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Abstract
A large variety of geospatial data layers is avail-
able around the world ranging from remotely-
sensed raster data like satellite imagery, digital
elevation models, predicted land cover maps, and
human-annotated data, to data derived from en-
vironmental sensors such as air temperature or
wind speed data. A large majority of machine
learning models trained on satellite imagery
(SatML), however, are designed primarily for
optical input modalities such as multi-spectral
satellite imagery. To better understand the value
of using other input modalities alongside opti-
cal imagery in supervised learning settings, we
generate augmented versions of SatML bench-
mark tasks by appending additional geographic
data layers to datasets spanning classification, re-
gression, and segmentation. Using these aug-
mented datasets, we find that fusing additional
geographic inputs with optical imagery can sig-
nificantly improve SatML model performance.
Benefits are largest in settings where labeled data
are limited and in geographic out-of-sample set-
tings, suggesting that multi-modal inputs may be
especially valuable for data-efficiency and out-
of-sample performance of SatML models. Sur-
prisingly, we find that hard-coded fusion strate-
gies outperform learned variants, with interesting
implications for future work.

1. Introduction
SatML models that effectively leverage the volume and di-
versity of data from Earth Observation (EO) satellites have
the potential to translate petabyte-scale raw data into data-
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driven insights. Users of SatML systems need models that
can integrate these vast arrays of publicly available geo-
graphic data into a cohesive representation of the world,
allowing for accurate predictions even with limited train-
ing data, or when faced with covariate shifts across time,
space, spectrum, and scale (Rolf et al., 2024).

While including additional input layers is clearly likely to
increase performance for in-sample prediction with ample
training data, the effects of adding additional input lay-
ers in settings with limited label data and out-of-sample
deployment distributions are less clear. Additional geo-
graphic inputs could inform a SatML model with structural
information that may allow the model to learn geospatial
image representations with fewer labeled training samples
(label-efficiency); they could also require more complex
(data-hungry) models to represent the various modalities of
data. Additional inputs could help SatML models general-
ize across regions; they could also cause models to overfit
to local patterns that only manifest in-sample, which could
then decrease performance.

In this work, we study the label-efficiency and out-
of-sample generalization capability associated with
adding non-optical, contextual inputs to commonly
used SatML architectures.

As outlined in Roscher et al. (2024), data-centric learn-
ing is a systematic method of algorithmic evaluation where
the primary focus involves curating diverse, complete, un-
biased, and relevant data for optimal model performance.
We perform a data-centric study on the benefits and nu-
ances of leveraging these widely available geographic in-
put layers, complementing previous lines of model-centric
research that study how to utilize multi-modal inputs for
a fixed training/pretraining strategy and/or model architec-
ture.

Our primary findings in this work are: (1) We show im-
provements in label-efficiency when multi-modal, aux-
iliary geographic inputs are fused with optical imagery
on 3 SatML task-types: Multi-label land-cover classifi-
cation, land cover segmentation, and tree-cover regres-
sion. (2) We find that these auxiliary geographic inputs
are especially helpful when SatML models are evaluated
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OOD through results on the spatially buffered test split of
the BigEarthNetv2.0 dataset (Clasen et al., 2024), and the
OOD test cities of the EnviroAtlas dataset in Austin, TX,
and Durham, NC (Rolf et al., 2022). (3) Through our ab-
lations, we find surprising results that show the ineffective-
ness of finetuning SatML models arbitrarily on common
benchmark tasks with these auxiliary geographic inputs.

Our contributions also include a large-scale, multi-dataset
release containing modified versions of the SustainBench
farmland boundary delineation dataset (Yeh et al., 2021),
and the USAVars tree-cover regression dataset (Rolf et al.,
2021) with additional geographic inputs georeferenced
to the optical imagery. Additionally, we release the
BigEarthNetv2.0 dataset (Clasen et al., 2024) with pre-
computed patch-embeddings with the SatCLIP location en-
coder (Klemmer et al., 2025). A full list of contributed data
products is shown in column “Additional Data Layers” in
Table 1.

2. Prior Work
2.1. Multi-Modal SatML

Adding a non-optical context to machine learning mod-
els trained on geospatial imagery has been performed ex-
tensively in prior work. Tang et al. (2015) extracts GPS
features from the Yahoo Flickr Creative Commons 100M
dataset, and fuses embeddings of location information with
final embeddings from a convolution-based image network.
Chu et al. (2019) incorporates geolocation information into
fine-grained image classification through the use of geolo-
cation priors, introducing the computer vision community
to geo-aware neural networks. Mac Aodha et al. (2019)
performed fine-grained image classification with a loca-
tion, time, and photographer prior to differentiate between
similar classes that are spatially disparate. Benson et al.
(2024) add a contextual input to predict future vegeta-
tion state given temporally rich satellite imagery and fu-
ture weather information. Wang et al. (2020) propose an
unsupervised multi-modal framework which incorporates
both street view imagery and point-of-interest data to learn
neighborhood embeddings in urban areas. Johnson et al.
(2022); Fonte et al. (2020); Patriarca et al. (2019) introduce
large-scale Sentinel-2 datasets georeferenced with Open-
StreetMap (OSM) rasters (Haklay & Weber, 2008) con-
verted to be used as a land-use-land-cover map (LULC).
However, these methods, which utilize geographic data lay-
ers publicly available, intend for their usage to be restricted
as ground-truth masks for land-cover classification prob-
lems.

Recently, Nedungadi et al. (2024) introduce large, multi-
modal pre-training datasets built with Sentinel-2 imagery
that contain several geographic modalities like ESA World-

Cover (Zanaga et al., 2022) and Digital Elevation Model.
Although MMEarth (Nedungadi et al., 2024) is pre-trained
on these modalities, it is only used to predict the modal-
ities given a Sentinel-2 RGB image as input; nonethe-
less, they find data-efficiency improvements when their
self-supervised models are linear-probed on various down-
stream classification tasks. Sosa et al. (2025) utilize the
Aster-DEM and the ESA-Worldcover raster produced by
Nedungadi et al. (2024) as additional input to a masked au-
toencoder (MAE). However, a bulk of their experiments is
performed with various permutations of Sentinel-2-derived
multispectral modalities.

2.2. Token Fusion

Studies on Vision Transformers (ViTs) have explored the
use of additional tokens to improve performance and cap-
ture more nuanced information. In Dosovitskiy et al.
(2021), a class token ([CLS]) was introduced and ap-
pended to the patch embeddings, enabling the model to
learn a global representation useful for classification tasks.
Touvron et al. (2021) introduce a distillation token to facili-
tate knowledge transfer from a teacher model, boosting ac-
curacy without substantially increasing computational cost.
Jia et al. (2022); Wang et al. (2024) demonstrate that in-
jecting a small set of learnable prompts into the early lay-
ers of pre-trained ViTs can effectively adapt them to new
downstream tasks. Darcet et al. (2024) highlights the im-
portance of internal “registers” in ViT architectures, argu-
ing that specialized design choices can better accommodate
these additional tokens for more robust representations.

3. Methods
Our experiments measure performance of models trained
with just multi-spectral inputs and with additional geo-
graphic inputs. We consider three different fusion mech-
anisms that allow for SatML models to learn from these
geographic auxiliary inputs. We then describe the model ar-
chitectures used for each fusion mechanism, and the bench-
mark datasets that we train our models on.

3.1. Geographic Data Fusion

Figure 1 contains an overview of the proposed geographic
input-fusion techniques used in this work. For land cover
segmentation with the EnviroAtlas dataset, we fuse the
original inputs (NAIP aerial imagery) with roads, water-
ways, and waterbody data from the OSM repository (Hak-
lay & Weber, 2008) using the fusion method STACK. We
compute the hand-crafted prior for the training split in
Pittsburgh, and test splits in Austin and Durham using the
methodology proposed in Rolf et al. (2022). The genera-
tion of the prior is denoted by f(·) in Figure 1, and is de-
scribed in detail in appendix Appendix A.1. The resulting
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Figure 1. Geographic data input fusion mechanisms used in this work: STACK involves concatenating one or more geographic raster
inputs with the optical input before passed jointly as an input to a convolution-based architecture. PROC-STACK passes the geographic
input to a function f(·) before stacking the geographic data with the optical input. TOKEN-FUSE passes a latitude-longitude pair to a
location encoder g(·) and uses location embeddings as an auxiliary token to a Vision Transformer (ViT). Experiments in Section 4.1 and
Section 4.2 use frozen models for f and g; ablation experiments in Section 4.3 use trainable models.

prior along with the raw geographic data layers are used as
input to the prior function and are fused to the SatML. The
generation of the prior followed by fusion with the optical
input forms our fusion method PROC-STACK.

For the farmland-parcel delineation task with the Sustain-
Bench dataset, and the socioeconomic regression task with
the USAVars dataset, we use OSM raster layers that con-
tain all the geographic data layers used for the EnviroAtlas
dataset, with the addition of several new land-use and land-
cover classes that are roughly relevant to the task. These
additional raster layers include high-level biome informa-
tion such as forests, wetlands, or urban-type terrain. Output
Geodataframes are pre-processed to RGB space. We apply
a smoothing kernel (σ = 1.0) to remove sharp edges and
features from the API response. A complete list of raster
inputs queried for the USAVars dataset is detailed in ap-
pendix Figure 9. Additionally, we pull a digital elevation
map (DEM) from the Continental Europe Digital Terrain
Model available as part of the OpenTopography API. The
DEM raster, originally available at a 20m GSD, is resized
to the Sentinel-2 RGB spatial resolution of 10m/px. Un-
like the OSM rasters, the DEM is passed as raw input with
fusion mechanism STACK.

To be comparable to previous benchmark results, we use
a fully convolutional network (FCN) for the EnviroAtlas
Rolf et al. (2022) Dataset, a U-Net (Ronneberger et al.,
2015b) for the SustainBench-field-delineation dataset Yeh
et al. (2021), and a ResNet50 He et al. (2015) for the re-
gression task proposed in the USAVars dataset Rolf et al.
(2021).

For the BigEarthNetv2.0 image-level multi-label classifica-
tion task we use vision transformer (ViT, ViT-B/8, ViT-S/8)
architectures. To the Sentinel-2 input, we fuse general-
purpose global SatCLIP location embeddings (Klemmer
et al., 2025), which distill socioeconomic and environmen-
tal signals in satellite imagery into a pretrained location en-

coder g(lat,lon) with output dimension 256. Embeddings
from SatCLIP’s location encoder are passed as an auxiliary
token to the ViT’s encoder along with image tokens. We
add a linear layer to SatCLIP’s location encoder that maps
the 256-dimensional SatCLIP embeddings to the desired
sequence length expected by the Vit-S/ViT-B. The auxiliary
SatCLIP token is assigned a positional encoding of N + 1
where N is the total number of encoder tokens excluding
the classification token. For our main experiments, the pa-
rameters within the SatCLIP model g(lat,lon) are frozen;
we experiment with unfreezing these weights in Figure 8
and Section 4.3.

3.2. Models

Convolutional Architectures: In this work, we use
simple, widely-used convolutional neural networks when
trained on data fused with fusion mechanisms STACK and
PROC-STACK. We choose simple architectures over spe-
cialized SatML model architectures because we are pri-
marily interested in comparing different data settings and
fusion strategies. We choose models to be consistent with
model architectures used in prior work. For experiments
on the EnviroAtlas dataset, we use a 5-layer FCN. For seg-
mentation on the SustainBench field-boundary delineation,
we use a U-Net (Ronneberger et al., 2015b) with identi-
cal architectural setup and hyperparameters as Aung et al.
(2020) to allow for consistency when comparing results.
For regression on the USAVars tree-cover dataset, we use
a vanilla ResNet50 (He et al., 2015) with randomly initial-
ized weights.

Vision Transformers (ViTs): Vision Transformers (ViTs)
(Dosovitskiy et al., 2021) utilize the transformer archi-
tecture proposed in (Vaswani et al., 2017). Input images
are decomposed into a sequence of small, non-overlapping
patches which are mapped to embeddings (tokens) with a
linear-layer projection. Unlike (Cong et al., 2022; Reed
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Dataset Task Description Multispectral
Input

Model Additional Data Layers OOD?

SustainBench (Yeh
et al., 2021)

Farmland boundary delineation Sentinel-2 RGB U-Net OSM rasters†,
EU-DEM†

✗

EnviroAtlas (Rolf
et al., 2022)

Land-cover segmentation NAIP RGB + NIR FCN Prior (Rolf et al., 2022),
OSM rasters

✓

BigEarthNetv2.0
(Clasen et al.,
2024)

Land-cover classification Sentinel-2 (10
bands)

ViT SatCLIP (Klemmer
et al., 2025)
embeddings†

✓

USAVars (Rolf
et al., 2021)

Tree-cover regression NAIP RGB + NIR ResNet-50 OSM rasters† ✗

Table 1. Experimental framework and source tasks used in this work: We test fusion mechanisms STACK and STACK-PROC on the
EnviroAtlas (Rolf et al., 2022), SustainBench (Yeh et al., 2021), and the USAVars (Rolf et al., 2021) benchmark datasets. We test fusion
mechanism TOKEN-FUSE on the BigEarthNetv2.0 (Clasen et al., 2024) classification dataset. Labels queried that form OSM rasters are
shown in appendix Figure 9. † denotes geographic data layers released with this work (aligned with the benchmark datasets).

et al., 2023) that use various versions of sinusoidal posi-
tional encodings that are sensitive to Ground Sampling Dis-
tance (GSD) and temporal information, we augment image
patches with learnable positional encodings.

Learned location encoders: Location encoders in SatML
help models interpolate to new geographic regions by in-
corporating terrain and environmental signals given a (lat,
lon) pair. SatCLIP (Klemmer et al., 2025) builds on Geo-
CLIP (Vivanco Cepeda et al., 2023), CSP (Mai et al., 2023),
and GPS2Vec (Yin et al., 2019) by integrating a CLIP-
inspired (Radford et al., 2021) contrastive learning frame-
work specifically designed for satellite imagery from the
Sentinel-2 EO satellite. SatCLIP’s location encoder, which
can be used out-of-the-box, accurately captures terrain, en-
vironmental, and socioeconomic signals (Klemmer et al.,
2025). Unlike the previously used convolutional architec-
tures that accept a rasterized input of geographic data pro-
jected to the correct Coordinate Reference System (CRS),
models trained with the SatCLIP location encoder accept
embeddings as an auxiliary token.

3.3. Datasets

We conduct experiments using 4 benchmark datasets in ML
for remote sensing. These datasets cover different predic-
tion tasks, multi-spectral input sources, and additional data
layers used. Table 1 presents an overview of the datasets
and additional layers used. All additional geographic data
layers, georeferenced with benchmark datasets, are avail-
able as a hosted dataset at https://huggingface.
co/datasets/arjunrao2000/geolayers. We
release our code that allows for training models on our
datasets at https://github.com/arjunarao619/
geolayers-terrabytes.

BigEarthNet (Classification): The BigEarthNetv2.0
dataset (Sumbul et al., 2019; Clasen et al., 2024) is a

multi-label classification task that consists of approxi-
mately 550,000 pairs of Sentinel-2 image patches, paired
with ground labels of over 19 land cover classes. Our mod-
els input 10 Sentinel-2 bands to ensure consistency with
benchmark results reported in Clasen et al. (2024). Unlike
the original BigEarthNet dataset in Sumbul et al. (2019),
BigEarthNetv2.0 Clasen et al. (2024) constructs a training,
validation, and test split by using a grid-based split assign-
ment algorithm. Validation and test areas-of-sampling are
not within the geographic extent of the training area-of-
sampling, ensuring no data-leakage. Thus, our results re-
ported on the BigEarthNetv2.0 dataset can be considered
an out-of-sample validation and test.

EnviroAtlas (Land Cover Segmentation): The Envi-
roAtlas dataset (compiled by Rolf et al. (2022) and com-
posed of data from Pickard et al. (2015)) consists of high-
resolution (1m) land cover maps derived from NAIP aerial
imagery. In this dataset, coarse land-cover maps from
the National Land Cover Database (NLCD) are aligned
with buildings, road networks, water bodies, and water-
ways from public sources such as the OSM project (Hak-
lay & Weber, 2008). The “prior” data layer constructed in
Rolf et al. (2022) is a (hand-coded) fusion of NLCD data
with OSM data, in the form of PROC-STACK. EnviroAt-
las’s train split only covers the Pittsburgh region. We use
the provided out-of-sample validation and test datasets in
Austin and Durham and in-distribution validation and test
datasets in Pittsburgh.

SustainBench (Field Boundary Delineation) The Sus-
tainBench benchmark proposed in Yeh et al. (2021) con-
tains a collection of 15 benchmark tasks in machine learn-
ing for remote sensing spanning 7 United Nations’ sus-
tainable development goals (SDGs). We use the field-
delineation task which consists of Sentinel-2 imagery in
France in 2017. Each input image is at a 10m ground-
sampling distance and has a size of 224× 224 pixels corre-
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Figure 2. Performance and label-efficiency of a U-Net trained
on SustainBench’s Farmland Boundary Delineation Dataset.
We use the standard ID split as benchmarked on in (Aung et al.,
2020). Label efficiency and out-of-distribution performance re-
ported as IoU scores averaged over five random seeds. OSM and
EU-DEM-aided models match RGB-only model’s best score with
221 training images (total = 1573 images).

sponding to an approximately 5 km2 surface area covered
per image.

USAVars Tree-cover (Regression):
The USAVars dataset proposed in Rolf et al. (2021) com-
prises approximately 100,000 pairs of NAIP aerial imagery
cropped to a spatial extent of 1-sq-km per image contain-
ing real-valued labels of tree-cover, population density. We
pull rasters of several land-cover and infrastructure-related
classes from OSM (Haklay & Weber, 2008) as a geo-
graphic input, aligned to the RGB layers. Our final set of
labels cover broad biome-related land-cover classes such
as waterbodies, forests, and buildings with fine-grained
labels covering sub-categories of biomes. A complete list
of labels pulled from OSM are shown in appendix Figure 9.

4. Results
Across all four SatML benchmark datasets covering tasks
in semantic segmentation and multi-label classification for
land cover, field boundary delineation, and regression, we
found that adding contextual, geographic inputs improves
model performance, with largest gains in settings with lim-
ited label data (Section 4.1) and out-of-distribution test sets
(Section 4.2). Ablation experiments (Section 4.3 ) provide
evidence that fine-tuning encoders aided by geographic in-
put layers does not necessarily help in these critical set-
tings.

Figure 3. Performance and data-efficiency of a ResNet50
trained with and without an OSM raster data layer as STACK
on the USAVars treecover regression task. Dashed lines show
the performance of each input set using the full dataset (100,000
points) as training data.

4.1. Geographic inputs can aid data-efficiency

The benefit of additional geographic data inputs on data-
efficiency of SatML models can be seen in all four experi-
mental settings and all three fusion mechanisms.

From Figure 2, we see performance improvements with
low amounts of training data when using the STACK ap-
proach to fuse additional raster layers. A U-Net trained
with an OSM and DEM raster layer using fusion mecha-
nism STACK exhibits an 8.1% test dice score improvement
in-sample when trained on between 1-5% of training data
on the SustainBench field-boundary delineation dataset,
compared to a 4.1% improvement when using the full train-
ing dataset. From appendix Table 7, we find that these per-
formance improvements hold with most commonly used
SatML segmentation model architectures introduced over
the past five years. From Figure 3, stacking OSM raster
layers as input to a ResNet-50 for the USAVars tree-cover
regression task improves R2 by 0.162 points when trained
on between 60 to 250 training images. This performance
improvement reduces to a 0.026 improvement in R2 when
the full 68,000 image training dataset is used.

From Table 3, we find that a prior generated and fused
with PROC-STACK improves in-distribution test accuracy
of land-cover segmentation on the EnviroAtlas dataset
(Pickard et al., 2015) by 9.3% when trained on between 1
to 5% of the training dataset, compared to a 0.6% improve-
ment when trained with the full training dataset. When the
raw data-layers used to generate the prior in Rolf et al.
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Subset (%) ViT-B ViT-S SatCLIP

W/ SatCLIP Aux. Token Vanilla ViT W/ SatCLIP Aux. Token Vanilla ViT

Avg Prec F1 Avg Prec F1 Avg Prec F1 Avg Prec F1 F1

1% 46.3 36.1 44.6 32.1 40.45 23.27 ± 1.27 39.78 22.95 ± 1.31 15.9
2% 55.6 45.9 51.1 40.2 47.96 33.82 ± 1.10 45.60 34.11 14.1
5% 62.7 54.1 58.9 50.2 59.98 47.84 ± 2.08 56.07 44.05 ± 1.13 10.1
20% 66.8 60.6 64.5 58.1 66.4 58.3 64.2 57.6 12.5
50% 70.1 64.7 68.7 63.5 70.1 64.3 69.2 63.7 21.7
100% 70.3 65.2 69.5 64.1 70.8 65.4 70.1 64.5 23.2

Table 2. Comparison of a ViT’s Average Precision and multi-label F1 score (Macro-averaged) on the BigEarthNetv2.0 test split
with and without a SatCLIP location encoder auxiliary token. BigEarthNetv2.0 (Sumbul et al., 2019) consists of 549, 488 Sentinel-
2 image tiles. Ablation includes linear probing a pre-trained SatCLIP location encoder (Right). Mean results over five random seeds.
Unless specified, all results report ≤ 0.1% standard error.

(2022) are fused with fusion mechanism STACK before
training, data-efficiency improvements drop to approxi-
mately 2% over ten random seeds for this range (1 − 5%)
of training data, still an improvement.

On the SustainBench field-boundary delineation and the
USAVars tree-cover regression datasets, we note that
largest gains in label-efficiency are observed with training
dataset sizes of 100-700 images, which we observe to be
the low-data-regime where geographic input layers consis-
tently outperform models trained on optical modalities. For
example, on the USAVars tree-cover regression task, we
observe a diminished gap in the test R2 metric as we scale
from 700 training samples (∆R2 = 0.36) to 1400 training
samples (∆R2 = 0.08).

We also note that not all geographic inputs/combinations
of these inputs improve label-efficiency and OOD perfor-
mance when fused with the SatML model using the fusion
mechanisms introduced in Figure 1. In Figure 4, we note
that a road-map raster worsens performance compared to
standard, multispectral-only training. Similarly, from Fig-
ure 2, concatenating a single DEM raster to optical imagery
for a field-boundary delineation task on the SustainBench
dataset hurts performance in these settings.

4.2. Geographic inputs can aid out-of-distribution
performance

We also found that fusing additional geographic input lay-
ers to remotely sensed imagery can significantly aid geo-
graphic domain generalization. While the value of addi-
tional input layers is clear in low-label settings (here <800
training points) for all test cities in the EnviroAtlas dataset,
Figure 4 also shows an improvement in overall test ac-
curacy across all amounts of training data for the out-of-
distribution test cities in different states (Austin, TX and
Durham, NC). We observe a 4.12% improvement in the
overall accuracy with the prior geographic data layer us-

ing PROC-STACK and a 2.03% improvement when the raw
raster data layers used to generate the prior are fused with
STACK. Unlike the ID test set (Pittsburgh), the gains in
performance in the OOD settings do not appear to dimin-
ish with more training samples, as the OOD performance
curves remain significantly separated across settings, even
using 100% of the training data.

From Table 2, performance improvements on the BigEarth-
Netv2.0 dataset with the auxiliary SatCLIP token fused
with TOKEN-FUSE also hold over all training data subsets.
This reflects OOD performance as the BigEarthNetv2.0
validation and test splits use a spatial buffering approach
(Clasen et al., 2024). For a ViT-B, we observe a 3.1% im-
provement in the multi-label F1 metric, and a 2.5% im-
provement in the multi-label average precision metric. In-
terestingly, for a ViT-S, this improvement in out-of-sample
accuracy across all data subsets drops to a 2% improve-
ment in average precision and a 1% improvement in the
multi-label F1 metric. We hypothesize that this difference
in performance can possibly be attributed to the reduced
model expressivity of ViT-S that prevents it from fully ex-
ploiting the SatCLIP auxiliary token (embedding size of
384 vs 768).

4.3. Finetuning geographic-input aided SatML models
can hurt label-efficiency and OOD performance

To determine if geographic inputs that are learned dur-
ing training aid label efficiency and out-of-sample gener-
alization of SatML models on commonly used benchmark
datasets, we conduct ablation studies for the fusion mecha-
nisms TOKEN-FUSE and PROC-STACK. In sections Sec-
tions 4.1 and 4.2, we freeze the intermediate modules f(·)
in PROC-STACK and g(·) in TOKEN-FUSE (f(·) and g(·)
from Figure 1). In Sections 4.3.1 and 4.3.2, we finetune
these modules jointly with the SatML model.

6



Using Multiple Input Modalities Can Improve Data-Efficiency and O.O.D. Generalization for ML with Satellite Imagery

Figure 4. Performance and label-efficiency of a FCN on the EnviroAtlas Land Cover Segmentation Dataset with STACK and
PROC-STACK geographic input fusion. Austin and Durham are out-of-sample test splits. Results averaged over 10 random seeds. 1×
standard error of Pittsburgh reported ≤ 1e−3 over 10 random seeds.

Subset (%) Pittsburgh Austin Durham

RGB Prior All RGB Prior All RGB Prior All

1% 0.51 0.61 0.52 0.53 ± 0.03 0.58 ± 0.03 0.54 ± 0.02 0.61 ± 0.00 0.66 ± 0.03 0.62 ± 0.00
2% 0.51 0.58 0.54 0.53 ± 0.01 0.59 ± 0.01 0.55 ± 0.01 0.61 ± 0.00 0.67 ± 0.01 0.63 ± 0.01
5% 0.54 0.65 0.55 0.58 ± 0.00 0.65 ± 0.01 0.55 ± 0.01 0.64 ± 0.02 0.72 ± 0.01 0.62 ± 0.01

Table 3. Performance of EnviroAtlas prior, all raster inputs versus RGB input with 1%, 2%, and 5% of input training data.

Sub% PROC-STACK, FCNout RGB Only STACK

1 3

1% 40.8/26.3 35.7/22.7 5.5/2.9 26.5/10.1
5% 49.5/33.7 47.0/31.5 45.7/29.9 47.0/31.6
10% 52.7/36.6 53.0/36.9 49.0/32.6 54.7/37.9
20% 55.2/38.9 54.7/38.5 53.8/37.7 57.3/39.9
35% 56.8/40.5 55.9/39.7 54.6/38.4 59.3/42.5
50% 57.1/40.9 57.0/40.7 56.3/38.7 60.3/42.8
75% 58.1/41.8 58.5/42.3 56.9/40.3 60.7/43.9

100% 59.9/43.6 59.3/43.1 57.9/39.5 61.4/42.9

Table 4. Test Dice/IoU score when OSM and EU-DEM rasters
are fused via a trainable FCN with PROC-STACK on the Sus-
tainBench field-boundary delineation task. We allow the inter-
mediate FCN to output (FCNout) 1 and 3-channel raster outputs.
Averaged over 5 random seeds. 100% corresponds to 1572 total
training points. RGB, STACK reported from Figure 2.

4.3.1. LEARNED COMPRESSION WITH PROC-STACK

To understand when a compressed embedding of geo-
graphic rasters can confer similar results as using all as
input, we design a trainable PROC-STACK fusion mech-
anism used to train a U-Net on the SustainBench field
boundary delineation task. In this approach, we pass both
the DEM (1 channel) and OSM (19 channels) geographic
data layers to a trainable FCN architecture. Outputs from
the FCN are stacked with the original optical input and

Sub% F SatCLIP Register Token FT SatCLIP

1% 46.3/36.1 45.1/33.2 45.4/34.7
2% 55.6/45.9 50.3/40.5 53.2/42.8
5% 62.7/54.1 61.6/53.9 63.5/56.2
20% 66.8/60.6 65.3/59.8 65.3/59.1
50% 70.1/64.7 68.1/60.9 67.1/60.1

100% 70.3/65.2 66.5/59.6 66.0/59.1

Table 5. Average Precision (Macro)/ Multi-Label F1 score with
Frozen (F) vs Register vs Fine-tuned (FT) SatCLIP auxiliary
token on the BigEarthNetv2.0 dataset. Results with a register
token are reported with the addition of one register token to a
ViT-B. 100% corresponds to ≈ 430, 000 image patches. Results
averaged over 5 random seeds.

passed to the U-Net, and both models are trained simul-
taneously1.

Label efficiency on the SustainBench field boundary delin-
eation dataset is shown in Table 4. The fusion mechanism
PROC-STACK on learned, compressed inputs is not com-
petitive with a simple STACK of the pre-processed, original
rasters. Interestingly, we observe significantly improved la-

1To accommodate for the increased number of trainable pa-
rameters, we increase the number of epochs the models are trained
on and allow for convergence.
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Figure 5. Pairwise cosine similarity of SatCLIP embeddings
used to form auxiliary ViT token: Frozen (Left) vs Fine-Tuned
(Right). On the BigEarthNetv2.0 land cover classification task,
the fine-tuned SatCLIP token exhibits significantly greater pair-
wise disagreement between countries compared to the frozen to-
ken in countries covered by the train-split of BigEarthNetv2.0.

bel efficiency of the trained PROC-STACK ablation model
between subsets 1% and 5%. These label efficiency im-
provements, however, do not hold across all subsets.

4.3.2. FINE-TUNING LOCATION ENCODERS IN
TOKEN-FUSE

For classification on the BigEarthNetv2.0 dataset, instead
of using a frozen SatCLIP encoder with a learnable lin-
ear projection layer (as in Section 4.2), we now allow for
the SatCLIP model to be trainable given the original pre-
trained SatCLIP location encoder weights.

We find that the label-efficiency and out-of-sample perfor-
mance degrade when the SatCLIP weights are learnable
during training (Table 5). Figure 5 shows that fine-tuning
the SatCLIP model in this fashion leads to embeddings that
are highly localized within various countries covered by
the BigEarthNetv2.0 dataset. This suggests that the aug-
mented ViT may be overfitting to the auxiliary SatCLIP
token, leading to lower test set performance when the Sat-
CLIP model is trainable. Furthermore, overfitting is par-
ticularly likely considering that the trainable weights of the
SatCLIP location encoder span 360k parameters – signifi-
cantly higher than other image tokens input to the ViT. 2

To understand the performance discrepancy between
the fine-tuned and frozen location encoders in the
TOKEN-FUSE strategy, we compare performance of our
auxiliary SatCLIP token against a generic (non-geospatial)
learnable register token as a baseline. First introduced in
(Darcet et al., 2024), register tokens are randomly initial-
ized, fully-trainable prefix tokens. Register tokens cap-
ture high-norm “outlier” artifacts that hold significantly
lower local-patch information. ViTs aided with registers

2Addition of layer-normalization to the SatCLIP token doesn’t
significantly alter performance, label-efficiency, and OOD gener-
alization.

show improvements only when trained with sufficiently
large numbers of trainable parameters (ViT-B, ViT-L, ViT-
H) over long training durations. We choose a ViT-B (86M
trainable parameters) with identical hyperparameters as ex-
periments that produced results in Table 2.

From Table 5, we find that registers do not improve label ef-
ficiency and out-of-sample performance of a ViT-B trained
on the BigEarthNetv2.0 dataset compared to a frozen Sat-
CLIP location encoder. We find that adding additional reg-
ister tokens up to 3 tokens doesn’t significantly alter this
result. Interestingly, both a register token and a fine-tuned
SatCLIP token outperform a vanilla ViT-B when trained on
between 1% to 20% of training data, but perform worse
than a vanilla ViT in the large-data (50%, 100%) regime.

5. Experimental Takeaways
Takeaway 1: Auxiliary geographic inputs improve per-
formance in low-data settings. In Section 4.1, we find no-
table performance improvements in low-data settings with
an auxiliary OSM and DEM geographic input layer (0.08
IoU on SustainBench, 9.3% OA on EnviroAtlas, 0.162 R2

improvement on USAVars). On the SustainBench field
boundary delineation task, a U-Net trained with an OSM
and EU-DEM raster matches the test IoU of an RGB-only
model with only 224 training samples (compared to 1573
training samples for the RGB-only model).

Takeaway 2: Auxiliary geographic inputs improve per-
formance OOD. From Section 4.2, we find that these ge-
ographic layers are especially helpful when evaluated on
OOD splits of the benchmark datasets: 4.12% improve-
ment in EnviroAtlas’s OOD cities, 3.1% improvement on
BigEarthNetv2.0’s spatially-buffered test splits.

Takeaway 3: Finetuning SatML models aided by aux-
iliary geographic inputs can hurt performance. Sur-
prisingly, when we allow the intermediate module in
PROC-STACK (denoted by f(·) in Figure 1) to be train-
able and act as a geographic input compression module, test
IoU scores drop, on average, by 4.1% on the Table 4) test
set. Higher performance drops occur as the expressivity of
the intermediate FCN is increased from 1 to 3 output chan-
nels. From Section 4.3.2, we find that allowing a SatCLIP
encoder to be jointly trained with the SatML classification
model causes the model to overfit (Figure 5), hurting label
efficiency and OOD performance in the BigEarthNet task.

Limitations and future work: In Figures 2 to 4 and 6
and Tables 2 and 3, we use geographic data-layers that
make sense for the downstream task. As we are primar-
ily interested in potential benefits of using additional data
layers, we restrict the scope of the study only to these ge-
ographic input layers and do not train on a larger corpus
of raster and scalar inputs. Here, we use fusion mech-

8



Using Multiple Input Modalities Can Improve Data-Efficiency and O.O.D. Generalization for ML with Satellite Imagery

anisms STACK, PROC-STACK for convolutional models
and TOKEN-FUSE for ViTs since they involve minimal
modifications to the source architectures; future work will
examine more sophisticated fusion mechanisms.
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A. Experimental Setup
A.1. FCN on EnviroAtlas Land Cover Segmentation with STACK, PROC-STACK:

We train on EnviroAtlas’ train images in Pittsburgh, PA on a 5-layer Fully Convolutional Network with 64 filters and an
output smoothing of 10−2. A batch size of 128 and a learning rate of 1e − 3 are fixed across all training data subsets and
random seeds reported in Figure 4. We fix the lower bound learning rate to 1e− 7. Table 6 reports the number of training
epochs each data-efficient FCN is trained on. Note that FCNs trained on 1% of EnviroAtlas’ training data for 700 epochs
trigger our early-stopping logic between epoch 200-300. We use TorchGeo’s RandomGeoSampler with an input image
size of 128. Our test dataset uses TorchGeo’s GridGeoSampler with an input image size of 256 and a stride of 512 to
avoid overlapping image patches. Our multi-modal inputs include a road, water, waterway, and waterbody footprint from
(Haklay & Weber, 2008).

Hand-crafted prior generation process. In our PROC-STACK experiments, the hand-crafted prior f(xi) ≡ pi(ℓ) is
constructed exactly as in (Rolf et al., 2022) (“Coarse data in weakly supervised segmentation”, §3), using the NLCD 30 m
land-cover map to induce per-pixel beliefs over our four high-resolution classes. Concretely, we first compute the empirical
co-occurrence matrix

P (ℓ | c) =

∣∣{ high-res label = ℓ, NLCD class = c}
∣∣∑

ℓ′

∣∣{ high-res label = ℓ′, NLCD class = c}
∣∣

from a held-out set of aligned NAIP+NLCD+Land Cover tiles. Then, for each pixel i with NLCD class ci, we set

pi(ℓ) = P (ℓ | ci)

and apply a small Gaussian blur (σ = 1 pixel) to smooth block artifacts. In PROC-STACK mode, we further enrich this
prior with binary auxiliary masks (roads, buildings, waterways): for each feature j, we define

Mj(i) =

{
1, if feature j lies within a 10 m radius of pixel i,
0, otherwise,

and boost the corresponding class by adding a fixed weight wj to pi(ℓ = j). Finally, we re-normalize pi(ℓ) so that∑
ℓ pi(ℓ) = 1. This yields a spatially varying, hand-crafted prior that both encodes coarse NLCD statistics and injects

domain knowledge via auxiliary GIS layers, as required by the PROC-STACK formulation.

Subset Size Training Epochs

100% 7
75% 9
50% 14
35% 20
20% 35
10% 70
5% 140
2% 350
1% 700

Table 6. Training epochs scaled by subset size for all label-efficiency experiments.

A.2. ViT on BigEarthNetv2.0 Multi-label classification with TOKEN-FUSE

Our experiments with the Vision Transformer (ViT) use a ViT-Base and a ViT-Small (86M and 22M trainable parameters)
with a fixed patch size of 8. All ViTs are randomly initialized for a fixed random seed. We prepend a learnable location
token xloc ∈ RD to the input sequence in addition to a class token xcls ∈ RD and N patch tokens x(i)

patch ∈ RD. The token
sequence is given by

Xtokens =
[
xcls; xloc; x

(1)
patch, . . . , x

(N)
patch

]
∈ R(N+2)×D,

1
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Figure 6. Label efficiency of a ViT trained with an auxiliary SatCLIP token. Left: ViT-Base (86M trainable parameters). SatCLIP
linear projection layer mapped to embedding dimension of 768. Right: ViT-small (22M trainable params), SatCLIP linear projection
layer mapped to embedding dimension of 384.

We add corresponding learnable positional embeddings

Epos =
[
ecls; eloc; e

(1)
patch, . . . , e

(N)
patch

]
.

Our final sequence is z0 = Xtokens + Epos. With the addition of the auxiliary SatCLIP token with TOKEN-FUSE, our
sequence length is increased by one and allows the model to jointly encode class and location information.

Why SatCLIP? SatCLIP is currently the only location encoder in previous work that is pre-trained on Sentinel-2 satellite
imagery, hence making it a suitable candidate for our experiments that primarily train, validate, and test on geospatial
satellite imagery. Future work will incorporate the label-efficiency and out-of-sample performance for SatML models
trained with newer location encoders that are pre-trained with satellite or geospatial imagery.

Our experiments on the BigEarthNetv2.0 dataset use a batch size of 700 and run for 15 epochs (5 warmup epochs) at a base
learning rate of 5e − 4. We use a dropout rate of 0.15 to prevent overfitting across all settings (Finetuned SatCLIP (FT),
Frozen SatCLIP (F), and Register token). We record macro and micro-averaged average precision, recall, and F1 score in
addition to class-wise accuracies. Figure 6 shows label-efficiency results (similar to Table 2) of a frozen SatCLIP auxiliary
token with a learnable linear projection layer on the BigEarthNet2.0 dataset.

A.3. U-Net on SustainBench Field Boundary Delineation with STACK

Our standard U-Net setup consists of 4 downsampling blocks, a bottleneck, and corresponding upsampling blocks with
skip connections. Input images are georeferenced with a pre-processed OSM raster and are stored as an HDF5 dataset
with 7 total channels. We use a random crop, horizontal, and vertical flip augmentation during training and a center crop
for evaluation. The model is trained for 20 epochs with a batch size of 48 at a learning rate of 1 × 10−4. A learning rate
scheduler cognizant of validation loss plateaus is used (factor 0.5, patience 5). We record the Dice coefficient, and the IoU
score.

Ablations with model architectures: We conduct a broad survey of commonly used SatML model architectures for
semantic segmentation tasks from published work spanning 2020 to 2025. We find that most commonly used segmentation
architectures include:

• Fully Convolutional Networks (FCN) (Long et al., 2015)

• U-Net (Ronneberger et al., 2015a; Hou et al., 2021)

• SegNet (Badrinarayanan et al., 2017; Weng et al., 2020)

• PSPNet (Zhao et al., 2017; Yuan et al., 2022)

• DeepLabv3+ (Chen et al., 2018)
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• SegFormer (Xie et al., 2021)

• MA-Net (Fan et al., 2020)

We choose 4 commonly used segmentation model architectures from the list above, and perform the label-efficiency exper-
iments similar to Section 4.1 with and without an auxiliary geographic input of an OSM and EU-DEM raster layer. From
Table 7, we see that our performance improvements hold consistently over all data subsets with the auxiliary geographic
input.

A.4. ResNet50 on USAVars Regression with STACK

Our generated USAVars dataset comprises images with 7 channels and corresponding scalar labels. A custom
HDF5Dataset class is used to load the data. For 7-channel inputs, the first four channels are normalized to [0, 1] by
division by 255, while channels 4–6 are scaled from the original categorical values returned from the OSM API to the
RGB space. Random cropping (to an image size of 256), horizontal, and vertical flips are applied during training, while a
center crop is used for validation and testing. To accommodate inputs with 4 or 7 channels, the initial convolutional layer
of ResNet50 is re-initialized accordingly. The final fully-connected layer is replaced with a linear layer outputting a single
value for regression. We use a base learning rate of 1e− 4 with a batch size of 512. We train the model for 20 epochs. All
experiments are seeded for reproducibility and results are reported over five random seeds. We record the mean squared
error loss and the R2 score.

Figure 7. Qualitative Result: Frozen F vs Finetuned FT SatCLIP auxiliary token [Top-left] Cosine distance of standard SatCLIP
embeddings to a fixed reference point in Austria. [Top-Right] Absolute difference between cosine distances between our F SatCLIP
location encoder + trained linear projection layer and original SatCLIP location encoder cosine distances. [Bottom] Global PCA embed-
dings of F vs FT SatCLIP auxiliary token with TOKEN-FUSE
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Figure 8. Qualitative result: Frozen vs Finetuned SatCLIP auxiliary ViT token on the BigEarthNetv2.0 land-cover classification
task: Maps: PCA embeddings of the SatCLIP tokens: frozen (left) vs finetuned (right) on 10 European countries covered by the
BigEarthNetv2.0 dataset.
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B. Qualitative Result: TOKEN-FUSE
To qualitatively evaluate the quality of embeddings learned by our linear projection layer, which is responsible for map-
ping the 256-dimensional SatCLIP embeddings to the token size expected by the ViT, we calculate the disagreement of this
learned layer with a standard SatCLIP location encoder. With a fixed reference SatCLIP embedding in Austria (EAustria),
we calculate the cosine distance between SatCLIP embeddings of 200,000 global, randomly sampled SatCLIP embed-
dings with EAustria. The disagreement of our learned linear projection layer is calculated by repeating the same procedure
after passing standard SatCLIP embeddings through the learned linear projection layer before calculating the cosine dis-
tance. Figure 7 [top-right] shows that our learned linear projection layer successfully maps SatCLIP embeddings to the
SatCLIP auxiliary token without a significant disagreement from original embeddings. Figure 7[Bottom] also shows a
PCA visualization of a frozen (F) vs finetuned (FT) SatCLIP auxiliary token’s embeddings mapped to RGB space. Fig-
ure 8 surprisingly shows these PCA embeddings for countries covered by the train-split of the BigEarthNetv2.0 dataset
(Clasen et al., 2024). These results support our observation in Figure 8 that show that a finetuned SatCLIP token with
TOKEN-FUSE learns high-resolution, arbitrary information compared to a frozen token.

Figure 9. NAIP Imagery from USAVars (Rolf et al., 2021) georeferenced with our OpenStreetMaps (OSM) raster geographic
data-layer: OSM products are smoothed with a Gaussian Kernel and pre-processed to RGB space.
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Subset Model RGB RGB + OSM + EU-DEM w/ STACK

IoU Dice IoU Dice

0.01

deeplabv3+ 0.163±0.046 0.261±0.079 0.180±0.051 0.287±0.072
fpn 0.133±0.040 0.222±0.063 0.135±0.042 0.224±0.065
pspnet 0.125±0.043 0.207±0.074 0.132±0.048 0.221±0.066
unetpp 0.251±0.006 0.397±0.008 0.259±0.007 0.407±0.009

0.05

deeplabv3+ 0.293±0.009 0.445±0.012 0.311±0.006 0.465±0.008
fpn 0.114±0.024 0.197±0.036 0.120±0.021 0.207±0.032
pspnet 0.156±0.025 0.262±0.038 0.148±0.036 0.246±0.054
unetpp 0.318±0.007 0.475±0.008 0.333±0.008 0.491±0.009

0.10

deeplabv3+ 0.317±0.004 0.472±0.005 0.333±0.007 0.490±0.009
fpn 0.123±0.012 0.212±0.019 0.139±0.010 0.238±0.015
pspnet 0.157±0.007 0.264±0.011 0.169±0.016 0.281±0.025
unetpp 0.363±0.004 0.524±0.004 0.377±0.004 0.538±0.004

0.20

deeplabv3+ 0.326±0.003 0.482±0.003 0.343±0.004 0.500±0.004
fpn 0.193±0.008 0.314±0.011 0.213±0.004 0.342±0.006
pspnet 0.153±0.002 0.258±0.005 0.154±0.002 0.258±0.003
unetpp 0.385±0.003 0.548±0.004 0.405±0.002 0.567±0.002

0.35

deeplabv3+ 0.343±0.004 0.501±0.004 0.360±0.003 0.520±0.003
fpn 0.241±0.010 0.377±0.012 0.266±0.011 0.409±0.014
pspnet 0.163±0.006 0.272±0.009 0.164±0.004 0.273±0.005
unetpp 0.391±0.002 0.554±0.002 0.415±0.003 0.578±0.003

0.50

deeplabv3+ 0.353±0.003 0.513±0.003 0.363±0.003 0.522±0.003
fpn 0.253±0.005 0.393±0.007 0.285±0.004 0.433±0.005
pspnet 0.167±0.008 0.278±0.011 0.174±0.002 0.289±0.002
unetpp 0.398±0.001 0.561±0.001 0.420±0.002 0.582±0.002

0.75

deeplabv3+ 0.358±0.001 0.518±0.001 0.383±0.002 0.545±0.002
fpn 0.285±0.007 0.433±0.008 0.315±0.004 0.468±0.005
pspnet 0.187±0.007 0.306±0.010 0.194±0.007 0.317±0.010
unetpp 0.402±0.002 0.564±0.002 0.430±0.001 0.593±0.001

1.00

deeplabv3+ 0.368±0.003 0.529±0.003 0.390±0.004 0.553±0.004
fpn 0.311±0.003 0.464±0.003 0.335±0.004 0.491±0.004
pspnet 0.199±0.005 0.323±0.007 0.204±0.003 0.330±0.004
unetpp 0.408±0.002 0.571±0.002 0.436±0.001 0.598±0.001

Table 7. Performance and Label Efficiency of commonly used SatML semantic segmentation model architectures on the Sus-
tainBench field boundary delineation dataset with and without an OSM and EU-DEM auxiliary geographic data layer: Model
choices are informed by a surveying the SatML segmentation model literature spanning five years. Test Dice and IoU scores reported
based on a hold-out validation set. Results averaged over 3 random seeds. Bolded numbers indicate best model performance for a given
data subset.
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