as the approximation error in the Actor update; (2) Denote
Er,t = rπ̃t+1

−rπ̂t+1 as the error in the reward vector, which
is induced by the approximation error in the Actor update

step; (3) Denote EP,t = P π̃t+1
− P π̂t+1

as the error in the
transition matrix P ; (4) Denote EĴ,t = J−1

ṽt
− J−1

v̂t
where

J v̂t
= I − γP π̂t+1

and J ṽt
= I − γP π̃t+1

.

Following the same line as in Section 2.2, we treat the A-C
algorithm as Newton’s method with perturbation Et, i.e.,

vπ̂t+1 := vπ̂t − L̂(t), (9)

where L̂(t) = J−1
v̂t

(vπ̂t −T (vπ̂t))−Et is the stochastic es-
timator of Newton’s update L(t) = J−1

v̂πt

(
vπ̂t − T

(
vπ̂t
))

,
and

Et =Ev,t + EĴ,t(vπ̂t+1 − (rπ̃t+1
+ γP π̃t+1

vπ̂t+1))

− J−1
v̂t

(Er,t + γEP,tvπ̂t),

which can be further decomposed into bias and Martingale
difference noise as follows:

B(t) ≜E[L̂(t)]− L(t) = E[Et],
N (t) ≜L̂(t)−E[L̂(t)] = Et −E[Et].

We have a few observations in order. It can be seen that the
perturbation Et results from both Actor approximation error
(e.g., Er,t, EP,t) and Critic approximation error (e.g., Ev,t).
Meanwhile, the learnt Q function in the Critic update Eqn.
(6) is biased in general due to finite rollout steps m which
further leads to the biased gradients in the Actor update
Eqn. (8) (Kumar et al., 2023). More importantly, due to
the error propagation effect (see Fig. 1), the approximation
errors from previous step may get amplified. Clearly, the
estimation bias plays an important role in affecting the learn-
ing performance, especially when deep neural networks are
used as function approximations, which has been exten-
sively investigated using empirical studies (Fujimoto et al.,
2018; Elfwing et al., 2018; Van Hasselt et al., 2016).

Next, we examine the bias B(t) based on the approximation
errors in the Actor/Critic updates. Combining the results in
Proposition 3.4 and 3.6 on the approximation error in the
Critic/Actor updates, we define

Ht ≜
∑t
i=0 Υ

iΞp +Υt+1(h(ω, θ∗t )− h(ω, θ0)).

Then we have the following result on the bias B(t). The
detailed derivation is given in Appendix I.

Proposition 4.1 (Upper Bound on the Bias). Suppose As-
sumption 3.5 holds. Let Sϵ(·) be an open ball of radius
ϵ. There exist positive constants Lb, and ϵ, such that when
θt+1 ∈ Sϵ(θ∗t+1), the following holds for any t > 0,

∥B(t)∥ ≤ LbHt
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4.1. Upper Bound on Sub-optimality Gap

In order to address the question “Under what condition
online learning can be significantly accelerated by a warm-
start policy?”, we derive the upper bound on the sub-
optimality gap.

Case 1: Unbiased Case. We first consider the finite-time
upper bound in the unbiased case, i.e., B(t) = 0, ∀t. In
this case, we introduce the following standard assumption
on the Jacobian Jv .

Assumption 4.2 (Local Lipschitz Continuity). For some
0 < q < 1 there exist constant 0 < LJ < +∞ and constant
0 < M < +∞ such that starting from the warm-start policy
π0, the policies {π̂t, t = 1, 2, · · · } generated by the A-C
algorithm satisfy

∥Jv∗ − Jvπ̂t∥ ≤ LJ∥vπ̂t − v∗∥q,

and ∥J−1
vπ̂t
∥ ≤M.

Intuitively, Assumption 4.2 means that the difference of
Jacobian ∥Jvπt − Jv∗∥ is small whenever the underlying
value functions that induces the policies are close. We
note that the conditions of this type are commonly used
in the convergence analysis of policy iteration algorithms
for exact dynamic programming (Puterman & Brumelle,
1979; Grand-Clément, 2021). In particular, we remark that
the Jacobian function (of π or vπ) is non-linear and this
assumption implies the learned policy initialized with it is
essential for the warm-start policy to be reasonably “close”
to the optimal policy. Next, we present the finite-time upper
bound in the unbiased case.

Proposition 4.3 (Unbiased Case). In the unbiased case, i.e.,
Bt = 0, ∀ t ≥ 0, we have

∥E[v∗ − vπ̂t+1 ]∥ ≤L∥E[v∗ − vπ̂t ]∥1+q (10)

where L := MLJ with M and LJ defined in Assump-
tion 4.2. By applying Eqn. (10) recursively, we obtain,

∥E[v∗ − vπ̂t+1 ]∥ ≤ L
(1+q)t+1−1

q ∥v∗ − vπ0∥(1+q)
(t+1)

In Proposition 4.3, as the Warm-start policy is close to the
optimal policy, we establish the superlinear convergence of
E[v∗ − vπ̂t+1 ] in the presence of approximation error E(t)
from both Actor update and Critic update. This observation
corroborates the most recent empirically finding (Bertsekas,
2022b)(Silver et al., 2017), where the online RL can further
improve the warm-start policy by only few adaptation steps.

Case 2: Bounded Bias. Next, We present the finite-time
upper bound in the general case when the bias is upper
bounded (as given in Proposition 4.1).

Corollary 4.4. If Assumption 4.2 holds in the biased case,
we have that for any t > 0,

∥E[v∗ − vπ̂t+1 ]∥ ≤L∥E[v∗ − vπ̂t ]∥1+q + LbHt. (11)

By applying Eqn. (11) recursively, we obtain,

∥E[v∗ − vπ̂t+1 ]∥ ≤ ∥v∗ − vπ0∥(1+q)
1+t

· (L · · · ((L+ u1)
1+q + u2)

1+q · · ·+ ut),

where ut := LbHt

∥v∗−vπ0∥(1+q)(1+t) and LbHt is the upper

bound of the bias as in Proposition 4.1.

Implication on Reducing the Performance Gap. The
upper bound in Corollary 4.4 sheds light on the impact of
warm-start policy π0 (the first term) and the bias {B(t)}
(ut) (the second term), thereby providing guidance on how
to achieve desired finite-time learning performance. When
the bias B(t) ̸= 0 (ut ̸= 0), the upper bound hinges heavily
on the biases in the approximation errors, even when the
warm-start policy π0 is close to the optimal policy (see the
second term in Eqn. (11)). In this case, recall the result
on the upper bound of the bias B(t) in proposition 4.1,
where we establish the connection between the bias and the
approximation error. As expected, in order to reduce the
performance gap, it is essential to decrease the bias in the
approximation error, which can be achieved by increasing
gradient steps, rollout length and sample sizes.

“Wash-out” Phenomenon. In Corollary 4.4, the prod-
uct structure between the warm-start term and bias term
also implies that the imperfections of the Warm-start pol-
icy can be “washed out” by online learning when the bias
is close to zero. For instance, when the value function
vπ0 induced by the Warm-start policy π0 is bounded away
from v∗, e.g., ϵ < ∥vπ0 − v∗∥ < L−q and the bias
is sufficiently small, e.g., ut ≤ ϵ−q − L, then we have
∥E[vπ1 − v∗]∥ ≤ ∥vπ0 − v∗∥. We note that this result
corroborates with the observation in the very recent litera-
ture (Bertsekas, 2022b) and this phenomenon has not been
formalized by previous works on error propagation (Munos,
2003)(Lazaric et al., 2010). Furthermore, we clarify that the
“Wash-out” phenomenon in Corollary 4.4 would not hold in
the case when Assumption 4.2 is not satisfied, which may
likely yield a policy far away from the optimal during the
online learning. The proof of Corollary 4.4 is relegated to
Appendix J.

Remark. In the case when the bias is pronounced, Assump-
tion 4.2 can be stringent. Nevertheless, it is of more interest
to find lower bounds on the sub-optimality gap, which we
turn our attention to next.

4.2. Lower Bound on Sub-optimality Gap

Aiming to understand “whether online learning can be ac-
celerated by a warm-start policy”, we derive a lower bound
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to quantify the impact of the bias and the error propagation.
Let (π0, π̂1, · · · , π̂t) be the sequence of policies generated
by running t-step A-C algorithm in Eqn. (6) and Eqn. (8).
Fro convenience, let filtration F t be the σ-algebra gener-
ated by (π0, π̂1, · · · , π̂t). We obtain the lower bound by
unrolling the recursion of the Newton update (with pertur-
bation) Eqn. (9).

Theorem 4.5. Conditioned on the filtration F t =
σ(π0, π̂1, · · · , π̂t), the lower bound of ∥E[v∗−vπ̂t+1 |F t]∥
satisfies that

∥E
[
v∗ − vπ̂t+1 |F t

]
∥ ≥ ∥γt+1P̄ t+1(v

∗ − vπ0)

+
∑t
i=1γ

iP̄ iB(t− i) + B(t)∥, (12)

where P̄ t+1 = E
[(∏t

i=0 P πt+1−i

)]
.

Error Propagation and Accumulation. It can be seen
form Theorem 4.5 that the bias terms {B(t)} add up over
time, and the propagation effect of the bias terms is en-
capsulated by the last two terms on the right side of Eqn.
(12). Clearly, the first term on the right side, correspond-
ing to the impact of the warm-start policy π0, diminishes
with A-C updates. To get a more concrete sense of The-
orem 4.5, we consider the following special settings. (1)
When the bias is always positive, i.e., B(t) > 0 for all
t ≥ 0, the lower bound in Theorem 4.5 is always positive,
i.e., ∥E

[
v∗ − vπ̂t+1

]
∥ ≥ ∥B(t)∥ > 0. In this case, the

sub-optimal gap remains bounded away from zero. Similar
conclusion can be made when the bias is always negative.
(2) When the bias term can be either positive or negative, the
lower bound is shown as Eqn. (12). In this case, the learning
performance of the A-C algorithm largely depends on the
behavior of the Bias term. It can be seen from Theorem
4.5 that even when the warm-start policy is near-optimal,
it is still challenging to guarantee that online fine-tuning
can improve the policy if the approximation error is not
handled correctly. We note that this has also been observed
empirically (Nair et al., 2020; Lee et al., 2022). The proof
of Theorem 4.5 is provided in Appendix K.

Remark. The primary goal of this work is to make a first
attempt to quantify the learning performance of Warm-start
RL by studying its convergence behavior. It can be seen
from Corollary 4.4 and Theorem 4.5 that the bounds are
in terms of the biases {B(t)}, and the structure of {B(t)}
remains open and is highly nontrivial. Hence, we submit
that the convergence rate and the sampling complexity are
of great interest but it is beyond the scope of this work.

Remark. We clarify the connection between our work and
previous works on the “coverage” requirements (e.g., As-
sumption A (Xie et al., 2021)). The concentrability condi-
tion (Xie et al., 2021) characterizes the distance between the
visitation distributions of the warm-start policy and some
optimal policy for every state-action pair. Hence, this “cov-

erage” assumption requires the state-action point-wise dis-
tance between the optimal policy and the policy to be upper
bounded in the worst-case scenario, implying the bias is
also bounded above since the worse-case distance is larger
than average distance in general. While in our setting, we
evaluate the sub-optimality gap in the average sense, i.e.,
E[v∗ − vπt ], by characterizing the upper bound of the bias
from the Actor update and Critic update. Meanwhile, the
performance requirements for online learning algorithms
in the previous work (e.g., Bellman error is upper bounded
by (Song et al., 2022)) correspond to the second term on
the RHS of Proposition 4.3, Corollary 4.4 and Theorem 4.5,
where we show that upper bound of the approximation error
in the Actor update has direct impact on the sub-optimality.

5. Conclusion
We take a finite-time analysis approach to address the ques-
tion “whether and when online learning can be significantly
accelerated by a warm-start policy from offline RL?” in
Warm-Start RL. By delving into the intricate coupling be-
tween the updates of the Actor and the Critic, we first pro-
vide upper bounds on the approximation errors in both the
Critic update and Actor update of online adaptation, respec-
tively, where the recent advances on Bernstein’s Inequality
are leveraged to deal with the sample correlation therein.
Based on these results, we next cast the Warm-Start A-C
method as Newton’s method with perturbation, which serves
as the foundation for characterizing the impact of the ap-
proximation errors on the finite-time learning performance
of Warm-Start A-C. In particular, we provide upper bounds
on the sub-optimality gap, which provides guidance on the
design of Warm-Start RL for achieving desired finite-time
learning performance. And we also derive lower bounds on
the sub-optimality gap under biased approximation errors,
indicating that the performance gap can be bounded away
from zero even with a good prior policy. We note that as the
biases structure remains open, the study on the efficiency
of Warm-start RL calls for additional work. Finally, it is
also worth to explore the setting beyond linear function ap-
proximation and further derive the practical warm-start RL
algorithm utilizing the theoretical findings in this work.
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Appendix

A. Examples in Section 2.2
In this section, we elaborate further on the illustrative example in Section 2.2. We use the notation defined in Figure 1.

Policy Iteration as Newton’s Method. Based on (Puterman & Brumelle, 1979)(Grand-Clément, 2021), we first build the
relation between policy iteration and Newton’s Method in the abstract dynamic programming (ADP) framework, assuming
accurate updates.

From the definition of the value function v, we have that for any policy π,

vπ = rπ + γP πv
π.

Recall the definition of Bellman evaluation operator Tπ(·) and the Bellman operator T (·),

Tπ(v) =rπ + γP πv, T (v) = max
π
{rπ + γP πv} = max

π
Tπ(v).

It follows that

vπt+1 = J−1
vπtrπt+1

= vπt − vπt + J−1
vπtrπt+1

= vπt − J−1
vπtJvπtvπt + J−1

vπtrπt+1

= vπt − J−1
vπt

(
−rπt+1

+ Jvπtvπt
)

= vπt − J−1
vπt

(
−rπt+1 +

(
I − γP πt+1

)
vπt
)

= vπt − J−1
vπt

(
vπt − rπt+1

− γP πt+1
vπt
)

= vπt − J−1
vπt (v

πt − T (vπt)) , (13)

where Jv = I − γP π(v) and π(v) attains the max in T (v). Eqn. (13) establishes a connection between policy iteration
under ADP and Newton’s Method. Specifically, if we assume function F : v → v − T (v) is differentiable at any vector
v visited by policy iteration, then we have vt+1 = vt + J−1

vt
F (vt), which is exactly the update of the Newton’s Method

in convex optimization (Boyd et al., 2004). Due to the fact that F (·) may not be differentiable at all v in policy iteration,
the assumptions on the Lipschitzness of v → Jv is commonly used to prove the convergence of the policy iteration (see
Assumption 4.2). Following the same line, next we show the case when function approximation is used in the A-C algorithm.

A-C Updates with Function Approximation. Consider the illustration example in Section 2.2. Next we outline the main
differences between the A-C update with function approximation and the policy iteration in the ADP framework, and cast
A-C based policy iteration with function approximation as Newton’s Method with perturbation. Specifically,

vπ̃t+1 = J−1
vπ̃t

rπ̃t+1

= vπt − vπt + J−1
vπ̃t

rπ̃t+1

= vπt − J−1
vπ̃t

Jvπ̃tv
πt + J−1

vπ̃t
rπ̃t+1

= vπt − J−1
vπ̃t

(
−rπ̃t+1

+ Jvπ̃tv
πt
)

= vπt − J−1
vπ̃t

(
−rπ̃t+1

+
(
I − γP π̃t+1

)
vπt
)

= vπt − J−1
vπ̃t

(
vπt − (rπ̃t+1

+ γP π̃t+1
vπt)

)
≜ vπt − J−1

vπ̃t

(
vπt − T̃ (vπt)

)
,

where Jvπ̃t = I − γP π(vπ̃t ) and π(v) attains the max in T (v) (not T̃ (v)), with the following two operators defined as

T (vt) ≜rπt+1
+ γP πt+1

vt,

T̃ (vt) ≜rπ̃t+1
+ γP π̃t+1

vt.
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Figure 2. Illustration of the theoretical analysis.

For convenience, let ET,t and EJ,t denote the approximation errors in the Bellman operator T and the Jacobian Jv , i.e.,

T̃ (vt)− T (vt) =(rπ̃t+1
+ γP π̃t+1

vt)− (rπt+1 + γP πt+1vt) ≜ ET,t,
J−1

ṽt
− J−1

vt
=(I − γP π̃t+1

)−1 − (I − γP πt+1)
−1 ≜ EJ,t,

and define

vπ̂t+1 ≜ vπ̃t+1 + Ea,t,

where Ea,t capture the error induced by inaccurate policy improvement (the greedy step, e.g., Eqn. (5)) in the Actor update.
Then we have that

vπ̃t+1 = vπt − J−1
vπ̃t

(
vπt − T̃ (vπt)

)
= vt − (J−1

vt
+ EJ,t) (vt − T (vt)− ET,t)

= vt − J−1
vt

(vt − T (vt))︸ ︷︷ ︸
Exact Newton Step

−EJ,t(vt − T (vt)) + (J−1
vt

+ EJ,t)ET,t︸ ︷︷ ︸
Perturbation

≜ vt − J−1
vt

(vt − T (vt))︸ ︷︷ ︸
Exact Newton Step

+Et

= vπt+1 + Et.

In a nutshell, we have that

vπ̂t+1 = vπt+1 + Ec,t + Ea,t,

where
Ec,t ≜ −EJ,t(vt − T (vt)) + (J−1

vt
+ EJ,t)ET,t.
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Table 2. Detailed Comparison with related work in terms of MDP and function approximation settings.

Reference Previous Work Our Work
(Xie et al., 2021) Episodic MDP setting and no func-

tion approximation error during the
policy finetuning.

We consider general MDP with
the linear value function (Critic)
approximation and general Actor
function approximation.

(Bagnell et al., 2003)(Uchendu et al., 2022) (Bagnell et al., 2003)(Uchendu
et al., 2022) gives the results with
either the approximation error from
policy update (Theorem 1 (Bagnell
et al., 2003)) or value function up-
date (Section 4.2 (Bagnell et al.,
2003), Assumption A.6 (Uchendu
et al., 2022)) through term ϵ.

Our work first characterizes ϵ ex-
plicitly (which is not available
in (Bagnell et al., 2003)(Uchendu
et al., 2022)) and also studies
how the approximation errors from
“both Actor update and Critic up-
date” affect the learning perfor-
mance at the same time (through
bias term B(t)).

(Song et al., 2022) (Song et al., 2022) considers Q-
function approximation and as-
sume the greedy policy can be ob-
tained exactly (line 3, Algorithm 1)

We consider Actor-Critic and con-
sider the approximation error in the
Actor and Critic, respectively.

(Wagenmaker & Pacchiano, 2022) (Wagenmaker & Pacchiano, 2022)
requires the underlying MDP struc-
ture to be linear and only considers
linear Softmax Policy (Actor)

We consider general MDP and gen-
eral Actor approximation.

B. Detailed Comparison with Previous Work
In this work, we consider the same warm-start RL setup as in (Bertsekas, 2022a) and recent successful applications including
AlphaZero, where the offline pretrained policy is utilized as the initialization for online learning and this policy is updated
while interacting with the MDP online. Policy improvement via online adaptation (finetuning) plays a critical role in
addressing the notorious challenge of “distribution shift” between offline training and online learning, and this is one main
motivation for our study on Warm-start RL. In stark contrast, the reference policy in (Xie et al., 2021)(Bagnell et al., 2003)
is used to collect samples but remains fixed during the online learning. It is clear that if one queries 0 samples from the
reference policy, Algorithm 2 (Xie et al., 2021) would NOT reduce to the proposed warm-start learning algorithm in our
setting. Meanwhile, Algorithm 1 and Algorithm 2 (Uchendu et al., 2022) assume the episodic MDP setting, which is
different from the MDP setting in our study. On the other hand, the hybrid RL setting (Song et al., 2022)(Wagenmaker
& Pacchiano, 2022) mainly focuses on the usage of the offline dataset while the initial policy is not initialized by any
warm-start policy (e.g., Algorithm 1 (Song et al., 2022), Section 6 (Wagenmaker & Pacchiano, 2022)).

Moreover, the finite time analysis with function approximation errors in both Actor and Critic updates has not been studied
before under this warm-start RL setting. From a theoretic perspective, our work has contributed to developing a fundamental
understanding of the impact of the function approximation errors in the general MDP settings (ref. Table 2), beyond the
references listed.

C. Proof of Bernstein’s Inequality with General Makovian samples
In this section, we provide the proof of Bernstein’s Inequality with General Makovian samples following the proof in
Theorem 2 (Jiang et al., 2018).

With a bit abuse of notation,let π denote the stationary distribution of the Markov chain {Xi}i≥1. We define π(h) :=∫
h(x)π(dx) to be the integral of function h with respect to π. Let L2(π) = {h : π(h2) < ∞} be the Hilbert space

of square-integrable functions and L0
2(π) = {h ∈ L2(π) : π(h) = 0} be the subspace of mean zero functions. Let

P be the Markov transition matrix of its underlying (state space) graph and P ∗ be its adjoint in the Hilbert space. Let
λ(P ) ∈ [0, 1] be the operator norm of P on L0

2(π) and λr(P ) ∈ [−1, 1] be the rightmost spectral value of (P + P ∗)/2.
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Then the right spectral gap of P is defined as 1 − λr (Levin & Peres, 2017) (We remark that in Assumption 3.3, we
assume the absolute spectral gap is non-zero, which implies the right spectral gap is also non-zero. This is true since
−1 ≤ λr ≤ λ ≤ 1.). Let Eh denote the multiplication operator of function eh : x 7→ eh(x). In the Hilbert space L2(π), we
define the norm of a function h to be ∥h∥π =

√
⟨h, h⟩π. Furthermore, we introduce the norm of a linear operator T on

L2(π) as |||T |||π = sup{∥Th∥π : ∥h∥π = 1}.

We first restate Bernstein’s Inequality with General Makovian Samples (Jiang et al., 2018) in the following theorem. Let
α1(λ) = (1 + λ)/(1− λ), α2(λ) = 5/(1− λ) and α2(0) = 1/3.

Theorem C.1 (Bernstein’s Inequality with General Makovian Samples). Suppose {Xi}i≥1 is a stationary Markov chain
with invariant distribution π and non-zero right spectral gap 1− λr > 0, and f :7→ x[−c, c] is a function with π(f) = 0.
Let σ2 = π(f2). Then, for any 0 ≤ t < (1−max{λr, 0})/5c and any ϵ > 0,

Pπ

(
1

n

n∑
i=1

f (Xi) > ϵ

)
≤ exp

(
− nϵ2/2

α1 (max {λr, 0}) · σ2 + α2 (max {λr, 0}) · cϵ

)
. (14)

Proof. Step 1. Establish the upper bound of E
[
et

∑n
i fi(Xi)

]
.

Let I : x 7→ 1 be the function mapping x to 1 and let Π be the projection operator onto 1, i.e., Π : g 7→ ⟨h, I⟩πI = π(h)I .
Define the León-Perron operator to be P̂γ = γI + (1− γ)Π, γ ∈ [0, 1). Then we recall the following lemma (Lemma 2,
(Jiang et al., 2018)) on the stationary Markov chain (Fan et al., 2021).

Lemma C.2. Let {Xi} be a stationary Markov chain with invariant measure π and non-zero right spectral gap 1− λr > 0.
For any bounded function f and any t ∈ R,

Eπ

[
et

∑n
i=1 f(Xi)

]
≤
∣∣∣∣∣∣∣∣∣Etf/2P̂max{λr,0}E

tf/2
∣∣∣∣∣∣∣∣∣n
π
.

Lemma C.3 indicates that it is sufficient to prove the upper bound of E
[
et

∑n
i fi(Xi)

]
by proving the upper bound of∣∣∣∣∣∣∣∣∣Etf/2P̂max{λr,0}E

tf/2
∣∣∣∣∣∣∣∣∣n
π

.

To this end, we first invoke the following lemma (Lemma 6, (Jiang et al., 2018)) to construct f̂k ≈ f such that for any
λ ∈ [0, 1),

∣∣∣∣∣∣∣∣∣Etf/2P̂λEtf/2∣∣∣∣∣∣∣∣∣
π
= limk→∞

∣∣∣∣∣∣∣∣∣Etf̂k/2P̂λEtf̂k/2∣∣∣∣∣∣∣∣∣
π

.

Lemma C.3. For function f : x ∈ X 7→ [−c, c] such that π(f) = c, π(f2) = σ2. Let ⌈·⌉ be the ceiling function and

f̃k(x) =
⌈
f(x)+c
c/3k

⌉
× c

3k − c. Let f̂k =
f̃k−π(f̃k)
1+1/3k . Then f̃k takes at most 6k + 1 possible values and satisfies that for any

bounded linear operator T acting on the Hilbert Space L2(π) and any t ∈ R,∣∣∣∣∣∣∣∣∣Etf/2TEtf/2∣∣∣∣∣∣∣∣∣
π
= lim
k→∞

∣∣∣∣∣∣∣∣∣Etf̂k/2TEtf̂k/2∣∣∣∣∣∣∣∣∣
π
.

Assume that the Markov chain {X̂i}i≥1, X̂i ∈ X is generated by the León-Perron operator P̂λ. It follows that {Ŷi}i≥1 =

{f̂k(X̂i)}i≥1 is a Markov chain in the state space Y = f̂k(X ). We recall the following lemma (Lemma 7, (Jiang et al.,
2018)) on the relation between the two Markov chains.

Lemma C.4. Let P̂λ be the León-Perron operator with λ ∈ [0, 1) on state space X . Let f be a function on X . On the
finite state space Y = {y ∈ f(X ) : π({x : f(x) = y}) > 0}, define a transition matrix Q̂λ = λI + (1 − λ)Iµ⊤, with
transition vector µ consisting of elements π({x : f(x) = y}) for yinY . Let EtY denote the diagonal matrix with elements
ety : y ∈ Y . Then we have, ∣∣∣∣∣∣∣∣∣Etf/2P̂λEtf/2∣∣∣∣∣∣∣∣∣

π
=
∣∣∣∣∣∣∣∣∣EtY/2Q̂λEtY/2∣∣∣∣∣∣∣∣∣

µ
.
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Next, we bound the term
∣∣∣∣∣∣∣∣∣EtY/2Q̂λEtY/2∣∣∣∣∣∣∣∣∣

µ
by the expansion of the largest eigenvalue of the perturbed Markov operator

Etf/2PEtf/2 as a series in t. Specifically, we recall the following result (Lezaud, 1998).

Lemma C.5. Consider a reversible, irreducible Markov chain on finite state space X . Let D be the diagonal matrix with
{f(x) : x ∈ X} and T (m) = PDm/m! for any m ≥ 0 with D0 = I . Assume the invariant distribution of the Markov chain

is π and the second largest eigenvalue of the transition matrix P is λr < 1. Let t0 =
(
2
∣∣∣∣∣∣T (1)

∣∣∣∣∣∣
π
(1− λr)−1

+ c0

)−1

for
some c0 such that ∣∣∣∣∣∣∣∣∣T (m)

∣∣∣∣∣∣∣∣∣
π
≤
∣∣∣∣∣∣∣∣∣T (1)

∣∣∣∣∣∣∣∣∣
π
cm−1
0 ,∀m ≥ 1.

Denote the largest eigenvalue of PEtf by β(t) and Z = (I − P +Π)−1 −Π. Let Z0 = −Π, Z(j) = Zj , j ≥ 1, β(0) = 1
and β(m), m ≥ 1 be

β(m) =

m∑
p=1

−1
p

∑
v1+···+vp=m,vi≥1,k1+···+kp=p−1,kj≥0

trace
(
T (v1)Z(k1) . . . T (vp)Z(kp)

)
,

Then we have the following expansion on β(t),

β(t) =

∞∑
m=0

β(m)tm, |t| < t0.

Follow the same line as in (Lezaud, 1998) (Page 854-856), denote σ2 = ∥f∥2π and c = c0 ≥ |||D|||π (defined in Lemma
C.5), then we have the following upper bound of β(t).

β(t) = β(0) + β(1)t+
∑
m=2

β(m)tm

≤ 1 + 0 +

∞∑
m=2

π (fm) tm

m!
+

∞∑
m=2

σ2λt

5c

(
5ct

1− λr

)m−1

≤ exp

( ∞∑
m=2

π (fm) tm

m!
+

∞∑
m=2

σ2λt

5c

(
5ct

1− λr

)m−1
)

≤ exp

(
σ2

c2
(
etc − 1− tc

)
+

σ2λt2

1− λr − 5ct

)
:= exp(g1(t) + g2(t)) (15)

Now we are ready to derive the bound for the term E
[
et

∑n
i fi(Xi)

]
. Following the results in Lemma C.3, we consider a

sequence of fk such that, ∣∣∣∣∣∣∣∣∣Etf/2P̂λEtf/2∣∣∣∣∣∣∣∣∣
π
= lim
k→∞

∣∣∣∣∣∣∣∣∣Etf̂k/2P̂λEtf̂k/2∣∣∣∣∣∣∣∣∣
π
.

Next, we construct the finite state space counterpart of each pair of Etf̂k/2P̂λEtf̂k/2 and π by Lemma C.4, i.e.,∣∣∣∣∣∣∣∣∣Etf̂k/2P̂λEtf̂k/2∣∣∣∣∣∣∣∣∣
π
:=
∣∣∣∣∣∣∣∣∣EtYk/2Q̂λE

tYk/2
∣∣∣∣∣∣∣∣∣
µk

Let the random variable in the state space Yk be Yk, then the mean and variance of Yk is
∑
y∈Yk

π
({
x : f̂k(x) = Y

})
y =

π
(
f̂k

)
= 0 and

∑
y∈Yk

π
({
x : f̂k(x) = y

})
y2 = π

(
f̂2k

)
.
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For each k, applying Eqn. (15) gives us,

∣∣∣∣∣∣∣∣∣EtYk/2Q̂λE
tYk/2

∣∣∣∣∣∣∣∣∣
µk

≤ exp

π
(
f̂2k

)
c2

(
etc − 1− tc

)
+

π
(
f̂2k

)
λt2

1− λr − 5ct



Note that as k →∞, we have π
(
f̂2k

)
→ π(f2) = σ2. Then we have the upper bound for each operator

∣∣∣∣∣∣Etfi/2PEtfi/2∣∣∣∣∣∣
π

,
i.e., for any λ ∈ [0, 1), ∣∣∣∣∣∣∣∣∣Etf/2PλEtf/2∣∣∣∣∣∣∣∣∣

π
≤ exp(g1(t) + g2(t))

where g1 and g2 are defined in Eqn. (15).

Consequently, we obtain the upper bound for E
[
et

∑n
i fi(Xi)

]
as follows, E

[
et

∑n
i fi(Xi)

]
,

Eπ

[
et

∑n
i=1 fi(Xi)

]
≤ exp

(
nσ2

c2
(
etc − 1− tc

)
+

nσ2 max{λr, 0}t2

1−max{λr, 0} − 5ct

)

Step 2 Use the convex analysis argument to derive the Bernstein’s Inequality.

We first restate the following lemma (Lemma 9, (Jiang et al., 2018)) on the terms g1 and g2.

Lemma C.6. For λ ∈ [0, 1), let g1(t) = nσ2

c2 (etc − 1− tc) and g2(t) =
nσ2 max{λr,0}t2
1−max{λr,0}−5ct , then for any 0 ≤ t < (1−γ)/5c,

the Frechet conjugates (g1 + g2)
∗ satisfy the following inequalities.

if λ ∈ (0, 1) : (g1 + g2)
∗(ϵ) := sup

0≤t<(1−λ)/5c
{tϵ− g1(t)− g2(t)} ≥

ϵ2

2

(
1 + λ

1− λ
σ2 +

5cϵ

1− λ

)−1

if λ = 0 : (g1 + g2)
∗
(ϵ) =g∗1(ϵ) ≥

ϵ2

2

(
σ2 +

cϵ

3

)−1

.

By the Chernoff bound, we have,

− logP

(
1

n

n∑
i=1

fi (Xi) > ϵ

)
≥ n× sup

t∈R
{tϵ− g1(t)− g2(t)}

Notice that g1(t) = O(t2) and g2(t) = O(t2) as t→ 0, then for some t > 0, we have tϵ− g1(t)− g2(t) > 0. Meanwhile,
when t ≤ 0, we have tϵ− g1(t)− g2(t) ≤ 0. Thus, we can obtain that,

sup {tϵ− g1(t)− g2(t) : t > 0} = sup {tϵ− g1(t)− g2(t) : t ∈ R} = (g1 + g2)
∗
(ϵ).

Letting λ = max{λr, 0}, α1(λ) = (1 + λ)/(1− λ), α2(λ) = 5/(1− λ) and α2(0) = 1/3 yields,

Pπ

(
1

n

n∑
i=1

f (Xi) > ϵ

)
≤ exp

(
− nϵ2/2

α1 (max {λr, 0}) · σ2 + α2 (max {λr, 0}) · cϵ

)
. (16)

This concludes the proof.
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D. Proof of Proposition 3.4
Let ω̄t+1 = ΓR(ω̃t+1), and assume ∥ϕ(s, a)∥ ≤ 1 uniformly (see Assumption 3.1). Based on the approach in Appendix G.1
(Fu et al., 2020), it suffices to upper bound ∥ωt+1 − ω̃t+1∥2. Observe that

∥ωt+1 − ω̄t+1∥2 ≤ ∥Φ̂v̂ − Φv∥2 ≤ ∥Φ∥2 · ∥v̂ − v∥2 + ∥Φ̂− Φ∥2 · ∥v̂∥2,

where Φ and v are given as follows:

Φ̂ =

(
1

N

N∑
l=1

ϕ (sl, al)ϕ (sl, al)
⊤

)−1

,

Φ =
(
Eρt+1

[
ϕ(s, a)ϕ(s, a)⊤

])−1
,

v̂ =
1

N

N∑
l=1

(
(1− γ)

m−1∑
i=0

γirl,i + γmQωt
(sl,m, al,m)

)
· ϕ (sl,m, al,m) ,

v = Eρt+1

[
(1− γ)

m−1∑
i=0

(
γirl,i + γmP πθt+1

Qωt
(sm, am)

)
· ϕ(sm, am)

]
.

Recall that the following assumptions are in place: (1) Spectral norm ∥ϕ(s, a)∥2 ≤ 1, ϕ(s, a) ∈ Rd; (2) |r(s, a)| ≤ rmax

and r̄ = Es,ar(s, a); (3) ∥ωt∥2 ≤ R and (4) the minimum singular value of the matrix Eρt [ϕ(s, a)ϕ(s, a)
⊤], t ≥ 1 is

uniformly lower bounded by σ∗. It can be shown that ∥Φ∥2 ≤ 1
σ∗ .

Next, we derive the bound by appealing to Bernstein’s Inequality with General Makovian samples. Following Theorem 2
(Jiang et al., 2018) (The proof of Bernstein’s Inequality can be found in Appendix C), let πr be the invariant distribution
(which is relevant to the current policy πk) of the stationary Markov chain {rt}mt=1. Suppose that it has non-zero right
spectral gap 1− λr > 0. Let σ2

r =
∫
(r − r̄)2πr(dr). Then, we have that for any ϵ > 0:

Pπr

(
1

m

m∑
i=1

(ri − r̄) > ϵ

)
≤ exp

(
− mϵ2/2

α1 (max {λr, 0}) · σ2 + α2 (max {λr, 0}) · rmaxϵ

)
,

where α1(λ) =
1+λ
1−λ , α2(λ) =

{
1
3 if λ = 0
5

1−λ if λ ∈ (0, 1)
.

We conclude that with probability at least 1− p,

m−1∑
i=0

ri ≤

√
α2
2 (max {λr, 0})2 ln p2 − 2mα1 (max {λr, 0}) ln p− α2 (max {λr, 0}) ln p

m
+ r̄ := r̃m.

It follows that with probability at least 1− p,

∥v̂∥2 ≤ (1− γ)r̃m + γmR,

Further, note that

∥v∥2 ≤ (1− γ)r̄ + γmR,

Since the minimum singular value of Φ̂−1 is no less than σ∗

2 w.h.p. when N is large enough, we have that

∥Φ̂∥2 ≤
2

σ∗ .
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For convenience, define

X̂ ≜

(
1

N

N∑
l=1

ϕ (sl, al)ϕ (sl, al)
⊤

)
, X ≜

(
Eρt+1

[
ϕ(s, a)ϕ(s, a)⊤

])
,

and define

Z ≜X̂ −X =

N∑
k=1

Sk, (17)

Sk ≜
1

N
(ϕkϕ

⊤
k −X), (18)

where Sk, k = 1, · · · , N are independent.

Next, we derive the uniform bound on the spectral norm of each summand as follows:

∥Sk∥2 =
1

N
∥ϕkϕ⊤k −X∥ ≤

1

N
(∥ϕkϕ⊤k ∥+ ∥X∥) ≤

2

N
.

To this end, we bound the matrix variance statistic V (Z):

V (Z) :=∥E[Z2]∥ = ∥
N∑
k=1

E[S2
k]∥.

Note that the variance of each summand is given by

E[S2
k] =

1

N2
E[(ϕkϕ

⊤
k −X)2]

=
1

N2
E[∥ϕk∥2 · ϕϕ⊤ − ϕϕ⊤X −Xϕϕ⊤ +X2]

≼
1

N2
[E[ϕϕ⊤]−X2]

≼
1

N2
X.

Combining the above, we conclude that

0 ≼
N∑
k=1

E[S2
k] ≼

1

N
X.

Observe that

∥X∥ = ∥E[ϕϕ⊤]∥2 ≤ E[∥ϕϕ⊤∥] = E∥ϕ∥2 ≤ 1.

Since the spectral norm is the variance statistic given by

V (Z) ≤ 1

N
∥X∥,

appealing to Bernstein’s Inequality, we have that

P{∥Z∥ ≥ t} ≤2d exp

(
−t2
2

1
N ∥X∥+

2t
3N

)
,

E[∥Z∥] ≤
√

2

N
∥X∥ log(2d) + 2

3N
log(2d)

≤
√

2

N
log(2d) +

2

3N
log(2d).
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This is to say, with probability at least 1− p/2, the following holds:

∥X − X̂∥ ≤ − 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d
.

In a nutshell, we have that

∥Φ̂− Φ∥2 =∥X̂−1 −X−1∥2
=∥X̂−1(X̂ −X)X−1∥2
=∥Φ̂(X̂ −X)Φ∥2

≤ 2

(σ∗)2
∥X̂ −X∥2

≤ 4√
N (σ∗)

2 ·

(
− 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d

)
.

Similarly, the following inequality holds with probability at least 1− p/2:

∥v̂ − v∥2 ≤ −
δ1
3
log

p

2(d+ 1)
+

√
δ21
9

log2
p

2(d+ 1)
− 2δ2 log

p

2(d+ 1)
,

where d is the dimension of vector φ, δ1 = 1
N ((1− γ)(r̃m + r̄) + 2γmR) and δ2 = ∥E[v̂ − v]∥2 satisfying

δ2 ≤
1

N
[(1− γ)(|r̃m|(|r̃m − r̄|+ γmR|r̃m − r̄|))]

≤1− γ
N

[rmax + γmR]|r̃m − r̄|.

Summarizing, we have that

∥ωt+1 − ω̄t+1∥2 ≤∥Φ∥2 · ∥v̂ − v∥2 + ∥Φ̂− Φ∥2 · ∥v̂∥2

≤− δ1
3σ∗ log

p

2(d+ 1)
+

√
δ21
9

log2
p

2(d+ 1)
− 2δ2 log

p

2(d+ 1)

+
4((1− γ)r̃m + γmR)√

N(σ∗)2

(
− 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d

)
,

which indicates that with probability at least 1− p,

|Qωt+1 −Qω̄t+1 | ≤

(
4((1− γ)r̃m + γmR)√

N(σ∗)2

(
− 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d

))
≜ϵQ. (19)

Remark. In the case when Assumption 3.1 does not hold, i.e., we have

inf
ω̄∈Ω

Eρπθ [
(
(Tπθ )mQω − ω̄⊤ϕ

)
(s, a)] = c1,

where c1 > 0 is a constant. Let ω̄t+1 = ΓR(ω̃t+1), recall that ω̃ denotes the solution of Eqn. (4) and ω denotes the
sample-based solution, then we have

|Qω̄t+1
−Qω̃t+1

| = c1
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From Eqn. (19), we obtain that,

|Qωt+1
−Qω̄t+1

| ≤ ϵQ

Then the difference between the sample-based solution and the underlying true solution of Eqn. (4) is,

|Qωt+1 −Qω̃t+1 | ≤ ϵQ + c1.

Note that when Assumption 3.1 holds,

Qω̃t+1
= Qω̄t+1

.

E. Proof of Bounded Noise in the Actor Update
Based on Proposition 3.4, we have the following two lemmas for the upper bounds on the bias term b = E[Ck,t] and the
error term β = fk,t+Ck,t−E[Ck,t]−E[fk,t] in the stochastic gradient update Eqn. (8), respectively. The proof of Lemmas
E.1 and F.1 can be found in Appendix E and F, respectively.

Lemma E.1 (σ2-bounded noise). Suppose Assumptions 3.1, 3.2, 3.3 hold. Then with probability at least 1− p, E[∥β∥2] ≤
∥∇θh(ω, θ) + b∥2 + σ2, ∀θ, where σ2 ≥ 0 is a constant and depends on p.

Recall β = fk,t + Ck,t −E[Ck,t]−E[fk,t]. We also have the following definitions:

Ck,t,1 ≜1/l

l∑
i=1

(Qωt+1(si, ai)∇θπθk(ai|si)−Qω̃t+1
(si, ai)∇θπθk(ai|si)),

Ck,t,2 ≜1/l

l∑
i=1

(Qω̃t+1
(si, ai)∇θπθk(ai|si)−Qπθt (si, ai)∇θπθk(ai|si)),

fk,t ≜1/l

l∑
i=1

Qπθt (si, ai)∇θπθk(ai|si),

Ck,t ≜Ck,t,1 + Ck,t,2.

Next we evaluate E[∥fk,t + Ck,t −E[Ck,t]−E[fk,t]∥2] as follows:

∥fk,t + Ck,t −E[Ck,t]−E[fk,t]∥2

=(fk,t + Ck,t)(fk,t + Ck,t)
⊤ + (E[Ck,t] +E[fk,t])(E[Ck,t] +E[fk,t])

⊤

− 2(fk,t + Ck,t)(E[Ck,t] +E[fk,t])
⊤

≤(fk,t + Ck,t)(fk,t + Ck,t)
⊤ + (E[Ck,t] +E[fk,t])(E[Ck,t] +E[fk,t])

⊤. (20)

Note that Ck,t and fk,t are both bounded above since Q-function is bounded and∇θπθ(a|s) is bounded (see Assumption
3.5), i.e.,

∥∇π(a|s)∥ ≤Cψ,

∥Q(s, a)∥ ≤
∞∑
t=1

γtrmax =
rmax

1− γ
.

Then we have the following bounds for Ck,t and fk,t:

∥Ck,t∥ ≤ 2Cψ
rmax

1− γ
,

∥fk,t∥ ≤ Cψ
rmax

1− γ
.
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Then we have

(fk,t + Ck,t)(fk,t + Ck,t)
⊤ ≤∥fk,t∥2 + ∥Ck,t∥2 + 2∥fk,t∥∥Ck,t∥

≤9C2
ψ(
rmax

1− γ
)2

Taking expectation over both sides of the inequality (20), we have that

E[∥β∥2] ≤ 1 · ∥E[Ck,t] +E[fk,t]∥2 +E[(fk,t + Ck,t)(fk,t + Ck,t)
⊤].

Let Mn = 1 and σ2 = 9C2
ψ(

rmax

1−γ )
2. Then we have that

E[∥β∥2] ≤Mn · ∥∇θh(ω, θ) +E[Ck,t]∥+ σ2.

F. Proof of Bounded Bias in the Actor Update
Lemma F.1 (ζ2-bounded bias). Suppose Assumptions 3.1, 3.2, 3.3 hold. Then with probability at least 1−p, ∥b∥2 ≤ ζ2, ∀θ,
where ζ2 ≥ 0 is a constant and depends on p.

Recall that b = E[Ck,t] and

Ck,t :=Ck,t,1 + Ck,t,2

=1/l

l∑
i=1

(
Qωt+1

(si, ai)∇θπθk(ai|si)−Qω̃t+1
(si, ai)∇θπθk(ai|si)+

(Qω̃t+1
(si, ai)∇θπθk(ai|si)−Qπθt (si, ai)∇θπθk(ai|si)

)
.

Next, we evaluate ∥b∥2. Observe that (see also Appendix E)

∥Qω̃t+1
(si, ai)∇θπθk(ai|si)−Qπθt (si, ai)∇θπθk(ai|si)∥ ≤ 2Cψ

rmax

1− γ
.

Meanwhile, recall the results from Proposition 3.4 Eqn. 19, we have that, for any (s, a) ∈ S ×A,

∥Qω −Qω̃∥ ≤ ϵQ.

Then we have,

∥Qωt+1(si, ai)∇θπθk(ai|si)−Qω̃t+1
(si, ai)∇θπθk(ai|si)∥ ≤ cψϵQ,

where ϵQ depends on p.

Let ζ = cψϵQ + 2Cψ
rmax

1−γ . Then we have

∥b∥2 = ∥E[Ck,t]∥2 ≤ E[∥Ck,t∥2] ≤ ζ2.

G. Proof of the Smoothness and PL Condition of h in Actor Update
For the sake of tractability, we next give the following two lemmas about the smoothness and Polyak-Lojasiewicz Condition
on the objective function h(·, θ).
Lemma G.1 (L-smoothness). Suppose Assumption 3.5 hold. Then function h(·, θ) is bounded from below by an infimum
hinf ∈ R, differentiable and∇h is L-Lipschitz, i.e., ∥∇h(ω, θ)−∇h(ω, θ′)∥ ≤ L∥θ − θ′∥, ∀ ω, θ, θ′.
Lemma G.2 (µ-PL). If ∇h(ω, θ) ̸= 0, then we have 1

2∥∇h(ω, θ)∥ ≥ µ(h(ω, θ
∗)− h(ω, θ)) ≥ 0,∀ θ, ω.

• [Lemma 3] Given Critic parameter ω in the objective function, it can be seen that ∥∇h(ω, θ) − ∇h(ω, θ′)∥ ≤
Qmax∥∇πθ − ∇πθ′∥. Since value function is bounded (e.g., Qmax) and the score function ∇πθ is Lψ-smooth (ref.
Assumption 6), the constant in Assumption 4 can be easily determined by L = QmaxLψ .

• [Lemma 4] Since the objective function is finite, let hmax = maxθ ̸=θ∗ h(θ, ω), h
∗
max = maxθ=θ∗ h(θ, ω),. In the case

when the gradient is non-zero, let gmin = minθ ̸=θ∗ ∇h, then we can determine µ = gmin

h∗
max−hmax

≥ 0.
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H. Proof of Proposition 3.6
Observe that the Actor updates use the biased stochastic gradient methods (SGD). For simplicity, we adopt the following
notations to study the Actor update:

θk+1 = θk + α(∇h(ω, θk) + b(t) + β(t)). (21)

where b(t) = E[Ck,t] is the bias, α is the step size, and

β = fk,t + Ck,t −E[Ck,t]−E[fk,t]

is the zero-mean noise. Note that the objective function h(ω, θk) is a function of θ. Denote the optimal value (in this
iteration of the Actor update) by h(ω, θ∗).

We prove the following lemma on the modified version of the descent lemma for smooth function (cf. (Ajalloeian & Stich,
2020; Nesterov, 2003)).

Lemma H.1. Suppose Assumption G.1 and G.2 hold. Then, for any stepsize α ≤ 1
(Mn+1)L , the following inequality holds:

E[h(ω, θk+1)− h(ω, θk)|θk] ≤
α

2
ζ2 +

α2L

2
σ2 − α

2
∥∇h(ω, θk)∥2.

Observe that under the PL-condition (Assumption G.2), we have the following recursion:

E[h(ω, θk+1)− h(ω, θ∗)|θk] ≤ (1− αµ)E[h(ω, θk)− h(ω, θ∗)] +
α

2
ζ2p +

α2L

2
σ2, (22)

where ζp = cψϵp + 2Cψ
rmax

1−γ is defined in Lemma F.1 and depends on p.

By applying Eqn. (22) recursively, we obtain the desired results in Proposition 3.6.

Eθ[∥h(ω, θ∗t )− h(ω, θt)∥|θt−1] ≤ (1− αµ)Na(h(ω, θ∗t )− h(ω, θt−1)) +
ζ2p + 2αLσ2

2µ
,

I. Proof of Proposition 4.1
We first prove the following lemma on the relation between Actor parameter θ and the objective function h(ω, θ).

Lemma I.1. There exist a contant Lh > 0 and an open ball Sϵ(θ∗t ) such that for any θt ∈ Bϵ(θ∗t ) the following holds for
any t > 0.

E[∥πθt − π∗∥TV] ≤ LhE[h(ω, θ∗t )− h(ω, θt)].

Proof. By Taylor’s expansion, we have

h(ω, θ∗) = h(ω, θt) +∇h(ω, θt)(θ∗t − θt) + o(∥θ∗t − θt∥).

Since h(ω, ·) satisfies Polyak-Lojasiewicz Condition, it follows that

∥∇h(ω, θ)∥ ≥ 2µ(h(ω, θ∗)− h(ω, θ)) := Lg for all θ.

Note that Lg > 0 when θ ̸= θ∗. Then we have that

h(ω, θ∗t )− h(ω, θt) =|∇h(ω, θt)(θ∗ − θt) + o(∥θ∗ − θt∥)|
≥|∇h(ω, θt)(θ∗t − θt)| − |o(∥θ∗ − θt∥)|
≥Lg∥θ∗t − θt∥ − Lo∥θ∗t − θt∥
=(Lg − Lo)∥θ∗t − θt∥,

24



Warm-Start Actor-Critic: From Approximation Error to Sub-optimality Gap

where the last inequality uses the fact that there exists ϵ such that when ∥θt − θ∗t ∥ ≤ ϵ,

|o(∥θ∗t − θt∥)| ≤ Lo∥θ∗t − θt∥, Lo < Lg.

Taking expectation over both sides gives

E[h(ω, θ∗t )− h(ω, θt)] =(Lg − Lo)E[∥θ∗t − θt∥]
≥(Lg − Lo)∥E[θ∗t − θt]∥.

Then we conclude that the parameter of interest Lh,

Lh =
Cπ

Lg − Lo
> 0.

where Cπ is defined in Assumption 3.5.

We are ready to present the proof of Proposition 4.1. Based on the definition of EĴ,t and ET̂ ,t, we derive the upper bound for
each term respectively.

EĴ,t =(I − γP π̂t+1
)−1 − (I − γP π̃t+1

)−1

=(I − γP π̃t+1
)−1

(
γP π̃t+1

− γP π̂t+1

)
(I − γP π̂t+1

)−1.

Observe that value function v is smooth and upper bounded. We denote the smoothness parameter by Lv , the upper bound
by ∥v∥ ≤ V max, and the smoothness of the reward function by Lr.

By taking the norm of both sides and applying Assumption 3.3, 3.5 and 4.2, we obtain

∥EĴ,t∥ ≤M
2LJLv∥π̃t+1 − π̂t+1∥TV.

Further, observe that

ET̂ ,t = rπ̂t+1
+ γP π̂t+1

vπ̂t − (rπ̃t+1
+ γP π̃t+1

vπ̂t),

= rπ̂t+1 − rπ̃t+1
+ γ(P π̂t+1 − P π̃t+1

)vπ̂t .

By taking the norm of both sides and applying Assumption 4.2, we obtain

∥ET̂ ,t∥ = ∥rπ̂t+1
− rπ̃t+1

∥+ ∥γ(P π̂t+1
− P π̃t+1

)vπ̂t∥
≤(Lr + γV max)∥π̃t+1 − π̂t+1∥TV

:=Lmax
T .

Recall the definition of Et is given as

Et =−
(
EĴ,t(v

π̂t − T (vπ̂t)) + J−1
v̂t
ET̂ ,t + ET̂ ,tEĴ,t

)
.

Taking the norm and expectation on both sides yields that

∥E[Et]∥ ≤ E[∥Et∥] =E
[
∥EĴ,t(v

π̂t − T (vπ̂t)) + J−1
v̂t
ET̂ ,t + ET̂ ,tEĴ,t∥

]
≤LEE[∥π̃t+1 − π̂t+1∥TV],

where LE = (2V maxK +Lmax
T )M2LvLJ +M(Lr + γV max) > 0 is a constant. Since π̃t+1 = π∗

t+1 is the greedy solution,
we thereby complete the proof of Proposition 4.1.
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J. Proof of Corollary 4.4
Based on the update rule of the value function, we have

v∗ − vπ̂t+1 =J−1
v̂t

J v̂t
(v∗ − vπ̂t) + J−1

v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et

≤J−1
v̂t

J v̂t
(v∗ − vπ̂t)− J−1

v̂t
Jv∗(v∗ − vπ̂t)− Et

≤J−1
v̂t

[J v̂t
− Jv∗ ] (v∗ − vπ̂t) + Et,

which implies that

Eπ̂t+1
[v∗ − vπ̂t+1 |vπ̂t ] ≤ Eπ̂t+1

[J−1
v̂t

] [J v̂t
− Jv∗ ] (v∗ − vπ̂t) + B(t).

Then, taking expectation over π̂t on both sides gives us,

Eπ̂t+1,π̂t
[v∗ − vπ̂t+1 |vπ̂t ] ≤ Eπ̂t+1,π̂t

[J−1
v̂t

[J v̂t
− Jv∗ ]]Eπ̂t

[(v∗ − vπ̂t)] + B(t) (23)

Let Jt := J−1
v̂t

[J v̂t
− Jv∗ ]. It follows from Assumption 4.2 that

∥Jt∥ ≤MLJ∥vπ̂t − v∗∥q := L∥vπ̂t − v∗∥q.

where L =MLJ and LJ is defined in Assumption 4.2.

Meanwhile, we have,

∥E[Jt]∥ ≤E[∥Jt∥]
≤LE[∥vπ̂t − v∗∥q]
≤L∥E[vπ̂t − v∗]∥q,

where the last inequality follows Jensen’s inequality.

Then, taking norm on both sides of the inequality 23 gives

∥Eπ̂t+1,π̂t
[v∗ − vπ̂t+1 |vπ̂t ]∥ ≤∥Eπ̂t+1,π̂t

[J−1
v̂t

[J v̂t
− Jv∗ ]]Eπ̂t

[(v∗ − vπ̂t)] + B(t)∥
≤∥Eπ̂t+1,π̂t

[J−1
v̂t

[J v̂t
− Jv∗ ]]∥∥Eπ̂t

[(v∗ − vπ̂t)]∥+ ∥B(t)∥
=∥Eπ̂t+1,π̂t [Jt]∥∥Eπ̂t [(v

∗ − vπ̂t)]∥+ ∥B(t)∥
≤L∥Eπ̂t [(v

∗ − vπ̂t)]∥1+q + ∥B(t)∥

Let at = ∥Eπ̂t
[(v∗ − vπ̂t)]∥ and bt = ∥B(t)∥. Then we have the following recursive inequality,

at+1 ≤ La1+qt + bt, t = 0, 1, · · · (24)

Staring from t = 0, we have,

a1 ≤ La1+q0 + b0

Let b0 = u0a
1+q
0 , where u0 = LbHt

a1+q
0

, then we have,

a1 ≤ (L+ u0)a
1+q
0

Similarly, let t = 1 and b1 = u1a
(1+q)2

0 with u0 = LbHt

a
(1+q)2

0

. Then we have,

a2 ≤ (L(L+ u0)
1+q + u1)a

(1+q)2

0
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By applying Eqn. (24) recursively, we conclude that

∥E[v∗ − vπ̂t+1 ]∥ ≤ ∥v∗ − vπ0∥(1+q)
1+t

· (L · · · ((L+ u1)
1+q + u2)

1+q · · ·+ ut),

where ut := LbHt

∥v∗−vπ0∥(1+q)(1+t) and LbHt is the upper bound of the bias as in

K. Proof of Theorem 4.5
Following the value function update rule, we have

vπ̂t+1 = vπ̂t −
(
J−1

v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et

)
= vπ̂t − (L(t) + Et)
:= vπ̂t − L̂(t).

Then, the difference between vπ̂t+1 and v∗ is given by

v∗ − vπ̂t+1 =v∗ − vπ̂t + J−1
v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et. (25)

Observe the following result holds for any π̂t,

(vπ̂t − T (vπ̂t))− (v∗ − T (v∗))︸ ︷︷ ︸
=0

≥ J2
v̂t
(vπ̂t − v∗). (26)

Recall our decomposition of the value function update is given as

L̂(t) = L(t) + L̂(t)−E[L̂(t)]︸ ︷︷ ︸
Martingale Difference Noise: N (t)

+E[L̂(t)]− L(t)︸ ︷︷ ︸
Bias: B(t)

.

Plugging Eqn. (26) into Eqn. (25), we obtain

v∗ − vπ̂t+1 =v∗ − vπ̂t +
(
J−1

v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et

)
≥ (I − Jvπ̂t )) (v

∗ − vπ̂t) + B(t) +N (t)

=γP π̃t+1
(v∗ − vπ̂t) + B(t) +N (t).

Taking expectation on both sides yields that

E[v∗ − vπ̂t+1 |vπ̂t ] ≥γP π̃t+1
(v∗ − vπ̂t) + B(t).

Applying the above inequality recursively gives that

E
[
v∗ − vπ̂t+1

]
≥γt+1E

[(
t∏
i=0

P π̃t+1−i

)]
(v∗ − vπ0)

+

t∑
i=1

γiE

i−1∏
j=0

P π̃t+1−j

 (B(t− i)) + B(t)

:=γt+1P̄ t+1(v
∗ − vπ0) +

t∑
i=1

γiP̄ iB(t− i) + B(t), (27)

with P̄ t+1 = E
[(∏t

i=0 P π̃t+1−i

)]
. Taking norm on both sides of Eqn. (27) yields the desired results.
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L. Experiments
Empirical Results. We consider experiments over the Gridworld benchmark task. In particular, we consider the following
sizes of the grid to represent different problem complexity, i.e., 10× 10, 15× 15 and 20× 20. The goal of the agent is to
find a way (policy) to travel from a specified start location, e.g., the red square in Fig. 3, to an assigned target location, e.g.,
the red hexagram in Fig. 3, such that the (discounted) accumulative reward along the way is maximized. Specifically, the
action space contains 4 discrete actions, namely, up, down, left, right, which are represented as 1,2,3,4 in the algorithm,
respectively. The reward in the goal state is defined as 10 and in the bad state , e.g., the black cube in Fig. 3, is -6. The
rest of the states result in the reward −1. The discounting factor is set as γ = 0.9. We consider the grid with 10 rows
and 10 columns such that the state space has 100 states. The transition properties of the environment is as follows: the
agent will transfer to next state following the chosen action with probability 0.7; the agent will go left of the desired action
with probability 0.15 and go right with with probability 0.15. For each experiment, the shaded area represents a standard
deviation of the average evaluation over 5 training seeds.

Specifically, we consider the following A-C algorithm to solve the Gridworld benchmark task,

Critic Update: The Critic updates its value by applying the Bellman evaluation operator (Tπ) for m-times (m ≥ 1), i.e.,
given policy π, at the t-th step A-C update,

v(t+ 1) = (Tπ)m(v(t)). (28)

Actor Update: The Actor updates the policy by a greedy step to maximize the learnt v value, i.e.,

π′ = argmax
π

Tπ(v(t+ 1)). (29)

Impact of the Warm-Start Policy. We first consider the impact of the Warm-Start policy in the ideal setting, where both the
Critic update and Actor update is nearly accurate as in ADP. In this case, we let m be large enough, e.g., m = 1000, in the
Critic update Eqn. (28). As observed in Fig. 4, a ‘good’ Warm-Start policy can efficiently accelerate the learning process,
e.g., it only takes two iterations to convergence with a Warm-Start policy. Meanwhile, in all three cases, the performance
gap ∥v(t)− v∗∥ decays over time which reflects our discovery in Corollary 4.4. Specifically, when the Warm-Start policy
is not ‘good’ enough (or even no Warm-Start), the A-C algorithm can still be able to improve the learning performance
overtime (see e.g., the first term on the right side of the upper bound in Corollary 4.4).

Impact of the Approximation Error in the Critic Update. We evaluate the impact of the approximation error in the
Critic update on the convergence behavior by two approaches. (1) First, we study the Critic update with finite time Bellman
evaluation, e.g., m = 500, 50, 20, 5. As shown in Fig. 5, the inaccurate Critic update impacts the convergence behavior as
expected. The case when m = 5 shows that the finite time Bellman evaluation may contribute to the slower convergence. (2)
Next, we consider the general case when there is approximation error in the Critic update. In particular, we add the uniform
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(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 3. Gridworld benchmark with different sizes. The colors specify the ‘goodness’ measure of the state, i.e., the darker color cubes are
with lower v(s) value and the agent should avoid those areas. The horizontal lines and vertical lines in each cube point to the direction the
agent should take, i.e., policy at every state. Fig. 3(a), Fig. 3(b) and Fig. 3(c) show the learning results after 50 iterations of A-C update.
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(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 4. The impact of the Warm-Start Policy when no approximation errors in Actor update and Critic update. The convergence behavior
given different initial policy, i.e., a random policy (no Warm-Start), a Warm-Start policy obtained by running the A-C algorithm for one
iteration and two iterations. The x-axis represents the A-C update step and y-axis is the value of the norm ∥v(t)− v∗∥.

(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 5. Learning performance vs. rollout length.

(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 6. Illustration of the lower bound in Theorem 3.4.

noise e(t) in the value function with different bias, e.g.,E[e(t)] = 0, 0.5, 1,−1. Meanwhile, we also consider the case when
the bias can be either +0.5 or −0.5 in the learning process, e.g., E[e(t)] = 0.5 with probability 0.5 and E[e(t)] = −0.5
with probability 0.5. The resulting convergence behavior is presented in Fig. 6. Notably, it can be clearly seen that both the
positive and negative bias may result in an error floor and ‘prevent’ the algorithm from converging to the optimal (e.g., the
last two terms of the lower bound in Theorem 4.5). The experiment results in Fig. 6 corroborate our theoretical findings in
Proposition 3.4, Corollary 4.4 and Theorem 4.5.

Impact of the Approximation Error in the Actor Update. We investigate the learning performance of the A-C algorithm
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(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 7. Convergence behavior vs. Approximation Error in the Actor Update.

under inaccurate Actor update. In particular, we add the perturbation on the learnt policy in Eqn. (29) as follows,

Policy(s) =

{
Policy(s), p,

randi([1, 4]), 1− p.

where Policy(s) denotes the action should the agent take at the current state s following the learnt policy and randi([1, 4]) is
a random function to choose the action 1, 2, 3, 4 uniformly. Thus, with probability p, the agent will choose the action follow
the current policy while with probability 1− p, the agent will choose a random action. By setting different p, we show in
Fig. 7 that the approximation error in the Actor update may significantly degrade the learning performance. Meanwhile, Fig.
7 also indicates that decreasing bias can be helpful to improve the learning performance (see the red and green lines in Fig.
7). This observation also verifies our results in Theorem 4.5.

M. Off-policy A-C Algorithem as Newton’s Method with Perturbation
We note that the actor and critic updates in Eqn. (9) and Eqn. (8) are a general template that admits both off- and on-policy
method. More specifically, denote the target policy by πtar and the behavior policy by πbhv. When the off-policy menthod is
used, then the updates in Eqn. (9) and Eqn. (8) are given by

ωt+1 ← argminωE(s,a)∼ρπbhv

[
Qω,πtart+1

(s, a)− ω⊤ϕ(s, a)
]2
,

πt+1 ← argmax
π

E(s,a)∼ρπbhv

[
Qωt+1,πtar,t(s, a)

]
.

This is in contrast to the updates given below when the on-policy method is used:

ωt+1 ← argminωE(s,a)∼ρπtar

[
Qω,πtart+1

(s, a)− ω⊤ϕ(s, a)
]2
,

πt+1 ← argmax
π

E(s,a)∼ρπtar

[
Qωt+1,πtar,t(s, a)

]
.

• One major challenge of the off-policy analysis lies in the fact that the behavior policy can be arbitrary (Sutton et al.,
1999)(Sutton & Barto, 2018) and hence it is impossible to develop a unifying framework. For example, the behavior
policy can be obtained by human demonstration (a similar idea is used in an early version of AlphaGo), deriving
from the target policy as in Q-learning/DQN or from a previous behavior policy. Meanwhile, the key drawback of
off-policy method is that it does not stably interact with the function approximation and is generally of greater variance
and slower convergence rate (Sutton & Barto, 2018). In this regard, modern off-policy deep RL requires techniques
such as growing batch learning, importance sampling or ensemble method to stabilize the algorithm. Thus, for ease of
exposition, we only include the on-policy analysis in our work.
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• Our framework and theoretical results are able to be applied to off-policy setting with the extra assumption on the
behavior policy. In particular, we assume the behavior policy is in the neighborhood of the target policy, i.e., in each
Actor and Critic update step,

∥Ebhv-tar,t∥ := ∥πtar, t− πbhv,t∥ ≤ Cbt,

where Ctb ≥ 0 is a constant. In this way, we can write the A-C update in the off-policy setting as a Newton Method
with perturbation, i.e.,

vπtar,t+1 = vπtar,t–(J
−1
vπtar,t

(vπtar,t − T (vπtar,t))− Et),

where Et is the perturbation which captures the approximation error from Actor update, Critic update and the behavior
policy. Explicitly, we have the perturbation with the following form,

Et = Ev,t + EĴ,t(v
π̂t+1 − (rπ̃t+1

+ γP π̃t+1
vπ̂t+1))− J−1

v̂t
(Er,t + Ebhv−tar,t + γ(EP,t + Ebhv−tar,t)vπ̂t).

Thus, the off-policy analysis is similar to the on-policy case but with the ‘error’ induced by the behavior policy.
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