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ABSTRACT

Convex quadratic programming (QP) is an important sub-field of mathematical
optimization. The alternating direction method of multipliers (ADMM) is a suc-
cessful method to solve QP. Even though ADMM shows promising results in solv-
ing various types of QP, its convergence speed is known to be highly dependent
on the step-size parameter ρ. Due to the absence of a general rule for setting ρ,
it is often tuned manually or heuristically. In this paper, we propose CA-ADMM
(Context-aware Adaptive ADMM)) which learns to adaptively adjust ρ to acceler-
ate ADMM. CA-ADMM extracts the spatio-temporal context, which captures the
dependency of the primal and dual variables of QP and their temporal evolution
during the ADMM iterations. CA-ADMM chooses ρ based on the extracted con-
text. Through extensive numerical experiments, we validated that CA-ADMM
effectively generalizes to unseen QP problems with different sizes and classes
(i.e., having different QP parameter structures). Furthermore, we verified that
CA-ADMM could dynamically adjust ρ considering the stage of the optimization
process to accelerate the convergence speed further.

1 INTRODUCTION

Among the optimization classes, quadratic program (QP) is widely used due to its mathematical
tractability, e.g. convexity, in various fields such as portfolio optimization (Boyd et al., 2017;
Cornuéjols et al., 2018; Boyd et al., 2014; Markowitz, 1952), machine learning (Kecman et al.,
2001; Sha et al., 2002), control, (Buijs et al., 2002; Krupa et al., 2022; Bartlett et al., 2002), and
communication applications (Luo & Yu, 2006; Hons, 2001). As the necessity to solve large opti-
mization problems increases, it is becoming increasingly important to ensure the scalability of QP
for achieving the solution of the large-sized problem accurately and quickly.

Among solution methods to QP, first-order methods (Frank & Wolfe, 1956) owe their popularity due
to their superiority in efficiency over other solution methods, for example active set (Wolfe, 1959)
and interior points methods (Nesterov & Nemirovskii, 1994). The alternating direction method of
multipliers (ADMM) (Gabay & Mercier, 1976; Mathematique et al., 2004) is commonly used for
returning high solution quality with relatively small computational expense (Stellato et al., 2020b).
Even though ADMM shows satisfactory results in various applications, its convergence speed is
highly dependent on both parameters of QP and user-given step-size ρ. In an attempt to resolve
these issues, numerous studies have proposed heuristic (Boyd et al., 2011; He et al., 2000; Stellato
et al., 2020a) or theory-driven (Ghadimi et al., 2014)) methods for deciding ρ. But a strategy for
selecting the best performing ρ still needs to be found (Stellato et al., 2020b). Usually ρ is tuned in
a case-dependent manner (Boyd et al., 2011; Stellato et al., 2020a; Ghadimi et al., 2014).

Instead of relying on hand-tuning ρ, a recent study (Ichnowski et al., 2021) utilizes reinforcement
learning (RL) to learn a policy that adaptively adjusts ρ to accelerate the convergence of ADMM.
They model the iterative procedure of ADMM as the Markov decision process (MDP) and apply the
generic RL method to train the policy that maps the current ADMM solution states to a scalar value
of ρ. This approach shows relative effectiveness over the heuristic method (e.g., OSQP (Stellato
et al., 2020a)), but it has several limitations. It uses a scalar value of ρ that cannot adjust ρ differently
depending on individual constraints. And, it only considers the current state without its history to
determine ρ, and therefor cannot capture the non-stationary aspects of ADMM iterations. This
method inspired us to model the iteration of ADMM as a non-stationary networked system. We
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developed a more flexible and effective policy for adjusting ρ for all constraints simultaneously and
considering the evolution of ADMM states.

In this study, we propose Context-aware Adaptive ADMM (CA-ADMM), an RL-based adaptive
ADMM algorithm, to increase the convergence speed of ADMM. To overcome the mentioned limi-
tations of other approaches, we model the iterative solution-finding process of ADMM as the MDP
whose context is determined by QP structure (or parameters). We then utilize a graph recurrent
neural network (GRNN) to extract (1) the relationship among the primal and dual variables of the
QP problem, i.e., its spatial context and (2) the temporal evolutions of the primal and dual variables,
i.e., its temporal context. The policy network then utilizes the extracted spatio-temporal context to
adjust ρ.

From the extensive numerical experiments, we verified that CA-ADMM adaptively adjusts ρ in
consideration of QP structures and the iterative stage of the ADMM to accelerate the convergence
speed further. We evaluated CA-ADMM in various QP benchmark datasets and found it to be
significantly more efficient than the heuristic and learning-based baselines in number of iterations
until convergence. CA-ADMM shows remarkable generalization to the change of problem sizes
and, more importantly, benchmark datasets. Through the ablation studies, we also confirmed that
both spatial and temporal context extraction schemes are crucial to learning a generalizable ρ policy.
The contributions of the proposed method are summarized below:

• Spatial relationships: We propose a heterogeneous graph representation of QP and ADMM
state that captures spatial context and verifies its effect on the generalization of the learned policy.

• Temporal relationships: We propose to use a temporal context extraction scheme that captures
the relationship of ADMM states over the iteration and verifies its effect on the generalization of
the learned policy.

• Performance/Generalization: CA-ADMM outperforms state-of-the-art heuristics (i.e., OSQP)
and learning-based baselines on the training QP problems and, more importantly, out-of-training
QP problems, which include large size problems from a variety of domains.

2 RELATED WORKS

Methods for selecting ρ of ADMM. In the ADMM algorithm, step-size ρ plays a vital role in
determining the convergence speed and accuracy. For some special cases of QP, there is a method to
compute optimal ρ (Ghadimi et al., 2014). However, this method requires linear independence of the
constraints, e.g., nullity of A is nonzero, which is difficult to apply in general QP problems. Thus,
various heuristics have been proposed to choose ρ (Boyd et al., 2011; He et al., 2000; Stellato et al.,
2020a). Typically, the adaptive methods that utilize state-dependent step-size ρt show a relatively
faster convergence speed than non-adaptive methods. He et al. (2000); Boyd et al. (2011) suggest
a rule for adjusting ρt depending on the ratio of residuals. OSQP (Stellato et al., 2020a) extends
the heuristic rule by adjusting ρ with the values of the primal and dual optimization variables. Even
though OSQP shows improved performance, designing such adaptive rules requires tremendous
effort. Furthermore, the designed rule for a specific QP problem class is hard to generalize to
different QP classes having different sizes, objectives and constraints. Recently, Ichnowski et al.
(2021) employed RL to learn a policy for adaptively adjusting ρ depending on the states of ADMM
iterations. This method outperforms other baselines, showing the potential that an effective rule for
adjusting ρ can be learned without problem-specific knowledge using data. However, this method
still does not sufficiently reflect the structural characteristics of the QP and the temporal evolution of
ADMM iterations. Both limitations make capturing the proper problem context challenging, limiting
its generalization capability to unseen problems of different sizes and with alternate objectives and
constraints.

Graph neural network for optimization problems. An optimization problem comprises objec-
tive function, decision variables, and constraints. When the optimization variable is a vector, there
is typically interaction among components in the decision vector with respect to an objective or
constraints. Thus, to capture such interactions, many studies have proposed to use graph represen-
tation to model such interactions in optimization problems. Gasse et al. (2019) expresses mixed
integer programming (MIP) using a bipartite graph consisting of two node types, decision variable
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nodes, and constraint nodes. They express the relationships among variables and the relationships
between decision variables and constraints using different kinds of edges whose edge values are
associated with the optimization coefficients. Ding et al. (2019) extends the bipartite graph with a
new node type, ’objective’. The objective node represents the linear objective term and is connected
to the variable node, with the edge features and coefficient value of the variable component in the
objective term. They used the tripartite graph as an input of GCN to predict the solution of MIP.

ML accelerated scientific computing. ML models are employed to predict the results of complex
computations, e.g., the solution of ODE and PDE, and the solution of optimization problems, and
trained by supervised learning. As these methods tend to be sample inefficient, other approaches
learn operators that expedite computation speeds for ODE (Poli et al., 2020; Berto et al., 2021), fixed
point iterations (Bai et al., 2021; Park et al., 2021b), and matrix decomposition (Donon et al., 2020).
Poli et al. (2020) uses ML to predict the residuals between the accurate and inaccurate ODE solvers
and use the predicted residual to expedite ODE solving. Bai et al. (2021); Park et al. (2021b) trains
a network to learn alternate fixed point iterators, trained to give the same solution while requiring
less iterations to converge. However, the training objective all the listed methods is minimizing
the network prediction with the ground truth solution, meaning that those methods are at risk to find
invalid solutions. CA-ADMM learns to provide the proper ρ that minimize ADMM iterations, rather
than directly predicting the solution of QP. This approach, i.e., choose ρ for ADMM, still guarantees
that the found solution remains equal to the original one.

3 BACKGROUND

Quadratic programming (QP) A quadratic program (QP) associated with N variables and M
constraints is an optimization problem having the form of the following:

min
x

1

2
x⊤Px+ q⊤x

subject to l ≤ Ax ≤ u,
(1)

where x ∈ RN is the decision variable, P ∈ SN+ is the positive semi-definite cost matrix, q ∈ RN is
the linear cost term, A ∈ RM×N is a M ×N matrix that describes the constraints, and l and u are
their lower and upper bounds. QP generally has no closed-form solution except some special cases,
for example A = 0. Thus, QP is generally solved via some iterative methods.

First-order QP solver Out of the iterative methods to solve QP, the alternating direction method
of multipliers (ADMM) has attracted considerable interest due to its simplicity and suitability for
various large-scale problems including statistics, machine learning, and control applications. (Boyd
et al., 2011). ADMM solves a given QP(P , q, l,A,u) through the following iterative scheme. At
each step t, ADMM solves the following system of equations:[

P + σI AT

A diag(ρ)−1

] [
xt+1

νt+1

]
=

[
σxt − q

zt − diag(ρ)−1yt

]
, (2)

where σ > 0 is the regularization parameter that assures the unique solution of the linear system,
ρ ∈ RM is the step-size parameter, and diag(ρ) ∈ RM×M is a diagonal matrix with elements ρ.
By solving Eq. (2), ADMM finds xt+1 and νt+1. Then, it updates yt and zt with the following
equations:

z̃t+1 ← zt + diag(ρ)−1(νt+1 − yt) (3)

zt+1 ← Π(z̃t + diag(ρ)−1yt) (4)
yt+1 ← xt + diag(ρ)(z̃t+1 − zt+1), (5)

where Π is the projection onto the hyper box [l,u]. ADMM proceeds the iteration until the primal
rprimal
t = Axt − zt ∈ RM and dual residuals rdual

t = Pxt + q +A⊤yt ∈ RN are sufficiently small.
For instance, the termination criteria are as follows:

||rprimal
t ||∞ ≤ ϵprimal,||rdual

t ||∞ ≤ ϵdual, (6)

where ϵprimal and ϵdual are sufficiently small positive numbers.
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Figure 1: An overview of CA-ADMM. CA-ADMM uses the spatio-temporal context, which is
extracted by GRNN from the ADMM state observations, to compute ρ for ADMM algorithm.

4 METHOD

In this section, we present Context-aware Adaptive ADMM (CA-ADMM) that automatically ad-
justs ρ parameters considering the spatial and temporal contexts of the ADMM to accelerate the
convergence of ADMM. We first introduce the contextual MDP formulation of ADMM iterations
for solving QP problems and discuss two mechanisms devised to extract the spatial and temporal
context from the ADMM iterations.

4.1 CONTEXTUAL MDP FORMULATION

As shown in Eqs. (2) to (5), ADMM solves QP by iteratively updating the intermediate variables
xt,yt, and zt. Also, the updating rule is parameterized with QP variables P , q, l,A,u.

We aim to learn a QP solver that can solve general QP instances whose structures are different from
QPs used for training the solver. As shown in Eqs. (2) to (5), ADMM solves QP by iteratively up-
dating the intermediate variables xt, yt, and zt. Also, the updating rule is parameterized with QP
variables P , q, l,A,u. In this perspective, we can consider the iteration of ADMM for each QP as
a different MDP whose dynamics can be characterized by the structure of QP and the ADMM’s up-
dating rule. Based on this perspective, our objective, learning a QP solver that can solve general QP
instances, is equivalent to learning an adaptive policy (ADMM operator) that can solve a contextual
MDP (QP instance with different parameters).

Assuming we have a QP(P , q,A, l,u), where P , q,A, l,u are the parameters of the QP problem,
and ADMM(ϕ), where ϕ is the parameters of the ADMM algorithm. In our study, ϕ is ρ, but it
can be any configurable parameter that affects the solution updating procedure. We then define
the contextual MDP M =

(
X,U, T c

ρ , R, γ), where X = {(xt, yt, zt)}t=1,2,... is the set of states,
U = {ρt}t=1,2,... is the set of actions, T c

ρ (x, x
′) = P (xt+1 = x′|xt = x, ρt = ρ, c) is the transition

function whose behaviour is contextualized with the context c = {P , q,A, l,u, ϕ}, R is the reward
function that returns 0 when xt is the terminal state (i.e., the QP problem is solved) and -1 otherwise,
and γ ∈ [0, 1) is a discount factor. We set an MDP transition made at every 10 ADMM steps to
balance computational cost and acceleration performance. That is, we observe MDP states at every
10 ADMM steps and change ρt; thus, during the ten steps, the same actions ρt are used for ADMM.
As shown in the definition of T c

ρ , the context c alters the solution updating procedure of ADMM (i.e.,
T c
ρ ̸= T c′

ρ to the given state x). Therefore, it is crucial to effectively process the context information
c in deriving the policy πθ(xt) to accelerate the ADMM iteration.

One possible approach to accommodate c is manually designing a feature that serves as a (minimal)
sufficient statistic that separates T c

ρ from the other T c′

ρ . However, designing such a feature can
involve enormous efforts; thus, it derogates the applicability of learned solvers to the new solver
classes. Alternatively, we propose to learn a context encoder that extracts the more useful context
information from not only the structure of a target QP but also the solution updating history of
the ADMM so that we can use context-dependent adaptive policy for adjusting ρ. To successfully
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Figure 2: Heterograph representation of QP.

extract the context information from the states, we consider the relationships among the primal and
dual variables (i.e., the spatial relationships) and the evolution of primal/dual variables with ADMM
iteration (i.e., temporal relationship). To consider such spatio-temporal correlations, we propose an
encoder network that is parameterized via a GNN followed by RNN. Fig. 1 visualizes the overall
network architecture.

4.2 EXTRACTING SPATIAL CONTEXT INFORMATION VIA HETEROGENEOUS GRAPH NEURAL
NETWORK

Heterogeneous graph representation of QP. The primal xt and dual yt variables of QP are re-
lated via the QP parameters (P , q,A, l,u). As shown in Fig. 2, their relationship can be modeled
as a heterogeneous graph where the nodes represent the primal and dual variables, and the edges
represent the relationship among these variables. As the roles of primal and dual variables in solv-
ing QP are distinctive, it necessitates the graph representation that reflects the different variable type
information. Regarding that, we represent the relationships of the variables at t-th MDP step with
a directed heterogeneous graph Gt = (Vt,Et). As the graph construction is only associated with
the current t, we omit the step-index t for notational brevity. The node set V consist of the primal
Vprimal and dual node sets Vdual. The n-th primal and m-th dual nodes have node feature sprimal

n and
sdual
m defined as:

sprimal
n = [log10 r

dual
n , log10 ||rdual||∞,1rdual

n <ϵdual︸ ︷︷ ︸
Encoding ADMM state

],
(7)

sdual
m = [log10 r

primal
m , log10 ||rprimal||∞,1rprimal

m <ϵprimal , ym, ρm,min(zm − lm, um − zm)︸ ︷︷ ︸
Encoding ADMM state

1equality,1inequality︸ ︷︷ ︸
Encoding QP problem

],
(8)

where rprimal
m and rdual

n denotes the m-th and n-th element of primal and dual residuals, respectively,
|| · ||∞ denotes the infinity norm, 1rprimal

m <ϵprimal and 1rdual
n <ϵdual are the indicators whether the m-th

primal and n-th dual residual is smaller than ϵprimal and ϵdual, respectively. 1equality and 1inequality are
the indicators whether the m-th constraint is equality and inequality, respectively.

The primal and dual node features are design to capture ADMM state information and the QP struc-
ture. However, those node features do not contain information of P , q, or A. We encode such QP
problem structure in the edges. The edge set E consist of

• The primal-to-primal edge set Ep2p is defined as {ep2p
ij |Pij ̸= 0∀(i, j) ∈ [[1, N ]]× [[1, N ]]} where

[[1, N ]] = {1, 2, . . . , N}. i.e., the edge from the i th primal node to j th primal node exists when
the corresponding P is not zero. The edge ep2p

ij has the feature sp2p
ij as [Pij , qi].

• The primal-to-dual edge set Ep2d is defined as {eij |Aji ̸= 0 ∀(i, j) ∈ [[1, N ]] × [[1,M ]]}. The
edge ep2d

ij has the feature sp2d
ij as [Aji].
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• The dual-to-primal edge set Ed2p is defined as {eij |Aij ̸= 0 ∀(i, j) ∈ [[1,M ]] × [[1, N ]]}. The
edge ed2p

ij has the feature sd2p
ij as [Aij ].

Graph preprocessing for unique QP representation. QP problems have the same optimal deci-
sion variables for scale transformation of the objective function and constraints. However, such
transformations alter the QP graph representation. To make graph representation invariant to
the scale transform, we preprocess QP problems by dividing the elements of P , q,a,A,u with
problem-dependent constants. The details of the preprocessing steps are given in Appendix A.

Grpah embedding with Hetero GNN. The heterogeneous graph G models the various type of
information among the primal and dual variables. To take into account such type information for
the node and edge embedding, we propose heterogeneous graph attention (HGA), a variant of type-
aware graph attention (Park et al., 2021a), to embed G. HGA employs separate node and edge en-
coders for each node and edge type. For each edge type, it computes edge embeddings, applies the
attention mechanism to compute the weight factors, and then aggregates the resulting edge embed-
dings via weighted summation. Then, HGA sums the different-typed aggregated edge embeddings
to form a type-independent edge embedding. Lastly, HGA updates node embeddings by using the
type-independent edge embeddings as an input to node encoders. We provide the details of HGA in
Appendix B.

4.3 EXTRACTING TEMPORAL CONTEXT VIA RNN

The previous section discusses extracting context by considering the spatial correlation among the
variables within the MDP step. We then discuss extracting the temporal correlations. As verified
from numerous optimization literature, deciding ρ based on the multi-stage information (e.g., mo-
mentum methods) helps increase the stability and solution quality of solvers. Inspired by that, we
consider the time evolution of the ADMM states to extract temporal context. To accomplish that we
use an RNN to extract the temporal context from the ADMM state observations. At the tth MDP
step, we consider l historical state observations to extract the temporal context. Specifically, we first
apply HGA to Gt−l, . . . ,Gt−1 and then apply GRU (Chung et al., 2014) as follows:

G′t−l+δ = HGA(Gt−l+δ) for δ = 0, 1, 2, · · · , l − 1 (9)

Ht−l+δ = GRU(V′
t−l+δ,Ht−l+δ−1) for δ = 1, 2, · · · , l − 1 (10)

where G′t−l+δ is updated graph at t − l + δ, V′
t−l+δ is the set of updated nodes of G′t−l+δ , and

Ht−l+δ are the hidden embeddings. We define the node-wise context Ct at time t as the last hidden
embeddingHt−1.

4.4 ADJUSTING ρt USING EXTRACTED CONTEXT

We parameterize the policy πθ(Gt, Ct) via the HGA followed by an MLP. Since action ρt is not
defined at t, we exclude ρt from the node features of Gt and instead node-wise concatenate Ct
to the node features. For the action-value network Qϕ(Gt, ρt, Ct), we use Gt, ρt, and Ct as in-
puts. Qϕ(Gt, ρt, Ct) has a similar network architecture as πθ(Gt, Ct). We train πθ(Gt, Ct) and
Qϕ(Gt, ρt, Ct) on the QP problems of size 10∼15 (i.e., N ∈ [10, 15]) with DDPG (Lillicrap et al.,
2015) algorithm. Appendix C details the used network architecture and training procedure further.

Comparison to RLQP. Our closest baseline RLQP (Ichnowski et al., 2021) is also trained using RL.
At step t, it utilizes the state x = ({sdual

m }m=1,...,M ), with

sdual
m = [log10 ||rprimal||∞, log10 ||rdual||∞], ym, ρm,

min(zm − lm, um − zm), zm − (Ax)m].
(11)

It then uses an shared MLP πθ(s
dual
n ) to compute ρn. We observe that the state representation and

policy network are insufficient to capture the contextual information for differentiating MDPs. The
state representation does not include information of P and q, and the policy network does not explic-
itly consider the relations among the dual variables. However, as shown in Eq. (2), ADMM iteration
results different (xt, νt) with changes in P , q and A, meaning that T c

ρ also changes. Therefore,
such state representations and network architectures may result in an inability to capture contextual

6



Under review as a conference paper at ICLR 2023

Table 1: In-domain results (in # iterations). Smaller is better (↓). Best in bold. We measure the
average and standard deviation of ADMM iterations for each QP benchmark. All QP problems are
generated to have 10 ≤ N ≤ 15.

Random QP EqQP Porfolio SVM Huber Control Lasso

OSQP 81.12 ± 21.93 25.52 ± 0.73 185.18 ± 28.73 183.79 ± 40.88 54.38 ± 5.37 30.38 ± 24.98 106.17 ± 45.70
RLQP 69.42 ± 27.35 20.27 ± 0.49 28.45 ± 5.52 34.14 ± 3.84 25.16 ± 0.66 26.78 ± 15.84 25.61 ± 0.68

CA-ADMM 27.44 ± 4.86 19.61 ± 0.61 20.12 ± 0.47 25.05 ± 2.30 20.32 ± 0.69 17.52 ± 3.88 19.08 ± 1.01
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Figure 3: QP size generalization results. Smaller is better (↓). We plot the average and standard
deviation of the iterations as the bold lines and error bars, respectively. The gray area ( ) indicates
the training QP sizes.

changes among QP problems. Additionally, using single state observation as the input for πθ may
also hinder the possibility of capturing temporal context.

5 EXPERIMENTS

We evaluate CA-ADMM in various canonical QP problems such as Random QP, EqQP, Porfolio,
SVM, Huber, Control, and Lasso. We use RLQP, another learned ADMM solver (Ichnowski et al.,
2021), and OSQP, a heuristic-based solver (Stellato et al., 2020a), as baselines. Training and testing
problems are generated according to Appendix D.

In-domain results. It is often the case that a similar optimization is repeatedly solved with only
parameter changes. We train the solver using a particular class of QP instances and apply the trained
solver to solve the same class of QP problems but with different parameters. We use the number of
ADMM iterations until it’s convergence as a performance metric for quantifying the solver speed.
Table 1 compares the averages and standard deviations of the ADMM iterations required by different
baseline models in solving the QP benchmark problem sets. As shown in Table 1, CA-ADMM exhibits
2 ∼ 8x acceleration compared to OSQP, the one of the best heuristic method. We also observed that
CA-ADMM consistently outperforms RLQP with a generally smaller standard deviations.

We evaluate the size-transferability and scalability of CA-ADMM by examining whether the models
trained using smaller QP problems still perform well on the large QPs. We trained CA-ADMM using
small-sized Random QP instances having 10 ∼ 15 variables and applied the trained solve to solve
large-scaled Random QP instances having up to 1000 variables. Fig. 3 shows how the number
of ADMM iterations varies with the size of QP. As shown in the figure, CA-ADMM requires the least
iterations for all sizes of test random QP instances despite having been trained on the smallest setting
of 10 ∼ 15. The gap between our method and RLQP becomes larger as the QP size increases. It
is interesting to note that OSQP requires relatively few ADMM iterations when the problem size
becomes larger. It is possibly because the parameters of OSQP are tuned to solve the medium-sized
QPs. We conclude that CA-ADMM learn how to effectively adjust ADMM parameters such that the
method can effectively solve even large-sized QP instances.

Cross-domain results. We hypothesize that our learned QP solvers can transfer to new domains
more easily than other baselines. To test this hypothesis, we train CA-ADMM and RLQP on Random
QP and EqQP datasets, which do not assume specific QP parameter values or constraints. The trained
models are evaluated on different QP domains without additional training, i.e., which is equivalent
to a zero-shot transfer setting. As shown in Table 2, CA-ADMM consistently outperforms RLQP in
absolute ADMM steps and shows less performance degradation when transferring to new domains.
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Table 2: Cross-domain results. zero-shot transfer (Random QP + EqQP) → X, where X ∈
{Random QP, EqQP, Porfolio, SVM, Huber, Control, Lasso}: Smaller is better (↓). Best in bold.
We measure the average and standard deviation of ADMM iterations for each QP benchmark. The
gray colored cell ( ) denotes the training problems. Green colored values are the case where
the transferred model outperforms the in-domain model. All QP problems are generated to have
40 ≤ N +M ≤ 70.

Random QP EqQP Porfolio SVM Huber Control Lasso

OSQP 160.99 ± 92.21 25.52 ± 0.73 185.18 ± 28.73 183.79 ± 40.88 54.38 ± 5.37 30.38 ± 24.98 106.17 ± 45.70

RLQP
(transferred) 65.28 ± 57.75 28.48 ± 0.70 31.80 ± 7.97 37.96 ± 10.16 28.70 ± 0.67 74.60 ± 49.71 29.18 ± 29.18

RLQP
(in-domain) 69.42 ± 27.35 20.27 ± 0.49 28.45 ± 5.52 34.14 ± 3.84 25.16 ± 0.66 26.78 ± 15.84 25.61 ± 0.68

CA-ADMM
(transferred) 28.52 ± 7.13 19.38 ± 0.64 25.38 ± 7.03 31.26 ± 13.44 19.56 ± 0.92 27.16 ± 4.97 23.84 ± 2.10

CA-ADMM
(in-domain) 27.44 ± 4.86 19.61 ± 0.61 20.12 ± 0.47 25.05 ± 2.30 20.32 ± 0.69 17.52 ± 3.88 19.08 ± 1.01

We also observed that for EqQP and Huber CA-ADMM exhibits better performance than in-domain
cases. The experiment results indicate that the context encoder plays a crucial role in transferring to
different problem classes.

Benchmark QP results. From the above results, we confirm that CA-ADMM outperforms the
baseline algorithms in various synthetic datasets. We then evaluate CA-ADMM on the 134 public
QP benchmark instances (Maros & Mészáros, 1999), which have different distributions of generat-
ing QP parameters (i.e., P , q,A, l and u). For these tasks, we trained CA-ADMM and RLQP on
Random QP, EqQP, Portfolio, SVM, Huber, Control and Lasso. As shown in Table A.8,
CA-ADMM exhibits the lowest iterations for 85 instances. These results indicate that CA-ADMM
can generalize to the QP problems that follow completely different generating distributions.

Application to linear programming. Linear programming (LP) is an important class of mathe-
matical optimization. By setting P as the zero matrix, a QP problem becomes an LP problem. To
further understand the generalization capability of CA-ADMM, we apply CA-ADMM trained with
10 ≤ N < 15 Random QP instances to solve 100 random LP of size 10 ≤ N < 15. As shown in
Table A.7, we observed that CA-ADMM shows ∼ 1.75 and ∼ 30.78 times smaller iterations than
RLQP and OSQP while solving all LP instances within 5000 iterations. These results again highlight
the generalization capability of CA-ADMM to the different problem classes.

Computational times. We measure the performance of solver with the number of iteration to
converge (i.e., solve) as it is independent from the implementation and computational resources.
However, having lower computation time is also vital. With a desktop computer equips an AMD
Threadripper 2990WX CPU and Nvidia Titan X GPU, we measure the compuational times of CA-
ADMM, OSQP on GPU and OSQP on CPU. At each MDP step, CA-ADMM and the baseline algo-
rithms compute ρ via the following three steps: (1) Configuring the linear system and solving it –
linear system solving, (2) constructing the state (e.g., graph construction) – state construction, and
(3) computing ρ from the state – ρ computation. We first measure the average unit computation
times (e.g., per MDP step computational time) of the three steps on the various-sized QP problems.
As shown in Table A.5, the dominating factor is linear system solving step rather than state con-
struction and ρ computation steps. We then measure the total computation times of each algorithm.
As shown Table A.6, when the problem size is small, CA-ADMM takes longer than other baselines,
especially OSQP. However, as the problem size increases, CA-ADMM takes less time than other
baselines due to the reduced number of iterations.

6 ABLATION STUDY

Effect of spatial context extraction methods. To understand the contribution of spatial and tem-
poral context extraction schemes to the performance of our networks, we conduct an ablation study.
The variants are HGA that uses spatial context extraction schemes and RLQP that does not use a spatial
context extracting scheme. As shown in Table 3, the models using the spatial context (i.e., CA-ADMM

8



Under review as a conference paper at ICLR 2023

Table 3: Ablation study results. Best in bold. We measure the average and standard deviation of
ADMM iterations.

Components Problem size (N )
Graph repr. HGA GRU 10 ∼ 15 15 ∼ 100 100 ∼ 200 200 ∼ 300 300 ∼ 400 400 ∼ 500 500 ∼ 600 600 ∼ 700 700 ∼ 800 800 ∼ 900 900 ∼ 1000

RLQP ✗ ✗ ✗
69.42
± 27.35

101.44
± 20.00

137.60
± 20.97

169.40
± 12.16

186.20
± 8.42

214.60
± 9.24

226.20
± 5.19

234.20
± 4.83

243.80
± 7.08

252.40
± 7.86

260.80
± 16.15

HGA ✓ ✓ ✗
25.96
± 5.11

31.96
± 7.17

36.90
± 2.66

43.10
± 3.81

45.40
± 3.07

49.80
± 2.82

50.40
± 1.96

51.40
± 2.76

52.80
± 1.89

53.30
± 2.79

55.20
± 2.44

CA-ADMM ✓ ✓ ✓
27.44
± 4.86

31.70
± 8.29

34.70
± 3.07

40.80
± 4.60

43.40
± 2.24

46.70
± 3.69

47.80
± 2.56

49.10
± 1.97

48.70
± 2.00

50.10
± 1.44

50.50
± 1.28

1 2 3 4 5 6 7
MDP step

2

0

2

lo
g 1

0
t

CA-ADMM

1 2 3 4 5 6 7 8 9
MDP step

HGA

Figure 4: Example of log10 ρt over MDP steps on a QP of N = 2, 000 and M = 6000. The gray
lines visualize the time evolution of log10 ρt. The black lines and markers visualize the averages of
log10 ρt over the dual variables. CA-ADMM terminates at the 6-th MDP (i.e., solving QP in 60 ADMM
steps). HGA takes additional two MDP steps to solve the given QP.

and HGA) outperform the model without the spatial context extraction. The results indicate that the
spatial context significantly contributes to higher performance.

Effect of temporal context extraction methods. To further investigate the effects of temporal
context, we evaluate CA-ADMM, HGA that exclude GRU (i.e., temporal context extraction scheme)
from our model. We also consider RLQP. Table 3 shows that for N ≤ 15 HGA produces better
performance than CA-ADMM, while for N ≥ 15 the opposite is true. We conclude that the temporal-
extraction mechanism is crucial to generalizing to larger QP problems.

Qualitative analysis. Additionally, we visualize the ρt of CA-ADMM and HGA during solving a QP
problem size of 2,000. As shown in Fig. 4, both of the models gradually decrease ρt over the
course of optimization. This behavior is similar to the well-known step-size scheduling heuristics
implemented in OSQP. We also observed that ρt suggested by CA-ADMM generally decreases over
the optimization steps. On the other hand, HGA shows the plateau on scheduling ρt. We observed
similar patterns from the different QP instances with different sizes.

Effect of MDP step interval. We update ρ every N = 10 ADMM iteration. In principle, we can
adjust ρ at every iteration while solving QP. In general, a smaller N allows the algorithm to change ρ
more often and potentially further decrease the number of iterations. However, it is prone to increase
the computation time due to frequent linear system solving (i.e., solving Eq. (1)). Having higher N
shows the opposite tendency in the iteration and computational time trade-off. Table Table A.9
summarizes the effect of N on the ADMM iterations and computational times. From the results, we
confirm that N = 10 attains a nice balance of iterations and computational time.

7 CONCLUSION

To enhance the convergence property of ADMM, we introduced CA-ADMM, a learning-based pol-
icy that adaptively adjusts the step-size parameter ρ. We employ a spatio-temporal context encoder
that extracts the spatial context, i.e., the correlation among the primal and dual variables, and tem-
poral context, i.e., the temporal evolution of the variables, from the ADMM states. The extracted
context contains information about the given QP and optimization procedures, which are used as
input to the policy for adjusting ρ for the given QP. We empirically demonstrate that CA-ADMM
significantly outperforms the heuristics and learning-based baselines and that CA-ADMM general-
izes to the different QP class benchmarks and large-size QPs more effectively.
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István Maros and Csaba Mészáros. A repository of convex quadratic programming problems. Op-
timization Methods and Software, 11(1-4):671–681, 1999. doi: 10.1080/10556789908805768.
URL https://doi.org/10.1080/10556789908805768.

Modelisation Mathematique, Analyse Man, and Eliane Ecache. Mathematical modelling and nu-
merical analysis esaim: M2an modelisation mathematique et analyse numerique m2an, vol. 36,
n. 04 2004.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. Society for Industrial and Applied Mathematics, 1994. doi: 10.1137/1.9781611970791.
URL https://epubs.siam.org/doi/abs/10.1137/1.9781611970791.

Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent
scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021a.

Junyoung Park, Jinhyun Choo, and Jinkyoo Park. Convergent graph solvers. In International Con-
ference on Learning Representations, 2021b.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Hyper-
solvers: Toward fast continuous-depth models. Advances in Neural Information Processing Sys-
tems, 33:21105–21117, 2020.

Fei Sha, Lawrence Saul, and Daniel Lee. Multiplicative updates for nonnegative quadratic
programming in support vector machines. In S. Becker, S. Thrun, and K. Ober-
mayer (eds.), Advances in Neural Information Processing Systems, volume 15. MIT
Press, 2002. URL https://proceedings.neurips.cc/paper/2002/file/
dc16622ddc767e6bc1200fe5df2fbdfb-Paper.pdf.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
an operator splitting solver for quadratic programs. Mathematical Programming Computation, 12
(4):637–672, feb 2020a. doi: 10.1007/s12532-020-00179-2. URL https://doi.org/10.
1007%2Fs12532-020-00179-2.

11

https://arxiv.org/abs/2107.10847
https://arxiv.org/abs/2107.10847
https://doi.org/10.1109%2Ftcst.2021.3128824
https://arxiv.org/abs/1509.02971
http://www.jstor.org/stable/2975974
https://doi.org/10.1080/10556789908805768
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://proceedings.neurips.cc/paper/2002/file/dc16622ddc767e6bc1200fe5df2fbdfb-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/dc16622ddc767e6bc1200fe5df2fbdfb-Paper.pdf
https://doi.org/10.1007%2Fs12532-020-00179-2
https://doi.org/10.1007%2Fs12532-020-00179-2


Under review as a conference paper at ICLR 2023

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An
operator splitting solver for quadratic programs. Mathematical Programming Computation, 12
(4):637–672, 2020b.

Philip Wolfe. The simplex method for quadratic programming. Econometrica, 27:170, 1959.

12



Under review as a conference paper at ICLR 2023

A GRAPH PREPROCESSING

In this section, we provide the details of the graph preprocessing scheme that imposes the scale
invariant to the heterograph representation. The preprocessing step is done by scaling the objective
function, and the constraints. Algorithm 1 and 2 explain the preprocessing procedures.

Algorithm 1: Objective scaling

Input: Quadratic cost matrix P ∈ SN+ , linear cost terms q ∈ RN

Output: Scaled quadratic cost matrix P ′ ∈ SN+ , scale linear cost terms q′ ∈ RN

1 for n = 1, 2, ... do
2 p∗ = max(maxn(|Pnn|), 2max(i,j),i̸=j |Pij |) // Compute scaler
3 P ′ = P /p∗

4 q′ = q/p∗

5 end

Algorithm 2: Constraints scaling

Input: constraint matrix A ∈ RM×N , lower bounds l ∈ RM , upper bound u ∈ RM .
Output: Scaled constraint matrix A′ ∈ RM×N , Scaled lower bounds l′ ∈ RM ,
Scaled upper bound u′ ∈ RM .

6 for m = 1, 2, ... do
7 a∗m = maxn(|Amn|) // Compute scaler for each row
8 A′

m = Am/a∗m
9 l′m = lm/a∗m

10 u′
m = um/a∗m

11 end

B DETAILS OF HGA

In this section, we provide the details of the HGA layer.

HGA is composed of edge update, edge aggregation, node update and hetero node aggregation to
extract the informative context. This is done by considering each edge type and computing the
updated node, edge embedding.

We denote source and destination nodes with the index i and j and the edge type with k. hi and
hj denote the source and destination node embedding and hk

ij denotes the embedding of the k type
edge between the node i and j.

Edge update HGA computes the edge embedding h′
ij and the corresponding attention logit zij as:

h′
ij = HGAk

E([hi, hj , h
k
ij ]) (A.1)

zij = HGAk
A([hi, hj , h

k
ij ]), (A.2)

where HGAk
E and HGAk

A are the hetero edge update function and the hetero attention function for
edge type k, respectively. Both functions are parameterized with Multilayer Perceptron (MLP).

Edge aggregation HGA aggregates the typed edges as follows:

αij =
exp(zkij)∑

i∈Nk(j)
exp(zkij)

(A.3)

where Nk(j) = {vi|type of eij = k, vj ∈ N (i) ∀i} is the set of all neighborhood of vj , which type
of edge from the element of the set to vj is k.
Second, HGA aggregates the messages and produces the type k message mk

j for node vj .

mk
j =

∑
i∈Nk(j)

αijh
′
ij (A.4)
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Table A.1: The MLP sturcture of functions in HGA’s first layer
input

dimensions
hidden

dimensions
output

dimensions
hidden

activations
output

activation

HGAp2p
E 8

HGAp2d
E 12

HGAd2p
E 12

HGAp2p
A 8

HGAp2d
A 12

[64, 16] 8 LeakyReLU
HGAd2p

A 12

HGAp2p
V 11

HGAp2d
V 16

HGAd2p
V 11

HGAN 8 [64, 32]

Edge type-aware node update The aggregated message with edge type k, mk
j , is used to compute

the updated node embedding with edge type k, hkj
′, as:

hkj = HGAk
V ([hj ,m

k
j ]) (A.5)

where HGAk
V is the hetero node update function, which is composed of MLP.

The above three steps (edge update, edge aggregation, edge type-aware node update) are performed
separately on each edge type to preserve the characteristics of the edge type and extract meaningful
embeddings.

Hetero Node update HGA aggregates the updated hetero node feature hkj to produce the updated
node embedding h′

j as follows.
First, HGA computes the attention logit dkj corresponding to hkj as:

dkj = HGAN (hkj ) (A.6)

where HGAN is the hetero node update function, which is composed of MLP.
Second, HGA computes attention βk

j using the softmax function with dkj :

βk
j =

exp(dkj )∑
k∈Edst(j)

exp(dkj )
(A.7)

where Edst(j) is the set of edge types that has a destination node at j.
Finally, HGA aggregates the per-type the updated messages to compute updated node feature h′

j for
vj as:

h′
j =

∑
k∈Edst(j)

βk
j h

k
j (A.8)

C DETAILS OF NETWORK ARCHITECTURE AND TRAINING

In this section, we provide the architecture of pocliy network πθ and action-value network Qϕ.

Policy netowrk πθ architecture. As explained in Section 4.4, the policy network is consist HGA
and MLP. We parameterize πθ as follows:

ρt = MLPθ

(
HGAθ

(
CONCAT(Gt, Ct)

))
, (A.9)
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Table A.2: The MLP sturcture of functions in HGA’s n th layer(n ≥ 2)
input

dimensions
hidden

dimensions
output

dimensions
hidden

activations
output

activation

HGAp2p
E

HGAp2d
E

HGAd2p
E

HGAp2p
A

HGAp2d
A 8 [64, 16] 8 LeakyReLU

HGAd2p
A

HGAp2p
V

HGAp2d
V

HGAd2p
V

HGAN [64, 32]

where MLPθ is two-layered MLP with the hidden dimension [64, 32], the LeakyReLU hidden acti-
vation, the ExpTanh (Eq. (A.10)) last activation, and HGAθ is a HGA layer.

ExpTanh(x) = (tanh(x) + 1)× 3 + (−3) (A.10)

Q network Qπ architecture. As mentioned in Section 4.4, Qπ has similar architecture to πθ. We
parameterize Qπ as follows:

ρt = MLPϕ

(
READOUT

(
HGAϕ

(
CONCAT(Gt, Ct, ρt)

)))
, (A.11)

where MLPϕ is two-layered MLP with the hidden dimension [64, 32], the LeakyReLU hidden ac-
tivation, the Identity last activation, HGAϕ is a HGA layer, and READOUT is the weighted sum,
min, and amx readout function that summarizes node embeddings into a single vector.

Training detail. We train all models with mini-batches of size 128 for 5,000 epochs by using
Adam with the fixed learning rate. For πθ, we set learning rate as 10−4 and, for Qϕ, we set learning
rate as 10−3. We set history length l as 3.

D DETAILS OF PROBLEM GENERATION

In this section, we provide the generation scheme of problem classes in OSQP, which is used to train
and test our model. Every problem class is based on OSQP (Stellato et al., 2020a), but we modified
some settings, such as the percentage of nonzero elements in the matrix or matrix size, to match
graph sizes among the problem classes.

D.1 RANDOM QP

min
x

1

2
x⊤Px+ q⊤x

subject to l ≤ Ax ≤ u,
(A.12)

Problem instances We set a random positive semidefinite matrix P ∈ Rn×n by using matrix mul-
tiplication on random matrix M and its transpose, whose element Mij ∼ N (0, 1) has only 15%
being nonzero elements. We generate the constraint matrix x ∈ Rm×n with Aij ∼ N (0, 1) with
only 45% nonzero elements. We chose upper bound u with ui ∼ (Ax)i + N (0, 1), where x is
randomly chosen vector, and the upper bound li is same as −∞.
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D.2 EQUALITY CONSTRAINED QP

min
x

1

2
x⊤Px+ q⊤x

subject to l = Ax = u,
(A.13)

Problem instances We set a random positive semidefinite matrix P ∈ Rn×n by using matrix mul-
tiplication on random matrix M and its transpose, whose element Mij ∼ N (0, 1) has only 30%
of being nonzero elements. We generate the constraint matrix A ∈ Rm×n with Aij ∼ N (0, 1)
with only 75% nonzero elements. We chose upper bound u with ui ∼ (Ax)i, where x is randomly
chosen vector, and the upper bound li ∈ l is same as ui.

D.3 PORTFOLIO OPTIMIZATION

min
x

1

2
x⊤Dx+

1

2
y⊤y − 1

2γ
µ⊤x

subject to y = F⊤x,

1⊤x = 1,
x ≥ 0,

(A.14)

Problem instances We set the factor loading matrix F ∈ Rn×m, whose element Fij ∼ N (0, 1) as
90% nonzero elements. We generate a diagonal matrix D ∈ Rn×n, whose element Dii ∼ C(0, 1)×√
m is the asset-specific risk. We chose a random vector µ ∈ Rn, whose element µi ∼ N (0, 1) and

is the expected returns.

D.4 SUPPORT VECTOR MACHINE (SVM)

min
x

x⊤x+ λ1⊤t

subject to t ≥ diag(b)Ax+ 1,
t ≥ 0,

(A.15)

Problem instances We set the matrix A ∈ Rm×n, which has elements Aij as follows:

Aij =

{
N ( 1n ,

1
n ), i ≤ m

2

N (− 1
n ,

1
n ), otherwise

We generate the random vector b ∈ Rm ahead as follows:

bi =

{
+1, i ≤ m

2

−1, otherwise

we choose the scalar λ as 1
2 .

D.5 HUBER FITTING

min
x

u⊤u+ 2M1⊤(r + s)

subject to Ax− bu = r − s,
r ≥ 0,
s ≥ 0,

(A.16)

Problem instances We set the matrix A ∈ Rm×n with element Aij ∼ N (0, 1) to have 50% nonzero
elements. To generate the vector b ∈ Rm, we choose the random vector v ∈ Rn ahead as follows:

vi =

{
N (0, 1

4 ), with probability p = 0.95

U [0, 10], otherwise

Then, we set the vector b = A(v + ϵ), where ϵi ∼ N (0, 1
n ).
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Table A.3: Range of n,m which uses for each problem class generation
Random QP EqQP Porfolio SVM Huber Control Lasso En Random QP

n 10 ∼ 15 30 ∼ 40 50 ∼ 60 5 ∼ 6 5 ∼ 6 2 ∼ 6 5 ∼ 6 20 ∼ 30

m 10 ∼ 15 15 ∼ 20 5 ∼ 6 50 ∼ 60 50 ∼ 60 1 ∼ 3 50 ∼ 60 45 ∼ 70

Relation
m & n

m = 3× n m = ⌊n2 ⌋ m = 10× n m = ⌊ n
10⌋ m = 10× n m = ⌊n2 ⌋ m = 10× n m = ⌊ 7n3 ⌋

D.6 OPTIMAL CONTROL

min
x

x⊤
TQTxT +

T−1∑
t=0

x⊤
t Qxt + u⊤

t Rut

subject to xt+1 = Axt +But,
xt ∈ X ,ut ∈ U ,
x0 = xinit,

(A.17)

Problem instances We set the dynamic A ∈ Rn×n as A = I + ∆, where ∆ij ∼ N (0, 0.01).
We generate the matrix B ∈ Rn×m, whose element Bij ∼ N (0, 1). We choose state cost mQ as
diag(q), where qi ∼ U(0, 10) with 30% zeros elements in vq. We generate the input cost R as 0.1I .
We set time T as 5.

D.7 LASSO

min
x

1

2
y⊤y + γ1⊤t

subject to y = Ax− b,
− t ≤ x ≤ t,

(A.18)

Problem instances We set the matrix A ∈ Rm×n, whose element Aij ∼ N (0, 1) with 90% nonzero
elements. To generate the vector b ∈ Rm, we set the sparse vector v ∈ Rn ahead as follows:

vi =

{
0, with probability p = 0.5

N (0, 1
n ), otherwise

Then, we chose the vector b = Av + ϵ where ϵi ∼ N (0, 1). We set the weighting parameter γ as
1
5 ||A

⊤b||∞.

For the seven problem types mentioned above, the range of variables n and m can be referred to in
the Table A.3. The relationship between n and m is also described to facilitate understanding.

D.8 ENTIRE RANDOM QP

min
x

1

2
x⊤Px+ q⊤x

subject to l ≤ Ax ≤ u,
Bx = b,

(A.19)

Problem instances We set a random positive semidefinite matrix P ∈ Rn×n by using ma-
trix multiplication on random matrix M and its transpose, whose element Mij ∼ N (0, 1) has
only 15% being nonzero elements. We generate the inequality constraint matrix A ∈ Rm1×n

with Aij ∼ N (0, 1) with only 60% nonzero elements. We chose upper bound u ∈ Rm1 with
ui ∼ (Ax)i +N (0, 1), where x is a randomly chosen vector and li as −∞. We generate the equal-
ity constraint matrix B ∈ Rm2×n with Bij ∼ N (0, 1) with only 60% nonzero elements. We set
constant b ∈ Rm2 , with bi = (Bx)i, where x is a randomly chosen vector at the generating process
of vector u. We set m1, and m2 as ⌊m7 ⌋ and ⌊ 6m7 ⌋, respectively.
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Table A.4: QP size generalization results in table format. Smaller is better (↓). Best in bold. We
measure the average and standard deviation of the iterations for each QP sizes.

Problem size (N )
10 ∼ 15 15 ∼ 100 100 ∼ 200 200 ∼ 300 300 ∼ 400 400 ∼ 500 500 ∼ 600 600 ∼ 700 700 ∼ 800 800 ∼ 900 900 ∼ 1000

CA-ADMM 27.44
± 4.86

31.70
± 8.29

34.70
± 3.07

40.80
± 4.60

43.40
± 2.24

46.70
± 3.69

47.80
± 2.56

49.10
± 1.97

48.70
± 2.00

50.10
± 1.44

50.50
± 1.28

RLQP 69.42
± 27.35

101.44
± 20.00

137.60
± 20.97

169.40
± 12.16

186.20
± 8.42

214.60
± 9.24

226.20
± 5.19

234.20
± 4.83

243.80
± 7.08

252.40
± 7.86

260.80
± 16.15

OSQP 81.12
± 21.93

102.82
± 31.96

120.00
± 22.43

143.00
± 15.54

118.60
± 15.54

137.80
± 19.78

131.60
± 13.18

142.20
± 13.23

137.60
± 15.11

130.80
± 4.71

130.40
± 9.73

E DETAIL OF THE EXPERIMENT RESULTS

E.1 DETAILS OF THE IN-DOMAIN EXPERIMENT

In this section, we provide the problem generation, and additional experimental results for the In-
domain experiments.

Training data generation For the training set generation, the problems for each class are gen-
erated randomly with instance generating rules in (Appendix D). Each problem’s size of QP is
described in Table A.3.

Evaluation data generation Table 1’s evaluation data generated in the same way as training data
generation. To construct empty intersection between train and test set, each set is generated from a
different random seed. To verify the QP size generalization test (Fig. 3, Table A.4), problems are
generated randomly for the problem class Random QP with dimension of x in [100, 1000].

Additional results We provide the following Table A.4 to show the numerical results difficult to
visualize in Fig. 3.

E.2 DETAILS OF THE CROSS-DOMAIN EXPERIMENT

We provide the problem generation for the cross-domain experiments.

Training data generation We create a new problem class named Entire Random QP that con-
tains both the randomly generated inequality and equality constraints as there is no problem class
in OSQP. The form of the QP problem class and instance generating rule are described in Ap-
pendix D.8. With the new problem class, we generate the training set with size in Table A.3.

Evaluation data generation For the training set generation, the problems for each class are gener-
ated randomly with instance generating rules in (Appendix D). the size of each problem is described
in Table A.3.
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F ADDITIONAL EXPERIMENTS

F.1 RESULT FOR UNIT COMPUTATIONAL TIME OF THE SIZE GENERALIZATION EXPERIMENT

Table A.5: Unit computational time results for each QP sizes in table format. Smaller is better
(↓). Best in bold. We measure the average of the unit time per a MDP step for each QP sizes. The
unit of every element is Second.

Unit time per
a MDP step OSQP RLQP CA-ADMM

Problem
size

State
Construction

linear system
solving

ρ
computation

Total
time

State
Construction

linear system
solving

ρ
computation

Total
time

State
Construction

linear system
solving

ρ
computation

Total
time

15 ∼ 100 0.000 0.003 0.000 0.008 0.000 0.003 0.001 0.008 0.006 0.003 0.071 0.085

100 ∼ 200 0.000 0.008 0.000 0.014 0.000 0.008 0.001 0.015 0.008 0.010 0.101 0.127

200 ∼ 300 0.000 0.036 0.001 0.050 0.000 0.022 0.001 0.036 0.018 0.045 0.130 0.209

300 ∼ 400 0.000 0.079 0.001 0.102 0.000 0.046 0.001 0.070 0.026 0.093 0.154 0.300

400 ∼ 500 0.000 0.179 0.003 0.220 0.000 0.100 0.001 0.144 0.037 0.184 0.185 0.454

500 ∼ 600 0.000 0.324 0.005 0.392 0.000 0.163 0.001 0.229 0.055 0.340 0.218 0.690

600 ∼ 700 0.000 0.499 0.007 0.597 0.000 0.237 0.001 0.334 0.068 0.507 0.251 0.933

700 ∼ 800 0.000 0.746 0.010 0.881 0.000 0.374 0.001 0.510 0.087 0.743 0.265 1.250

800 ∼ 900 0.000 1.029 0.012 1.204 0.000 0.507 0.001 0.679 0.113 1.053 0.308 1.664

900 ∼ 1000 0.000 1.539 0.016 1.778 0.000 0.815 0.001 1.045 0.150 1.599 0.358 2.363

F.2 RESULT FOR TOTAL COMPUTATIONAL TIME OF THE SIZE GENERALIZATION EXPERIMENT

Table A.6: Total computational time results for each QP sizes in table format. Smaller is better
(↓). Best in bold. We measure the average of the total time and the MDP steps for each QP sizes.

OSQP RLQP CA-ADMM
Problem

size
Total / MDP steps

(Second) MDP steps Total time
(Second)

Total / MDP steps
(Second) MDP steps Total time

(Second)
Total / MDP steps

(Second) MDP steps Total time
(Second)

15 ∼ 100 0.008 11.2 0.087 0.008 10.4 0.082 0.085 3.6 0.306

100 ∼ 200 0.014 12.6 0.179 0.015 14.2 0.213 0.127 4.2 0.535

200 ∼ 300 0.050 14.6 0.734 0.036 17.6 0.636 0.209 4.8 1.001

300 ∼ 400 0.102 12.6 1.291 0.070 19.2 1.343 0.300 5.0 1.499

400 ∼ 500 0.220 14.4 3.172 0.144 22.0 3.158 0.454 5.0 2.269

500 ∼ 600 0.392 13.8 5.416 0.229 23.2 5.312 0.690 5.2 3.588

600 ∼ 700 0.597 14.6 8.715 0.334 24.0 8.012 0.933 5.6 5.226

700 ∼ 800 0.881 14.4 12.693 0.510 24.8 12.636 1.250 5.2 6.499

800 ∼ 900 1.204 13.8 16.609 0.679 25.8 17.527 1.664 5.8 9.654

900 ∼ 1000 1.778 13.2 23.472 1.045 26.8 28.007 2.363 5.6 13.233

F.3 RESULT FOR LP EXPERIMENT

Table A.7: LP experiment results.: Smaller is better (↓). Best in bold. We measure the average and
standard deviation of the iterations and average total computational time for Random LP problems.

CA-ADMM RLQP OSQP

Total time
(Second)

0.367 0.092 1.228

Solve ratioa 1.00 1.00 0.58

Iterations 79.94 139.28 2432.74

a Solve ratio is ratio between solved problems and total generated problems.
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F.4 RESULT FOR MAROS & MESZAROS PROBLEMS

Table A.8: QP-benchamrk results.(Random QP + EqQP+ Portfolio+ SVM+ Huber+ Control+
Lasso)→ X, where X ∈ {Maros & Meszaros}: Smaller is better (↓). Best in bold. We measure
the iterations and the Total Computation time for each QP benchmark.

Problem information Iterations Computation time (sec.)
Instance n m nonzeros CA-ADMM RLQP OSQP CA-ADMM RLQP OSQP

AUG2D 20200 30200 80000 16 41 28 0.617 0.878 0.528
AUG2DC 20200 30200 80400 16 33 27 0.551 0.668 0.46

AUG2DCQP 20200 30200 80400 82 failed 580 2.679 failed 11.133

AUG2DQP 20200 30200 80000 110 failed 574 3.518 failed 10.082

AUG3D 3873 4873 13092 19 42 19 0.32 0.179 0.072
AUG3DC 3873 4873 14292 17 33 15 0.24 0.145 0.062

AUG3DCQP 3873 4873 14292 28 38 37 0.39 0.152 0.129
AUG3DQP 3873 4873 13092 31 70 40 0.56 0.281 0.167
CONT-050 2597 4998 17199 19 failed 32 0.273 failed 0.137
CONT-100 10197 19998 69399 20 19 37 0.7 0.576 0.9

CONT-101 10197 20295 62496 1141 failed 1607 53.217 failed 45.805
CONT-200 40397 79998 278799 21 33 44 4.94 8.974 7.03

CONT-201 40397 80595 249996 3761 failed 3154 817.087 failed 793.884
CVXQP1 M 1000 1500 9466 41 328 61 0.965 2.445 0.476
CVXQP1 S 100 150 920 28 56 50 0.335 0.042 0.035
CVXQP2 L 10000 12500 87467 27 212 43 11.636 78.098 18.781

CVXQP2 M 1000 1250 8717 25 175 41 0.378 0.53 0.13
CVXQP2 S 100 125 846 24 126 34 0.308 0.092 0.024
CVXQP3 L 10000 17500 102465 85 failed 95 306.795 failed 346.485

CVXQP3 M 1000 1750 10215 212 failed 153 5.46 failed 1.53
CVXQP3 S 100 175 994 24 51 38 0.368 0.047 0.031
DPKLO1 133 210 1785 20 36 31 0.176 0.033 0.031
DTOC3 14999 24997 64989 failed failed 248 failed failed 2.037
DUAL1 85 86 7201 17 26 29 0.172 0.024 0.023
DUAL2 96 97 9112 17 26 21 0.204 0.03 0.024
DUAL3 111 112 12327 17 24 21 0.181 0.032 0.027
DUAL4 75 76 5673 17 25 42 0.161 0.021 0.032

DUALC1 9 224 2025 38 110 66 0.308 0.076 0.044
DUALC2 7 236 1659 40 210 59 0.324 0.142 0.038
DUALC5 8 286 2296 39 61 48 0.309 0.047 0.033
DUALC8 8 511 4096 44 102 64 0.402 0.082 0.052
EXDATA 3000 6001 2260500 85 3004 86 53.737 1544.541 41.597
GENHS28 10 18 62 13 27 14 0.151 0.019 0.01
GOULDQP2 699 1048 2791 20 33 20 0.165 0.032 0.018
GOULDQP3 699 1048 3838 20 23 34 0.17 0.026 0.037

HS118 15 32 69 769 479 202 6.739 0.27 0.098
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Problem information Iterations Total Computation time (Second)

name n m nonzeros CA-ADMM RLQP OSQP CA-ADMM RLQP OSQP

HS21 2 3 6 22 45 21 0.193 0.031 0.016
HS268 5 10 55 15 161 15 0.142 0.107 0.011
HS35 3 4 13 17 19 29 0.143 0.013 0.019

HS35MOD 3 4 13 14 31 13 0.143 0.024 0.01
HS51 5 8 21 18 32 19 0.167 0.025 0.023
HS52 5 8 21 13 29 12 0.164 0.02 0.01
HS53 5 8 21 17 31 13 0.146 0.02 0.009
HS76 4 7 22 15 46 39 0.145 0.028 0.022

HUES-MOD 10000 10002 40000 1830 306 31 524.61 19.032 244.839

HUESTIS 10000 10002 40000 1830 306 31 522.189 18.395 246.329

KSIP 20 1021 19938 75 1993 53 1.385 6.166 0.053
LASER 1002 2002 9462 25 49 44 0.315 0.068 0.055

LISWET1 10002 20002 50004 27 31 56 0.409 0.169 0.212

LISWET10 10002 20002 50004 23 31 56 0.375 0.164 0.23

LISWET11 10002 20002 50004 26 31 56 0.413 0.17 0.21

LISWET12 10002 20002 50004 26 31 56 0.37 0.166 0.235

LISWET2 10002 20002 50004 21 31 56 0.399 0.174 0.218

LISWET3 10002 20002 50004 21 31 56 0.431 0.172 0.215

LISWET4 10002 20002 50004 21 31 56 0.402 0.173 0.214

LISWET5 10002 20002 50004 21 15 50 0.429 0.087 0.184

LISWET6 10002 20002 50004 26 31 56 0.415 0.172 0.229

LISWET7 10002 20002 50004 21 31 56 0.396 0.17 0.211

LISWET8 10002 20002 50004 21 31 56 0.406 0.175 0.214

LISWET9 10002 20002 50004 21 31 56 0.394 0.171 0.215

LOTSCHD 12 19 72 21 183 48 0.285 0.122 0.032
MOSARQP1 2500 3200 8512 41 73 56 0.618 0.163 0.099
MOSARQP2 900 1500 4820 24 131 55 0.331 0.204 0.069
POWELL20 10000 20000 40000 failed 2438 1055 failed 8.85 3.873
PRIMAL1 325 410 6464 23 59 31 0.913 0.083 0.047
PRIMAL2 649 745 9339 14 72 30 0.614 0.184 0.062
PRIMAL3 745 856 23036 15 242 26 0.794 1.662 0.182
PRIMAL4 1489 1564 19008 17 815 24 0.769 9.351 0.312
PRIMALC1 230 239 2529 58 failed failed 0.501 failed failed

PRIMALC2 231 238 2078 160 failed failed 1.335 failed failed

PRIMALC5 287 295 2869 225 failed 4764 2.153 failed 5.028

PRIMALC8 520 528 5199 79 failed failed 0.856 failed failed

Q25FV47 1571 2391 130523 202 failed 544 13.749 failed 8.678
QADLITTL 97 153 637 1611 failed 138 30.348 failed 0.079
QAFIRO 32 59 124 39 1104 failed 0.415 0.605 failed

QBANDM 472 777 3023 113 failed failed 3.78 failed failed

QBEACONF 262 435 3673 failed failed 56 failed failed 0.057
QBORE3D 315 548 1872 failed failed 847 failed failed 0.667
QBRANDY 249 469 2511 901 failed failed 31.157 failed failed

QCAPRI 353 624 3852 421 failed 829 13.648 failed 0.737
QE226 282 505 4721 173 3100 failed 6.079 2.971 failed
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Problem information Iterations Total Computation time (Second)

name n m nonzeros CA-ADMM RLQP OSQP CA-ADMM RLQP OSQP

QETAMACR 688 1088 11613 failed 3303 1290 failed 6.886 2.701
QFFFFF80 854 1378 10635 131 failed 694 6.949 failed 3.034
QFORPLAN 421 582 6112 failed 1950 740 failed 2.654 1.021
QGFRDXPN 1092 1708 3739 1991 failed 33 40.741 failed 0.037
QGROW15 645 945 7227 failed failed failed failed failed failed

QGROW22 946 1386 10837 failed failed failed failed failed failed

QGROW7 301 441 3597 failed failed failed failed failed failed

QISRAEL 142 316 3765 49 2518 83 1.705 2.239 0.07
QPCBLEND 83 157 657 33 19 79 0.621 0.014 0.051

QPCBOEI1 384 735 4253 failed failed 87 failed failed 0.11
QPCBOEI2 143 309 1482 failed failed 51 failed failed 0.038
QPCSTAIR 467 823 4790 failed failed 739 failed failed 0.815
QPILOTNO 2172 3147 16105 361 failed 20 23.219 failed 0.152
QPTEST 2 4 10 12 43 33 0.138 0.031 0.024
QRECIPE 180 271 923 39 271 62 0.504 0.213 0.04
QSC205 203 408 785 19 7 64 0.206 0.007 0.059

QSCAGR25 500 971 2282 failed failed 259 failed failed 0.215
QSCAGR7 140 269 602 failed failed 543 failed failed 0.331
QSCFXM1 457 787 4456 failed failed 382 failed failed 0.387
QSCFXM2 914 1574 8285 failed failed 1176 failed failed 1.729
QSCFXM3 1371 2361 11501 1361 failed 729 57.445 failed 1.37
QSCORPIO 358 746 1842 69 348 failed 1.226 0.314 failed

QSCRS8 1169 1659 4560 83 failed failed 1.854 failed failed

QSCSD1 760 837 4584 41 118 215 0.799 0.195 0.331

QSCSD6 1350 1497 8378 49 289 285 0.818 0.478 0.67

QSCSD8 2750 3147 16214 54 2256 248 1.143 6.356 0.814
QSCTAP1 480 780 2442 55 483 failed 0.91 0.464 failed

QSCTAP2 1880 2970 10007 42 280 failed 0.987 0.757 failed

QSCTAP3 2480 3960 13262 52 324 failed 1.468 1.063 failed

QSEBA 1028 1543 6576 failed failed failed failed failed failed

QSHARE1B 225 342 1436 failed failed 574 failed failed 0.38
QSHARE2B 79 175 873 56 failed 2277 0.892 failed 1.276

QSHELL 1775 2311 74506 failed failed 71 failed failed 0.55
QSHIP04L 2118 2520 8548 123 failed 115 2.916 failed 0.363
QSHIP04S 1458 1860 5908 111 failed 111 2.713 failed 0.23
QSHIP08L 4283 5061 86075 125 failed 132 4.887 failed 1.375
QSHIP08S 2387 3165 32317 278 failed 178 9.257 failed 0.566
QSHIP12L 5427 6578 144030 741 failed 150 33.934 failed 1.872
QSHIP12S 2763 3914 44705 failed failed 144 failed failed 0.487
QSIERRA 2036 3263 9582 failed failed 206 failed failed 0.671
QSTAIR 467 823 6293 198 failed 353 6.397 failed 0.436

QSTANDAT 1075 1434 5576 88 failed failed 2.129 failed failed

S268 5 10 55 15 161 15 0.138 0.1 0.01
STADAT1 2001 6000 13998 failed failed failed failed failed failed

STADAT2 2001 6000 13998 failed failed 558 failed failed 0.979
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Problem information Iterations Total Computation time (Second)

name n m nonzeros CA-ADMM RLQP OSQP CA-ADMM RLQP OSQP

STADAT3 4001 12000 27998 failed failed 702 failed failed 2.145
STCQP1 4097 6149 66544 22 110 39 6.154 19.142 6.738

STCQP2 4097 6149 66544 21 109 40 1.529 3.519 1.191
TAME 2 3 8 19 26 21 0.138 0.019 0.016
UBH1 18009 30009 72012 93 4757 92 3.348 39.363 0.787

VALUES 202 203 7846 34 18 37 0.682 0.019 0.031

YAO 2002 4002 10004 764 528 797 8.107 0.627 0.853

ZECEVIC2 2 4 7 22 232 36 0.204 0.124 0.021

F.5 MDP STEP INTERVAL ABLATION

Table A.9: Step interval ablation results.: Smaller is better (↓). Best in bold. We measure the
average and standard deviation of the iterations for each step-intervals.

Step-interval Iterations Computational time
(sec.)

5 27.02 0.194

10 30.42 0.111

50 53.39 0.065

100 65.72 0.050
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