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LAYOUT-YOUR-3D: CONTROLLABLE AND PRECISE
3D GENERATION WITH 2D BLUEPRINT
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Text prompt 3D instances (multi-view) 3D layout & compositional 3D 

‘[A pigeon] having [a bagel] and [a beer]’

‘A blue origami pigeon’

‘A beer on fire’

‘A bagel made out of grass’

Custom text prompts

LLM generated / User given

2D layout

Figure 1: Layout-Your-3D generates high-quality compositional 3D scenes with given 2D layouts
(top). Layout-Your-3D further enables editing each instance in the 3D scene with custom text
prompts, achieving controllable and precise 3D generation (bottom).

ABSTRACT

We present Layout-Your-3D, a framework that allows controllable and composi-
tional 3D generation from text prompts. Existing text-to-3D methods often strug-
gle to generate assets with plausible object interactions or require tedious opti-
mization processes. To address these challenges, our approach leverages 2D lay-
outs as a blueprint to facilitate precise and plausible control over 3D generation.
Starting with a 2D layout provided by a user or generated from a text description,
we first create a coarse 3D scene using a carefully designed initialization process
based on efficient reconstruction models. To enforce coherent global 3D layouts
and enhance the quality of instance appearances, we propose a collision-aware
layout optimization process followed by instance-wise refinement. Experimen-
tal results demonstrate that Layout-Your-3D yields more reasonable and visually
appealing compositional 3D assets while significantly reducing the time required
for each prompt. Additionally, Layout-Your-3D can be easily applicable to down-
stream tasks, such as 3D editing and object insertion.

1 INTRODUCTION

The recent years have witnessed significant advances in 3D content creation. By leveraging ad-
vanced diffusion models through optimization (Poole et al., 2022) or training efficient reconstruc-
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tion models (Hong et al., 2024), numerous methods successfully synthesize high-quality 3D objects
from text prompts or images. These approaches have facilitated various applications such as virtual
reality (Chen et al., 2024a; Liu et al., 2024b), robotics (Huang et al., 2023b; Wan et al., 2024), etc.

Nevertheless, existing text-to-3D methods often struggle to synthesize plausible object interactions
in compositional 3D asset generation. For instance, given the text prompt ”a brown soft with a cush-
ion, a teddy bear and a basketball on it”, none of the state-of-the-art methods (Wang et al., 2023;
Liang et al., 2024; Yi et al., 2024) shown in Fig. 5 (last row) correctly predict the plausible loca-
tion and scale of the objects. This is because these optimization-based models create 3D assets by
distilling prior knowledge from 2D diffusion models (Rombach et al., 2022). Consequently, they
require extensive optimization time for each prompt and suffer from the same issues such as seman-
tic confusion or missing objects as the diffusion models. Meanwhile, feed-forward methods (Tang
et al., 2024a) produce 3D shapes instantly but often perform poorly in creating complex composi-
tional cases due to the lack of compositional 3D objects in their training data (Deitke et al., 2023).
Furthermore, none of these methods provide any user control over the 3D generation process. These
limitations significantly restrict the application of text-to-3D methods in real-world scenarios. Two
lines of work aim to resolve these issues and generate plausible compositional 3D assets. First,
several methods use various attention mechanisms (Li et al., 2024b) to enhance the alignment of
synthesized 3D objects or scenes with compositional text descriptions. However, these methods do
not offer controllable signals such as layout. Another line of approaches focuses on text-to-3D scene
generation (Zhou et al., 2024b) by first synthesizing each 3D instance within the scene, followed by
a global layout refinement through Score Distillation techniques (Poole et al., 2022). While these
schemes aim to improve scene coherence, they require significantly more computational resources
and generate less realistic 3D results than conventional text-to-3D object synthesis methods.

In this work, we present Layout-Your-3D, an efficient text-to-3D generation method for compo-
sitional 3D scene synthesis with precise control. Specifically, given a text prompt describing few
objects and their spatial relationships, we aim to generate these objects and their natural interac-
tions. We note that this is similar to the setting in (Sun et al., 2024) but differs from (Zhou et al.,
2024b; Li et al., 2024a; Gao et al., 2024), which focuses on synthesizing complete indoor/outdoor
3D scenes. Our key idea is to utilize a 2D layout as guidance to produce target reference images for
3D scene generation, which not only allows precise user control but also produces more plausible
object interactions. We start by collecting a user-provided or LLM-generated 2D layout and predict
a reference image depicting the desired instances and their interactions. Using this reference, we
propose a carefully designed process to create coarse 3D scenes with roughly reasonable layouts
using reconstruction models (Tang et al., 2024a). While these feed-forward reconstruction models
are computationally lightweight, they often yield inferior 3D geometry and appearance. To address
these limitations, we introduce a two-step disentangled refinement stage to enhance the quality of
3D instances and global layout. First, we develop collision-aware layout optimization to adjust the
layouts of the objects to create a globally coherent and visually appealing composition. By incor-
porating collision awareness, we prevent objects from severe intersections, resulting in a realistic
compositional layout. Second, we carry out instance-wise refinement to further improve the geom-
etry and texture of individual objects, which also allows the customization of different instances as
an added benefit.

We evaluate our method with a proposed validation set, extensive experiments, and ablations to
showcase the ability of Layout-Your-3D in rapid and accurate 3D generation. In addition, we con-
duct comparisons with current state-of-the-art text-to-3D methods, demonstrating the potential of
Layout-Your-3D in compositional 3D generation, as well as customized design and editing. The
contributions of this work are threefold:

• We propose Layout-Your-3D, a practical approach for highly controllable compositional
3D generation, demonstrating superior performance compared to the baseline methods.

• We present a reconstruction-based initialization process that efficiently produces reason-
able coarse 3D scenes. We further enhance the texture, geometry, and global layout of the
3D scenes using a carefully designed two-step disentangled refinement stage.

• We conduct comprehensive experiments to assess the effectiveness of our proposed method
against state-of-the-art baselines. Our approach demonstrates superior qualitative and
quantitative results while significantly reducing the time for generation (i.e., 12 minutes).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Text-to-3D generation. Significant advances have been made in this field thanks to the rapid de-
velopment of foundational diffusion models (Rombach et al., 2022). The DreamFusion (Poole
et al., 2022) model enables the generation of 3D objects using powerful 2D diffusion models by
introducing the Score Distillation Sampling (SDS). Numerous works further improve text-to-3D
generation performance by developing various SDS methods (Yu et al., 2023; Ma et al., 2024),
leveraging advanced 3D representations such as DMTet (Chen et al., 2023) and 3D Gaussian Splat-
ting (3DGS) (Chen et al., 2024c; Liang et al., 2024), or leveraging pre-trained normal and depth
diffusion models (Qiu et al., 2024). For instance, ProlificDreamer (Wang et al., 2023) proposes a
particle-based variational framework that promotes the generation of more diverse and less saturated
3D objects, while GaussianDreamer (Yi et al., 2024) accelerates optimization by leveraging 3DGS.
Since 3DGS enables fast generation speed with various initialization methods and state-of-the-art
generation performance, we are building on it for 3D generation from text prompts.

Image-to-3D Reconstruction. Instead of using inherently ambiguous text descriptions, one line
of works reconstructs 3D objects from one or more input images. Numerous methods (Liu et al.,
2024a; Long et al., 2024; Shi et al., 2024) finetune 2D diffusion models with 3D-aware data to
generate highly consistent multi-view images. Subsequent approaches, such as LRM (Hong et al.,
2024) and LGM (Tang et al., 2024a), further accelerate 3D reconstruction from single-view images
through an efficient feed-forward process. As these reconstruction models are trained on synthetic,
single-object-centric datasets, they often struggle to reconstruct plausible 3D assets that include
multiple objects or produce realistic appearances for out-of-distribution input images. In this work,
we leverage the efficient reconstruction models to produce initial coarse 3D scenes while addressing
their limitations in compositional generation and the issue of unappealing appearances.

Compositional 2D and 3D generation. Generating or reconstructing scenes with multiple objects
presents significant challenges in 2D and 3D contexts. In the 2D domain, numerous models (Li
et al., 2023; Xie et al., 2023; Zhou et al., 2024a) use 2D bounding box layouts as conditions to
guide the generation process. These works perform well in controlling the number of instances and
their attributes. Due to the additional depth dimension, generating compositional assets in the 3D
domain faces even more significant challenges. Several image-to-3D reconstruction methods, such
as that by (Han et al., 2024; Chen et al., 2024b), reconstruct each object in the scene independently
and subsequently optimize the global layouts by aligning them with reference images or utilizing
additional guidance from diffusion models. Another line of work focuses on compositional text-
to-3D generation. For example, COMOGen (Sun et al., 2024) adopts 2D layouts to guide the SDS
process to provide accurate control over the generation process. GraphDreamer (Gao et al., 2024)
establishes a graph to represent objects and their relations. GroundedDreamer (Li et al., 2024b) in-
tegrates the core idea of Attend-and-Excite (Chefer et al., 2023) into MVDream (Shi et al., 2024) to
facilitate the generation of compositional multi-view images from complex text prompts. Moreover,
text-to-3D scene generation methods (Zhou et al., 2024b; Li et al., 2024a; Po & Wetzstein, 2023;
Zhang et al., 2024) that rely on the score distillation technique often utilize 3D layouts provided by
users (Bai et al., 2024) or generated from LLMs to provide coarse compositional spatial information
to construct the scene. However, these methods often require hours for generation and may pro-
duce unreasonable object interactions or unrealistic appearances. In this work, we leverage efficient
reconstruction models to achieve high quality and efficiency, significantly advancing high-fidelity
compositional 3D scene generation.

3 METHOD

Given a 2D layout and a text prompt, we aim to synthesize a 3D scene, including multiple ob-
jects and specific interactions aligned with the layout and text. Unlike existing text-to-3D methods,
our approach aims to generate reasonable 3D geometry and texture for each object and produce a
plausible layout with all objects interacting naturally (i.e., with reasonable location, scales, etc.).

As shown in Fig. 2, we represent the 2D layout as a set of bounding boxes and their corresponding
instance names B = {(b1, y1), (b2, y2), ..., (bN , yN )}, which can be extracted from the overall text
prompt YB . Given these bounding boxes and instance names, we design a coarse 3D generation
stage (see Sec. 3.1) that creates all 3D objects along with a roughly reasonable 3D layout. To en-
hance the visual quality and consistency of the layout, we introduce a disentangled refinement stage
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Compositional text prompt 𝑌𝐵
‘[A pigeon] having [a bagel] and [a beer]’

Layout-guided
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𝑠𝑖 scale
𝑡𝑖  translation
𝑟𝑖 rotation

Individual 3D Object 
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Disentangled Refinement Stage

Coarse composed 3D
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Target 3D asset

ℒ𝑓𝑒𝑎𝑡

ℒ𝑐𝑜𝑙

Refined 3D Layout

ℒ𝑠𝑑𝑠
Ref view

Novel views

{ 𝑏1, 𝑦1 , 𝑏2, 𝑦2 , … , (𝑏𝑁 , 𝑦𝑁)}
Instance-wise 2D Layout

3D Layout 
Initialization

LLM / User

A pigeon

A bagel

A beer

Figure 2: Overview of Layout-Your-3D. Given a 2D layout and text prompt, our coarse 3D gener-
ation stage (green box, see Sec. 3.1) generates coarse 3D instances along with roughly reasonable
layouts. The disentangled refinement stage (see Sec. 3.2) then refines the 3D layout and enhances
individual instance quality by leveraging a collision-aware layout refinement (blue box) followed by
an instance-wise refinement (yellow box).

(see Sec. 3.2), which includes a collision-aware layout refinement, followed by an instance-wise
refinement. Additionally, our method allows users to interactively edit each instance and the global
layout as a by-product. In the following, we provide detailed discussions of these components.

3.1 COARSE 3D GENERATION STAGE

Given a set of bounding boxes with corresponding object names, the coarse 3D generation stage
synthesizes each 3D object and arranges them in a roughly reasonable layout. To achieve this,
we begin by creating a reference image based on the 2D layout. Next, we reconstruct each 3D
object (instance) using an efficient reconstruction model. We adopt 3DGS as our 3D representation,
considering its flexibility and geometry attributes. For layout initialization, naively converting the
2D layout into 3D space using depth information can lead to unrealistic overlaps and collisions
between objects. To address this issue, we develop an initialization process to produce plausible 3D
layouts by incorporating both geometry and semantic knowledge.

Reference Image Generation. Instead of lifting 2D bounding boxes to 3D space and generating
3D objects from scratch (Sun et al., 2024), our method first synthesizes a 2D reference image based
on the given layout and text prompt. This reference image significantly narrows the solution space
and provides crucial guidance for the subsequent generation process. Specifically, we use the state-
of-the-art method MIGC (Zhou et al., 2024a) for layout-guided 2D image generation, defined as:

Iref = MIGC(YB , B), (1)

where Iref represents the generated reference image.

Individual 3D Object Reconstruction. Next, we reconstruct each instance from the generated 2D
reference image. To alleviate the influence of occlusion among instances, we first segment each
instance in the reference image Iref using Segment-Anything Model (SAM) (Kirillov et al., 2023),
and inpaint them as follows:

Ii,Mi = SAM(Iref , bi); Îi = SD(Ii, (∼ Mi) ∩ bi, yi), (2)

where Ii and Mi are the RGB values and the foreground mask of the ith instance. SD is the
Stable Diffusion inpainting model, (∼ Mi) ∩ bi represents the region to be inpainted and Îi is
the ith completed 2D instance. Note that to make the inpainted image compatible with the object-
centric reconstruction models, we also perform post-processing to remove the background and center
the object within the image Îi. Fig. 3 illustrates this segmentation, inpainting and post-processing
process. Since the reconstruction models are sensitive to input image quality, we optionally enhance
the details of the inpainted image Îi using a ControlNet-Tile (Zhang et al., 2023) model. Finally,
Îi is fed into the Large Multi-View Gaussian Model (LGM) (Tang et al., 2024a) to generate the
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coarse 3D instance Ai. Thanks to the explicit geometry priors from LGM and attributes of gaussian
splatting, we could primarily eliminate the Janus Problem and add fine-grained details to the original
instances in the subsequent refinement step.

Reference image

Mask of instance 1 Final instance 1

‘[A pink rose] grow out
 of [a canvas shoe]’

Mask of instance 2
Segmented instance 2

Segmented instance 1

Final instance 2

‘A pink rose’

‘a canvas shoe’

𝑊𝑏𝑖

𝑊𝑏𝑖

Figure 3: Example of the instance segmentation, inpainting
and post-process.

3D layout initialization. Given the syn-
thesized 3D instances, we arrange them
in the 3D space by lifting the 2D bound-
ing boxes {bi} discussed above into 3D.
Each 3D bounding box is defined by its
scale, rotation, and translation (denoted as
{si, ri, ti}). From the given 2D layout, the
scale si of each 3D box can be intuitively
set to Wbi/Wbi , in which Wbi and Wbi are
the width of original and post-processed
2D box bi (see Fig. 3). For the transla-
tion ti, we can directly get the first two el-
ements (i.e., xi, yi) of the transition vector
ti = {xi, yi, zi} as the center coordinates
of bi. Additionally, zi is initialized as the average of the foreground depth value predicted by an
off-the-shelf depth estimation model (i.e., GeoWizard (Fu et al., 2024)), which is computed as:

zi = mean (Mi ⊙ Depth(Iref )) . (3)

Rotation of each instance is crucial in accurate layout estimation. Unlike existing works that over-
look rotation initialization, we propose to estimate rotation based on feature similarity between ren-
dered images and the 2D instance Îi in the reference image. Specifically, we render the coarse 3D
instance Ai from a set of n camera poses with uniformly sampled azimuth and elevation, denoted as
π ∈ Rn×2 = {(ej , aj)}nj=1. We then extract the features of 2D instance in the reference images and
rendered images as fÎi and F = {f1, f2, ..., fn} from DINOv2 (Oquab et al., 2023), respectively.
Finally, we calculate the cosine similarity and choose the best rotation ri:

(eb, ab) = argmax
(e,a)

(cos(fÎi , F )), (4)

where (eb, ab) is elevation and azimuth of the best rotation ri. As a result, our reconstruction-based
initialization strategy provides a more accurate initial state for the final compositional 3D, which
can benefit the subsequent refinement stage.

3.2 DISENTANGLED REFINEMENT STAGE

Previous works (Zhou et al., 2024b; Li et al., 2024a) have attempted to optimize 3D scenes through
local and global guidance. However, they often suffer from excessively long optimization times and
the need for additional guidance. Instead, we disentangle the refinement process into two consecu-
tive steps: a collision-aware layout refinement step and an instance-wise refinement step.

3.2.1 COLLISION-AWARE LAYOUT REFINEMENT

The Coarse 3D Generation Stage (Sec. 3.1) has provided a relatively precise initial 3D layout, how-
ever, we empirically observe that it is still insufficient to create a visually appealing composition.
Thus we propose a layout refinement step for further improvement. First, we adopt the spatial-aware
SDS Loss (SSDS) as proposed in (Chen et al., 2024b):

∇θLssds(ϕ
∗, x) = Et,ϵ[w(t)(ϵ̂ϕ∗(xt;YB , t)− ϵ)

∂x

∂θ
], (5)

In which θ, x, ϕ∗, ϵ̂ϕ∗(xt;YB , t) are the 3D representation, rendered image, attention map strength-
ened on spatial words, and the score function that predicts the sampled noise ϵ from the noised
image xt with noise-level t and text prompt YB . However, the SSDS loss is inadequate for address-
ing significant collisions caused by occlusion. For example, in Fig. 8, the dog obscures the blue tie
and consequently does not receive sufficient gradients during optimization. To resolve this issue, we
propose a feature-level reference loss that leverages the 2D reference image and a tolerant collision
loss to handle object collisions more effectively.
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Feature-level Reference Loss. To align the geometry information in the reference image with our
3D scene, the most intuitive method is to apply a pixel-level RGB loss to enforce the alignment.
Nevertheless, we notice that the post-processing and the reconstruction model will unavoidably
introduce some distortions and artifacts, making the RGB loss less robust and functional. Therefore,
we propose a feature-level reference loss to stabilize the refinement process. Specifically, we only
keep the foreground instances in the reference image and obtain its feature from higher layers of the
DINOv2 (Oquab et al., 2023) model:

fref = DINO(Iref ⊙ (M1 ∪M2 ∪ ... ∪MN )). (6)

The feature-level reference loss can be computed as the L2 distance of fref and frender, here frender
is the extracted feature of the rendered image at the reference view:

Lfeat = λf

∑
∥fref − frender∥2 . (7)

3DGS 𝑃1 3DGS 𝑃2

𝑝𝑚𝑒𝑎𝑛
1 𝑅

𝒟

Figure 4: A simple illustration of how to
calculate the collision loss Lcol.

Tolerant Collision Loss. Inspired by physics-based sim-
ulation (Santesteban et al., 2021) and CG3D (Vilesov
et al., 2023), we propose a tolerant collision loss to sep-
arate incorrectly overlapping instances while simultane-
ously allowing a certain degree of collision to model nat-
ural object interactions. As illustrated in Fig. 4, gaus-
sians for two interacting instances are denoted as P1 =
{p11, p12, ..., p1K1

} and P2 = {p21, p22, ..., p2K2
}, where pk is

the coordinate of the kth gaussian. The K1 and K2 are
the numbers of gaussians in the two instances, respec-
tively. In order to get a rough estimation of each instance,
we first compute the mean coordinate of each instance de-
noted as p1mean and p2mean. Then, we define mean sparsity R as the mean distance of each point in
P1 to p1mean, which can also be interpreted as calculating the mass distribution of each instance:

R =
1

K

K∑
k=1

∥∥p1k − p1mean

∥∥
2
. (8)

Next, we calculate distances from all the points in P2 to p1mean and subtract mean sparsity R, which
can be regarded as the average distance between the distributions of two instances. The tolerant
collision loss Lcol is computed as:

Lcol = λc

K2∑
k=1

ReLU(D) where D = {R−
∥∥p2k − p1mean

∥∥
2
, k = 1, 2, ...,K2}. (9)

Here ReLU is the rectified linear unit. Intuitively, this loss penalizes gaussians that are too close
to the centers of other instances, while allowing specific distances to model intersection between
instances, making the optimization more robust and effectively addressing the overlapping problem.

Our full collision-aware layout loss is defined as a weighted combination of the three loss terms:

Llayout = Lssds + λfLfeat + λcLcol. (10)

3.2.2 INSTANCE-WISE REFINEMENT

Since the LGM can only produce fixed number of 3D gaussians, the reconstructed 3D instances
are often in low quality with holes and broken textures. Next, we discuss refining these coarse
3D instances to enhance its geometry and texture quality. The conventional refinement strategies
adopted by other optimization-based methods (Wang et al., 2023; Yi et al., 2024) are not efficient
enough and often result in complete deformations of the shape of coarse 3D instances due to the
excessive noise added to the rendered view, which aggravates the degeneration of geometry and
results in drastic changes. To address this issue, we propose an adjustable timestep sampling strategy
to preserve the geometry details and retain the primary interactions of the coarse 3D instances.
Specifically, we lower the upper bound of timestep sampling’s range in the earlier phase and increase

6
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it after specific iterations when the geometry details have been well formed. Formally, the gradient
of instance refinement SDS loss L̂sds is computed as follows:

∇θL̂sds(ϕ, x) = Et̂,ϵ[w(t̂)(ϵ̂ϕ(xt̂; yi, t̂)− ϵ)
∂x

∂θ
], (11)

where t̂ is the adjusted timestep. Intuitively, geometry is most likely to deviate during earlier refine-
ment phase but should remain mostly unchanged in the rest of the process. As a result, our minor
modification prevents the basic geometry from deviating significantly from its initial state. More-
over, we noticed that the normal of coarse 3D instances might be rough and contain artifacts, which
can harm their visual quality. So we combine an additional normal smooth loss Lsmooth and total
variation (Rudin & Osher, 1994) (TV) regularization terms (denoted as Ld

TV and Ln
TV ) to encourage

better geometry of 3D instances. The full loss for instance-wise refinement can be represented as:

Linstance = L̂sds + λsLsmooth + λtv(Ld
TV + Ln

TV ). (12)

It is worth noting that when we extend the iterations for refinement (marked as extended refine-
ment), we can produce comparable or even better single-object generation results compared to other
optimization-based methods (Liang et al., 2024; Wang et al., 2023), as shown in Fig. 6.

Interactive Editing. Besides 3D scene generation, users can customize the per-instance text prompt
ŷi in the instance-wise refinement step for interactive editing. Specifically, we first generate a 3D
scene with our coarse 3D generation stage and then stylize each 3D instance in the refinement
step, with users’ custom text prompts ŷi. This editing application opens up new possibilities for
generating extra-complex compositional 3D scenes, with each instance having its attribute and style.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In the Coarse 3D Generation Stage, we render the 3D instances at 10-degree intervals when esti-
mating the coarse rotation ri. For the Disentangled Refinement Stage, in the collision-aware layout
refinement step, we use the original hyper-parameter settings for the SSDS loss Lssds and optimize
the layout for 400 iterations, with λf and λc set to 10.0 and 0.2, respectively. In the instance-wise re-
finement step, we utilize DeepFloyd (Shonenko et al., 2023) guidance with a total of 1500 iterations
following the short refinement strategy (see Fig. 5). We set the timestep range to [0.10, 0.50] from
step 0 to 800, and [0.02, 0.75] from step 800 to 1500. The parameters λs and λtv are set to 1.0 and
0.2, respectively. The extended instance-wise refinement strategy and additional implementation
details are provided in Appendix B.

4.2 MAIN RESULTS

Validation Set. To better validate Layout-Your-3D’s ability in compositional 3D generation, we
construct a validation set naming Compo20 for evaluation. The Compo20 consists of 20 composi-
tional text prompts, each containing two or more instances with specific interactions. For each text
prompt, we have a user to manually provide a 2D layout and also automatically generate a 2D layout
using LLM-grounded Diffusion (Lian et al., 2023).

Comparison methods. We compare Layout-Your-3D with several text-to-3D methods, i.e., Dream-
Fusion (Poole et al., 2022), ProlificDreamer (Wang et al., 2023), GaussianDreamer (Yi et al., 2024),
LucidDreamer (Liang et al., 2024) and GraphDreamer (Gao et al., 2024). Since our method utilizes
an additional 2D layout as a condition, we provide results by both the user-given and LLM-grounded
2D layout. Moreover, we present a comparison of single 3D object generation in Fig. 6. Note that we
do not compare with works that haven’t released complete or official implementations (e.g., Locally
Conditioned Diffusion (Po & Wetzstein, 2023), CG3D (Vilesov et al., 2023)).

Qualitative Comparison. As shown in Fig. 5, our method can generate compositional 3D scenes
with higher quality and better understand the text prompts. In contrast, other methods often struggle
to comprehend spatial relationships and semantic attributes in text prompts, leading to poor quality
and the Janus Problem. These results highlight Layout-Your-3D’s strength in compositional 3D
generation. More visualization results are provided in the appendix C.
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‘[a beagle] wearing [a blue tie]’

‘[A small blue toy box] riding [a lion]’

‘[A cute stuffed toy crocodile] and [a small stuffed toy rabbit] sitting on [a skateboard]’

‘[A brown sofa] with [a cushion], [a teddy bear] and [a basketball] on it’

LucidDreamer GraphDreamerGaussianDreamerDreamFusion ProlificDreamer Ours

Figure 5: Main results and comparison with other text-to-3D methods on our Compo20 validation
set. Layout-Your-3D can generate compositional 3D scenes with higher quality and more reasonable
3D layouts. Note that the first two rows of our results are generated with LLM-grounded 2D layouts,
and the last two are generated with user-given 2D layouts.

Table 1: Quantitative results of Layout-Your-3D and other text-to-3d methods on our proposed
Compo20 validation set. Note that we adopt the short instance-wise refinement setting here for fair
comparison. The best and second best results are bold and underlined, respectively.

Method Time cost ↓ CLIP-Score ↑ BLIP-VQA Score ↑ mGPT-CoT ↑
DreamFusion 45 mins 17.98% 23.44% 31.08%
ProlificDreamer 4 hours 24.93% 42.14% 21.36%
GaussianDreamer 15 mins 22.21% 28.74% 25.91%
LucidDreamer 35 mins 22.36% 34.11% 34.84%
GraphDreamer 2 hours 24.78% 31.18% 44.28%

Layout-Your-3D 12 mins 23.26% 53.51% 50.44%
Layout-Your-3D (LLM-grounded) 22.83% 52.26% 48.80%

Table 2: User study on different text-to-3D methods in terms of text-alignment, quality and rational-
ity. The best and second best results are shown in bold and underlined.

Method Text-Alignment Quality Rationality

DreamFusion 3.36 5.48 3.79
ProlificDreamer 7.34 7.26 6.91
GaussianDreamer 4.22 6.61 4.72
LucidDreamer 5.61 7.72 6.38

Ours 9.08 8.44 8.72
Ours(LLM-grounded) 8.68 7.93 8.14

Quantitative Comparison. We conduct quantitative comparisons on the Compo20 validation set,
presenting results adopted by the short refinement strategy. Since CLIP-Score (Radford et al., 2021)
is not capable of accurately measuring the semantic correspondences (Huang et al., 2023a), we also
employ other metrics, BLIP-VQA and mGPT-CoT (Huang et al., 2023a), to make a fine-grained
assessment of the text-3D alignment. As shown in Tab. 1, our Layout-Your-3D outperforms other
methods, demonstrating the superiority of our method on quantitative evaluation.

User Study. In addition to qualitative and quantitative comparisons, we conduct a user study to
evaluate the proposed method further. Participants are asked to rate text alignment, quality, and
rationality on a scale ranging from 1 to 10. Concretely, users are shown 3D results and corresponding
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LucidDreamer
(~35mins)

Ours - short
(~3mins)

GaussianDreamer
(~15mins)

ProlificDreamer
(~8hrs)

Text Prompt: ‘a beagle’

Text Prompt: ‘a squirrel’

Ours - extended
(~25mins)

Text Prompt: ‘a pigeon’

Figure 6: Comparison on the quality of single 3D instance generation. We provide both the short and
extended strategy. When lengthening the optimization process, our Layout-Your-3D can generate
comparable or even better results than SOTA text-to-3D methods.

T2I gen. 2D Layout: 

LLM Grounded

Coarse 3D Gen. (Ours) ComboVerse Init.

2D Layout: 

User given

Figure 7: Illustration of user given and LLM-grounded 2D lay-
out generated reference images. We also visualized our coarse 3D
generation and compared it with ComboVerse.

ℒ𝑠𝑠𝑑𝑠 + ℒ𝑓𝑒𝑎𝑡 
(w/o ℒ𝑐𝑜𝑙)

ℒ𝑠𝑠𝑑𝑠 only 
(w/o ℒ𝑓𝑒𝑎𝑡, ℒ𝑐𝑜𝑙)

ℒ𝑠𝑠𝑑𝑠 + ℒ𝑓𝑒𝑎𝑡 + ℒ𝑐𝑜𝑙 
(Full ℒ𝑙𝑎𝑦𝑜𝑢𝑡)

Figure 8: Ablation study on the effective-
ness of different loss items in our layout
loss Llayout.

text prompts in a shuffled order and then asked to give ratings. We collect 500 responses from 100
users. In Tab. 2, the overall ratings indicate a clear preference of users for our method.

4.3 ABLATION STUDIES

3D layout initialization. We conduct an ablation study on the 3D layout initialization strategy by
comparing the generated coarse scenes. As illustrated in Fig. 7, compared to ComboVerse (Chen
et al., 2024b), our initialization provides a more accurate starting point for subsequent refinement.
These results demonstrate the effectiveness of our initialization strategy.

Collision-aware Layout Refinement. We analyze the function of various loss terms in the layout
refinement step by using a toy example. When different 3D instances have major intersections, the
overlapped instances tend to be concealed in the rendered images, thus hindering the optimization
of diffusion-guided loss. Instead, our tolerant collision loss Lcol further optimizes the geometry
itself and Lfeat encourages the alignment of spatial and high-level semantic information between
the reference image and rendered reference view. As shown in Fig. 8 and Tab. 3, our layout loss
Llayout can effectively address this issue, thus resulting in more coherent 3D layouts.

Instance-wise Refinement. We conduct an ablation study on the influence of our timestep ad-
justment given examples with different settings. As shown on the left side of Fig. 9, timestep
adjustment strategies applied by other methods often result in inferior performances and would
introduce artifacts in the appearance. On the right side of Fig. 9, we visualize the effects of the
TV losses Ld

TV ,Ln
TV and normal smooth loss Lsmooth By incorporating these two additional loss

terms, Layout-Your-3D can achieve better geometry consistency and quality. We note that all the
analyses above are based on a short instance-wise refinement strategy.
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DreamFusion TimestepOurs ProlificDreamer Timestep

Ours - ℒ𝑠𝑚𝑜𝑜𝑡ℎ - ℒ𝑇𝑉,ℒ𝑠𝑚𝑜𝑜𝑡ℎ

Figure 9: Ablation studies on timestep sampling and ad-
ditional loss items in instance-wise refinement step.

Table 3: Ablation study on different
loss items of our Llayout, measured in
BLIP-VQA score.

Loss term BLIP-VQA ↑

Full (Llayout) 53.51%

−Lcol 52.04%
−Lssds 52.71%
−Lfeat 53.41%
−Lfeat,Lcol 53.09%

‘A beagle’ ‘A beagle dressed like the superman’ ‘A beagle wearing mech armor’

‘A pigeon’ ‘Robotic steampunk pigeon, mechanical Marval’ ‘A pigeon in Minecraft Style’

(a) The extended refinement strategy.

‘A beagle’ ‘A beagle wearing colorful patterns’ ‘An ancient marble statue of a beagle’

‘A pigeon’ ‘An amigurumi pigeon’ ‘An origami pigeon’

(b) The short refinement strategy.

Figure 10: Examples on the 3D instances refined with custom text prompts. We conduct experiments
on both the longer and shorter refinement strategies to validate the effectiveness of customization.

4.4 DOWNSTREAM APPLICATIONS

Iterative editing mode, a simple example

3D asset1 3D asset2 3D asset3

+ A cupcake on its headA furry fox’s head + Wearing red sunglasses + Lego blocks on the nose

3D asset final

Figure 11: A simple illustration of the ob-
ject insertion application.

Instance customization. We present 3D instances re-
fined with custom text prompts in Fig. 10. Our method
can guide the refinement process to generate plausible and
coherent results that are more aligned with text prompts.
Thus, Layout-Your-3D allows for the initial generation
of a coarse 3D scene, followed by the controlled adjust-
ment of specific attributes across different instances. As
a result, our method can produce stylized and complex
outputs with better flexibility.

Object insertion. Since 3D results are closely related to
the reference image, incorporating object insertion into
our pipeline would be straightforward. As illustrated in Fig. 11, the first and second rows show the
edited reference images and corresponding 3D results. We can see that our method can insert objects
with iterative editing, helping users customize their desired 3D content.

5 CONCLUSION

In this paper, we propose Layout-Your-3D, a method designed for highly controllable and precise
compositional 3D generation. Our method addresses the issue of compositional 3D generation in
a coarse-to-fine manner. First, we initialize the rough asset with our Coarse 3D Generation Stage.
Then, we propose a Disentangled Refinement Stage. By refining the layout and instances separately,
Layout-Your-3D can achieve more flexible and high-quality compositional 3D generation with a
minimal cost of time. Through massive experiments and comparisons, we believe Layout-Your-3D
indicates an essential step toward more comprehensive and mature 3D generation.
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A DISCUSSIONS

A.1 LIMITATIONS & FUTURE WORK

Since Layout-Your-3D relies on reference images to generate compositional 3D assets, it would
need deliberately designed 2D layouts to generate extra-complex 3D scene, e.g., having more than
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10 instances in the asset. What’s more, as we observed, the SSDS loss, proposed in ComboVerse, is
not capable of harmonizing interactions with too many instances involved.

Thus, in our future work, we will work on deliberately designed modules to achieve more mature
text-to-3d layout refinement and generation, without constraints on the number of instances or in-
teractions. Also, the application in scene generation of our method is a promising direction, we
can extend our method in order to improve the efficiency and controllability of Text-to-3D scene
generation.

Figure 12: A simple illustration of failure cases.

A.2 FAILURE CASES

We provide a simple failure case in Fig 12. The text prompt is ’A lego man riding a horse, the horse
is wearing a blue hat’, in which we add uncommon interactions between instances, i.e., ’blue hat’
and ’horse’. As illustrated in the figure, for text prompts that are extremely complicated or counter-
intuitive, the diffusion models are not capable of comprehending the spatial relationships correctly
and hence misdirect the optimization process.

A.3 MORE DOWNSTREAM APPLICATIONS

Except for instance-wise customization and object insertion, our Layout-Your-3D can also support
the Conversational Iterative Editing as proposed in GALA3D. Once obtained the final 3D layouts
of the resulting compositional 3D, we can easily edit the position and rotation of each instance,
together with its attributes and style, through iterative conversation. Since the generated 3D as-
set is essentially comprised of different 3D instances, it has a higher degree of freedom and can
achieve better quality. This advantage helps Layout-Your-3D stand out among different Text-to-3D
generation methods.

A.4 DISCUSSION ON CONCURRENT METHODS

GroundedDreamer (Li et al., 2024b) and COMOGen (Sun et al., 2024) are the two most related and
concurrent works. Here we give a comprehensive analysis and a comparison between these two
methods and Layout-Your-3D. Since they have not released official implementations yet, we simply
use the results from the original paper for comparison, and analyze the possible advantages and
disadvantages.

GroundedDreamer’s core concept is to marry Attend-and-Excite with MVDream (Shi et al., 2024)
to generate compositional and consistent multi-view images, then lift them to 3D assets through an
optimization-based method. Though it shows some surprising results and relatively high quality, due
to the limited compositional 3D data used in the training process, the limitations of MVDream still
exist, i.e., lack of prior knowledge for generating multiple instances. Also, the pure optimization-
based paradigm makes GroundedDreamer low in efficiency, taking nearly 2 hours to generate one
single asset. In comparison, Layout-Your-3D needs only about ten minutes (short refinement) or
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‘A squirrel and a fire hydrant’ ‘An antique clock and a retro radio compete for attention on the 
dusty shelf’

‘A blue bird standing on a hamburger’

A blue bird 

A hamburger

A squirrel

A fire hydrant

An antique clock 

A retro radio 

A dusty shelf

COMOGen Ours COMOGen Ours

COMOGen Ours

Figure 13: Comparison with COMOGen, results are generated with 2D layouts provided in the
original paper of COMOGen.

about one hour (extended refinement) to generate one asset. If given more GPU cards, the time cost
could be reduced to several minutes and half an hour. Furthermore, since Layout-Your-3D primarily
generates individual 3D instances and subsequently combines them, which mitigates the domain gap
during the generation process, it effectively helps address compositional 3D generation task at its
source.

COMOGen takes the same 2D layout setting as adopted in Layout-Your-3D to indicate ideal regions
of different instances in the text prompts. However, different from Layout-Your-3D, COMOGen first
adopted a Layout-SDS loss to distill the spatial layout knowledge, then uses a Multi-view Control
module to ensure multi-view consistency and alleviate Janus Problem, finally proposed a 3D con-
tent enhancement module to generate realistic and diverse 3D samples. The Layout-SDS loss could
provide a rough estimation of the ideal 3D content, in the following Multi-view Control module,
COMOGen adopted a Zero-123 (Liu et al., 2023) multi-view diffusion model to ensure the geome-
try consistency. But as we mentioned above, current multi-view diffusion models are still subject to
the domain gap, thus making it hard to generalize to compositional scenarios, damaging the effec-
tiveness of COMOGen. Moreover, though not presented, the time cost for COMOGen might not be
comparable to our Layout-Your-3D, which only costs about 10 minutes to generate a reasonable and
plausible compositional 3D scene, as displayed in Fig. 13. Additionally, COMOGen did not show
detailed and high-quality single object generation results, which constrains the application scenarios
of it.

Another line of works, i.e., GALA3D and DreamScene also have similar settings as our Layout-
Your-3D. Nonetheless, these works have their own disadvantages. DreamScene is essentially com-
posing different objects into one predefined scene with no specific interaction modeling process
during generation, thus making the resulting scene less realistic and consistent. GALA3D addresses
this issue by incorporating 3D layout-conditioned diffusion models as an implicit control over the
interactions between objects. However, the produced 3D scene has no background and the quality
of objects is relatively inferior, though processed through a tedious optimization process. Since the
input settings and generated 3D assets are not strictly aligned with ours, we do not make direct
comparisons between these methods and our Layout-Your-3D.

A.5 OTHER RECONSTRUCTION MODELS

In the coarse 3D generation stage, we could exchange for any 3DGS-based Image-to-3D model
for the reconstruction of each instance, e.g., GRM (Xu et al., 2024), Point-to-Gaussian (Lu et al.,
2024). What’s more, it is also applicable to replace 3DGS with other 3D representations, like mesh
or tetrahedron for advanced or specific usage. Though it will be slightly different to optimize coarse
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3D instances in other representations, there are substitutions for the refinement strategies in our
pipeline. Also, our final 3DGS-based asset could be converted into mesh with the efficient mesh
extraction method proposed in DreamGaussian (Tang et al., 2024b) or advanced mesh extraction
methods like SuGaR (Guédon & Lepetit, 2024).

B EXPERIMENT SETTINGS

B.1 VALIDATION SET

We analyze the core design of our proposed Comp20 validation set in this part. In order to provide
a comprehensive measurement for the compositional 3D generation task, we divide the text prompts
in our Comp20 validation set into several scenarios, covering a wide range of cases that can meet
the requirements by users and real world applications:

• Multiple instance without interactions,
e.g., ’A black bottle, with a white bottle on one side and a blue bottle on the other’.

• Multiple instances with interactions,
e.g., ’An astronaut sitting on a sofa’.

• Attribute control of instances,
e.g., ’A blue toy robot and a red toy robot playing basketball’.

• Small components in a larger main body,
e.g., ’A furry fox’s head, with a cupcake on its top, wearing red sunglasses and have a lego
block on the nose’.

In accordance with the requirements for compositional 3D generation, each text prompt contains
2 to 5 instances in the compositional 3D asset. This intentional design of our Comp20 validation
set allows for a comprehensive evaluation on text-to-3D generation methods. The complete prompt
list, together with the corresponding 2D layouts (including both user-provided and LLM-generated
layouts), are presented in Tab. 9. Note that in the default experiments we generate reference images
with a 512 * 512 resolution, and the 2D layouts are presented in the form of [x1, y1, x2, y2], with
each element has a value from range 0 to 512.

B.2 MORE IMPLEMENTATION DETAILS

We give a more detailed illustration of our experiment settings in this section. We implement Layout-
Your-3D based on threestudio (Guo et al., 2023) for a more integrated and readable system. We con-
duct all of our experiments based on NVIDIA RTX6000 GPUs. It is worth noting that the baseline
methods, i.e., DreamFusion and ProlificDreamer are implemented on threestudio, thus might result
in minor differences with the original implementation results.

Table 4: The detailed list of the short (efficient) instance-wise refinement step.

Hyper-parameters value

batch size 1
resolution [256, 512]
resolution milestones 800
position lr [0, 0.0005, 0.00005, 500]
scale lr 0.005
feature lr 0.01
opacity lr 0.01
rotation lr 0.001
densify/prune interval 100
densify/prune start iter 300
densify/prune until iter 900
total iter 1500
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Table 5: The detailed list of the extended (high quality) instance-wise refinement step.

Hyper-parameters value

batch size 4
resolution 512
position lr [0, 0.0005, 0.00002, 1000]
scale lr 0.005
feature lr [0, 0.01, 0.005, 2000]
opacity lr 0.05
rotation lr 0.005
densify/prune interval 200
densify/prune start iter 400
densify/prune until iter 1600
total iter 2000

Table 6: The detailed hyper-parameter list of the collision-aware layout refinement step.

Hyper-parameters value

quaternion lr 0.0001
transition x lr 0.00002
transition y lr 0.00002
transition z lr 0.02
total iter 400

In the coarse 3D generation stage, to guide the layout-conditioned text-to-image generation to gen-
erate canonical views, we add an additional text prompt ’3d scene, front view’ to the overall text
prompt YB . This simple measure helps Image-to-3D reconstruction models obtain better results in
the coarse 3D generation stage since multi-view diffusion models, e.g., MVDream, perform bet-
ter when given images with canonical views. When performing segment & inpaint, we prompt the
SAM (Kirillov et al., 2023) with 2D bounding box of each instance to indicate the foreground region
and the center points of all other instance’s boxes are treated as negative prompts to avoid segment-
ing multiple irrelevant instances all at once. Moreover, for the depth estimation part, since the output
prediction from GeoWizard is not metric depth, we normalize the predicted depth values and cen-
tralize the 3D location of the final 3D assets. In the instance-wise refinement step, we provide a
more concrete setting for both the extended and short refinement and layout refinement steps. All
the hyper-parameters are listed in Tab. 4, Tab. 5, and Tab. 6, including learning rates for attributes
of the gaussian splatting representation and different elements in layouts. Note that for the extended
instance-wise refinement strategy we use Stable Diffusion (Rombach et al., 2022) guidance instead
of Deep Floyd, to boost the quality of each instance. For the layout learning part, we assume that
the input 2D layouts are accurate and reasonable enough. Since two of the spatial coordinates in the
transition ti depend mainly on the given 2D layouts, we only give a very small learning rate to these
two elements.

B.3 ADDITIONAL ABLATION STUDIES

We conduct more ablation studies to validate the effectiveness of our model selection. First, we
compare the visual foundation model used when extracting features for coarse rotation estimation.
We choose DINOv2 (Oquab et al., 2023) to estimate the rotation ri since DINOv2 can provide
higher-level geometry and semantic information. In comparison, CLIP (Radford et al., 2021) is
another model we adopted, but since it is not specifically designed to capture geometry information
in images, it causes visible errors in the rotation estimation.

Also, we give a detailed time cost of Layout-Your-3D in Tab. 7, including the time cost for each
part and different settings, measured on one single RTX6000 GPU.

Moreover, to prove that it is essential to process the layout refinement step and instance-wise re-
finement step, we present some toy results after the Coarse 3D Generation stage in Fig. 14. These
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Table 7: Time cost for each part of Layout-Your-3D, including both the short and extended refine-
ment strategy.

Designed module Time cost

Coarse 3D gen. + ∼1 minute
Layout ref. + ∼2 minutes
Ins. ref. (short/extended) + ∼3 / 35 minutes
Overall (short) ∼12 minutes (3 instances)

‘[A beagle] wearing [a blue tie]’ ‘[A squirrel] standing on [a box]’

‘[A brown sofa] with [a cushion], [a teddy bear] and [a basketball] on it’ ‘[A toy heart] and [a  white feather] on [a balance scale]’

Figure 14: 3D assets generated without coarse 3D generation stage.

examples, though show relatively reasonable geometry shapes and spatial relationships, are still
not satisfying enough for further usage. Thus we claim that it is necessary for us to develop the
Disentangled Refinement Stage to obtain better results.

C MORE QUALITATIVE RESULTS

C.1 SINGLE OBJECT GENERATION

In Fig. 15, we visualize more single object generation results produced by our extended instance-
wise refinement step. These results demonstrate the capability of our Layout-Your-3D in the field of
text-to-single 3D object generation. The figure shows that our refinement process could retain the
primary geometry shapes and add fine-grained details. In about 25 to 30 minutes, we can generate
3D object of extra high quality with our Layout-Your-3D, comparable, or even much better than
previous or current SOTA methods. These results proves the versatility of our method.

C.2 CUSTOMIZATION

To validate the effectiveness and generalizability of our method, we give more examples in Fig. 16,
both the short and extended refinement strategies can bring customized attributes and easily deform
the style of 3D assets, thus enabling flexible and controllable generation.

C.3 COMPOSITIONAL GENERATION

We present more generated compositional 3D assets by our Layout-Your-3D in Fig. 17, here we
only show results generated with our short instance-wise refinement setting (∼12 mins in all). We
can see that Layout-Your-3D can generate compositional assets, in which 3D instances can be in all
’granularity’, from smaller ones like ’blue sunglasses’, to bigger ones like ’A box’, ’A toy pyramid’.
This can be another strong evidence, showcasing that our method has great advantages in the aspect
of controlling 3D generation.
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‘A bagel filled with cream cheese and lox’ ‘A blue tie with flora patterns’

‘A Gundam style small robot’ ‘An astronaut’

‘A stuffed toy rabbit’ ‘Golden beer with frothy white head’

Figure 15: More results on the single object generation with our extended refinement strategy.

‘A marble statue of a lion, ancient article’

‘An amigurumi squirrel’ ‘A squirrel in Minecraft style, low poly’

‘A beagle dressed like a medival soldier’

‘A lion in Minecraft style, low poly’

‘A beagle in Lego style’

(a) The extended refinement strategy.

‘A box made out of gold’

‘A marble statue of a kitten, historical artifact’ ‘Robotic Steampunk kitten, mechanical Marval’

‘Mythological pigeon’

‘A diamond box’

‘A pigeon in Lego style’

(b) The short refinement strategy.

Figure 16: Additional visualization results on instance generation with custom text prompts. We
show results generated with both the short and extended instance-wise refinement strategies. White
images on the top left corner of each figure are the original coarse 3D instances produced by LGM.
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‘[A teddy bear] reading [a book] wearing [blue sunglasses]’

‘[A kitten] lying next to [a flower]’

‘[A blue toy robot] and [a red toy robot] playing [basketball]’

‘[A tray] on top of [a toy pyramid], on the tray is [a red bottle], [a toy panda] and [an apple]’

‘[A squirrel] standing on [a box]’

2D layouts 3D results

‘[A pigeon] having [a bagel] and [a beer]’

Figure 17: More visualization results generated with our Comp20 text prompts and layouts.

D ADDITIONAL RESULTS & COMPARISONS

D.1 LAYOUT INITIALIZATION

In this section, we provide more visualization results on the effectiveness of our 3D layout initial-
ization. We compare different 3D layouts generated with LLM inference (Gao et al., 2024; Zhou
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et al., 2024b) and our strategy in Fig. 18. LLM-generated 3D layouts cannot align with the input
text prompts well, thus posing significant optimization problems in the following refinement pro-
cess. In comparison, our 3D layout initialization strategy benefits from deployed 2D models, and
can generate both precise and reasonable layouts. These comparisons reflect the motivation of using
2D blueprint for 3D layout initialization, instead of generating directly from LLMs.

A big footballA small robot

‘a blue toy box riding a lion’

Input text prompt LLM generated 3D layout

A lion

A toy box

‘A kitten lying next to a flower’ A flowerA kitten

‘A squirrel standing on a box’

A box

A squirrel

‘A small robot pushing a big football’

Ours layout initialization Input 2D layout + text prompt

A lion

A blue toy box

A flowerA kitten

A box

A squirrel

A big footballA small robot

‘a blue toy box riding a lion’

‘A kitten lying next to a flower’

‘A squirrel standing on a box’

‘A small robot pushing a big football’

Figure 18: Visualization results of our initialized 3D layout, together with a comparison with LLM-
generated coarse 3D layout boxes.

D.2 COMPARISON WITH OTHER WORKS

Since ComboVerse has not released the official implementations, we compare Layout-Your-3Dwith
the unofficial version in our experiments. For the unofficial implementation, we use the same ini-
tialization strategy as our Coarse 3D Generation Stage, instead of the one presented in ComboVerse.
The comparisons are shown in Fig. 19. The left images for each prompt are 3D scenes generated by
our implemented ComboVerse and the right ones are results generated with Layout-Your-3D.

Moreover, we compare the results generated with the same prompt by GALA3D and our Layout-
Your-3D in Fig. 20. The figure shows that GALA3D tends to produce unreasonable 3D scenes when
given poorly initialized 3D layout boxes. It is worth mentioning that GALA3D takes about 3 hours to
generate one scene with 3 instances, which can be inefficient compared to our Layout-Your-3D (12
minutes).

‘[a beagle] wearing [a blue tie]’ ‘[a squirrel] standing on a box’

‘[A pigeon] having [a bagel] and [a beer]’ ‘[A brown sofa] with [a cushion], [a teddy bear] and [a basketball] on it’

Figure 19: Comparison with ComboVerse.
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Layout-Your-3DGALA3D

‘[a beagle] wearing [a blue tie]’

‘[A small blue toy box] riding [a lion]’

‘[A cute stuffed toy crocodile] and [a small stuffed toy rabbit] sitting on [a skateboard]’

‘[A brown sofa] with [a cushion], [a teddy bear] and [a basketball] on it’

Figure 20: Comparison with GALA3D.

D.3 ABLATION ON ROTATION ESTIMATION

We conduct ablation studies on the effect of visual foundation models used when extracting features
for coarse rotation estimation in Tab. 8. The ’Average error’ term in the table represents the average
deviation degrees for all instances in the validation set, we calculate and estimate the error in de-
grees manually. As shown in the table, the deployed visual foundation models significantly reduce
rotation error, compared to scenarios where rotation estimation is not applied, thus validating the
effectiveness of our coarse rotation estimation strategy.

Table 8: Ablation study on the foundation models used when extracting features for coarse rotation
estimation.

Method No estimation CLIP (Radford et al., 2021) DINOv2 (Oquab et al., 2023)

Average error 18.9◦ 10.8◦ 5.5◦
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Table 9: Detailed prompt list of our proposed Comp20 validation set, including overall text prompt
YB and 2D layout set B. We provide both the user-given 2D layout set and the LLM-generated one.

Index Text Prompt
1 [A black bottle], with [a white bottle] on one side and [a blue bottle] on the other
User [24, 136, 168, 424], [152, 72, 336, 424], [344, 104, 504, 424]
LLM [200, 200, 280, 360], [100, 200, 180, 360], [300, 200, 380, 360]
2 [A teddy bear] reading [a book] wearing [blue sunglasses]
User [88, 40, 168, 192], [144, 24, 120, 128], [168, 96, 112, 168]
LLM [104, 64, 168, 200], [152, 0, 128, 168], [182, 112, 88, 184]
3 [A squirrel] standing on [A box]
User [204, 51, 51, 0], [153, 0, 102, 179]
LLM [190, 150, 222, 330], [172, 330, 340, 442]
4 [A small blue toy box] riding [a lion]
User [0, 153, 102, 0], [102, 204, 153, 153]
LLM [0, 140, 80, 10], [120, 200, 168, 168]
5 [A small robot] pushing [a big football]
User [51, 153, 179, 102], [194, 102, 204, 128]
LLM [75, 250, 225, 200], [225, 275, 200, 200]
6 [A pigeon] having [a bagel] and [a beer]
User [102, 102, 358, 358], [230, 307, 358, 384], [358, 204, 435, 384]
LLM [40, 88, 232, 416], [240, 360, 368, 416], [376, 168, 488, 416]
7 [An astronaut] sitting on [a sofa]
User [153, 102, 384, 409], [51, 153, 460, 384]
LLM [165, 130, 347, 392], [80, 100, 432, 372]
8 [A kitten] lying next to [a flower]
User [51, 153, 307, 358], [307, 204, 460, 358]
LLM [95, 218, 269, 492], [297, 224, 417, 382]
9 [A beagle] wearing [a blue tie]
User [117, 51, 394, 460], [230, 204, 281, 435]
LLM [88, 96, 424, 464], [208, 288, 312, 464]
10 [A teddy bear] driving [a toy car]
User [40, 184, 472, 384], [215, 119, 335, 326]
LLM [160, 150, 352, 406], [140, 320, 372, 470]
11 [A lego man] riding [a horse], the horse is wearing [a blue hat]
User [ 96, 64, 288, 352], [39, 181, 481, 463], [367, 152, 463, 240]
LLM [150, 200, 280, 400], [120, 250, 390, 450], [220, 150, 290, 220]
12 [A blue toy robot] and [a red toy robot] playing [basketball]
User [39, 64, 240, 416], [256, 48, 488, 416], [199, 167, 304, 272]
LLM [50, 200, 190, 440], [320, 200, 460, 440], [225, 280, 285, 340]
13 [A brown sofa] with [a cushion], [a teddy bear] and [a basketball] on it
User [32, 256, 480, 432], [200, 120, 328, 344], [72, 224, 168, 360], [360, 256, 456, 352]
LLM [[20, 180, 492, 412], [140, 230, 240, 310], [250, 220, 340, 330], [380, 250, 460, 330]
14 [A dog] taking [a boat]
User [24, 256, 488, 384], [160, 104, 336, 304]
LLM [186, 150, 326, 290], [50, 250, 462, 780]
15 [A furry fox’s head] with [a cupcake] on it, wearing [red sunglasses] and have [a lego block] on the nose
User [40, 64, 480, 512], [168, 72, 336, 216], [64, 256, 440, 376], [168, 264, 256, 407]
LLM [176, 128, 336, 288], [224, 88, 288, 152], [200, 160, 312, 200], [240, 208, 272, 240]
16 [A cute stuffed toy crocodile] and [a small stuffed toy rabbit] on [a skateboard]
User [40, 360, 472, 432], [72, 72, 296, 376], [296, 200, 424, 376]
LLM [40, 304, 480, 432], [80, 112, 280, 344], [296, 176, 440, 336]
17 [A toy dragon] reaching for [a cola] on [a wooden cabinet]
User [256, 192, 456, 416], [32, 104, 248, 416], [312, 80, 392, 200]
LLM [101, 179, 289, 400], [316, 233, 394, 471], [40, 370, 472, 500]
18 [A tray] on top of [a toy pyramid], on the tray is [a red bottle], [a toy panda] and [an apple]
User [96, 208, 424, 471], [56, 56, 136, 184], [408, 120, 480, 184], [16, 192, 504, 240], [192, 16, 336, 192]
LLM [150, 300, 350, 500], [140, 260, 360, 320], [160, 100, 220, 260], [240, 130, 320, 260], [330, 120, 390, 180]
19 [A toy heart] and [a white feather] on [a balance scale]
User [56, 136, 168, 248], [336, 192, 456, 240], [40, 224, 480, 384]
LLM [140, 220, 240, 320], [272, 235, 352, 305], [100, 150, 412, 362]
20 [A green pumpkin] and [a big round orange] under [an umbrella]
User [48, 200, 288, 424], [280, 272, 448, 416], [8, 120, 504, 224]
LLM [112, 290, 240, 418], [272, 290, 400, 418], [110, 50, 402, 290]
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