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ABSTRACT

We introduce Lexico, a novel KV cache compression method that leverages sparse
coding with a universal dictionary. Our key finding is that key-value cache in
modern LLMs can be accurately approximated using sparse linear combination
from a small, input-agnostic dictionary of∼4k atoms, enabling efficient compres-
sion across different input prompts, tasks and models. Using orthogonal match-
ing pursuit for sparse approximation, Lexico achieves flexible compression ratios
through direct sparsity control. On GSM8K, across multiple model families (Mis-
tral, Llama 3, Qwen2.5), Lexico maintains 90-95% of the original performance
while using only 15-25% of the full KV-cache memory, outperforming both quan-
tization and token eviction methods. Notably, Lexico remains effective in low
memory regimes where 2-bit quantization fails, achieving up to 1.7× better com-
pression on LongBench and GSM8K while maintaining high accuracy.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the backbone of frontier Large Language Models
(LLMs), but their substantial memory requirements, particularly for maintaining the key-value (KV)
cache, pose challenges for efficient deployment. The KV cache scales with model size and input
length, limiting reuse across sessions and creating bottlenecks on memory-constrained GPUs (Yu
et al., 2022). To address this, research has explored both training-stage optimizations (Shazeer,
2019; Dai et al., 2024; Sun et al., 2024) and post-training methods (Kwon et al., 2023; Lin et al.,
2024; Ye et al., 2024). A detailed discussion of related work is provided in Appendix A.

Architectural approaches such as Grouped Query Attention (GQA) (Ainslie et al., 2023) aim to re-
duce the number of KV heads, effectively reducing the size of the KV cache but are not directly
applicable to pre-trained models leading to computationally costly, post-training compression ef-
forts. Post-training approaches include selectively retaining certain tokens (Beltagy et al., 2020;
Xiao et al., 2023; Zhang et al., 2024) and quantization methods, which have had empirical success
when quantizing KV cache into 2 or 4 bits (Liu et al., 2024b; He et al., 2024; Kang et al., 2024).
However, eviction strategies struggle with long-context tasks, and extreme quantization has inherent
compression limits.

In this paper, we focus on utilizing low-dimensional structures for efficient KV cache compression.
Prior work reports that each key vector lies in a low-rank subspace (Singhania et al., 2024; Wang
et al., 2024b; Yu et al., 2024). Yet, it is unclear if all vectors lie in the same subspace; if so, such
redundancy remains to be taken advantage of. Thus, we naturally ask the following questions:

Do keys and values lie in a low-dimensional subspace that is constant across input sequences?
If so, can we leverage this for efficient KV cache compression?

Towards this end, we propose Lexico, a universal dictionary that serves as an overcomplete basis,
which can sparsely decompose and reconstruct the KV cache with sufficiently small reconstruc-
tion error that can be directly controlled via the level of sparsity of each reconstruction. We draw
inspiration from compressed sensing and dictionary learning, areas of statistical learning and sig-
nal processing that developed algorithms for information compression across various application
domains (Candès et al., 2006; Donoho, 2006; Dong et al., 2014; Metzler et al., 2016).
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(a) Prefilling Stage (b) Decoding Stage

Figure 1: (a) Prefilling: Following attention computation, Lexico uses OMP to find sparse repre-
sentations of the KV vectors (3-8× smaller). (b) Decoding: Key cache consists of the compressed
sparse key cache, Kcsr, and an full-precision buffer, Kbuffer, for the most recent tokens. qt, kt rep-
resent the query, key vectors for the newly generated token. Computation is reduced by computing
the query-dictionary product, qtDk, then multiplying Kcsr, to get the pre-softmax attention score.

Overall, we make the following contributions:

• Near-lossless performance: Given similar memory requirements, Lexico performs on par
with or better than baseline quantization methods on challenging language tasks, such as
LongBench (Bai et al., 2023) and GSM8K (Cobbe et al., 2021).

• Compression rates beyond 2-bits: Lexico’s sparsity parameter enables us to explore per-
formance when using under 15-20% of the original KV cache size, a low-memory regime
previous compression methods could not explore.

• Universality: Instead of an input-dependent dictionary, we find a sufficiently small univer-
sal dictionary (per model) that can be used for all tasks and across multiple users. Advan-
tageously, such dictionary does not scale with batch size and can be used off-the-shelf.

2 KV CACHE COMPRESSION WITH DICTIONARIES

2.1 LEARNING LAYER-SPECIFIC DICTIONARIES

Achieving a high compression ratio relies heavily on well-constructed dictionaries. In this section,
we describe the process for training the dictionaries used in Lexico. We adopt distinct dictionaries
for the key and value vectors in each transformer layer due to their different functionalities. We
denote the key and value dictionaries at each layer as Dk and Dv ∈ Rm×N , where m is the per-head
dimension of the key or value vectors and N is the fixed dictionary size. Each column of D is called
a dictionary atom, representing a basis vector that can be used to approximate the original vectors.
With N = 1024, the dictionaries add an additional 16.8MB to the model’s storage requirements for
7B/8B models.

We train layer-specific KV dictionaries through direct gradient-based optimization. For a given key
or value vector, denoted as k ∈ Rm and a dictionary D ∈ Rm×N , the Orthogonal Matching Pursuit
(OMP) algorithm approximates the sparse representation y ∈ RN , where ∥y∥0 = s is the number
of active (nonzero) coefficients. (For an illustration of OMP, see Algorithm 1 in Appendix B.3.) The
dictionary training objective minimizes the ℓ2 norm of the reconstruction error, with the loss function
L = ∥k −Dy∥22, while enforcing unit-norm constraints on the dictionary atoms (see Appendix B.2
for more on sparse representations).

The dictionaries are trained on KV pairs generated from the WikiText-103 dataset using
Adam (Kingma & Ba, 2014) with a learning rate of 0.0001 and a cosine decay schedule over 20
epochs. The dictionaries are initialized with a uniform distribution, following the default initializa-
tion method for linear layers in PyTorch. For Llama-3.1-8B-Instruct, with a sparsity of s = 32 and
a dictionary size of N = 1024, the training process takes about 2 hours on an NVIDIA A100 GPU.
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2.2 PREFILLING AND DECODING WITH LEXICO

During the prefilling stage, each Transformer layer generates full-precision KV vectors for the input
tokens, as illustrated in Figure 1a. Lexico then applies OMP to find sparse approximations of these
KV vectors using layer-specific key and value dictionaries, Dk and Dv . The compressed key and
value caches are stored in a compressed sparse row (CSR) format as Kcsr,Vcsr ∈ Rlseq×N , which
can be reconstructed via:

K̂ = KcsrD
⊤
k , V̂ = VcsrD

⊤
v

For autoregressive decoding, a small number of recent tokens are kept in full precision within a
buffer Kbuffer,Vbuffer ∈ Rnb×m, where nb is the buffer size. These buffered KV vectors are concate-
nated with the newly generated token’s kt, vt (also in full precision). Attention weights for each
head then become:

a
(h)
t = Softmax

(
q
(h)
t (K(h)

csr D
⊤
k ∥K

(h)
buffer ∥ k

(h)
t )⊤/

√
m
)

where ∥ denotes concatenation along the sequence dimension. In practice, the compressed keys
are handled separately by first computing q

(h)
t Dk before multiplying by Kcsr. The results for the

compressed and buffered tokens are concatenated and passed to the softmax, as shown in Figure 1b.
When the buffer reaches capacity, OMP is applied to the oldest na tokens, compressing them to
sparse representations (see Algorithm 2 in Appendix B.3 for a full pseudocode of both prefilling and
decoding).

For complete notation and definitions, we refer readers to the Background & Notation section in
Appendix B.1. A detailed discussion of memory/time complexities and latency measurements is
provided in Appendix B.4.

3 EXPERIMENTS

Setup. We evaluate our method on various models (Llama-3-8B, Llama-3.1-8B-Instruct,
Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, Mistral-7B-Instruct), using dictionaries trained on
WikiText-103, as done in Section 2.1. Following Liu et al. (2024b), we assess long-context under-
standing on selected tasks from LongBench (Bai et al., 2023), while also evaluating complex rea-
soning performance (e.g., GSM8K (Cobbe et al., 2021) and MMLU-Pro Engineering/Law (Wang
et al., 2024a)). We compare our method against both quantization-based (Liu et al., 2024b; He et al.,
2024) and eviction-based (Cai et al., 2024; Li et al., 2024) KV cache compression approaches. Ad-
ditional experimental details, including task statistics, hyperparameter settings, and results on more
tasks and model sizes, are provided in Appendix C.

LongBench results. Table 1 presents the performance of Lexico and KIVI on LongBench tasks.
Lexico demonstrates strong performance, often outperforming or matching the baseline at compa-
rable KV cache size. Notably, Lexico can operate in extremely low-memory regimes (e.g., around
12% of full cache) with only moderate performance degradation compared to the full FP16 cache.
The largest performance loss comes from tasks with the lowest full cache accuracy, Qasper, yet there
is almost no loss in simpler tasks, such as TriviaQA. This indicates that difficult tasks that require
more complex understanding are much more sensitive to performance loss. Hence, it is important to
evaluate on GSM8K, one of the harder natural language reasoning tasks, as we do next.

GSM8K results. For one of the hardest natural language reasoning tasks, GSM8K, we observe
that Lexico achieves robust performance even under heavy compression. In Figure 2, we show
the memory–accuracy trade-off on 5-shot GSM8K for Llama models. Compared to quantization
(KIVI, ZipCache) and eviction (SnapKV, PyramidKV) baselines, Lexico lies on the Pareto frontier,
achieving higher scores than other compression methods at similar KV cache budget sizes. No-
tably, Lexico demonstrates greater robustness at smaller model scales, with larger performance gaps
observed for the 1B and 3B models. In the extremely low-memory regime below 20%, where quan-
tization methods such as KIVI and ZipCache cannot achieve feasible cache sizes, Lexico achieves
superior performance. Furthermore, while eviction-based methods (SnapKV, PyramidKV) can oper-
ate in these extremely low-memory settings, their performance lags significantly behind due to their
incompatibility with GQA, making Lexico the effective choice for stringent memory constraints.
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Table 1: Experimental results on LongBench. For Lexico, we use N = 4096 as the dictionary
size and nb = 128 as the buffer size. For KIVI, we use g = 32 (group size for quantization) and
nb = 128 (buffer size). Sparsity level s is set to match average KV size of KIVI, while s = 8
corresponds to cache size unattainable by common 2-bit quantizations. Full cache is in FP16.

Method KV Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama-3.1-8B-Instruct
Full Cache 100% 22.54 24.57 27.44 72.5 91.65 43.47 63.15 56.76 50.26

KIVI-4 33.2% 22.83 23.72 27.95 71.0 90.39 44.25 62.93 55.48 49.78
Lexico s=24 30.6% 21.68 24.25 27.20 72.5 91.58 42.93 62.92 56.51 49.95

KIVI-2 21.1% 13.77 22.72 27.35 71.0 90.85 43.53 62.03 53.00 48.03
Lexico s=16 21.4% 15.45 23.13 25.78 72.5 92.25 42.02 63.01 55.58 48.71

Lexico s=8 12.4% 11.66 21.04 22.35 60.0 91.01 40.30 59.60 51.46 44.68

Mistral-7B-Instruct-v0.3
Full Cache 100% 41.58 25.69 27.76 76.0 88.59 47.58 59.37 60.60 53.40

KIVI-4 33.2% 40.37 24.51 27.75 74.0 88.36 47.56 58.49 58.31 52.42
Lexico s=24 30.6% 41.01 25.32 27.51 76.0 88.84 46.27 59.98 59.44 53.05

KIVI-2 21.1% 38.24 24.08 26.99 74.5 88.34 47.66 57.51 56.46 51.72
Lexico s=16 21.4% 40.34 24.97 26.36 76.0 89.31 45.84 59.31 59.50 52.70

Lexico s=8 12.4% 33.03 22.80 22.85 68.5 87.85 43.10 56.66 56.85 48.96

Figure 2: Memory usage vs. performance of Lexico compared to other KV cache compression
methods on GSM8K. The figure illustrates the relationship between KV cache size and the perfor-
mance of Lexico on Llama models on GSM8K 5-shot evaluation. For Lexico, we use a dictionary
size of N = 4096 atoms and keep the last 128 tokens in full-precision (buffer size nb = 128). Lex-
ico consistently outperforms both eviction-based methods (SnapKV, PyramidKV) and quantization-
based methods (per-token quantization, KIVI, ZipCache).

Additional GSM8K results on Mistral and Qwen2.5 models can be found in Appendix C.3, and the
MMLU-Pro task is discussed in Appendix C.4. We also provide ablation studies in Appendix D.

4 CONCLUSION

Our proposed method, Lexico, compresses the KV cache for transformers by leveraging low-
dimensional structures and sparse dictionary learning to capture key redundancies across diverse
inputs, leading to efficient KV cache compression with near-lossless performance. It surpasses
traditional quantization techniques in compression rates while providing a fine-grained range of
memory usage, thanks to a universal dictionary that remains compact and scalable across tasks and
user inputs. This yields substantial memory savings for long-context tasks, mitigating the KV cache
storage bottleneck without discarding any previous tokens.
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APPENDIX

A RELATED WORK

Prior work on KV cache optimization has explored both training-stage and deployment-focused
strategies to improve the efficiency of LLMs. On the deployment side, Kwon et al. (2023) intro-
duce a Paged Attention mechanism and the popular vLLM framework, which adapt CPU-style page
memory to map KV caches onto GPU memory using a mapping table, thereby minimizing memory
fragmentation and leveraging custom CUDA kernels for efficient inference. While there is a signifi-
cant and important line of research in this direction (Lin et al., 2024; Qin et al., 2024), this direction
is orthogonal to our work and can often be used in tandem with quantization.

Current post-training KV cache compression methods can broadly be categorized into eviction,
quantization, and merging. Zhang et al. (2024) introduced H2O, which uses attention scores to se-
lectively retain tokens while preserving recent ones that are strongly correlated with current tokens.
Multiple works discuss various heuristics and algorithms to find which tokens can be discarded,
while some works find how to complement evictions methods (Ge et al., 2023; Li et al., 2024; Liu
et al., 2024a; Devoto et al., 2024; Dong et al., 2024). For this line of work, there is a chance that
evictions can work well together with Lexico, as Liu et al. (2024a) have successfully combined
quantization and eviction.

Quantization methods have also played a crucial role in reducing KV cache size without compro-
mising model performance. Although there is a flurry of work, we only mention those that are most
relevant to our discussion and methodology. Hooper et al. (2024) identified outlier channels in key
matrices and developed KVQuant, while Liu et al. (2024b) pursue a similar per-channel strategy
in KIVI. Further extending these ideas, Yue et al. (2024) presented WKVQuant, which quantizes
model weights as well as KV cache using two-dimensional quantization. Kang et al. (2024) follow
similar per-channel key and per-token value quantization as KIVI, but with additional low-rank and
sparse structures to manage quantization errors.

B KV CACHE COMPRESSION WITH DICTIONARIES (EXTENDED)

B.1 BACKGROUND & NOTATION

During autoregressive decoding in a Transformer, the key and value states for preceding tokens
are independent of subsequent tokens. As a result, these key and value states are cached to avoid
recomputation, thereby accelerating the decoding process.

Let the input token embeddings be denoted as X ∈ Rlseq×d, where lseq and d are the sequence length
and model hidden dimension, respectively. For simplicity, we focus on a single layer and express
the computation of query, key, and value states at each attention head during the prefilling stage as:

Q(h) = XW (h)
q , K(h) = XW

(h)
k , V (h) = XW (h)

v ,

where W (h)
q ,W

(h)
k ,W

(h)
v ∈ Rd×m are the model weights with m representing the head dimension.

Let t represent the current step in the autoregressive decoding, and let xt ∈ R1×d denote the em-
bedding of the newly generated token. The KV cache up to but not including the current token, are
denoted as K

(h)
t−1 and V

(h)
t−1, respectively. The typical output computation for each attention head

h
(h)
t using the KV cache can be expressed as:

h
(h)
t = Softmax

(
q
(h)
t

(
K

(h)
t−1 ∥ k

(h)
t

)⊤
/
√
m

)(
V

(h)
t−1 ∥ v

(h)
t

)
,

where q
(h)
t ,k

(h)
t ,v

(h)
t represent the query, key, and value vectors for the new token embedding xt.

Here, ∥ denotes concatenation along the sequence length dimension.

B.2 SPARSE APPROXIMATION

Given a dictionary, our goal is to decompose and represent KV cache efficiently, i.e., approximate a
vector k ∈ Rm as a linear combination of a few vectors (atoms) from an overcomplete dictionary
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D ∈ Rm×N . This reconstruction is given by k = Dy, where y ∈ RN is the sparse representation
vector such that s = ||y||0. For implementation, y only requires space proportional to s, not N .

We hypothesize that the KV cache, like other domains where sparse approximation is effective,
contains inherent redundancy that can be leveraged for efficient compression. For instance, Figure 3
presents pairwise cosine similarity plots for keys generated during inference on a random subset
of the WikiText dataset. Here, we observe that key vectors cluster in multiple different subspaces.
Dictionary learning can take advantage of such redundancy, enabling KV vectors to be represented
by a compact set of atoms with only a few active coefficients.

Figure 3: Left shows a pairwise cosine similarity matrix between key vectors generated from one
input text from all heads in Layer 10 of Llama-3.1-8B-Instruct. Keys are sorted by similarity to
demonstrate the clusters. Right shows the similarity matrix between key vectors from two different
input texts. These plots indicate that there may exist a mixture of low-dimensional subspaces in the
space of all possible keys, a hypothesis that naturally leads to dictionary learning.

Sparse approximation, which aims to find y with minimum sparsity given k and D, while ensuring
a small reconstruction error, is NP-hard. This optimization problem is typically formulated as:

min
y
∥y∥0 subject to ∥k −Dy∥2 ≤ δ ∥k∥2 for some relative error threshold δ > 0

In this work, we adopt OMP as the sparse approximation algorithm. Given an input key or value
vector k, a dictionary D, and a target sparsity s, OMP iteratively selects dictionary atoms to mini-
mize the ℓ2-reconstruction error, with the process continuing until the specified sparsity s is reached.
Our implementation of OMP builds on advanced methods that utilize properties of the Cholesky in-
verse (Zhu et al., 2020) to optimize performance. Additionally, we incorporate implementation de-
tails from Lubonja et al. (2024) for efficient batched GPU execution and extend it to include an extra
batch dimension, allowing for parallel processing across multiple dictionaries. The full algorithm is
detailed in Appendix B.3.

We demonstrate our trained dictionaries reconstruct and generalize better than dictionaries trained
using sparse autoencoders (similarly to those from Makhzani & Frey (2013); Bricken et al. (2023))
across several corpora in Table 2. Our method consistently achieves lower relative reconstruction
errors, such as 0.19 ± 0.05 on out-of-domain dataset CNN/DailyMail, and this trend is consistent
across other datasets.

Table 2: Reconstruction error. Relative reconstruction errors of different methods when training
dictionary of size 1024 and sparsity s = 32 on WikiText-103. Sparse Autoencoder is a two-layer
perceptron with hard top-k thresholding as activation. Lexico is optimized using OMP as encoder.
KV cache is generated from Llama-3.1-8B-Instruct.

Test Dataset Lexico Sparse Autoencoder Random Dictionaries

WikiText-103 0.17± 0.06 0.20± 0.05 0.27± 0.02
CNN/DailyMail 0.19± 0.05 0.22± 0.04 0.27± 0.02
IMDB 0.18± 0.05 0.22± 0.05 0.27± 0.02
TweetEval 0.18± 0.06 0.21± 0.05 0.27± 0.02
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B.3 IMPLEMENTATION DETAILS

Algorithm 1 illustrates a naive implementation of OMP for understanding. In Lexico, we adopt
the implementation of OMP v0 proposed by (Zhu et al., 2020), which minimizes computational
complexity using efficient inverse Cholesky factorization. Additionally, we integrate methods from
(Lubonja et al., 2024) for batched GPU execution and extend the implementation to handle multiple
dictionaries in parallel. Algorithm 2 presents the pseudocode for Lexico during the prefilling and
decoding stages.

Algorithm 1 OMP

Require: Signal k ∈ Rm, dictionary D ∈ Rm×N , sparsity s
Ensure: Sparse representation y ∈ Rn

1: Initialize r(0) ← k, I(0) ← ∅, y(0) ← 0
2: for i = 1 to s do
3: n(i) ← argmax1≤n≤N

{∣∣(D⊤ (
k −Dy(i)

))
n

∣∣}
4: I(i) ← I(i−1) ∪

{
n(i)

}
5: y(i+1) ← argminy∈RN

{
∥k −Dy∥2 ,Supp (y) ⊂ I(i)

}
6: end for
7: return y

Algorithm 2 Prefilling and decoding with Lexico

1: Parameter: sparsity s, buffer length nb, approximation length na

2: procedure PREFILLING
3: Input: X ∈ Rlseq×d

4: K ←XWk, V ←XWv

5: Kcsr ← OMP (K [: lseq − nb] ,Dk, s)
6: Vcsr ← OMP (V [: lseq − nb] ,Dv, s)
7: Kbuffer ←K [lseq − nb :], Vbuffer ← V [lseq − nb :]
8: KV cache←Kcsr,Kbuffer,Vcsr,Vbuffer
9: return K, V

10: end procedure

11: procedure DECODING
12: Input: KV cache, xt ∈ R1×d

13: qt ← xtWq , kt ← xtWk, vt ← xtWv

14: Kcsr,Kbuffer,Vcsr,Vbuffer ← KV cache
15: Kbuffer ← Concat ([Kbuffer,kt] , dim = token)
16: Vbuffer ← Concat ([Vbuffer,vt] , dim = token)
17: at ← Concat ([qtDkKcsr, qtKbuffer] , dim = token)
18: at ← Softmax (at)
19: V ← Concat ([DvVcsr,Vbuffer] , dim = token)
20: ot ← atV
21: if len (Kbuffer) > nb then
22: K ′

csr ← OMP (Kbuffer [: na] ,Dk, s)
23: V ′

csr ← OMP (Vbuffer [: na] ,Dv, s)
24: Kcsr ← Concat ([Kcsr,K

′
csr] , dim = token)

25: Vcsr ← Concat ([Vcsr,V
′
csr] , dim = token)

26: Kbuffer ←Kbuffer [na :], Vbuffer ← Vbuffer [na :]
27: end if
28: KV cache←Kcsr,Kbuffer,Vcsr,Vbuffer
29: return ot

30: end procedure
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B.4 COMPLEXITY AND LATENCY ANALYSIS

Time and space complexity. The sparse representations are stored in CSR format, with values
encoded in FP8(E4M3), and all indices, including offsets, are stored as int16. Each row in CSR
corresponds to a single key or value vector. For a given sparsity level s, the memory usage includes:
nonzero values (s bytes), dictionary indices (2s bytes), and the offset array (2 bytes), resulting in a
total size of 3s + 2 bytes. For a head dimension of 128, a fully uncompressed vector using FP16
takes 256 bytes, yielding a memory usage of 3s+2

256 × 100 ≈ 1.17s% (e.g., 37.5% for s = 32).

In terms of time complexity, computing qtK
⊤
t for a single head requires O(lseqm) multiplications.

On the other hand, qtDkK
⊤
csr needs O(Nm+ lseqs) multiplications. This means that our computa-

tion is particularly well-suited for long-context tasks when lseq > m where m is anywhere between
1024 and 4096. For short contexts when lseq < m, our method only adds a small overhead to
attention computation in actuality.

Latency analysis. Table 3 reports the latency of both the forward pass and the OMP computation
for Lexico during the decoding stage. We run generation tests with a 1000-token input to the Llama-
3.1-8B-Instruct model, generating up to 250 tokens to measure and aggregate latency metrics. We
compare both dictionary sizes N = 1024 and 4096, which primarily affects OMP computation time.
We set the sparsity level to s = 24, and process OMP in batches of na = 8.

Although we list the forward pass and OMP separately, the processes are implemented to run in par-
allel such that the one generation step takes the maximum of the two durations plus some overhead.
However, with parallelization, there exists a time versus space complexity tradeoff, since running
OMP also consumes GPU memory.

Higher latency of Lexico may be a limitation for latency-critical use cases. However, our primary
focus is addressing highly memory-constrained scenarios. Such scenarios are increasingly critical
for real-world LLM deployments, where even a batch size of one can exceed the capacity of a single
GPU. By prioritizing memory efficiency, Lexico enables feasible deployment in contexts where
other methods may encounter out-of-memory errors, offering a crucial contribution to memory-
limited settings.

Table 3: Latency measurements. The following latencies measure the total time it takes for the
respective computation to process when generating one new token. We use Llama-3.1-8B-Instruct
and sum up the time each operation takes in total across all 32 layers. Latencies when dictionary
sizes are 1024 and 4096 are measured.

Computation Type Latency (per token)

- N = 1024 N = 4096

Standard forward pass (qK⊤) 48.39 ms –
Lexico: forward pass using q(KcsrD

⊤
k )

⊤ 55.56 ms 56.35 ms
Lexico: sparse approximation via OMP 26.57 ms 40.58 ms
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 LONGBENCH TASK STATISTICS

Table 4 shows the details of the LongBench tasks.

Table 4: Details of LongBench tasks used in experiments.

Task Task Type Evaluation Metric Average Length # of Samples

Qasper Single-doc QA F1 3619 200
QMSum Summarization ROUGE-L 10614 200
MultiNews Summarization ROUGE-L 2113 200
TREC Few-shot information retrieval Accuracy 5177 200
TriviaQA Few-shot reading comprehension F1 8209 200
SAMSum Few-shot dialogue summarization ROUGE-L 6258 200
LCC Code completion Edit Similarity 1235 500
RepoBench-P Code completion Edit Similarity 4206 500

C.2 HYPERPARAMETER SETTINGS

For both experiments, Lexico uses a dictionary size of N = 4096, a buffer size of nb = 128, and an
approximation window size na = 1, compressing the oldest token with each new token generated.
For KIVI-4 and KIVI-2, we use a quantization group size of g = 32 and a buffer size of nb = 128 ,
as is tested and recommended in Liu et al. (2024b), for LongBench. For GSM8K and MMLU-Pro,
we test for stronger memory savings, so we use g = 64 and nb = 64 for KIVI.

C.3 ADDITIONAL GSM8K RESULTS

The performance of Lexico on GSM8K compared to KIVI is shown in Table 5. With a KV size of
36.9%, Lexico on Llama 8B models experiences a slight accuracy drop of less than 3%p, underper-
forming KIVI-4 at a similar KV size. However, in the lower memory regime near 25% KV size,
Lexico significantly outperforms KIVI-2, achieving a higher accuracy by 8.2%p on the Llama-3-8B
model and 7.1%p on the Llama-3.1-8B-Instruct model. These results highlight the robustness of
Lexico in low-memory settings, demonstrating that low reconstruction error can be achieved using
only a few atoms from our universal dictionary. To further test the resilience of Lexico, we set the
sparsity to s = 4, observing a noticeable drop in accuracy on the Llama-3.1-8B-Instruct model.
Despite this, both Llama models maintain an accuracy above 40%, which is remarkable given that
only 4 atoms from Lexico were used for each key-value vector, utilizing just 15.8% of the full cache,
including the buffer.

The performance of Lexico on the Mistral-7B-Instruct model is even more impressive. We demon-
strate that for Mistral, Lexico not only outperforms KIVI-4 and KIVI-2 but also achieves higher
accuracy with even less memory usage. We also evaluate Lexico with s = 4 on the Mistral model
and observe an accuracy of 39.2%, further demonstrating robustness in low-memory settings.

We also evaluate Lexico on a larger model, Qwen2.5-14B-Instruct, with its weights quantized to
4 bits, comparing it against quantization methods. The results, illustrated in Figure 4, show that
Lexico achieves a higher GSM8K score than KIVI under similar KV cache budgets. Additionally,
Lexico enables higher compression ratios than 2-bit quantization methods, facilitating deployment
under extreme memory-constrained scenarios.

12
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Table 5: Experimental results on GSM8K. For Lexico, we use N = 4096 as the dictionary size
and nb = 128 as the buffer size. For KIVI, we use g = 64 (group size for quantization) and
nb = 64 (buffer size). Sparsity level s is set to match the average KV size of KIVI, while s = 4
corresponds to cache size unattainable by common 2-bit quantizations. Full cache is in FP16. We
include example generations of KIVI and Lexico in Appendix C.5.

(a) Llama 3.x 8B Models

Method KV Size Llama-3-8B 3.1-8B-Instruct

Full Cache 100% 49.89 79.61

KIVI-4 38.2% 49.13 78.17
Lexico s=24 36.9% 48.29 76.88

KIVI-2 25.7% 40.56 67.93
Lexico s=14 26.1% 48.75 75.06

Lexico s=4 15.8% 40.03 51.71

(b) Mistral 7B v0.3 Model

Method KV Size 7B-Instruct

Full Cache 100% 48.60

KIVI-4 38.2% 48.52
Lexico s=20 32.7% 48.60

KIVI-2 25.7% 42.91
Lexico s=10 22.0% 44.35

Lexico s=4 15.8% 39.20

C.4 MMLU-PRO RESULTS

Figure 5 illustrates the trade-offs between memory usage and performance for Lexico on the
MMLU-Pro Engineering and Law subjects using the Llama-3.1-8B-Instruct model. Lexico out-
performs eviction-based methods like SnapKV and PyramidKV across all memory settings, though
its performance is comparable to quantization-based methods such as KIVI and ZipCache. How-
ever, in a low memory regime below 20% cache, our method still outperforms any other baseline.
This highlights that Lexico supports a wide range of compression ratios quite effectively and that
our dictionary is generalizable across input distributions.

Figure 4: Memory usage vs.
performance of Qwen2.5-
14B-Instruct with Lexico
on GSM8K. We compare the
performance of Lexico against
quantization methods on Qwen2.5-
14B-Instruct, with its weights
quantized to 4 bits. For Lexico, we
use N = 4096 as the dictionary
size and nb = 128 as the buffer
size.

Figure 5: Memory usage vs. performance of Llama-
3.2-8B-Instruct with Lexico on MMLU-Pro Engineer-
ing/Law. For Lexico, we use N = 4096 as the dictio-
nary size and nb = 128 as the buffer size. Lexico of-
ten outperforms both eviction-based methods (SnapKV, Pyra-
midKV) and quantization-based methods (per-token quanti-
zation, KIVI, ZipCache). For Law, our method slightly un-
derperforms around 25%, but in lower memory regimes, our
method still outperforms any other baseline.
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C.5 GSM8K EXAMPLE GENERATION

The boxes highlight the correct intermediate answers that must be derived. The highlighted colors
in red show incorrect reasoning and answers. We provide the original problem and solution below,
along with outputs from Llama-3.1-8B-Instruct with full KV cache (FP16), Lexico (sparsity s = 14),
and KIVI-2.

Original Problem & Solution

Problem: The Kennel house keeps 3 German Shepherds and 2 Bulldogs. If a German Shepherd
consumes 5 kilograms of dog food and a bulldog consumes 3 kilograms of dog food per day,
how many kilograms of dog food will they need in a week?

Solution: The German Shepherds consume 3× 5 = 15 kilograms of dog food per day.
The Bulldogs consume 2× 3 = 6 kilograms of dog food per day.
The dogs consume a total of 15 + 6 = 21 kilograms of dog food per day.
Therefore, they need 21× 7 = 147 kilograms of dog food in a week.

Final Answer: 147

Llama-3.1-8B-Instruct with Full Cache
First, find the total amount of food the German Shepherds consume in a day: 3 dogs× 5 kg/dog
= 15 kg.
Then find the total amount of food the Bulldogs consume in a day: 2 dogs × 3 kg/dog = 6 kg.
Add the two amounts together to find the total amount of food the dogs consume in a day: 15
kg +6 kg = 21 kg.
Multiply that number by 7 to find the total amount of food the dogs consume in a week: 21
kg/day ×7 days = 147 kg.

Llama-3.1-8B-Instruct with Lexico (s = 14)

The kennel has 3 German Shepherds and 2 Bulldogs, so they have 3 + 2 = 5 dogs.
The German Shepherds consume 5× 3 = 15 kilograms of dog food per day.
The Bulldogs consume 2× 3 = 6 kilograms of dog food per day.
So, the kennel needs 15 + 6 = 21 kilograms of dog food per day.
In a week, they will need 21× 7 = 147 kilograms of dog food.
The answer is 147.

Llama-3.1-8B-Instruct with KIVI-2

The Kennel house has 3 German Shepherds and 2 Bulldogs, so they have a total of 3 + 2 = 5
dogs.
Each German Shepherd consumes 5 kilograms of dog food per day, so the total amount of dog
food consumed by the German Shepherds is 5× 5 = 25 kilograms per day.
Each Bulldog consumes 3 kilograms of dog food per day, so the total amount of dog food
consumed by the Bulldogs is 2× 3 = 6 kilograms per day.
The total amount of dog food consumed per day is 25 + 6 = 31 kilograms.
The Kennel house will need 31× 7 = 217 kilograms of dog food in a week.
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D ABLATION STUDY

In this section, we ablate the various components of Lexico and how they may influence memory
complexity and task performance.

D.1 ERROR THRESHOLDING IN SPARSE APPROXIMATION

Lexico also supports a quality-controlled method for memory saving by allowing early termination
of the sparse approximation process when a predefined error threshold is met. This approach con-
serves memory that would otherwise be used for marginal improvements in approximation quality.

For the error thresholding ablation study, detailed results are provided in Table 6. We set a maxi-
mum sparsity of 32, corresponding to the maximum number of iterations for the OMP algorithm.
However, if the reconstruction error at any iteration falls below a predefined error threshold, we let
the OMP terminate early, saving memory that would otherwise be used for minor approximation
improvements. This approach is particularly compatible with OMP, as its greedy nature ensures that
early termination yields the same results as using higher sparsity (less non-zero elements). Addi-
tionally, OMP inherently computes the residual at each iteration, allowing for continuous evaluation
of the relative reconstruction error without requiring any additional computation.

Table 6: Impact of error thresholding on LongBench performance and memory usage. The
table presents the performance of Lexico on the Llama-3.1-8B-Instruct model at various reconstruc-
tion error thresholds (δ) for early termination of the sparse approximation algorithm. A dictionary
size of N = 1024 and FP16 precision for the values of the CSR tensors are used.

Threshold (δ) KV Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama-3.1-8B-Instruct
Full Cache 100% 22.54 24.57 27.44 72.5 91.65 43.47 63.15 56.76 50.26
0.2 50.6% 20.03 23.65 26.44 72.5 91.61 43.47 62.72 56.63 49.63
0.3 41.1% 16.49 23.35 25.34 72.5 91.34 43.02 62.53 56.65 48.90
0.4 30.9% 16.08 22.91 23.77 69.5 90.79 42.70 61.28 54.82 47.73
0.5 22.8% 12.43 21.75 21.29 57.5 88.56 41.04 58.85 53.19 44.33

D.2 BALANCING MEMORY BETWEEN BUFFER AND SPARSE REPRESENTATION

We examine how balancing memory allocation between the buffer and the sparse representation af-
fects performance as shown in Table 7. Fixing the total KV cache size at 25% of the original, we
vary the memory distribution between the buffer and the sparse representation across three Long-
Bench tasks. Qasper, MultiNews, and TREC. The results demonstrate that the ability to understand
long-contexts using Lexico is not based solely on the buffer or the sparse representation. Rather,
there exist optimal balance points where performance is maximized for each task.

Table 7: Balancing memory between buffer and sparse representation. This table shows the
performance of Lexico with the Llama-3.1-8B-Instruct model on LongBench tasks (Qasper, Multi-
News, TREC) while varying the memory allocation between the buffer and the sparse representation,
with the total KV cache size fixed at 25% of the original size.

Qasper MultiNews TREC

s nb F1 Score s nb ROUGE-L s nb Accuracy

1 862 6.38 1 503 17.20 1 1232 58.5
4 724 8.36 4 423 20.21 4 1035 63.5
8 517 14.58 8 302 21.27 8 739 65.0
12 278 17.84 12 163 22.81 12 398 63.5
16 0 8.27 16 0 10.70 16 0 54.5
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D.3 PERFORMANCE WITHOUT BUFFER

Lexico incorporates a buffer that retains the most recent nb tokens in full precision, similarly to
prior studies that find that this buffer is crucial to maintain performance. Our finding for Lexico also
aligns closely with this observation.

To evaluate the impact of the buffer, we first conduct experiments with varying sparsity without the
buffer, with the results shown by the dashed lines in Figure 6. The comparison shows that removing
the buffer results in a more pronounced decline in performance, especially at lower KV sizes. Full
numerical results are shown in Table 8 and Table 9.

Figure 6: Memory usage vs. performance of Lexico with and without buffer on LongBench
and GSM8K. The figure illustrates the impact of removing the buffer on the performance of Lexico
when evaluated on the Llama-3.1-8B-Instruct and Mistral-7B-Instruct models for LongBench (left)
and GSM8K (right) tasks. Solid lines represent configurations with a buffer, while dashed lines
represent configurations without a buffer. We use a dictionary size of N = 1024 and FP16 precision
for the values of CSR tensors to vary sparsity and explore a wide range of KV sizes.

Table 8: LongBench performance without buffer. This table shows the impact of removing the
buffer of Lexico on the performance of the Llama-3.1-8B-Instruct and Mistral-7B-Instruct models
at varying sparsity levels. A dictionary size of N = 1024 and FP16 precision for the values of the
CSR tensors are used.

Sparsity KV Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama-3.1-8B-Instruct
Full Cache 100% 13.10 23.46 26.94 72.5 91.65 43.47 63.15 56.76 48.88
s = 32 50.8% 14.87 26.51 26.57 71.5 92.48 42.88 61.54 54.04 48.80
s = 24 38.2% 13.37 25.02 22.54 65.0 91.75 39.71 52.21 46.48 44.51
s = 16 25.8% 8.27 13.74 10.70 54.5 77.51 20.45 26.53 22.46 29.27
s = 12 19.5% 6.31 10.15 5.66 39.0 53.70 6.83 22.18 19.46 20.41
s = 8 13.3% 2.74 8.05 4.17 36.5 34.45 4.27 18.24 18.32 15.84

Mistral-7B-Instruct-v0.3
Full Cache 100% 41.58 25.69 27.76 76.0 88.59 47.58 59.37 60.60 53.40
s = 32 50.8% 40.27 25.21 27.53 76.5 89.01 45.77 58.64 59.07 52.75
s = 24 38.2% 37.46 24.41 27.34 75.5 88.66 43.87 48.55 49.50 49.41
s = 16 25.8% 25.57 18.49 15.19 71.5 81.91 27.90 19.39 21.45 35.18
s = 12 19.5% 18.59 13.11 5.95 58.0 50.13 2.86 13.38 12.60 21.83
s = 8 13.3% 10.32 6.98 2.67 31.5 20.01 2.27 10.18 8.11 11.51

D.4 ADAPTIVE DICTIONARY LEARNING

While our universal dictionaries demonstrate strong performance, we explore an adaptive learning
method to better incorporate input-specific context. This adaptive approach improves performance
by adding new dictionary atoms during generation when the predefined reconstruction error thresh-
old is not met. These atoms, tailored to the input prompt, improve performance, but cannot be
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Table 9: GSM8K performance without buffer. This table shows the impact of removing the
buffer of Lexico on the performance of the Llama-3.1-8B-Instruct and Mistral-7B-Instruct models
at varying sparsity levels. A dictionary size of N = 1024 and FP16 precision for the values of the
CSR tensors are used.

Sparsity KV Size Llama-3.1-8B-Instruct Mistral-7B-Instruct-v0.3

Full Cache 100% 79.61 48.60
s = 32 50.8% 69.07 43.97
s = 24 38.2% 32.75 23.20
s = 16 25.8% 1.97 1.29
s = 12 19.6% 1.36 0.76

shared across batches, which requires them to be included in the KV size calculation. Although this
approach boosts accuracy, it increases memory usage, limiting its ability to achieve low-memory
regimes.

Though we observe some degree of universality in our dictionaries, as shown in Table 2, their perfor-
mance is particularly strong on WikiText-103, the dataset they were trained on. To better incorporate
input context information, we propose an extension that adaptively learns the dictionary during gen-
eration.

In this framework, we begin with a pre-trained universal dictionary as the initial dictionary. If, during
the generation process, the sparse approximation fails to meet the predefined relative reconstruction
error threshold, the problematic uncompressed key or value vector is normalized and added to the
dictionary. The sparse representation of this vector is then stored with a sparsity of s = 1, where its
index corresponds to the newly added atom and its value is the ℓ2 norm of the uncompressed vector.
The updated dictionary is subsequently used for further sparse approximations during the generation
task. In this way, the adaptive learning framework incrementally refines the dictionaries, tailoring
them to the specific generative task and enhancing overall performance at the cost of additional
memory usage.

In our experiment, we initialize with a dictionary of size 1024 derived from WikiText-103; we then
incorporate up to 1024 additional atoms during inference, resulting in a total dictionary size of
N = 2048. The maximum sparsity of s = 16 is used, with a buffer size of nb = 128, and FP16
precision for the values of the CSR tensors. Results of this experiment are presented in Table 10.
For both the Llama-3.1-8B-Instruct and Mistral-7B-Instruct models, the best GSM8K scores were
observed when the relative reconstruction error threshold was set to δ = 0.3. Under this setting, the
adaptive Lexico achieved improvements of 4.5%p and 2.1%p in the GSM8K score compared to the
baseline Lexico for the Llama and Mistral models, respectively. The baseline Lexico uses a static
initial dictionary of size 1024 without any adaptation. However, these improvements come at the
cost of increased KV cache sizes of 9.1% for Llama and 6.9% for Mistral.

Table 10: GSM8K performance of adaptive Lexico. The table shows the GSM8K performance
and KV cache sizes of adaptive Lexico on the Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3
models at varying reconstruction error thresholds (δ). A universal dictionary of size 1024 is used,
with up to 1024 additional atoms added during generation. The maximum sparsity of s = 16, buffer
size of nb = 128, and FP16 precision for CSR tensor values are applied.

Threshold (δ) Llama-3.1-8B-Instruct Mistral-7B-Instruct-v0.3

KV Size GSM8K Score KV Size GSM8K Score

Full Cache 100% 79.61 100% 48.60
w/o Adaptation 34.4% 72.93 34.4% 46.02
0.25 n/a n/a 42.1% 48.07
0.30 43.5% 77.41 41.3% 48.14
0.35 42.0% 76.80 39.8% 47.76
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