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Abstract

Structured pruning is a commonly used technique in deploying deep neural net-
works (DNNs) onto resource-constrained devices. However, the existing pruning
methods are usually heuristic, task-specified, and require an extra fine-tuning pro-
cedure. To overcome these limitations, we propose a framework that compresses
DNNs into slimmer architectures with competitive performances and significant
FLOPs reductions by Only-Train-Once (OTO). OTO contains two keys: (i) we
partition the parameters of DNNs into zero-invariant groups, enabling us to prune
zero groups without affecting the output; and (ii) to promote zero groups, we then
formulate a structured-sparsity optimization problem and propose a novel opti-
mization algorithm, Half-Space Stochastic Projected Gradient (HSPG), to solve
it, which outperforms the standard proximal methods on group sparsity explo-
ration and maintains comparable convergence. To demonstrate the effectiveness of
OTO, we train and compress full models simultaneously from scratch without fine-
tuning for inference speedup and parameter reduction, and achieve state-of-the-art
results on VGG16 for CIFAR10, ResNet50 for CIFAR10 and Bert for SQuAD
and competitive result on ResNet50 for ImageNet. The source code is available
at https://github.com/tianyic/only_train_once.

1 Introduction

Deep neural networks (DNNs) have been shown to be effective in various real applications (51; 28).
It is widely acknowledged that large-scale DNN models not only learn faster but also outperform
their slimmer counterparts. However, such heavy models pose a great challenge to the deployment
stage due to their resource-consuming nature. In addressing this issue, many model compression
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Figure 1: Overview of OTO. Without loss of generality, we illustrate OTO on a model with only
vanilla convolutional layers, and for simplicity we only show Layeri with m 3D filters and their
biases. The key to its success is twofold: (i) identify and partition the parameters of the model into
zero-invariant groups (ZIGs); and (ii) solve the structured-sparsity regularization problem using
HSPG. Finally, we obtain the compressed model by directly pruning the zero groups, i.e., ZIGm.

techniques (5; 11) are proposed in the past decade that aim at compressing those large and complex
models into slimmer and simpler ones while suffering negligible loss in performance.

Pruning methods as one of the main categories of model compression, focus on identifying and
pruning redundant structures via various mechanisms to achieve a slimmer architecture, and thus
improve the interpretability of a DNN model (26; 11; 65). For example, (32; 33) adopt fine-grained
pruning via `1 or `2 regularization, which prune the small-weight connections based on some hard
threshold. (36; 57; 60) measure the importance of filters to accelerate the networks by removing
insignificant feature maps. (37; 7) utilize reinforcement learning agent to predict compression action.

Nevertheless, many of the existing pruning methods (i) often rely on criteria based on heuristics or
empirical cues, e.g., magnitude of a connection weight and importance score of a filter, to identify
redundant parameters, which may cause divergence during optimization; (ii) thus require complex
multi-stage pipelines that involve either a retraining or fine-tuning procedure to regain the accuracy
during constructing a slimmer model, which is time-consuming; and (iii) are specific to certain
architectures or applications, and are consequently less applicable to various downstream scenarios.
Recently, there have been a few efforts (14; 58; 8) to directly train the network with sparsity inducing
regularizers, which provide generality and convergence guarantee. However, these approaches focus
on either merely the individual sparsity of the parameters or the group sparsity of the filters, and
thus cannot directly remove those zero components (still require subsequent fine-tuning) since the
zeros are entangled with other commonly used components, e.g., bias, batch normalization or skip
connection. Furthermore, the optimization algorithms used in (14; 58) lack sufficient capability to
explore (group) sparsity in DNNs effectively and require a post-processing step to yield exact zeros.

In this paper, we overcome the above limitations of existing pruning methods by proposing a one-shot
neural network pruning framework, with which we are able to train a full heavy model from scratch
only once, and obtain a slim architecture without fine-tuning while maintain high performance. As
shown in Figure 1, the key to its success is twofold: (i) we identify and partition the parameters of
DNNs into zero-invariant groups (ZIGs), enabling us to prune redundant structures according to zero
groups without affecting the output of the network; and (ii) to promote zero groups, we formulate
the pruning task as a structured-sparsity optimization problem and propose a novel optimization
method, Half-Space Stochastic Projected Gradient (HSPG), to solve it, which outperforms the
standard proximal methods on sparsity exploration and maintains comparable convergence. We
highlight that both zero-invariant group partition and the novel optimization algorithm in promoting
zero group lead to achieve one-shot neural network training and pruning regardless of its architecture.

Our main contributions are summarized as follows.

• One-Shot Training and Pruning. We propose OTO, a training and pruning framework that
compresses a full neural network with competitive performance by Only-Train-Once, thereby
one-shot. OTO dramatically simplifies the complex multi-stage training pipelines of the existing
pruning approaches, fits various architectures and applications, and hence is generic and efficient.

• Zero-Invariant Group. We define zero-invariant groups for neural networks. If a network is
partitioned into ZIGs, it allows us to prune the zero groups without affecting the output, which
results in one-shot pruning. Such property is applicable to various popular structures from plain
fully connected layers to sophisticated ones such as residual blocks and multi-head attention.

• Novel Structured-Sparsity Optimization Algorithm. We propose Half-Space Stochastic Pro-
jected Gradient (HSPG), a method that solves structured-sparsity inducing regularization problem.
We show and analyze the superiority of HSPG in promoting zero groups of networks than the
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standard proximal methods and the competitive objective convergence in practice. The fact that
ZIG and HSPG are designed agnostic to networks makes OTO generic to various applications.

• Experimental Results. We train and compress full models simultaneously from scratch without
fine-tuning for inference speedup and parameter reduction, and achieve state-of-the-art results on
compression benchmark VGG for CIFAR10, ResNet50 for CIFAR10/ImageNet, Bert for SQuAD.

2 Related Work

Structured pruning focuses on identifying and pruning the redundant structures in a full model
to achieve slimmer architectures for efficient model inference and storage (26; 32), where there
have been numerous efforts dedicated. For CNN compression, the general procedure can be largely
summarized as: (i) train a full model; (ii) identify and prune the redundant structures to build a slimmer
model based on various criteria, including (structured) sparsity (58; 85; 14; 56; 102; 27; 102; 62; 91),
Bayesian pruning (101; 65; 59; 81), ranking importance (54; 60; 41; 36; 57; 100), reinforcement
learning (37; 7), adversarial robustness (76), scientific control (79), lottery ticket (23; 24; 72), joint
quantization learning (80; 90), etc.; (iii) retrain or iteratively fine-tune the slimmer model to regain
the accuracy regression during pruning. These methods cannot avoid the extra and usually time-
consuming fine-tuning step because the identified redundant structures, even parametrized with zeros,
actually contribute to the model output, thereby additional fine-tuning step is an absolute necessity.

For pruning Bert (82), knowledge distillation (40) and LayerDropout (21) shorten Bert by reducing
the number of layers directly. Other methods (29; 75; 30) build slimmer Berts in the manner of
individual sparsity, but require specially designed data structure for storage and computing library to
take advantage of sparse data (31; 10), and typically cannot achieve inference speedup against the
highly optimized library (16) for dense model due to the discontiguous memory allocation (9).

The structured sparsity for weight pruning is the most relevant to the algorithm described in this
paper. The existing structure learning works (58; 85; 14; 56; 102) have the respective disadvantages:
(i) multiple trainings during the whole procedure since their group partition cannot isolate the impact
of pruned structures to the model output; and (ii) heuristic post-processing to generate zero groups as
the standard proximal methods (19; 87; 88; 12) and ADMM (100; 58; 4) defective on the sparsity
exploration for deep learning (8), which may deteriorate the performance of the model significantly.

Avoiding fine-tuning step during the whole pruning procedure is receiving more and more attentions
because of its efficiency. In particular, SNIP (52) and GraSP (83) identify redundancy via salience
scores at the initialization stage to construct pruned structures, then train the pruned models by
the standard optimizers. SCP (48) isolates the impact of batch normalization, while lacks the
consideration of more general DNN architectures.

3 OTO

In essence, OTO frames the network training and pruning as a structure learning problem. Given a
full modelM, OTO trains and compresses it simultaneously from scratch without fine-tuning, and
achieves significant reduction in both FLOPs and parameters. Particularly, as stated in Algorithm 1,
the trainable parameters ofM are firstly partitioned into a ZIG set G (Section 3.1). We then construct
and solve a structured-sparsity inducing optimization problem (Section 3.2) by proposed stochastic
optimizer (HSPG) to seek a highly group-sparse solution x∗HSPG (Section 3.3). Lastly, we obtain a
compressed modelM∗ by directly pruning these zero groups (Section 3.4).

Algorithm 1 Outline of OTO.

1: Input: Full modelM (no need to be pretrained).
2: Construct G: Partition the trainable parameters ofM into a ZIG set G.
3: Train: Train the modelM using HSPG (Algorithm. 2) to obtain a group-sparse solution x∗HSPG.
4: Prune: Construct a slimmer model architectureM∗ by directly pruning zero groups of x∗HSPG.
5: Output: Compressed modelM∗.
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3.1 Zero-Invariant Group

The root cause of the existing methods having multi-stage training pipeline is that despite the pruned
structure (e.g., 3D filter) being zeros, its associated structures (e.g., non-zero bias) still contribute
to its corresponding output to the next layer (e.g., feature map). As a result, the model accuracy
regresses, hence an extra step of fine-tuning is necessary. OTO avoids the necessity by partitioning
the parameters of DNNs into a set of so-called zero-invariant groups (ZIGs) G defined as follows.
Definition 1 (Zero-Invariant Groups (ZIGs)). For a layer-wise DNN, we partition its entire trainable
parameters into disjoint groups G = {g}. Then we call G zero-invariant groups (ZIGs) if each
group g ∈ G is zero-invariant in the sense that all of the parameters in g being zeros results in its
corresponding output to the next layer to be zeros as well.
In effect, if and only if a DNN model is partitioned into a ZIG set G and one or more of its element g
are parameterized by zeros, the entire corresponding structures contribute none to the model outputs
and hence can be pruned directly. Such partition is applicable to various structures of DNN models.
Without loss of generality, we define and describe ZIG partition for three most popular structures: (i)
Conv-BN, (ii) Residual Block, and (iii) Fully Connected and Multi-Head Attention Layer.

(a) Conv-BN. m denotes the number of channels in Ol.

(b) Residual block. m denotes the number of output channels of the residual block.

(c) Fully connected layer (Left). Multi-head attention layer (Right). m denotes the length of output vector.

Figure 2: Zero-invariant group partition for three popular structures.

ZIG of Conv-BN. Convolutional layer (Conv) followed by batch-normalization layer (BN) is exten-
sively used in DNN models. Figure 2a shows the ZIG partition for Conv-BN. The 4D filter tensor Kl

is flattened into a filter matrix K̂l. During the forward pass, the input tensor I l is transformed into the
output tensor Ol of Conv and then into the input tensor of the (l + 1)th layer I l+1 by

Ol ← I l ⊗ K̂
l
+ bl, I l+1 ← a(Ol)− µl

σl
� γl + βl, (1)

where denoted by ⊗ the convolutional operation, � the element-wise multiplication and a(·) the
activation function. BN is parameterized by mean µl, standard deviation σl, weight γl and bias βl
respectively. The activation function needs to be zero-invariant, i.e., a(0) = 0, where most instances
satisfy, e.g., ReLU (25), PReLU (34), GELU (39) and LeakyReLU (89). Hence, each row of the
flattened filter matrix K̂l and its bias bl belong to one ZIG because they being zeros results in their
corresponding channel of Ol (i.e., feature map) to be zeros as well. Subsequently, γl and βl of
this corresponding channel in BN are also included into this ZIG to avoid the value shift (zero to
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non-zero) during normalization. Note that grouping these four sets of parameters channel-wisely
makes Conv-BN zero-invariant regardless of the value of µl and σl, and hence they are excluded
from the ZIG. For illustration, each ZIG is highlighted in the same color (e.g., gl1 in blue).

ZIG of Residual Block. The residual block adds another layer of challenge because its output tensor
is the summation of the outputs of two Conv-BNs. Figure 2b shows the ZIG partition for the residual
block. As illustrated, before propagated to Conv3, the outputs of Conv1-BN1 and Conv2-BN2 are
summarized and hence share the same dimension. As such, to make residual block zero-invariant, we
group the four sets of parameters channel-wisely of both Conv1-BN1 and Conv2-BN2 into ZIGs,
i.e., each row of K̂1, b1, γ1, β1 of Conv1-BN1 and each row of K̂2, b2, γ2, β2 of Conv2-BN2. In
Appendix A.1, we describe the zero-invariant group partition of ResNet50 in greater detail.

ZIG of Fully Connected and Multi-Head Attention Layer. Figure 2c shows the ZIG partition for
fully connected and multi-head attention layer. Particularly, we partition each row of weight matrix
and its associated bias into a ZIG, and therefore any input element is turned to zero if that ZIG is
parameterized with zeros, making the fully connected layer zero-invariant. Multi-head attention layer
is the key building block of the transformer architectures (82). Its trainable parameters contain a
weight matrix and bias vector, consisting of the sub-matrix and sub-vector of each head (we use two
heads as an example). We form ZIG by grouping each row of every sub-matrix and sub-vector, i.e.,
each row of Wh1 , bh1 , Wh2 and bh2 of h1 and h2, respectively.

Automatic ZIG Partition. Based on the above illustrating examples, we provide prescribed ZIG
partition for the tested DNNs in Section 4. Furthermore, given an arbitrary DNN architecture, the
procedure of partitioning variables into ZIGs could be automatically proceeded, wherein the key
would be identifying the connections among various layers, then performing corresponding group
partition. We will leave the automatic ZIG partition for arbitrary DNNs as future work.

3.2 Structured-Sparsity Regularization

We now formulate a structured-sparsity regularization problem over the ZIG set G for the trainable
parameters of the full modelM as follows

minimize
x∈Rn

ψ(x) := f(x) + λr(x), r(x) :=
∑
g∈G
‖[x]g‖ , (2)

where λ > 0 is a weighting coefficient, f(x) is a task-specific loss function, and r(x) is an augmented
structured-sparsity inducing regularization term encoding the topological structure ofM over G.
A larger λ typically results in a higher group sparsity while sacrifices more on the bias of model
estimation. We aim at computing a local optimum to achieve both low loss and high group sparsity.

To induce group sparsity onto the solution of (2), there exist several candidates for r(x), including
mixed `1/`p norm (p > 1) (1; 20) and group Minmax Concave Penalty (MCP) (96). Among these
candidates, the mixed `1/`2 norm as defined in (2) is arguably the most popular choice in classical
machine learning applications (1; 92), where ‖·‖ is the `2-norm, and each component g ∈ G indexes
a group of variables. In this paper, we will demonstrate the effectiveness of OTO by selecting r(x) as
the mixed `1/`2 norm. We highlight OTO is applicable for other group sparsity regularizers as well.

3.3 Half-Space Stochastic Projected Gradient (HSPG)

To solve the non-smooth regularization problem as (2) in deep learning applications, the standard
proximal method and the ADMM lack capability to effectively identify group sparsity; see the
discussions later in this Section. Therefore, we propose a novel stochastic optimization algorithm
so-called Half-Space Stochastic Projected Gradient (HSPG) to enhance the group sparsity exploration
more effectively than the classical methods while maintain a similar convergence property.

Outline. We state the outline of HSPG in Algorithm 2. It contains two stages: Initialization Stage
and Group-Sparsity Stage. The first Initialization Stage employs Stochastic Gradient Descent (SGD)
step to search for a good but usually non-sparse solution estimate. Then the second stage proceeds
Half-Space step started with the non-sparse iterate to effectively exploit the group sparsity within a
sequence of reduced spaces and converges to the group-sparse solutions. Half-Space step performs
SGD update on free non-zero variables along with a novel projection operator so-called Half-Space
Projection, which significantly outperforms the standard proximal operators on sparsity exploration.
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Initialization Stage. The Initialization Stage performs the vanilla SGD to find a good initial point
for the subsequent Group-Sparsity Stage. At kth iteration, a stochastic gradient of f , e.g., based on a
mini-batch, is generated denoted as ∇f̃ . Since the group sparsity inducing regularizer r(x) in the
form as (2) is non-smooth, we select a subgradient ζ(xk) from its subdifferential ∂r(xk) to form a
stochastic subgradient of ψ(xk) as ν(xk) := ∇f̃(xk) + λζ(xk). We then compute the next iterate
as xk+1 := xk − αkν(xk) by subgradient descent update.
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Figure 3: Illustration of Half-Space Step with projection in (6), where G = {{1, 2}}.
Group-Sparsity Stage. The Group-Sparsity Stage is designed to effectively determine the groups of
zero variables and capitalize convergence characteristic, which is in sharp contrast to other heuristic
aggressive weight pruning methods that typically lack theoretical guarantees (55; 60). The intuition
of Half-Space Step is to project [xk]g to zero only if −[xk]g serves as a descent step to ψ(xk), i.e.,
−[xk]>g [∇ψ(xk))]g < 0, hence updating [xk+1]g ← [xk]g − [xk]g = 0 still results in some progress
to the optimality. In particular, we first define the following index sets for any x ∈ Rn:

I0(x) := {g : g ∈ G, [x]g = 0} and I 6=0(x) := {g : g ∈ G, [x]g 6= 0}, (3)

where I0(x) represents the indices of groups of zero variables at x, and I 6=0(x) indexes the groups
of nonzero variables at x. To proceed, we further define an artificial set that x lies in:

S(x) := {0}
⋃
{z ∈ Rn : [z]g = 0 if g ∈ I0(x), and [z]>g [x]g ≥ ε ‖[x]g‖2 if g ∈ I 6=0(x)}, (4)

which consists of half-spaces and the origin. Here the parameter ε ≥ 0 controls how aggressively we
promote group sparsity, and is typically fixed as zero in practice. Hence, x ∈ Sk := S(xk) only if:
(i) [x]g lies in the upper half-space for all g ∈ I 6=0(xk) for some prescribed ε ∈ [0, 1) as shown in
Figure 3a; and (ii) [x]g equals to zero for all g ∈ I0(xk). Intuitively, Sk establishes the region where
important structures inhabit, thereby redundant structures vanish if falling outside.

Algorithm 2 Outline of HSPG for solving (2).

1: Input: x0 ∈ Rn, α0 > 0, ε ∈ [0, 1), and N ∈ Z+.
2: Output: a group-sparse solution x∗HSPG from {xk}.
3: for k = 0, 1, 2, . . . do
4: Compute a stochastic subgradient ν(xk) of ψ(xk).
5: if k < N then
6: Subgradient Descent Update:
7: Set xk+1 ← xk − αkν(xk).
8: else
9: Half-Space Update:

10: Set a trial iterate x̃k+1 as

[x̃k+1]I 6=0(xk) ← [xk − αkν(xk)]I 6=0(xk)

[x̃k+1]I0(xk) ← 0.

11: for each group g in G do
12: [xk+1]g ← [ProjHSSk (x̃k+1)]g.

13: Update αk+1.

Ideally, the Initialization Stage has
produced reasonably well but typi-
cally non-sparse iterate xk nearby
a group-sparse solution x∗ of prob-
lem (2), , i.e., the optimal distance
‖xk − x∗‖ is sufficiently small. As
seen in Appendix B, it further indi-
cates that the group-sparse optimal
solution x∗ inhabits Sk, and Sk has
already covered the group-support of
x∗, i.e., I 6=0(x∗) ⊆ I 6=0(xk). Our
goal now becomes minimizing ψ(x)
over Sk to identify the remaining zero
groups, i.e., I0(x∗)/I0(xk), which is
formulated as the following problem:

minimize
x∈Sk

ψ(x) = f(x) + λr(x). (5)

The next iterate xk+1 is computed as
an solution estimate of problem (5).
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Particularly, in Algorithm 2, [xk+1]I0(xk) ≡ 0 will not be updated, and only the entries in I 6=0(xk)
are free to move. Hence ψ(x) is smooth on Sk, and (5) is a reduced space optimization problem. A
standard way to solve problem (5) would be the stochastic gradient descent equipped with Euclidean
projection (68). However, such a projected method rarely produces zero (group) variables, as the
dense Euclidean projected point x̂E 6= 0 illustrated in Figure 3a. To address, we introduce a novel
half-space projection operator to effectively project an entire group of variables to zeros.

As line 4 and 9-12 in Algorithm 2, we first approximate the (sub)gradient of ψ on the free variables
by [ν(xk)]I 6=0(xk), then employ gradient descent over I 6=0(xk) to compute a trial point x̃k+1 which
is passed into a fresh half-space projection operator ProjHSSk (·) defined as[

ProjHSSk (z)
]
g

:=

{
0 if [z]>g [xk]g < ε ‖[xk]g‖2 ,
[z]g otherwise.

(6)

The above projector of form (6) is not the standard one in Euclidean sense2, and it has two advantages:
(i) the actual search direction dk := (ProjHSSk (x̃k+1)− xk)/αk performs as a descent direction to
ψ(xk), i.e., [dk]>g [ν(xk))]g < 0 as θ < 90◦ in Figure 3a, hence the progress to the optimum is made
via the sufficient decrease property drawn as Lemma 1 in Appendix B; then (ii) it effectively projects
entire groups of variables to zero if the inner product of corresponding entries is sufficiently small. In
contrast, the Euclidean projection operator is far away effective to promote group sparsity.

Superiority of HSPG on Group Sparsity Identification. We now intuitively illustrate the strength
of HSPG on group sparsity exploration. In fact, the half-space projection (6) is a more effective
sparsity promotion mechanism compared to the standard proximal methods. Particularly, it benefits
from a much larger projection region to map a reference point x̂k+1 := xk − αk∇f̃(xk) or its
variants to zero. As the 2D case described in Figure 3b, the projection regions of the state-of-the-art
Prox-SG (19), Prox-SVRG (88), Prox-Spider (97) and SAGA (12) for (2) are `2-balls with radius
as αkλ. In deep learning applications, the step size αk is usually selected around 10−3 to 10−4 or
even smaller for convergence. Together with the common setting of λ� 1, their projection regions
would vanish rapidly, resulting in the difficulties to produce group sparsity. As a sharp contrast, even
though αkλ is near zero, the projection region of HSPG {x : x>k x < (αkλ+ ε ‖xk‖) ‖xk‖} (seen
in Appendix B) is still an open half-space which contains those `2 balls as well as RDA (87)’s if ε is
large enough. Conversely, vanilla ADMM alone lacks the mechanism to project a group of variables
to zero, unless equips with extra post-processing step (100; 58). In Appendix B, we further reveal
that HSPG still maintains the convergence to the optimality as drawn in Theorem 1. Moreover, we
numerically demonstrate the superiority of HSPG in the sense of optimization in Appendix C.

3.4 Pruning Without Fine-Tuning

The group-sparse solution x∗HSPG over ZIGs to the full modelM is leveraged to construct the slimmer
modelM∗. Particularly, we prune the redundant structures identified as zero groups I0 and retain
non-zero groups I 6=0 in x∗HSPG. Because the parameters of full model are partitioned into ZIGs, the
pruned structures contribute none to the model output. Therefore, given the same input, the slimmer
modelM∗ computes the identical output as the full modelM parameterized with x∗HSPG.

4 Experiment

In this section, we numerically demonstrate the effectiveness of OTO by one-shot training and
pruning without fine-tuning on several benchmark compression tasks for CNNs, i.e., VGG16 (77)
for CIFAR10 (49) and ResNet50 (35) for CIFAR10 (49) and ImagetNet (ILSVRC2012) (15). We
also verify the scalibility of OTO onto Bert (82) evaluated on SQuAD (69). All datasets are free to
academic usage and do not contain personally identifiable information or offensive content. CIFAR10
is under the MIT license, consisting of 50,000 training and 10,000 test images from 10 classes.
ImagetNet is a large-scale dataset without license and contains about 1.2 million and 50,000 images
in training and validation sets from 1,000 classes. SQuAD is under the CC BY-SA 4.0 license with
about 100,000 question/answer pairs splitted into train/dev/test sets as (80/10/10%). We conduct all
experiments on a Nvidia RTX8000 GPU and provide implementation details in Appendix A.

2Note that when r(x) = ‖x‖1 where each g ∈ G is singleton, then Sk becomes an orthant face (8).
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Table 1: VGG16 and VGG16-BN for CIFAR10. Convolutional layers are in bold.
Method BN Architecture FLOPs # of Params Top-1 Acc.
Baseline 7 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 100% 100% 91.6%
SBP (65) 7 47-50-91-115-227-160-50-72-51-12-34-39-20-20-272 31.1% 5.9% 91.0%
BC (59) 7 51-62-125-128-228-129-38-13-9-6-5-6-6-6-20 38.5% 5.4% 91.0%

RBC (101) 7 43-62-120-120-182-113-40-12-20-11-6-9-10-10-22 32.3% 3.9% 90.5%
RBP (101) 7 50-63-123-108-104-57-23-14-9-8-6-7-11-11-12 28.6% 2.6% 91.0%

OTO 7 21-45-82-110-109-68-37-13-9-7-3-5-8-170-344 16.3% 2.5% 91.0%
Baseline X 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 100% 100% 93.2%
EC (55) X 32-64-128-128-256-256-256-256-256-256-256-256-256-512-512 65.8% 37.0% 93.1%

Hinge (56) X – 60.9% 20.0% 93.6%
SCP (48) X – 33.8% 7.0% 93.8%

OTO X 22-56-93-123-182-125-95-45-27-21-10-13-19-244-392 26.8% 5.5% 93.3%

4.1 Deep Convolutional Neural Network

The results on CNN experiments are summarized in Table 1, 2 and 4. In particular, we compare OTO
to its state-of-the-art counterparts by Top-1/5 accuracy, remaining FLOPs and parameters against
the corresponding baseline (full model). We report the numbers of other methods based on the
corresponding literature and leave as ‘-’ if not reported. The best pruning results are marked as bold.

VGG16 for CIFAR10. We consider the standard VGG16 and the version with batch normalization
layer after each convolutional layer, referred to as VGG16-BN. OTO partitions the parameters into
ZIGs following Section 3.1, then trains and prunes the model via HSPG, and finally constructs the
slimmer model without fine-tuning. For VGG16, as shown in Table 1, the pruned architecture of OTO
indicates that OTO identifies similar redundancy of the intermediate and late convolutional layers
compared to other methods, but significantly more of the early convolutional layers. As a result, OTO
achieves 83.7% (1− 16.3%) FLOPs reduction and 97.5% (1− 2.5%) parameter reduction with the
best Top-1 accuracy, which outperforms other state-of-the-arts significantly. For VGG16-BN, among
all, OTO reduces FLOPs and parameters to the lowest 26.8% and 5.5%, respectively. EC (55) and
Hinge (56) achieve the same level of Top-1 accuracy as OTO, but are substantially outperformed
when it comes to FLOPs and parameter reduction. We further present the FLOPs reductions per layer
of OTO in Table 7 of Appendix A.4.

Table 2: ResNet50 for CIFAR10.

Method FLOPs # of Params Top-1 Acc.
Baseline 100% 100% 93.5%

AMC (37) – 60.0% 93.6%
ANNC (90) – 50.0% 95.0%

PruneTrain (61) 30.0% – 93.1%
N2NSkip (78) – 10.0% 94.4%

OTO 12.8% 8.8% 94.4%

ResNet50 for CIFAR10. Since OTO is able to au-
tomatically learn a slimmer model of high perfor-
mance, we compare it with two state-of-the-art au-
tomatic neural network compression frameworks,
i.e., AMC (37) and ANNC (90). AMC trains a re-
inforcement learning agent to predict compression
action for each layer environment. ANNC jointly
proceeds pruning and quantization within energy
constraint. We conduct OTO on their shared experiment, i.e., ResNet50 on CIFAR10. ResNet50
includes both the standard convolutional layers and the layers with residual connections, which are
partitioned into ZIGs following Section 3.1. We report the results in Table 2 along with other competi-
tors from (61; 78). Based on the results, all methods achieve competitive validation accuracies, where
most of them are even higher than the baseline reported in (37). OTO outperforms AMC, ANNC
without quantization, PruneTrain and N2NSkip by using only 12.8% FLOPs and 8.8% parameters.
Note that no FLOPs reduction is reported in (37) and (90). Finally, we highlight that OTO is flexible
to incorporate quantization as the two techniques are complementary and will leave to future work.

Table 3: OTO Under Different Switchings (N = T, 2T, 3T )
for VGG16, VGG16-BN and ResNet50 on CIFAR10

Backend FLOPs # of Params Top-1 Acc.
VGG16 17.0% ± 1.4% 2.6% ± 0.4% 90.9% ± 0.3%

VGG16-BN 25.4% ± 1.1% 5.0% ± 0.5% 93.3% ± 0.2%
ResNet50 12.9% ± 1.5% 8.5% ± 1.0% 94.2% ± 0.2%

Ablation Study on Switching Pa-
rameter N . We provide ablation
study regarding the impact the switch
(parameterized as N ) between the
initialization stage and the group-
sparsity stage in Algorithm 1. In the-
ory, as shown in Theorem 1 of Ap-
pendix B.4, the projection stage should start when the iterate falls nearby a group sparse local
minimizer. In practice, we relax it to start the group sparsity stage once the iterate falling into some
stationary status regarding the validation accuracy. As described in Appendix A.2, throughout all
experiments, we periodically decay the learning rate per fixed number of epochs parameterized as T .
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At the end of each T epochs, we then proceed a statistical test similar to (98) but on the validation
accuracy and find that the validation accuracy falls into stationarity near the late epochs of each
period. Therefore, in our pruning experiments, we switch to the group-sparsity stage right after the
first T epochs. Table 3 describes the performance of OTO under varying switching parameters, from
which we observe that OTO is not largely sensitive to the switching parameter if the group-sparsity
stage starts after some stationary condition has been numerically satisfied.

Table 4: ResNet50 for ImageNet.

Method FLOPs # of Params Top-1 Acc. Top-5 Acc.
Baseline 100% 100% 76.1% 92.9%

DDS-26 (43) 57.0% 61.2% 71.8% 91.9%
CP (38) 66.7% – 72.3% 90.8%

ThiNet-50 (45) 44.2% 48.3% 71.0% 90.0%
RBP (101) 43.5% 48.0% 71.1% 90.0%

RRBP (101) 45.4% – 73.0% 91.0%
SFP (36) 41.8% – 74.6% 92.1%

Hinge (56) 46.6% – 74.7% –
GBN-50 (94) 44.9% 46.6% 75.2% 92.4%
GBN-60 (94) 59.5% 68.2% 76.2% 92.8%

Group-HS (2e-5) (91) 32.4% - 75.2% 92.5%
Group-HS (1e-5) (91) 52.9% - 76.4% 93.1%

ResRep (18) 45.5% - 76.2% 92.9%
SCP (48) 45.7% - 74.2% 92.0%

OTO 34.5% 35.5% 74.7% 92.1%
OTO∗ 34.5% 35.5% 75.1% 92.5%

ResNet50 for ImageNet. We
now evaluate OTO on ResNet50
for ImageNet. As shown in Ta-
ble 4, OTO prunes 64.5%(1 −
35.5%) parameters to achieve
65.5%(1−34.5%) FLOPs reduc-
tion with only 1.4%/0.8% Top-
1/5 accuracy regression com-
pared to the baseline. OTO con-
sistently outperforms the major-
ity of counterparts especially on
the FLOPs reduction and the
parameter reduction. We note
that Hinge (56) prunes CNNs via
structured-sparsity optimization
by employing standard stochas-
tic proximal gradient method. It
requires several trainings including fine-tuning the pruned model, because it partitions the parameters
into non-ZIGs and relies on an empirical truncation mechanism to generate zero groups due to the
weakness of proximal operator in deep learning applications (8). In contrast, OTO only trains and
prunes the full model from scratch once and obtains better pruning results. The comparison between
OTO and Hinge stand as evidence of the superiority of OTO due to ZIGs and HSPG. Furthermore, if
with more training efforts, OTO reaches higher Top-1/5 accuracy marked as ∗ in Table 4 and becomes
more competitive to stronger competitors, such as GBN (94), Group-HS (91) and ResRep (48).

Representation of Deep Features of ImageNet. It is widely acknowledged that deep neural ar-
chitectures could be treated as non-linear feature representation extractors. Therefore, we further
study the feature representation extracted by OTO to demonstrate its generalizability to other visual
applications besides image classification. Figure 4 shows the clustering results of ImageNet validation
images using the deep feature extracted by both the baseline ResNet50 and the pruned ResNet50 by
OTO. Specifically, we extract the deep features over the validation samples in ImageNet, i.e., the
tensors fed into the fully connected layer, and project them onto a 2-dimensional space via PCA (47).
For illustration, following the hierarchy of ImageNet (3), two sets of five classes are randomly
selected3. We observe that the deep features of the pruned ResNet50 by OTO remain structured in the
sense that distinct classes are well separated from each other. Over all 1000-class ImageNet validation
images, OTO achieves 48.2% clustering accuracy compared to 42.5% of the baseline ResNet50 using
k-means. Both observations indicate that with only 35.5% parameters and 34.5% FLOPs, the pruned
ResNet50 is still able to extract highly discriminative deep features. We argue that during model
compression, OTO not only achieves parameter and FLOPs reduction, but also preserves the ability
of capturing perceptual properties (99). This is especially important in training and compressing
models for many vision tasks, e.g., object detection (70; 71), frame interpolation (2; 17; 67) and
video synthesis (84; 50). We leave the application of OTO to broader tasks to future work.

4.2 Large-Scale Transformer

We show the scalability of OTO by pruning the large-scale transformer Bert (82), evaluated on
SQuAD, a question-answering benchmark (69). Bert mainly includes embedding layers, fully
connected layers and multi-head attention layers. The fully connected layers and the multi-head
attention layers are partitioned into ZIGs following Section 3.1. For fair comparisons, we follow the
prior Bert compression works (14; 75) and do not prune the embedding layers.

3Each selected class belongs to a disjoint upper category.
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(a) (b)

Figure 4: Clustering results of ImageNet validation images using deep features extracted by full
ResNet50 (left of a and b) and pruned ResetNet50 by OTO (right of a and b). The points are visualized
by projecting deep features onto a two-dimensional space via PCA.

Table 5: Pruning Bert on SQuAD

Method # of Params Exact F1-score SpeedUp
Baseline 100% 81.0% 88.3% 1×
MaP (75) 10.0% 67.7% 78.5% 1×*
MvP (75) 10.0% 71.9% 81.7% 1×*

ProxSSI (14) 83.4%† 72.3% 82.0% 1×
OTO 91.0% 75.0% 84.1% 1.1×
OTO 76.2% 72.3% 82.1% 1.2×
OTO 66.7% 71.9% 82.0% 1.3×
OTO 53.3% 71.4% 81.5% 1.5×
OTO 40.0% 70.9% 81.1% 1.8×

* Based on the statement in the official git repository of (75).
† Approximate value based on the group sparsity reported in (14).

To the best of our knowledge, OTO
is the first work that compresses
Bert by exploring group sparsity on
individual layers and achieves sig-
nificant parameter reduction and in-
ference speedup4. In contrast, the
existing works (29; 75; 30) prune
individual parameters instead, i.e.,
the generated sparsity is not struc-
tured. Hence, the computed mod-
els typically do not have inference
speedup (75), unless are executed
by specialized hardware and sparse
computing library (31; 10). As
shown in Table 5, under different group sparsity upper bound constraints, OTO reduces 9% to
60% parameters and achieves up to 1.8× inference speedup based on the average model execution
time 5. In comparison, despite that the pruned model contains 10% parameters, MaP and MvP (75)
do not have any inference speedup. On the other hand, the structured sparsity on Bert is studied
in (14) (referred to as ProxSSI), where an adaptive proximal method is proposed to yield group-sparse
solution. Nonetheless, ProxSSI optimizes over non-ZIGs and relies on proximal operator to identify
group sparsity. Therefore, the groups even parameterized with zeros have to be retained in the model
rather than pruned. As a consequence, ProxSSI is not competitive to OTO on parameter reduction,
and there is no reported inference speedup. Note that all the pruning methods achieve comparable
exact match rate and F1-score.

5 Conclusion And Future Work

We propose OTO, a one-shot deep neural networks (DNNs) training and pruning framework, that
compresses full DNNs into slimmer architectures with competitive performances and significant
FLOPs and parameter reduction without fine-tuning. OTO contains two fundamentals: (i) partitions
the trainable parameters of DNNs into zero-invariant groups (ZIGs), thereby pruning zero groups
does not affect the model output, and (ii) trains by a novel optimizer, Half-Space Stochastic Projected
Gradient (HSPG), which outperforms proximal methods on group sparsity exploration and maintains
comparable convergence. We numerically demonstrate OTO on benchmark experiments, i.e., VGG16
for CIFAR10, ResNet50 for CIFAR10/ImageNet and Bert for SQuAD, and achieve state-of-the-
art pruning results. We leave automatically generating ZIGs for arbitrary DNNs, incorporating
quantization and applying OTO to other tasks to future work.

4Knowledge distillation (40) and LayerDropout (21) compresses Bert by pruning layers in their entirety.
5Run by OnnxRuntime (16)
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