
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRETRAINING A SHARED Q-NETWORK FOR DATA-
EFFICIENT OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) aims to learn a policy from a static dataset
without further interactions with the environment. Collecting sufficiently large
datasets for offline RL is exhausting since this data collection requires colossus
interactions with environments and becomes tricky when the interaction with
the environment is restricted. Hence, how an agent learns the best policy with a
minimal static dataset is a crucial issue in offline RL, similar to the sample efficiency
problem in online RL. In this paper, we propose a simple yet effective plug-and-
play pretraining method to initialize a feature of a Q-network to enhance data
efficiency in offline RL. Specifically, we introduce a shared Q-network structure
that outputs predictions of the next state and Q-value. We pretrain the shared
Q-network through a supervised regression task that predicts a next state and
trains the shared Q-network using diverse offline RL methods. Through extensive
experiments, we empirically demonstrate that the proposed method enhances the
performance of existing popular offline RL methods on the D4RL and Robomimic
benchmarks, with an average improvement of 135.94% on the D4RL benchmark.
Furthermore, we show that the proposed method significantly boosts data-efficient
offline RL across various data qualities and data distributions. Notably, our method
adapted with only 10% of the dataset outperforms standard algorithms even with
full datasets.

1 INTRODUCTION

Sample efficiency is a crucial issue in reinforcement learning (RL) since typical RL considers an
online learning nature that involves iterative processes between experience collections and policy
improvements through online interactions with the environment (Sutton et al., 1998). Unfortunately,
requiring excessive online interactions is impractical in several cases since data collection requires
expensive costs and retains potential risks of the agent, e.g. hardware corruption. Offline RL is one
approach to alleviate this sample efficiency problem, which provides a solution by avoiding online
interactions with the environment (Levine et al., 2020). In recent years, pretraining with offline RL
and fine-tuning with online RL have been investigated to improve sample efficiency of the online
interactions (Nakamoto et al., 2024; Xie et al., 2021; Rafailov et al., 2023; Ball et al., 2023).

Similar to addressing the sample efficiency problem in online RL, learning offline RL with minimal
datasets is necessary since collecting enormous experience charges expensive costs and unfavorable
explorations, hampering the possibility of offline RL in the real world. In this paper, we name this
problem as data efficiency where an agent tries to learn the best policy with minimal data in the offline
RL scheme. Despite the necessity of data efficiency, this problem has not been treated enough in
previous works. Although some researchers have evaluated their work empirically on reduced datasets
in part of the experiments (Agarwal et al., 2020; Kumar et al., 2020a;b), they have overlooked this
data efficiency problem. In the case of online RL, model-based RL and representation learning have
proposed the resolution of sample efficiency problem (Sutton, 1991; Hafner et al., 2019b; Schwarzer
et al., 2020; 2021). As in online RL, one can expect that offline model-based RL or representation
method might resolve this data efficiency problem (Yu et al., 2020; Sun et al., 2023; Yang & Nachum,
2021). However, Figure 7 demonstrates that both approaches are unable to overcome this problem.

In this work, we propose a simple yet effective plug-and-play method that pretrains a shared Q-
network toward data-efficient offline RL. Specifically, the shared Q-network structure is composed of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of our pretraining method. Our method splits the original Q-network into two
core architectures: a shared network that extracts the representation z from the concatenated vector
of state s and action a and separated heads for training the transition model network and Q-network,
respectively.

two parts as illustrated in Figure 1. First, a shared deep neural network layer (hφ) takes the state and
action pair as inputs. Second, separate shallow output parts (gψ and fθ) consist of two linear layers
that individually output a Q-value for a Q-function and a next state prediction for a transition model.
The learning phase of the shared Q-network consists of a pretraining and an RL training phase. In the
pretraining phase, the shared network attached with a shallow transition layer (hφ and gψ) is trained
through a supervised regression task that predicts the transition model. After the pretraining phase
where the shared network is initialized with the pretraining, the shared network is connected with a
shallow Q layer (hφ and fθ) and trained with an existing offline RL value learning.

We empirically demonstrate that our method improves the performance of existing popular offline RL
methods on the D4RL (Fu et al., 2020), and Robomimic (Mandlekar et al., 2021), benchmarks with an
average improvement of 135.94% on the D4RL benchmark. We also show that our method maintains
data-efficient performance with fragments of the dataset across the data quality on the D4RL dataset.
Moreover, we investigate our method across the data collection strategies on the ExoRL datasets
(Yarats et al., 2022), assuming a small dataset would have a shifted data distribution compared to a
large dataset. As a result, we demonstrate that our method improves the performance regardless of
the qualities of the datasets and the data distributions. Figure 6 and Figure 9 show that our method
with 10% of datasets outperforms vanilla algorithms even with full datasets. Furthermore, Figure 7
demonstrates that our method indeed outperforms the offline model-based RL and representation
approaches in reduced datasets.

2 RELATED WORKS

Offline RL. Offline RL aims to learn a policy with static data without further interactions with the
environment. Previous approaches have mainly addressed the distribution shift problem, which is
caused by the idea that queries of the Q-function over out-of-distribution actions may yield overly
optimistic values during offline training (Fujimoto et al., 2019; Kumar et al., 2019; Levine et al.,
2020; Kumar et al., 2020b; Fujimoto & Gu, 2021; Kostrikov et al., 2021a). Recently, scalability to
a large dataset and neural network model has been studied (Chebotar et al., 2023; Padalkar et al.,
2023; Team et al., 2024). In other fields, pretraining with offline RL and fine-tuning with online RL
is examined to improve sample efficiency in the online interaction step (Nakamoto et al., 2024; Xie
et al., 2021; Rafailov et al., 2023; ?). In contrast, distinct experiments over the way to consuming
the static dataset have been conducted, e.g., an imbalanced dataset, unlabeled data, and even data
corruption under an offline RL scheme (Hong et al., 2023; Yu et al., 2022; Yang et al., 2023). While
prior research (Agarwal et al., 2020; Kumar et al., 2020a;b) often has evaluated their work on reduced
datasets as a partial result, the field overlooks the data efficiency problem itself as a main contribution.
In contrast, we aim to improve the data efficiency in offline RL (i.e., learning the best policy with
minimal data). In this work, we propose a simple yet effective plug-and-play method for pretraining
a shared Q-network toward the data-efficient offline RL.

Sample efficient RL. A common issue in most RL algorithms is sample efficiency: excessive
interactions with the environment are required to learn an optimal policy. For this reason, sample
efficiency has been an active research topic in RL (Kostrikov et al., 2021b; Yarats et al., 2021c;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

D’Oro et al., 2022). Model-based RL (Sutton, 1991; Deisenroth & Rasmussen, 2011; Hafner et al.,
2019b;a; Hansen et al., 2022) is a common approach to resolve sample inefficiency by learning a
(latent) dynamics model and using it to generate additional transition samples. Otherwise, effective
pretraining (Schwarzer et al., 2021; Yarats et al., 2021c) and data augmentation (Laskin et al., 2020;
Kostrikov et al., 2021b) play a critical role in improving sample efficiency in RL. Recently, offline-to-
online (Lee et al., 2022; Ball et al., 2023; Rafailov et al., 2023; Feng et al., 2023; Nakamoto et al.,
2024) and foundation model (Ahn et al., 2022; Seo et al., 2022; Brohan et al., 2023b;a; Bhateja et al.,
2023) have tackled this problem where the poor sample efficiency of online RL regime is alleviated
by leveraging large offline data. In this paper, we separately define the data efficiency problem in
offline RL as the ability of an offline RL algorithm how an agent can learn the best policy even with
minimal pre-collected samples called dataset in offline RL. We claim that this data efficiency problem
is different from the sample efficiency problem since online RL has opportunities for interactions
with environments which can present another chance to improve the sample efficiency.

3 MARKOV DECISION PROCESS

We consider the Markov decision process, where the agent sequentially takes actions to maximize cu-
mulative discounted rewards. In a Markov decision process with the state-space S := {1, 2, . . . , |S|}
and action-space A := {1, 2, . . . , |A|}, the decision maker selects an action a ∈ A at the cur-
rent state s ∈ S, then the state transits to the next state s′ ∈ S with probability P (s′|s, a), and
the transition incurs a reward r(s, a, s′) ∈ R, where P (s′|s, a) is the state transition probability
from the current state s ∈ S to the next state s′ ∈ S under action a ∈ A, and r(s, a, s′) is the
reward function. For convenience, we consider a deterministic reward function and simply write
r(sk, ak, sk+1) =: rk, k ∈ {0, 1, . . .}.
A deterministic policy, π : S → A, maps a state s ∈ S to an action π(s) ∈ A. The objective of the
Markov decision problem is to find a deterministic (or stochastic) optimal policy, π∗, such that the
cumulative discounted rewards over infinite time horizons is maximized, i.e.,

π∗ := argmax
π∈Θ

E

[∞∑
k=0

γkrk

∣∣∣∣∣π
]
,

where γ ∈ [0, 1) is the discount factor, Θ is the set of all deterministic policies, (s0, a0, s1, a1, . . .) is
a state-action trajectory generated by the Markov chain under policy π, and E[·|π] is an expectation
conditioned on the policy π. Moreover, Q-function under policy π is defined as

Qπ(s, a) = E

[∞∑
k=0

γkrk

∣∣∣∣∣ s0 = s, a0 = a, π

]
, (s, a) ∈ S ×A.

4 PRETRAINING Q-NETWORK WITH TRANSITION MODEL HELPS IMPROVING
DATA EFFICIENCY

In this paper, we propose a simple yet effective pretraining method adapting features of the transition
model into the initialization of Q-network to improve data efficiency in offline RL. To this end, we
design Q-network that partially shares a network with the estimation of the transition model. In
particular, the transition model is constructed as follows:

ŝ′ = (gψ ◦ hφ)(s, a), (s, a) ∈ S ×A, (1)
where ŝ′ is the estimated next state, gψ is a parameterized linear function, and hφ is shared with the
Q-network, which is defined as

Qφ,θ(s, a) = (fθ ◦ hφ)(s, a), (s, a) ∈ S ×A, (2)
where fθ is also a parameterized linear function that represents the linear output layer and hφ
represents the fully connected neural network layers shared with the transition model in (1). The
overall structures of the neural networks are illustrated in Figure 1.

In the proposed method, the transition model gψ ◦ hφ is pretrained by minimizing the mean squared
prediction error loss function

Lpre(φ,ψ) =
∑

(s,a,s′)∈D

(s′ − (gψ ◦ hφ)(s, a))2 (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Pretraining Q-network scheme for Offline RL

Input: Dataset D of transition (s, a, s′), learning rate α
Initialize parameters φ,ψ
for each gradient step do

Sample a mini-batch B ∼ D
Compute the transition model estimation error

Lpre(φ,ψ) =
∑

(s,a,s′)∈B

(s′ − (gψ ◦ hφ)(s, a))2

Update weights of the shared network and transition model network

φ← φ− α∇φLpre(φ,ψ), ψ ← ψ − α∇ψLpre(φ,ψ)

end for
Output: Pretrained weights φ of the shared network

over the pre-collected dataset D which includes a given set of the transition (s, a, s′). Afterward,
the pretrained parameter φ can be used as an initial or fixed parameter for standard RL algorithms
based on the Q-network structure in (4) without any modification. The overall pretraining process is
summarized in Algorithm 1 for offline RL. We also note that similar principles can be applied for
online RL as well, and the corresponding algorithm is given in Appendix A.

Later in this paper, we empirically demonstrate that combining the proposed pretraining method with
existing offline RL methods can effectively improve their performances. Moreover, we demonstrate
that our method indeed improves data efficiency through some experiment settings in offline RL.

4.1 ANALYSIS: BASED ON THE PROJECTED BELLMAN EQUATION

In this section, we analyze how our method can resolve the data efficiency problem from the
perspective of the projected Bellman equation. For simplicity and convenience of presentation, we
assume that the state and action spaces are discrete and finite, and the transition is deterministic.
However, the principles in this paper can be extended to more general continuous state and continuous
action cases. Our analysis is based on the observation that Q-function with neural networks can be
generally represented by (2). Defining the feature vector z = hφ(s, a) ∈ Rm, it can be rewritten as

Qφ,θ(s, a) =

m∑
i=1

θihφ,i(s, a) = ⟨θ, hφ(s, a)⟩ , (s, a) ∈ S ×A. (4)

When φ is fixed, then the above structure can be viewed as a linear function approximation with
the feature function hφ,i. In the proposed method, hφ,i is indeed pretrained by minimizing the loss
in (3) and then fixed while learning Q-function in (4). Therefore, the interpretation based on the
linear function approximation is expected to be a reasonable model to explain the phenomenon in the
proposed method.

It is well known that with linear function approximation, the corresponding standard Bellman equation

Qφ,θ(s, a) = R(s, a) + γ
∑
s′∈S

Pπ(s′|s, a)
∑
a′∈A

Qφ,θ(s
′, a′)

may not admit a solution in general. However, typical TD-learning algorithms are known to converge
to the unique fixed point of the projected Bellman equation. In particular, considering the vector form
of the Bellman equation, Qφ,θ = R+ γPπQφ,θ, the projected Bellman equation (Melo & Ribeiro
(2007)) is known to admit a solution

Qφ,θ = Π(R+ γPπQφ,θ)

where Π is the projection onto the column space, C(Hφ), of the feature matrix Hφ defined as

Hφ :=

...

hφ(s, a)
T

...

 .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: The Rank of the latent space of Q-network on the D4RL benchmark. We compare the
rank of the latent space between a vanilla TD3+BC and TD3+BC adapted with our method over 512
samples. As a result, adapting our method significantly increases the rank of the latent space, leading
to reduced approximation error.

Halfcheatah Hopper Walker2d
TD3+BC TD3+BC (+ours) TD3+BC TD3+BC (+ours) TD3+BC TD3+BC (+ours)

Random 59 236 69 192 72 82

Medium 55 249 85 227 55 254

Medium Replay 49 252 77 249 77 255

Medium Expert 58 236 86 232 52 253

Expert 44 198 104 198 68 225

Figure 2: Reduced approximation error with the expanded column space of Hφ. In linear
approximation, there exists Qπ outside of the column space of Hφ. To deal with this problem, the
projected Bellman equation projects Qπ to ΠQπ which exists in the column space of Hφ.

The corresponding solution is known to have the error bound

||Qφ,θ −Qπ||∞ ≤
1

1− γ
||ΠQπ −Qπ||∞, (5)

where Qπ is the true Q-function corresponding to the target policy π. As can be seen from the above
bound, the error depends on the feature matrix Hφ. We can observe that the smaller the distance
between C(Hφ) and Qπ , the smaller the error between Qφ,θ and Qπ . Therefore, a proper choice of
the feature function is key to the successful estimation of Qπ .

With the neural network function approximation, typical value-based RL algorithms update both φ
and θ simultaneously via TD-learning algorithms. Since the feature functions, hφ,i, are in general
nonlinear and non-convex in φ, it may sometimes converge to a local optimal solution. This in
turn implies that appropriate initialization or pretraining of the feature functions, hφ,i, can play an
important role for estimating Q-function with smaller approximation errors on the right-hand side of
(5) by avoiding suboptimal local solutions.

We conjecture that the pretraining approach with the transition model introduced in the previous
section can effectively shape the feature functions so that the column space C(Hφ) can cover higher
dimensional vector space in R|S×A|. As shown in Figure 2, this eventually results in a reduction of
the solution error on the right-hand side of (5). To support this, we empirically compare the rank of
the Q-network in the latent space between vanilla and the pretrained TD3+BC with our method over
512 data samples.

Table 1 exhibits that adapting our method shows a significantly higher rank than the rank of the vanilla
method. From the results, we claim that the proposed method indeed expands the column space
C(Hφ) and covers higher dimensional vector space in R|S×A|, leading to more precise Q-function
estimation. In other words, we might learn a more precise Q-function with the same amount of
samples, and it means that we can get a desirably estimated Q-function with less data. In the following
section, we demonstrate our claim with empirical experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we evaluate our method over existing offline RL methods with the popular offline
RL benchmarks, D4RL, and the more complex domain, Robomimic. Furthermore, we examine the
proposed method over the partial fragments of D4RL and ExoRL datasets for data-efficient offline RL.
We introduce a detailed experimental setup and baselines in the following paragraphs and provide
empirical results subsequently.

Experimental setup. We have considered heterogeneous tasks and diverse datasets for precise
comparisons. For the locomotion task, the proposed method is compared with existing methods in the
popular D4RL benchmark (Fu et al., 2020). Three different embodied agents and five distinct datasets
are considered in order to validate the effectiveness of the proposed method: HalfCheetah, Hopper,
Walker2d for agents and random, medium-replay, medium, medium-expert, expert for datasets. For the
tabletop manipulation tasks, we have evaluated the proposed method in the Robomimic benchmark,
(Mandlekar et al., 2021), where off-the-shelf offline RL methods are already implemented. Two
different tabletop tasks and mixed-quality datasets are considered to verify the scalability of the
proposed method: Lift, Can for tasks and Machine-Generated (MG) for datasets. For data-efficient
offline RL, we have evaluated the proposed method across the reward qualities of the datasets of
D4RL Gym locomotion tasks, and the dataset collection strategies for walker walk (i.e. SMM, RND,
ICM) and point mass maze (i.e. Proto, Diayn) in ExoRL (Yarats et al., 2022). See Appendix C for a
more detailed setup for tasks and datasets.

Baselines. We have designed extensive experiments on the D4RL benchmark to verify the effective-
ness of the proposed method built on top of the popular offline RL methods, including AWAC (Nair
et al., 2020), CQL (Kumar et al., 2020b), TD3+BC (Fujimoto & Gu, 2021), and IQL (Kostrikov
et al., 2021a). To verify the benefits of the proposed method, we compared the normalized scores
between the vanilla method and the one combined with the proposed pretraining method. Similar
to the D4RL benchmark, the success rate is compared on the Robomimic benchmark, where IQL,
TD3+BC, BCQ (Fujimoto et al., 2019), and IRIS (Mandlekar et al., 2020), were used in combination
with the proposed methods. We also evaluate MOPO (Yu et al., 2020), MOBILE (Sun et al., 2023)
and ACL (Yang & Nachum, 2021) to compare the proposed method with offline model-based RL
and representation approaches. On the ExoRL benchmark, we used TD3 (Fujimoto et al., 2018), for
walker walk task, and CQL for point mass maze tasks. See Appendix E for more implementation
details.

Table 2: Averaged normalized scores on the D4RL benchmark over 5 seeds. In each column
corresponding to different RL methods, values on the left-hand side are scores of the baseline methods
directly taken from the literature. The values on the right-hand side of each column represent scores
of the proposed methods combined with the baselines. The increased scores compared to the baselines
are highlighted in blue font, and they are reported with the mean and standard deviations over five
random seeds.

AWAC CQL IQL TD3+BC

Random
HalfCheetah 2.2→51.10±0.89 21.7±0.9→31.94±2.63 →18.28±1.02 10.2±1.3→14.83±0.54
Hopper 9.6→59.47±33.79 10.7±0.1→30.20±2.66 →10.67±0.41 11.0±0.1→31.56±0.16
Walker2d 5.1→13.11±3.91 2.7±1.2→19.56±4.49 →8.88±0.71 1.4±1.6→11.23±5.05

Medium
HalfCheetah 37.4→54.63±1.45 37.2±0.3→39.93±18.84 47.4→48.85±0.16 42.8±0.3→49.17±0.26
Hopper 72.0→101.73±0.20 44.2±10.8→90.58±2.23 66.4→78.62±2.21 99.5±1.0→71.52±2.16
Walker2d 30.1→89.51±0.88 57.5±8.3→84.66±0.67 78.3→83.63±1.14 79.7±1.8→87.09±0.60

Medium Replay
HalfCheetah →55.75±1.30 41.9±1.1→47.60±0.37 44.2→45.48±0.17 43.3±0.5→45.84±0.26
Hopper →106.67±0.59 28.6±0.9→98.63±2.12 94.7→99.43±1.71 31.4±3.0→100.16±1.60
Walker2d →100.31±2.11 15.8±2.6→87.66±1.30 73.9→87.95±1.68 25.2±5.1→92.01±1.58

Medium Expert
HalfCheetah 36.8→90.05±1.89 27.1±3.9→82.75±6.51 86.7→95.25±0.14 97.9±4.4→96.89±0.92
Hopper 80.9→113.23±0.22 111.4±1.2→111.06±0.81 91.5→105.77±11.31 112.2±0.2→113.02±0.19
Walker2d 42.7→111.88±0.28 68.1±13.1→91.63±42.48 109.6→112.09±0.93 101.1±9.3→111.58±0.35

Expert
HalfCheetah 78.5→93.48±0.11 82.4±7.4→97.09±1.03 →97.40±0.13 105.7±1.9→98.86±0.55
Hopper 85.2→112.86±0.10 111.2±2.1→112.10±0.35 →113.34±0.46 112.2±0.2→113.35±0.28
Walker2d 57.0→111.22±0.35 103.8±7.6→110.64±0.28 →112.80±1.08 105.7±2.7→111.00±0.15

Total →1265.01±48.07 764.3±61.5→1136.03±86.78 →1118.46±23.25 979.3±33.4→1148.12±14.65

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Learning curves of TD3+BC. The blue and orange curves are, respectively, the normalized
scores of TD3+BC and TD3+BC pretrained with the proposed method. The vertical red reference
lines split the pretraining and main training phases. After the pretraining phase, TD3+BC combined
with the proposed method quickly outperforms the vanilla TD3+BC by a large margin.

Figure 4: Averaged normalized scores across pretraining time-step rates. R, M, MR, ME, and
E represent random, medium, medium replay, medium expert, and expert datasets on the D4RL
benchmark, respectively.

5.1 PERFORMANCE IMPROVEMENT IN OFFLINE RL BENCHMARKS

To demonstrate the effectiveness of the proposed method over existing offline RL methods, we
evaluate our method on D4RL and Robomimic datasets. In Table 2, the normalized scores between
the vanilla and the one combined with our method are compared for each environment and dataset
in D4RL. One can observe that the proposed method combined with the baselines improves the
corresponding original methods, achieving an average improvement of 135.94%, across diverse envi-
ronments and datasets. Specifically, one can observe that all methods including AWAC (+306.45%),
CQL (+132.77%), IQL (+9.21%), and TD3+BC (+95.34%) exhibit significantly increased per-
formance on average compared to the results reported in the original papers. We have taken all
normalized scores of TD3+BC, AWAC, CQL, IQL from the reported scores in each paper (Fujimoto
& Gu, 2021; Nair et al., 2020; Kumar et al., 2020b; Kostrikov et al., 2021a).

Figure 3 shows the learning curves of TD3+BC and the results verify the effectiveness of the proposed
method. After the pretraining period (indicated by the red vertical lines), one can notice that the
learning curves rapidly increase and achieve higher returns compared to the original methods. These
results suggest that our method accelerates training and enhances performance with only a few lines
of modifications on top of the baselines. Full graphs of TD3+BC are provided on Figure 12 in
Appendix G.

We also applied our method with different pretraining time-step ratios (e.g., 10% - 0.1M of 1M
steps) on TD3+BC over 5 seeds. The results are presented on Figure 4. Notably, regardless of the
pretraining time-step ratio, the proposed method demonstrates improved performance over different
pretraining rates. Overall, the pretraining time-step ratio of 3% yields a slightly higher total sum of
averaged scores while the results of the 10% ratio yield the lowest standard deviation. For all of the
other experiments in this paper, we use the pretraining time-step ratio of 10%.

Additional experiments are conducted on large-scale robotic manipulation tasks in Robomimic
benchmark, to verify the effectiveness of the proposed method for complex tasks. The proposed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Averaged success rate on the Robomimic benchmark. We evaluate both vanilla methods
without pretraining (blue) and methods with pretraining (orange). 7 out of 8 cases depict notably
improved performance in both environments.

Figure 6: Averaged normalized scores in reduced datasets across data quality. This figure shows
the overall performance of our method across reduced dataset (i.e., 1%, 3%, 10%, 30%, 100%)
for three environments (i.e., halfcheetah, hopper, walker2d) in D4RL. From the overall results, we
conclude that our method guarantees better performance even in 10% of the datasets regardless of the
data quality of the dataset, and even 1% for the random datasets and 3% for the medium datasets.

method is evaluated with tasks containing suboptimal transitions, where the proposed method
improves the baselines on the D4RL benchmark. The averaged success rate of four offline RL
baselines is reported in Figure 5 with and without applying the proposed method. As can be seen, all
the methods with the proposed pretraining method are improved over the baselines in seven out of
eight cases. Therefore, we conclude that the proposed method also effectively performs in solving
more complex tasks. We also have conducted experiments on Adroit, 24-DOF environment, in
Appendix D. The results also demonstrate that the proposed method is effective in solving complex
tasks.

5.2 DATA EFFICIENCY ACROSS THE QUALITIES OF THE DATASETS

To validate the data efficiency of the proposed method, regardless of the dataset quality, we have
examined the proposed method with TD3+BC in reduced datasets (i.e., 1%, 3%, 10%, 30%, 100%
of each dataset) across the data quality (i.e., random, medium, medium replay, medium expert,
expert) on D4RL over 5 seeds. To construct the reduced datasets, we have uniformly sampled the
transition segments (i.e., (s, a, r, s′)) from each dataset. On the random datasets (a leftmost section
in Figure 13), training with the proposed method with only 1% of the dataset outperforms the vanilla
TD3+BC trained with full datasets at halfcheetah and warker2d environments. On the medium
datasets (right to the random in Figure 13), the proposed method shows similar or improved results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Comparison of the proposed method with the other approaches on D4RL. We compare
existing model-free offline RLs with our method to offline model-based RLs (i.e., MOPO, MOBILE)
and a representation RL (i.e., ACL) on D4RL over 3 seeds. The graph shows integrated results
over medium, medium-replay, medium-expert datasets. The results show that the proposed method
maintains the performance in reduced datasets, especially 1%, unlike the other approaches.

Figure 8: Average returns in reduced datasets across the dataset collection strategies. We
evaluate our method over different dataset collection strategies (i.e., SMM, RND, ICM). TD3 with our
method outperforms the vanilla TD3 overall and even training with 10% of datasets outperforms the
vanilla TD3 with full datasets. From the results, we demonstrate that our method is data-efficient
regardless of the data distributions.

compared to the vanilla TD3+BC with full datasets by only using 3% of the datasets. On the other
datasets (i.e. medium-replay, medium-expert, and expert), the proposed method with 10% datasets
totally outperforms the vanilla TD3+BC with full datasets. From the overall results in Figure 6, we
conclude that our method guarantees better performance even in 10% of the datasets regardless of the
data quality of the dataset.

We also compare our method with offline model-based RL and representation approaches. We apply
our method to TD3+BC, AWAC, and CQL. We adopt MOPO (Yu et al., 2020) and MOBILE (Sun et al.,
2023) as representatives of offline model-based RL, ACL (Yang & Nachum, 2021) as a representation
representative. We conduct the experiments on D4RL, medium, medium-replay, medium-expert
datasets over three seeds. Figure 7 shows integrated results over the datasets and Figure 14 shows
details. The results show that our method maintains the performance in reduced datasets compared
with the other approaches that spend extra training budget (e.g., training and forwarding the transition).
Especially in 1% datasets, CQL with our method largely outperforms the others. As a result, we
claim that our method is the most proper choice for data-efficient offline RL.

5.3 DATA EFFICIENCY ACROSS THE DATA DISTRIBUTIONS

We assume that a small dataset would have a shifted distribution compared to a large dataset, for
instance, some small datasets have narrow support of visited states. Based on the assumption we have
made, we evaluate our method across different dataset collection strategies since each dataset has a
different data distribution. In ExoRL (Yarats et al., 2022), we chose TD3 as a comparison algorithm
and SMM (Lee et al., 2019), RND (Burda et al., 2018), and ICM (Pathak et al., 2017), as walker

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Effectiveness of the proposed method over narrow support of the visited states datasets.
(Left) Visualized goal-reaching point mass agents and trajectories with different goals, portions, and
exploration methods. (Right) Averaged return of CQL trained with two datasets with and without the
proposed pretraining method.

walk task datasets. In Yarats et al. (2022), ICM shows the best performance, followed by RND, SMM,
and TD3 shows the best performance in ICM. We compare TD3 to TD3 with our method in reduced
datasets (i.e., 1%, 10%, 100%) over three seeds. To construct reduced datasets, we select the data
from the front. Figure 8 shows the results. For all datasets, applying our method with only 10% of
datasets outperforms vanilla TD3 with full datasets. Especially in RND, even training with 1% of
datasets shows a significantly high average return.

Furthermore, we consider apoint mass maze environment in ExoRL to investigate whether our method
is effective even in narrow support of the visited states datasets. Figure 9 visualizes the trajectories of
each reduced dataset collected by DIAYN (Eysenbach et al., 2018), and Proto (Yarats et al., 2021a)
strategies (i.e., 1% of DIAYN, 7% of Proto). In comparison with Figure 2 in Yarats et al. (2022),
our reduced dataset settings cover more narrow support of visited states. The top right figure of
DIAYN shows that there are a few trajectories around the top right goal and the bottom left right
figure of Proto also shows that there are a few trajectories around the bottom right goal in Figure 9.
To demonstrate our method is effective even with a dataset with this shifted state distribution, we
evaluated the proposed method on reduced point mass maze datasets described in Figure 9 over
short (reach top right) and long (reach bottom right) goals with CQL. Figure 9 demonstrates that
our method shows significant performance even with narrow data distribution. From the results, we
conclude that our method is indeed more data-efficient than the other methods regardless of different
choices of the data distribution.

6 CONCLUSION

In this paper, we propose a simple yet effective data-efficient offline RL method that pretrains a
shared Q-network with the transition dynamics prediction task, maintaining reasonable performance
even with a small training dataset. To pretrain the Q-network, we design a novel shared network
architecture that outputs predictions of the next state and Q-value. This structure makes our method
easy to apply to any existing offline RL algorithms and efficiently boosts data efficiency.

To demonstrate the effectiveness of the proposed strategy, we conduct experiments with various
settings in offline RL. From the results, we demonstrate that our method significantly improves
the performance of existing offline RL algorithms over D4RL and Robomimic benchmarks. We
also demonstrate that our method is indeed data-efficient across the different data qualities from
D4RL and the different data distributions from ExoRL. We leave future work to expand our method
toward various offline RL problems, e.g., offline to online RL, goal-conditioned RL, and real-world
applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International conference on machine learning, pp. 104–114. PMLR,
2020.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao,
Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev,
Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do
as i can, not as i say: Grounding language in robotic affordances. (arXiv:2204.01691), August
2022. doi: 10.48550/arXiv.2204.01691. URL http://arxiv.org/abs/2204.01691.
arXiv:2204.01691 [cs].

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar, Quan Vuong, Yevgen
Chebotar, Sergey Levine, and Aviral Kumar. Robotic offline rl from internet videos via value-
function pre-training. (arXiv:2309.13041), September 2023. URL http://arxiv.org/abs/
2309.13041. arXiv:2309.13041 [cs].

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk
Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia
Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong
Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin
Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2: Vision-
language-action models transfer web knowledge to robotic control. (arXiv:2307.15818), July
2023a. doi: 10.48550/arXiv.2307.15818. URL http://arxiv.org/abs/2307.15818.
arXiv:2307.15818 [cs].

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-1: Robotics transformer for real-world control at scale. (arXiv:2212.06817), August
2023b. doi: 10.48550/arXiv.2212.06817. URL http://arxiv.org/abs/2212.06817.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Jie Cheng, Ruixi Qiao, Gang Xiong, Qinghai Miao, Yingwei Ma, Binhua Li, Yongbin Li, and Yisheng
Lv. Scaling offline model-based rl via jointly-optimized world-action model pretraining. arXiv
preprint arXiv:2410.00564, 2024.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

11

http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2309.13041
http://arxiv.org/abs/2309.13041
http://arxiv.org/abs/2307.15818
http://arxiv.org/abs/2212.06817

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In Deep
Reinforcement Learning Workshop NeurIPS 2022, 2022.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiaolong Wang.
Finetuning offline world models in the real world. October 2023. doi: 10.48550/arXiv.2310.16029.
URL http://arxiv.org/abs/2310.16029.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang (Shane) Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, volume 34, pp. 20132–20145. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning with-
out exploration. In Proceedings of the 36th International Conference on Machine Learning,
pp. 2052–2062. PMLR, May 2019. URL https://proceedings.mlr.press/v97/
fujimoto19a.html.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, and Rémi Munos.
Neural predictive belief representations. arXiv preprint arXiv:1811.06407, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. (arXiv:1912.01603), 2019a. URL https://arxiv.org/
abs/1912.01603.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference
on machine learning, pp. 2555–2565. PMLR, 2019b. URL https://proceedings.mlr.
press/v97/hafner19a.html.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. (arXiv:2203.04955), July 2022. doi: 10.48550/arXiv.2203.04955. URL http://arxiv.
org/abs/2203.04955. arXiv:2203.04955 [cs].

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni
Pajarinen, Romain Laroche, Abhishek Gupta, and Pulkit Agrawal. Beyond uniform sampling: Of-
fline reinforcement learning with imbalanced datasets. Advances in Neural Information Processing
Systems, 36:4985–5009, 2023.

12

http://arxiv.org/abs/2310.16029
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1912.01603
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.mlr.press/v97/hafner19a.html
http://arxiv.org/abs/2203.04955
http://arxiv.org/abs/2203.04955

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. (arXiv:2110.06169), October 2021a. doi: 10.48550/arXiv.2110.06169. URL http:
//arxiv.org/abs/2110.06169. arXiv:2110.06169 [cs].

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. (arXiv:2004.13649), March 2021b. URL http://
arxiv.org/abs/2004.13649. arXiv:2004.13649 [cs, eess, stat].

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/c2073ffa77b5357a498057413bb09d3a-Abstract.html.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. (arXiv:2006.04779), August 2020b. doi: 10.48550/arXiv.2006.04779.
URL http://arxiv.org/abs/2006.04779. arXiv:2006.04779 [cs, stat].

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Proceedings of the
5th Conference on Robot Learning, pp. 1702–1712. PMLR, January 2022. URL https://
proceedings.mlr.press/v164/lee22d.html.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. (arXiv:2005.01643), November 2020. doi: 10.48550/
arXiv.2005.01643. URL http://arxiv.org/abs/2005.01643. arXiv:2005.01643 [cs,
stat].

Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4414–4420. IEEE, 2020.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Francisco S Melo and M Isabel Ribeiro. Q-learning with linear function approximation. 2007.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36, 2024.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

13

http://arxiv.org/abs/2110.06169
http://arxiv.org/abs/2110.06169
http://arxiv.org/abs/2004.13649
http://arxiv.org/abs/2004.13649
https://proceedings.neurips.cc/paper/2019/hash/c2073ffa77b5357a498057413bb09d3a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c2073ffa77b5357a498057413bb09d3a-Abstract.html
http://arxiv.org/abs/2006.04779
https://proceedings.mlr.press/v164/lee22d.html
https://proceedings.mlr.press/v164/lee22d.html
http://arxiv.org/abs/2005.01643

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Kyle Beltran Hatch, Victor Kolev, John D Martin, Mariano Phielipp, and Chelsea
Finn. Moto: Offline pre-training to online fine-tuning for model-based robot learning. In Confer-
ence on Robot Learning, pp. 3654–3671. PMLR, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021.

Younggyo Seo, Kimin Lee, Stephen L. James, and Pieter Abbeel. Reinforcement learning with action-
free pre-training from videos. In International Conference on Machine Learning, pp. 19561–19579.
PMLR, 2022. URL https://proceedings.mlr.press/v162/seo22a.html.

Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. Model-bellman
inconsistency for model-based offline reinforcement learning. In International Conference on
Machine Learning, pp. 33177–33194. PMLR, 2023.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. vol. 135, 1998.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential decision
making. In International Conference on Machine Learning, pp. 11784–11794. PMLR, 2021.

Rui Yang, Han Zhong, Jiawei Xu, Amy Zhang, Chongjie Zhang, Lei Han, and Tong Zhang.
Towards robust offline reinforcement learning under diverse data corruption. arXiv preprint
arXiv:2310.12955, 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with
prototypical representations. In International Conference on Machine Learning, pp. 11920–11931.
PMLR, 2021a.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International conference on learning representations,
2021b.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images. In Proceedings of the aaai
conference on artificial intelligence, volume 35, pp. 10674–10681, 2021c.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

14

https://proceedings.mlr.press/v162/seo22a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, pp. 25611–25635. PMLR, 2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PRETRAINING Q-NETWORK FOR ONLINE RL (OFF-POLICY)

Algorithm 2 Pretraining phase for Online RL (Off-policy)

Input: Learning rate α
Initialize parameters φ,ψ and a buffer D
for each gradient step do

Uniformly sample a random action and collect a transition
a ∼ U(amin, amax)
s′ ∼ p(s′|s, a)
Update the buffer with a collected transition
D ← D ∪ {(s, a, r, s′)}

Sample a mini-batch B ∼ D
Compute the forward dynamics prediction error

Lpre(φ,ψ) =
∑

(s,a,s′)∈B

(s′ − (gψ ◦ hφ)(s, a))2

Update weights of the shared network and forward network

φ← φ− α∇ϕLpre(φ,ψ), ψ ← ψ − α∇ψLpre(φ,ψ)

end for
Output: Pretrained weights φ of the shared network, collected buffer D

Algorithm 3 Pretraining phase for Online RL (Off-policy) with pre-collected dataset

Input: Dataset Dpre of transition (s, a, s′), Learning rate α
Initialize parameters φ,ψ
for each gradient step do

Sample a mini-batch B ∼ Dpre
Define the loss function

Lpre(φ,ψ) =
∑

(s,a,s′)∈B

(s′ − (gψ ◦ hφ)(s, a))2

Take the gradient descent step

φ← φ− α∇ϕLpre(φ,ψ), ψ ← ψ − α∇ψLpre(φ,ψ)

end for
Output: Pretrained weights φ of the shared network

We extended our pretraining method to popular online off-policy RL methods by incorporating
the pretraining phase ahead of the main training phase. During the pretraining phase of the online
agent, a trajectory dataset was obtained by either initializing the replay buffer with actively collected
interaction data by uniformly sampling a random action or offline static dataset.

For experiments on online RL using an off-policy setting, we adopted soft actor-critic (SAC) Haarnoja
et al. (2018) and twin delayed deep deterministic policy gradient algorithm (TD3) Fujimoto et al.
(2018). We compare these algorithms with and without our pretraining method on OpenAI Gym
MuJoCo tasks. For a fair comparison, all algorithms were trained for 1 million time steps on each
task over 5 seeds.

Table 3 presents the results of the experiments following Algorithm 2 which collects the pretraining
dataset by uniformly sampling random actions. Incorporating our pretraining phase shows better
performance in more than half of the results. Additionally, we trained both SAC and TD3 with the
pre-collected dataset from the D4RL for the pretraining phase along the Algorithm 3. Note that
we only used the pre-collected dataset during the pretraining phase. Table 4 shows the best scores
among the 5 datasets (i.e., random, medium, medium replay, medium expert, expert). Interestingly,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

pretraining with the suboptimal-level dataset (medium-replay) shows better performance compared
to the expert-level dataset.

Table 3: Results of Off-policy RL application on OpenAI gym MuJoCo tasks

SAC TD3

HalfCheetah-v2 10065.77±621.80→11005.51±374.14 10644.63±190.42→11697.71±236.01
Hopper-v2 3357.07±30.64→1419.55±137.55 3365.08±94.69→3454.83±129.34
Walker2d-v2 4279.67±509.51→2697.92±674.29 4193.11±435.31→4481.19±190.93
Ant-v2 4191.17±986.11→4399.56 766.24 5172.78±659.02→4407.40±759.64
Humanoid-v2 5545.70±85.00→479.09 83.86 5247.14±187.64→5816.16±199.25
Pusher-v2 -190.77±88.51→-133.96 29.00 -22.94±0.52→-22.85±1.25

Table 4: Results of Off-policy RL pretrain with the D4RL OpenAI gym MuJoCo datasets

SAC TD3

HalfCheetah-v2 10402.79±1675.67 11820.06±269.76
Hopper-v2 3405.95±70.87 3465.25±149.87
Walker2d-v2 4785.15±247.37 4559.38±1007.69

From the above experiments, we conjecture that pretrained online RL (off-policy) has limitations
when they only exploit random action data for pretraining. A marginal state distribution induced by
uniformly sampling random actions is close to the initial state distribution, limiting the diversity in
the dataset and eventually leading to an increase in forward dynamics uncertainty. Consequently,
there are fewer opportunities to learn the good features of forward dynamics with random action
datasets than suboptimal-level datasets. This explains why Table 3 shows worse results than Table 4.

We also applied another approach introduced in section B to online RL settings. The results, shown
in Table 5, indicate that more than half exhibit enhanced performance compared to reported scores in
Table 3.

Table 5: Results of Off-policy RL with Additional Loss

SAC TD3

HalfCheetah-v2 8498.68±3195.13 9588.53±866.30
Hopper-v2 3539.39±133.47 3523.67±202.52
Walker2d-v2 4847.86±135.52 3819.68±552.84
Ant-v2 3710.73±917.35 5401.0±844.56
Humanoid-v2 5576.98±106.31 5489.73±38.28
Pusher-v2 -158.66±55.02 -25.47±34.00

B ANOTHER DESIGN CHOICE USING OUR SHARED Q-NETWORK STRUCTURE

In this section, we introduce another approach that also utilizes features of forward dynamics using
the shared networks as in the previouse pretraining method. In this approach, we use the following
modified loss that adds the forward model loss to the loss for the Q-function estimation:

LQ = LTD + Ldynamics (6)

In this way, the shared network is trained throughout the entire training period without the pretraining
phase. We adopt TD3+BC for evaluation and the results are presented in table 6. On TD3+BC,
this approach also outperforms almost all of the vanilla scores. Simply adding the supervised loss
term of state prediction without any multiplier or technique demonstrates improved performance.
Consequently, we suggest that the proposed shared Q-network can be expanded in other directions
and we expect that it holds significant potential for further research.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Averaged normalized scores of TD3+BC with additional loss on D4RL benchmark. We
depict increased scores compared to their original scores in blue color and report mean and standard
deviations over 5 random seeds.

Random Medium Medium Replay Medium Expert Expert

HalfCheetah-v2 11.45±0.51 48.23±0.33 44.93±0.29 93.55±1.00 96.59±0.25
Hopper-v2 31.54±0.42 70.86±2.17 90.39±7.34 113.44±0.35 113.28±0.20
Walker2d-v2 13.46±6.58 82.65±1.65 86.11±1.54 111.88±0.63 110.98±0.22

(a) HalfCheetah (b) Hopper (c) Walker2d

(d) Lift (e) Can (f) Walker Walk

Figure 10: Illustrations of environments.

C TASKS AND DATASETS

In this section, we provide detailed experimental setups for the tasks and datasets. Illustrated
environments can be found in Figure 10

C.1 D4RL

D4RL consists of 8 separate tasks. In this work, we utilized one of them for the main experi-
ments; OpenAI Gym MuJoCo continuous control tasks. It consists of 4 different environments (i.e.,
HalfCheetah, Walker2d, Hopper, and Ant) and 5 heterogeneous datasets in terms of data quality for
each environment. Each dataset is collected along the below strategies:

• Random (1M samples): Collected from a randomly initialized policy.

• Expert (1M samples): Collected from a policy trained to completion with SAC.

• Medium (1M samples): Collected from a policy trained to approximately 1/3 the perfor-
mance of the expert.

• Medium-Expert (almost 2M samples): A 50-50 split of medium and expert data.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Medium-Replay (almost 3M samples): Collected from the replay buffer of a policy trained
up to the performance of the medium agent.

All environments have the same episode limit of 1000 and the goal of each locomotion agent is to
run as fast as possible without falling to the ground. More detailed information can be found at
https://github.com/Farama-Foundation/D4RL.

C.2 ROBOMIMIC

Robomimic provides a large-scale and diverse collection of task demonstrations spanning multiple
human or robotic demonstrations of varying quality. We considered machine-generated (MG) datasets
generated by training an SAC agent for each task and then using intermediate policies to generate
mixed-quality datasets. We selected this dataset for evaluation since our method demonstrated
superior performance with suboptimal datasets on the D4RL benchmark. All environments have
the same episode limit of 400. The goal of the Lift environment is lifting the cube above a certain
height and the goal of the Can environment is placing the can into the corresponding container. More
detailed information can be found at https://github.com/ARISE-Initiative/robomimic.

C.3 EXORL

They provide exploratory datasets for 6 DeepMind Control Stuite domains (i.e., Cartpole, Cheetah,
Jaco Arm, Point Mass Maze, Quadruped, Walker) and totally 19 tasks. For each domain, they
collected datasets by running 9 unsupervised RL algorithms (i.e., APS, APT, DIAYN, Disagreement,
ICM, ProtoRL, Random, RND, SMM) from URLB for total of 10M steps. More detailed information
can be found at https://github.com/denisyarats/exorl?tab=readme-ov-file.

D EXPERIMENTS ON ADROIT IN D4RL

We conducted additional experiments on adroit in D4RL Fu et al. (2020) benchmark to validate that
our method can be adopted to different complex domains. An illustration of the Adroit environment
can be found in Figure 11. The Adroit domain involves controlling a 24-DoF robotic hand with
4 different control tasks (i.e., Pen, Door, Hammer, and Relocate) and 3 heterogeneous datasets as
following:

• Human: Collected with the 25 human demonstrations provided in the DAPG Rajeswaran
et al. (2017) repository.

• Cloned: a 50-50 split between demonstration data and 2500 trajectories sampled from a
behavioral cloned policy on the demonstrations. The demonstration trajectories are copied
to match the number of behavioral cloned trajectories.

• Expert: Collected with 5000 trajectories sampled from an expert that solves the task,
provided in the DAPG repository.

Figure 11: The tasks of Adroit. (top left) Pen - aligning a pen with a target orientation, (top right)
Door - opening a door, (bottom left) Hammer - hammering a nail into a board, (bottom right)
Relocate - moving a ball to a target position.

19

https://github.com/Farama-Foundation/D4RL
https://github.com/ARISE-Initiative/robomimic
https://github.com/denisyarats/exorl?tab=readme-ov-file

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

For experiments, we compared AWAC, IQL, and TD3+BC with/without our pretraining method
over 5 seeds. Table 7 yields averaged normalized scores for each task. Overall, learning with our
pretraining phase demonstrates enhanced performance. From these results, we conclude that our
method can be effective in complex domains not only tabletop but dexterous manipulation as well.

Table 7: Averaged normalized scores on Adroit. Left-hand side scores are scores of vanilla
methods. Right-hand side scores are scores of baselines combined with our pretraining method. We
depict increased scores compared to their original scores in blue color and report mean and standard
deviations over 5 random seeds.

AWAC IQL TD3+BC

Human
Pen 146.19±5.29→157.60±5.28 101.87±14.34→104.66±17.30 20.32±5.97→20.78±10.93
Hammer 7.98±9.41→36.95±35.13 14.33±5.22→17.78±9.27 2.40±0.16→2.38±0.17
Door 60.82±12.38→29.96±22.43 6.74±1.31→5.81±3.20 -0.09±0.00→-0.04±0.04
Relocate 1.51±1.05→3.91±2.21 1.20±1.05→1.52±1.11 -0.29±0.01→-0.18±0.13

Cloned
Pen 145.37±4.19→144.48±3.42 98.38±16.13→97.76±16.90 39.69±18.95→48.18±11.27
Hammer 10.37±7.88→12.61±8.66 8.94±2.07→11.38±4.46 0.59±0.17→1.17±0.61
Door 2.95±2.97→9.59±7.73 5.61±3.02→5.00±1.44 -0.23±0.11→-0.03±0.03
Relocate 0.04±0.09→0.18±0.21 0.91±0.45→1.06±0.40 -0.02±0.09→-0.13±0.09

Expert
Pen 163.99±1.19→163.73±1.88 148.38±2.46→147.79±3.06 131.73±19.15→141.10±10.28
Hammer 130.08±1.30→130.04±0.48 129.46±0.42→129.50±0.36 33.36±34.61→59.76±52.35
Door 106.67±0.28→106.95±0.16 106.45±0.29→106.71±0.28 0.99±0.83→0.87±1.48
Relocate 109.70±1.32→111.27±0.35 110.13±1.52→109.82±1.45 0.57±0.33→0.22±0.13

Total 885.67±47.35→907.26±87.94 732.40±48.27→738.79±59.23 229.03±80.40→274.08±87.49

E IMPLEMENTATION DETAILS

In this section, we provide detailed implementation setups for extensive experiments. Since we
suggest a plug-and-play pretraining method for popular offline RL methods, we reuse open-source
code for comparative results: TD3+BC1, IQL2, AWAC3, and CQL4 for D4RL. We use off-the-shelf
offline methods in the official repository5 for the Robomimic environment. We only use open-source
baselines which use PyTorch for fair comparisons. On the D4RL, we train each agent with 1M
gradient steps for each environment over 5 seeds. Also, we evaluate each agent with 5 rollouts every
5k gradient steps for TD3+BC, AWAC, and CQL and 10k gradient steps for IQL. We report the best
scores for all tables and figures. On the Robomimic, we train each agent with 200k gradient steps for
each environment over 5 seeds. Also, we evaluate each agent with 50 rollouts over 5 seeds. For all
experiments, we used RTX-A5000 GPU for training and evaluation.

F DISCUSSIONS

In this section, we address the potential concerns regarding our method’s novelty since it closely
connects with prior approaches in relevant fields. We provide our detailed discussions in separate
subsections of each topic.

Representation Learning. Over recent years, the field has observed a significant amount of literature
working on predictive representation in RL. Concerning the similarity with prior works, we claim that
the idea of pretraining shared Q-network for improving data efficiency is remarkable. Our method
pretrains the neural networks with the next state prediction objective to improve an underlying RL
agent’s performance and data efficiency similar to (Schwarzer et al., 2020; Guo et al., 2018). However,
Schwarzer et al. (2020) has proposed an online training method in a self-supervised learning manner
whereas our method considers supervised learning for pretraining. Since the self-predictive task in
Schwarzer et al. (2020) is conducted in latent space, representation learning is essentially involved
with the task.

1https://github.com/sfujim/TD3_BC
2https://github.com/Manchery/iql-pytorch
3https://github.com/hari-sikchi/AWAC
4https://github.com/young-geng/CQL
5https://github.com/ARISE-Initiative/robomimic

20

https://github.com/sfujim/TD3_BC
https://github.com/Manchery/iql-pytorch
https://github.com/hari-sikchi/AWAC
https://github.com/young-geng/CQL
https://github.com/ARISE-Initiative/robomimic

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore, adopting advanced training techniques including data augmentation (Yarats et al., 2021b)
and the use of a target encoder (He et al., 2020) significantly affect the RL agent’s performance.
Additionally, Schwarzer et al. (2020) suggests a self-supervised representation learning with the
latent transition prediction task in the online RL regime. In comparison, our method alleviates
an introduction of extra techniques other than the shared network architecture, proving superior
performance in offline RL benchmarks of diverse environments, e.g. locomotion and manipulation
tasks.

Guo et al. (2018) has presented an unsupervised learning method that encodes the belief state capturing
sufficient information of the hidden true state from a past interaction history. In other words, the main
interest of Guo et al. (2018) is how the neural network architecture trained with unsupervised learning
extracts adequate information concerning the true state in POMDP, not how the underlying RL
method given rich representation performs decision-making problem well. Specifically, the network
architecture in Guo et al. (2018) is based on GRU, RNN based sequential network, and predicts a
next observation ot+1 using action at and a belief state bt that contains the partial information of
the previous trajectory. Conversely, our method is implemented on MLP with the shared network
architecture and predicts the next state st+1 using current state st and action at without a past history.

Model-based RL. One might argue that our method lacks novelty with the idea of training a
neural network with the transition dynamics prediction task. Obviously, the idea of approximating
the transition dynamics (Sutton, 1991) for downstream RL training is not what we first suggest.
However, we contend that our method has a few refuting viewpoints with previous similar works.
TDMPC (Hansen et al., 2022) and TDMPC2 (Hansen et al., 2023) are model-based single and
multi-task RL approaches, which recursively feed the output of the same network (i.e. the encoder
and task embedding network) for the transition model and value learning. The outputs of the shared
backbone networks correspond to the latent representation and task embedding vector, respectively,
and most latent model-based RL approaches including TDMPC reuse the outputs for the transition
model and value learning. On the other hand, our method presents a shared network architecture
resembling the dueling architecture (Wang et al., 2016) to pretrain the shared backbone network with
a separated stream (a header) of the transition model and Q-network. Additionally, this paper presents
a two-phase training scheme: the transition model combined with the shared network is trained with
the transition dynamics prediction task in the first phase and the Q-network, consisting of an MLP
header and the shared network initialized with the parameter of the shared network in the first phase,
is trained with the downstream RL value learning task in the second phase.

JOWA (Cheng et al., 2024) is an offline world model for multi-task RL with a shared Transformer
backbone network for sequential a next-token prediction task. By modeling the decision-making
problem to the sequential token prediction task, the backbone network, tokenizer, and header are
trained in a supervised manner with the offline dataset. While the main purpose of JOWA is scaling
an offline world model across multiple tasks with generalized performance over unseen tasks, this
paper intends to improve the data efficiency of conventional offline RL approaches in single-task
RL. Furthermore, our method alleviates additional training after offline RL training with a novel
two-phase training strategy while JOWA allows few-shot fine-tuning for sample efficient transfer
with a multi-game environment. Even with a similar purpose of data efficiency, our method entails a
minimal algorithmic change with a consistent training budget compared to previous approaches.

Dreamer (Hafner et al., 2023) has brought a notable advancement in model-based RL. Dreamer
suggests a world model for decision-making with a considerate design of the latent transition model
and reconstructive objective. Since jointly learning an accurate world model and actor in a multi-task
environment is challenging, the expensive cost of collecting samples often becomes problematic. In
contrast, our method does not necessitate extra modifications of conventional offline RL and proves
its sufficient performance gains in comprehensive experiments. Considering previous improvements
in representation learning usually involve state-of-the-art design choices (e.g. data augmentation),
this paper would contribute to reasonable architectural achievements for researchers by presenting a
minimal training structure with verified performance profit.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G LEARNING CURVES

In this section, we provide the full results of learning curves in the section 5.1 for further information.

Figure 12: Learning curves of TD3+BC on the D4RL benchmark.

H EXPERIMENTS WITH LINEAR APPROXIMATED Q-NETWORK

In this section, We pretrained TD3+BC and froze it except for the last linear layer during the remaining
learning time. The blue-colored scores indicate improved scores from the reported scores from the
original TD3+BC. Although only the last linear layer of the pretrained TD3+BC was trained and the
shared network was frozen, it shows better performance than the vanilla CQL. Moreover, it shows
better performance than the others over the suboptimal level of the datasets (i.e., random, medium,
medium replay).

Table 8: Results of pretrained TD3+BC which approximated with linear Q function.

AWAC CQL IQL TD3+BC freezed TD3+BC

Random
HalfCheetah 2.2 21.7±0.9 10.2±1.3 6.03±2.65
Hopper 9.6 10.7±0.1 11.0±0.1 11.59±10.56
Walker2d 5.1 2.7±1.2 1.4±1.6 7.18±0.58

Medium
HalfCheetah 37.4 37.2±0.3 47.4 42.8±0.3 42.64±1.19
Hopper 72.0 44.2±10.8 66.4 99.5±1.0 67.16±3.56
Walker2d 30.1 57.5±8.3 78.3 79.7±1.8 72.03±0.78

Medium Replay
HalfCheetah 41.9±1.1 44.2 43.3±0.5 40.21±0.79
Hopper 28.6±0.9 94.7 31.4±3.0 64.41±19.54
Walker2d 15.8±2.6 73.9 25.2±5.1 41.02±12.05

Medium Expert
HalfCheetah 36.8 27.1±3.9 86.7 97.9±4.4 47.35±8.73
Hopper 80.9 111.4±1.2 91.5 112.2±0.2 95.07±15.27
Walker2d 42.7 68.1±13.1 109.6 101.1±9.3 74.75±0.59

Expert
HalfCheetah 78.5 82.4±7.4 105.7±1.9 61.93±10.71
Hopper 85.2 111.2±2.1 112.2±0.2 113.13±0.39
Walker2d 57.0 103.8±7.6 105.7±2.7 57.14±44.96

Total 764.3±61.5 979.3±33.4 801.64±132.34

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I EXPERIMENTS WITH VARIOUS AMOUNT OF DATA

In this section, we provide more details in section 5.2 of the dataset size. We conducted each
experiment with the same settings in subsection 5.1 over 5 seeds and reported the results that exhibit
averaged normalized scores.

Figure 13: Averaged normalized scores across dataset optimal quality and sizes. This figure
compares the performance of our method with TD3+BC in reduced datasets (i.e., 1%, 3%, 10%, 30%,
100% of each dataset) to vanilla TD3+BC across the data quality (i.e., random, medium, medium
replay, medium expert, expert) on D4RL. From the overall results (Bottom Right), we conclude that
our method guarantees better performance even in 10% of the datasets regardless of the data quality
of the dataset.

(a) Medium (b) Medium Replay

(c) Medium Expert (d) Average

Figure 14: Comparison with offline model-based RL and representation approaches. We
compare TD3+BC, AWAC, CQL with ours to offline model-based RLs (i.e., MOPO, Mobile) and
a representation RL (i.e., ACL) on D4RL over 3 seeds. The gragh shows results over medium,
medium-replay, medium-expert datasets. The results show that our method maintains the performance
in reduced datasets, especially 1%, unlike the other approaches.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Results of pretrained AWAC over various size.

w/o pretrain w/ pretrain 10% w/ pretrain 30% w/ pretrain

Random
HalfCheetah 2.2 9.71±3.08 36.37±1.47 51.10±0.89
Hopper 9.6 97.05±3.24 93.35±6.32 59.47±33.79
Walker2d 5.1 8.57±0.47 8.36±1.30 13.11±3.91

Medium
HalfCheetah 37.4 55.47±1.52 56.64±2.68 54.63±1.45
Hopper 72.0 101.28±0.78 101.32±0.20 101.73±0.20
Walker2d 30.1 95.14±1.46 91.38±1.37 89.51±0.88

Medium Replay
HalfCheetah 51.00±0.69 52.12±0.76 55.75±1.30
Hopper 103.67±1.81 107.69±1.71 106.67±0.59
Walker2d 104.10±1.57 105.42±1.97 100.31±2.11

Medium Expert
HalfCheetah 36.8 83.18±1.69 86.55±0.94 90.05±1.89
Hopper 80.9 113.01±0.71 113.34±0.09 113.23±0.22
Walker2d 42.7 117.26±1.77 114.68±2.18 111.88±0.28

Expert
HalfCheetah 78.5 91.54±1.04 93.46±0.54 93.48±0.11
Hopper 85.2 113.02±0.17 113.18±0.20 112.86±0.10
Walker2d 57.0 117.92±2.07 112.55±0.56 111.22±0.35

Total 1261.90±22.05 1286.43±22.28 1265.01±48.07

Table 10: Results of pretrained IQL over varying dataset sizes.

w/o pretrain w/ pretrain 10% w/ pretrain 30% w/ pretrain

Random
HalfCheetah 6.92±0.63 12.65±2.53 18.28±1.02
Hopper 8.17±0.54 9.93±1.19 10.67±0.41
Walker2d 8.26±0.64 9.08±0.96 8.88±0.71

Medium
HalfCheetah 47.4 46.51±0.18 47.87±0.21 48.85±0.16
Hopper 66.4 75.72±3.23 80.76±3.51 78.62±2.21
Walker2d 78.3 82.62±1.03 83.89±1.69 83.63±1.14

Medium Replay
HalfCheetah 44.2 33.49±1.26 41.16±0.50 45.48±0.17
Hopper 94.7 80.59±8.25 91.08±3.67 99.43±1.71
Walker2d 73.9 39.08±10.42 75.33±4.17 87.95±1.68

Medium Expert
HalfCheetah 86.7 87.44±2.52 93.66±0.46 95.25±0.14
Hopper 91.5 93.89±10.67 91.05±18.78 105.77±11.31
Walker2d 109.6 111.23±0.83 111.65±0.93 112.09±0.93

Expert
HalfCheetah 77.85±3.82 95.88±0.44 97.40±0.13
Hopper 109.16±3.25 112.85±1.30 113.34±0.46
Walker2d 113.76±2.55 112.53±1.35 112.80±1.08

Total 974.68±49.84 1069.36±41.69 1118.46±23.25

24

	Introduction
	Related Works
	Markov Decision Process
	Pretraining Q-network with Transition Model Helps Improving data efficiency
	Analysis: Based on the Projected Bellman Equation

	Experiments
	Performance Improvement in Offline RL Benchmarks
	data efficiency across the Qualities of the Datasets
	data efficiency across the Data Distributions

	Conclusion
	Pretraining Q-network for Online RL (Off-Policy)
	Another Design Choice using Our Shared Q-Network Structure
	Tasks and Datasets
	D4RL
	Robomimic
	ExoRL

	Experiments on Adroit in D4RL
	Implementation Details
	Discussions
	Learning Curves
	Experiments with Linear Approximated Q-network
	Experiments with Various Amount of Data

