
Published as a conference paper at ICLR 2021

MODEL-BASED MICRO-DATA REINFORCEMENT LEARN-
ING: WHAT ARE THE CRUCIAL MODEL PROPERTIES
AND WHICH MODEL TO CHOOSE?

Balázs Kégl, Gabriel Hurtado, Albert Thomas
Huawei Noah’s Ark Lab, Paris, France
{balazs.kegl,gabriel.hurtado,albert.thomas}@huawei.com

ABSTRACT
We contribute to micro-data model-based reinforcement learning (MBRL) by rig-
orously comparing popular generative models using a fixed (random shooting)
control agent. We find that on an environment that requires multimodal posterior
predictives, mixture density nets outperform all other models by a large margin.
When multimodality is not required, our surprising finding is that we do not need
probabilistic posterior predictives: deterministic models are on par, in fact they
consistently (although non-significantly) outperform their probabilistic counter-
parts. We also found that heteroscedasticity at training time, perhaps acting as a
regularizer, improves predictions at longer horizons. At the methodological side,
we design metrics and an experimental protocol which can be used to evaluate the
various models, predicting their asymptotic performance when using them on the
control problem. Using this framework, we improve the state-of-the-art sample
complexity of MBRL on Acrobot by two to four folds, using an aggressive training
schedule which is outside of the hyperparameter interval usually considered.

1 INTRODUCTION

Unlike computers, physical systems do not get faster with time (Chatzilygeroudis et al., 2020). This
is arguably one of the main reasons why recent beautiful advances in deep reinforcement learning
(RL) (Silver et al., 2018; Vinyals et al., 2019; Badia et al., 2020) stay mostly in the realm of simulated
worlds and do not immediately translate to practical success in the real world. Our long term
research agenda is to bring RL to controlling real engineering systems. Our effort is hindered
by slow data generation and rigorously controlled access to the systems.

Micro-data RL is the term for using RL on systems where the main bottleneck or source of cost
is access to data (as opposed to, for example, computational power). The term was introduced in
robotics research (Mouret, 2016; Chatzilygeroudis et al., 2020). This regime requires performance
metrics that put as much emphasis on sample complexity (learning speed with respect to sample
size) as on asymptotic performance, and algorithms that are designed to make efficient use of small
data. Engineering systems are both tightly controlled for safety and security reasons, and physical by
nature (so do not get faster with time), making them a primary target of micro-data RL. At the same
time, engineering systems are the backbone of today’s industrial world: controlling them better may
lead to multi-billion dollar savings per year, even if we only consider energy efficiency.1

Model-based RL (MBRL) builds predictive models of the system based on historical data (logs,
trajectories) referred to here as traces. Besides improving the sample complexity of model-free RL by
orders of magnitude (Chua et al., 2018), these models can also contribute to adoption from the human
side: system engineers can “play” with the models (data-driven generic “neural” simulators) and
build trust gradually instead of having to adopt a black-box control algorithm at once (Argenson &
Dulac-Arnold, 2020). Engineering systems suit MBRL particularly well in the sense that most
system variables that are measured and logged are relevant, either to be fed to classical control
or to a human operator. This means that, as opposed to games in which only a few variables (pixels)
are relevant for winning, learning a forecasting model in engineering systems for the full set of logged
variables is arguably an efficient use of predictive power. It also combines well with the micro-data
learning principle of using every bit of the data to learn about the system.

11% of the yearly energy cost of the US manufacturing sector is roughly a billion dollar [link, link].

1

https://esource.bizenergyadvisor.com/article/manufacturing-facilities
https://www.statista.com/statistics/189180/natural-gas-vis-a-vis-coal-prices/

Published as a conference paper at ICLR 2021

Robust and computationally efficient probabilistic generative models are the crux of many machine
learning applications. They are especially one of the important bottlenecks in MBRL (Deisenroth
& Rasmussen, 2011; Ke et al., 2019; Chatzilygeroudis et al., 2020). System modelling for MBRL
is essentially a supervised learning problem with AutoML (Zhang et al., 2021): models need to be
retrained and, if needed, even retuned hundreds of times, on different distributions and data sets
whose size may vary by orders of magnitude, with little human supervision. That said, there is little
prior work on rigorous comparison of system modelling algorithms. Models are often part of a
larger system, experiments are slow, and it is hard to know if the limitation or success comes from
the model or from the control learning algorithm. System modelling is hard because i) data sets are
non-i.i.d., and ii) classical metrics on static data sets may not be predictive of the performance on
the dynamic system. There is no canonical data-generating distribution as assumed in the first page
of machine learning textbooks, which makes it hard to adopt the classical train/test paradigm. At
the same time, predictive system modelling is a great playground and it can be considered as an
instantiation of self-supervised learning which some consider the “greatest challenge in ML and AI
of the next few years”.2

We propose to compare popular probabilistic models on the Acrobot system to study the model
properties required to achieve state-of-the-art performances. We believe that such ablation studies
are missing from existing “horizontal” benchmarks where the main focus is on state-of-the-art com-
binations of models and planning strategies (Wang et al., 2019). We start from a family of flexible
probabilistic models, autoregressive mixtures learned by deep neural nets (DARMDN) (Bishop,
1994; Uria et al., 2013) and assess the performance of its models when removing autoregressivity,
multimodality, and heteroscedasticity. We favor this family of models as it is easy i) to compare
them on static data since they come with exact likelihood, ii) to simulate from them, and iii) to
incorporate prior knowledge on feature types. Their greatest advantage is modelling flexibility: they
can be trained with a loss allowing heteroscedasticity and, unlike Gaussian processes (Deisenroth &
Rasmussen, 2011; Deisenroth et al., 2014), deterministic neural nets (Nagabandi et al., 2018; Lee
et al., 2019), multivariate Gaussian mixtures (Chua et al., 2018), variational autoencoders (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014), and normalizing flows (Rezende & Mohamed,
2015), deep (autoregressive) mixture density nets can naturally and effortlessly represent a multi-
modal posterior predictive and what we will call y-interdependence (dependence among system
observables even after conditioning on the history).

We chose Acrobot with continuous rewards (Sutton, 1996; Wang et al., 2019) which we could call
the “MNIST of MBRL” for three reasons. First, it is simple enough to answer experimental questions
rigorously yet it exhibits some properties of more complex environments so we believe that our
findings will contribute to solve higher dimensional systems with better sample efficiency as well
as better understand the existing state-of-the-art solutions. Second, Acrobot is one of the systems
where i) random shooting applied on the real dynamics is state of the art in an experimental sense
and ii) random shooting combined with good models is the best approach among MBRL (and even
model-free) techniques (Wang et al., 2019). This means that by matching the optimal performance, we
essentially “solve” Acrobot with a sample complexity which will be hard to beat. Third, using
a single system allows both a deeper and simpler investigation of what might explain the success
of popular methods. Although studying scientific hypotheses on a single system is not without
precedence (Abbas et al., 2020), we leave open the possibility that our findings are valid only on
Acrobot (in which case we definitely need to understand what makes Acrobot special).

There are three complementary explanations why model limitations lead to suboptimal performance
in MBRL (compared to model-free RL). First, MBRL learns fast, but it converges to suboptimal
models because of the lack of exploration down the line (Schaul et al., 2019; Abbas et al., 2020). We
argue that there might be a second reason: the lack of the approximation capacity of these models.
The two reasons may be intertwined: not only do we require from the model family to contain the
real system dynamics, but we also want it to be able to represent posterior predictive distributions,
which i) are consistent with the limited data used to train the model, ii) are consistent with (learnable)
physical constraints of the system, and iii) allow efficient exploration. This is not the “classical”
notion of approximation, it may not be alleviated by simply adding more capacity to the function
representation; it needs to be tackled by properly defining the output of the model. Third, models are
trained to predict the system one step ahead, while the planners need unbiased multi-step predictions

2https://www.facebook.com/722677142/posts/10155934004262143/

2

https://www.facebook.com/722677142/posts/10155934004262143/

Published as a conference paper at ICLR 2021

which often do not follow from one-step optimality. Our two most important findings nicely comment
on these explanations.

• Probabilistic models are needed when the system benefits from multimodal predictive
uncertainty. Although the real dynamics might be deterministic, multimodality seems
to be crucial to properly handle uncertainty around discrete jumps in the system state
that lead to qualitatively different futures.
• When systems do not exhibit such discontinuities, we do not need probabilistic predic-

tions at all: deterministic models are on par, in fact they consistently (although non-
significantly) outperform their probabilistic versions. We also found that heteroscedas-
ticity at training time, perhaps acting as a regularizer, improves predictions at longer horizons
(compared to classical regressors trained to minimize the mean squared error one step ahead).

Note that while our hypotheses and experimental findings are related to the grand debate on how to
represent and categorize uncertainties (Deisenroth & Rasmussen, 2011; Gal, 2016; Gal et al., 2016;
Depeweg et al., 2018; Osband et al., 2018; Hullermeier & Waegeman, 2019; Curi et al., 2020), we
remain agnostic about which is the right representation by concentrating on posterior predictives
on which the different approaches (e.g., Bayesian or not) are directly empirically comparable. We
contribute to the debate by providing empirical evidence on a noiseless system, demonstrating
unexplained phenomena even when uncertainties are purely epistemic.

We also contribute to good practices in micro-data MBRL by building an extendable experi-
mental protocol in which we design static data sets and measure various metrics which may correlate
with the performance of the model on the dynamic system. We instantiate the protocol by a simple
setup and study models systematically in a fast experimental loop. When comparing models, the
control agent or learning algorithm is part of the scoring mechanism. We fix it to a random shooting
model predictive control agent, used successfully by (Nagabandi et al., 2018), for fair comparison
and validation of the models. Our reproducible and extensible benchmark is made publicly available
at https://github.com/ramp-kits/rl_simulator.

2 THE FORMAL SETUP

Let TT =
(
(y1,a1), . . . , (yT ,aT)

)
be a system trace consisting of T steps of observable-action

pairs (yt,at): given an observable yt of the system state at time t, an action at was taken, leading
to a new system state observed as yt+1. The observable vector yt = (y1t , . . . , y

dy
t) contains dy

numerical or categorical variables, measured on the system at time t. The action vector at contains
da numerical or categorical action variables, typically set by a control function at = π(Tt−1,yt) of
the history Tt−1 and the current observable yt (or by a stochastic policy at ∼ π(Tt−1,yt)).
The objective of system modelling is to predict yt+1 given the system trace Tt. There are applications
where point predictions ŷt+1 = f(Tt) are sufficient, however, in most control applications (e.g.,
reinforcement learning or Bayesian optimization) we need to access the full posterior distribution of
yt+1|Tt to take into consideration the uncertainty of the prediction and/or to model the randomness of
the system (Deisenroth & Rasmussen, 2011; Chua et al., 2018). Thus, our goal is to learn p(yt+1|Tt).

To convert the variable length input (condition) Tt =
(
(y1,a1), . . . , (yt,at)

)
into a fixed length

state vector st we use a fixed feature extractor st = fFE(Tt). After this step, the modelling simpli-
fies to classical learning of a (conditional) multi-variate density p(yt+1|st) (albeit on non-i.i.d.
data). In the description of our autoregressive models we will use the notation x1

t = st and
xjt =

(
y1t+1, . . . , y

j−1
t+1 , st

)
for j > 1 for the input (condition) of the jth autoregressive predictor

pj(y
j
t+1|x

j
t). See Appendix A for more details on the autoregressive setup.

2.1 MODEL REQUIREMENTS

We define seven properties of the model p that are desirable if to be used in MBRL. These restrict and
rank the family of density estimation algorithms to consider. Req (R1) is absolutely mandatory for
trajectory-sampling controllers, and Req (R2) is mandatory in this paper for using our experimental
toolkit to its full extent. Reqs (R3) to (R7) are softer requirements which i) qualitatively indicate the
potential performance of generative models in dynamic control, and/or ii) favor practical usability on
real engineering systems and benchmarks. Table 1 provides a summary on how the different models

3

https://github.com/ramp-kits/rl_simulator

Published as a conference paper at ICLR 2021

satisfy (or not) these requirements. We note that depending on the application and the desired control
frequency of the system, one may also require models with fast prediction times.

(R1) It should be computationally easy to properly simulate observables Y t+1 ∼ p(·|Tt)
given the system trace to interface with popular control techniques that require such simula-
tions. Note that it is then easy to obtain random traces of arbitrary length from the model by
applying p and π alternately.

(R2) Given yt+1 and Tt, it should be computationally easy to evaluate p(yt+1|Tt) to obtain a
likelihood score in order to compare models on various traces. This means that p(y|Tt) > 0
and

∫
p(y|Tt)dy = 1 should be assured by the representation of p, without having to go

through sampling, approximation, or numerical integration.

(R3) We should be able to model y-interdependence: dependence among the dy elements of
yt+1 = (y1t+1, . . . , y

dy
t+1) given Tt. In our experiments we found that the MBRL perfor-

mance was not affected by the lack of this property, however, we favor it since the violation
of strong physical constraints in telecommunication or robotics may hinder the acceptance
of the models (simulators) by system engineers. See Appendix B for further explanation.

(R4) Heteroscedastic models are able to vary their uncertainty estimate as a function of the
state or trace Tt. Abbas et al. (2020) show how to use input-dependent variance to improve
the planning. We found that even when using the deterministic prediction at planning
time, allowing heteroscedasticity at training time alleviates error accumulation down
the horizon.

(R5) Allowing multi-modal posterior predictives seems to be crucial to properly handle uncer-
tainty around discrete jumps in the system state that lead to qualitatively different futures.

(R6) We should be able to model different observable types, for example discrete/continuous,
finite/infinite support, positive, heavy tail, multimodal, etc. Engineers often have strong
prior knowledge on distributions that should be used in the modelling, and the popular
(multivariate) Gaussian assumption often leads to suboptimal approximation.

(R7) Complex multivariate density estimators rarely work out of the box on a new system. We
are aiming at reusability of our models (not simple reproducibility of our experimental
results). In the system modelling context, density estimators need to be retrained and
retuned automatically. Both of these require robustness and debuggability: self-tuning
and gray-box models and tools that can help the modeler to pinpoint where and why the
model fails. This requirement is similar to what is often imposed on supervised models by
application constraints, for example, in health care (Caruana et al., 2015).

2.2 EVALUATION METRICS

We define a set of metrics to compare system models both on fixed static traces T (Section 2.2.1)
and on dynamic systems (Section 2.2.2). We have a triple aim. First, we contribute to moving the
RL community towards a supervised-learning-like rigorous evaluation process where claims can
be made more precise. Second, we define an experimental process where models can be evaluated
rapidly using static metrics before having to run long experiments on the dynamic systems. Our
methodological goal is to identify static metrics that predict the performance of the models on the
dynamic system. Third, we provide diagnostics tools to the practical modeller to debug the models
and define triggers and alarms when something goes wrong on the dynamical system (e.g., individual
outliers, low probability traces).

2.2.1 STATIC METRICS

We use four metrics on our static “supervised” experiment to assess the models p(yt+1|st). We
define all metrics formally in Appendix C. First we compute the (average) log-likelihood of p on a
test trace TT for those models that satisfy Req (R2). Log-likelihood is a unitless metrics which is hard
to interpret and depends on the unit in which its input is measured. To have a better interpretation,
we normalize the likelihood with a baseline likelihood of a multivariate independent unconditional
Gaussian, to obtain the likelihood ratio (LR) metrics. LR is between 0 (although LR < 1 usually
indicates a bug) and∞, the higher the better. We found that LR works well in an i.i.d. setup but
distribution shift often causes “misses”: test points with extremely low likelihood. Since these points
dominate LR, we decided to clamp the likelihood and compute the rate of test points with a likelihood

4

Published as a conference paper at ICLR 2021

less than3 pmin = 1.47×10−6. This outlier rate (OR) measures the “surprise” of a model on trace
T . OR is between 0 and 1, the lower the better. Third, we compute the explained variance (R2)
to quantify the precision of the predictors. We prefer using this metrics over the MSE because it
is normalized so it can be aggregated over the dimensions of y. R2 is between 0 and 1, the higher
the better. Fourth, for models that provide marginal CDFs, we compute the Kolmogorov-Smirnov
(KS) statistics between the uniform distribution and the quantiles of the test ground truth (under
the model CDFs). Well-calibrated models have been shown to improve the performance of MBRL
algorithms (Malik et al., 2019). KS is between 0 and 1, the lower the better.

All our density estimators are trained to predict the system one step ahead yet arguably what matters is
their performance at a longer horizon L specified by the control agent. Our models do not provide
explicit likelihoods L steps ahead, but we can simulate from them (following ground truth actions)
and evaluate the metrics by a Monte-Carlo estimate, obtaining long horizon metrics KS(L) and
R2(L). In all our experiments we use L = 10 with 100 Monte Carlo traces, and, for computational
reasons, sample the test set at 100 random positions, which explains the high variance on these scores.

2.2.2 DYNAMIC METRICS

Our ultimate goal is to develop good models for MBRL so we also measure model quality in terms of
the final performance. For this, we fix the control algorithm to random shooting (RS) (Richards,
2005; Rao, 2010) which performs well on the true dynamics of Acrobot as well as many other systems
(Wang et al., 2019). RS consists in a random search of the action sequence maximizing the expected
cumulative reward over a fixed planning horizon L. The agent then applies the first action of the best
action sequence. We use L = 10 and generate n = 100 random action sequences for the random
search. For stochastic models we average the cumulative rewards of 5 random trajectories obtained
for a same action sequence. We note that one could achieve better results by using a larger n or the
cross entropy method (CEM) (de Boer et al., 2004; Chua et al., 2018). One could also consider more
complex planning strategies (Wang & Ba, 2020; Argenson & Dulac-Arnold, 2020). However we
judge RS with n = 100 to be sufficient for our study (see Appendix D for more details). We present
here the MBRL loop and notations which will be needed to define the dynamic metrics.

1. Run random policy π(1) for T = 200 steps, starting from an initial “seed” trace T (0)
T0

(typically a single-step state T (0)
1 = (y0, ·)) to obtain a random initial trace T (1)

T . Let the
epoch index be τ = 1.

2. Learn p(τ) on the full trace Tτ×T = ∪ττ ′=1T
(τ ′)
T .

3. Run RS policy π(τ) using model p(τ), (re)starting from T (0)
T0

, to obtain trace T (τ+1)
T .

4. If τ < N , let τ = τ + 1 and go to Step 2, otherwise stop.
Given the formal algorithm, we can now elaborate what we mean by system modelling for MBRL
being essentially a supervised learning problem with AutoML (and why (R7) is important).
Zhang et al. (2021) make a similar argument in paper that came out independently of ours. In
Step 2, the chosen model needs to be retrained and, if needed, retuned, on data sets Tτ×T of different
distribution whose size may vary by orders of magnitude, with little human supervision. This does
not mean we need to do full hyperopt in every episode τ , rather that p(τ) should be robust: trainable
without human babysitting over a range of different distributions and data sizes. A single catastrophic
learning failure (e.g. getting stuck in initial random function) means the full MBRL loop goes off
the rail. Models that need to be retuned (because of sensitivity to hyperparameters) must have the
retuning (AutoML) feature encapsulated into their training. The models that ended up on the top were
not sensitive to the choice of hyperparameters, so we did not need to retune them in every iteration.

MEAN ASYMPTOTIC REWARD (MAR) AND RELATIVE MAR (RMAR). Given a trace TT and
a reward rt obtained at each step t, we define the mean reward as R(TT) = 1

T

∑T
t=1 rt.

4 The mean

reward in iteration τ is then MR(τ) = R
(
T (τ)
T

)
. Our measure of asymptotic performance, the mean

asymptotic reward, is the mean reward in the second half of the epochs (after convergence; we setN
3As a salute to 5-sigma, using the analogy of the MBRL loop (Section 2.2.2) as the iterated scientific method.
4The common practice is not to normalize the cumulative reward by the (maximum) episode length

T , which makes it difficult to immediately compare results across papers and experiments. In micro-data RL,
where T is a hyperparameter (vs. part of the experimental setup), we think this should be the common practice.

5

Published as a conference paper at ICLR 2021

in such a way that the algorithms converge after less than N/2 epochs) MAR = 2
N

∑N
τ=N/2 MR(τ).

To normalize across systems and to make the measure independent of the control algorithm we
use on top of the model, we define the relative mean asymptotic reward RMAR = (MAR −
MARran)/(MARopt −MARran), where MARopt is the mean asymptotic reward obtained by running
the same control algorithm on the true dynamics (MARopt = 2.104 in our experiments on Acrobot5),
and MARran is the mean asymptotic reward obtained by running the initial random policy on the true
dynamics (MARran = 0.12 in our experiments on Acrobot). This puts RMAR between 0 and 1 (the
higher the better).

MEAN REWARD CONVERGENCE PACE (MRCP(70)). To assess the speed of conver-
gence, we define the mean reward convergence pace MRCP(p%) as the number of steps
needed to achieve p% of (MARopt − MARran) using the running average of 5 epochs

MRCP(p%) = T ×argminτ

(
1
5

∑τ+2
τ ′=τ−2 MR(τ)−MARran > p%× (MARopt −MARran)

)
. The

unit of MRCP(p%) is system access steps, not epochs, first to make it invariant to epoch length,
and second because in micro-data RL the unit of cost is a system access step. We use p = 70 in our
experiments.

2.3 THE EVALUATION ENVIRONMENT

The Acrobot benchmark system has four observables y = [θ1, θ2, θ̇1, θ̇2]; θ1 the angle to the vertical
axis of the upper link; θ2 the angle of the lower link relative to the upper link, both being normalized
to [−π, π]; θ̇1 and θ̇2 the corresponding angular momenta. The action is a discrete torque on the lower
link a ∈ {−1, 0, 1}. We use only yt as the input to the models but augment it with the sines and
cosines of the angles, so st = [θ1, sin θ1, cos θ1, θ2, sin θ2, cos θ2, θ̇1, θ̇2]t. The reward is the height
of the tip of the lower link over the hanging position r(y) = 2− cos θ1 − cos(θ1 + θ2) ∈ [0, 4].

We use two versions of the system to test various properties of the system models we describe in
Section 3. In the “raw angles” system we keep y as the prediction target which means that models
have to deal with the noncontinuous angle trajectories when the links roll over at ±π. This requires
multimodal posterior predictives illustrated in Figure 1 and in Appendix F. In the “sincos” system
we change the target to y = [sin θ1, cos θ1, sin θ2, cos θ2, θ̇1, θ̇2] which are the observables of the
Acrobot system implementation in OpenAI Gym (Brockman et al., 2016). This smoothes the target
but introduces a strong nonlinear dependence between sin θt+1 and cos θt+1, even given the state st.

(a) deterministic
DARNNdet

(b) homoscedastic
DARNNσ

(c) heteroscedastic
unimodal DARMDN(1)

(d) multimodal
DARMDN(10)

Figure 1: How different model types deal with uncertainty and chaos around the non-continuity at
±π on the Acrobot “raw angles” system. The acrobot is standing up at step 18 and hesitates whether
to stay left (θ1 > 0) or go right (θ1 < 0 with a jump of 2π). Deterministic and homoscedastic
models underestimate the uncertainty so a small one-step error leads to picking the wrong mode
and huge errors down the horizon. A heteroscedastic unimodal model correctly determines the large
uncertainty but represents it as a single Gaussian so futures are not sampled from the modes. The
multimodal model correctly represents the uncertainty (two modes, each with small sigma) and
leads to a reasonable posterior predictive after ten steps. The thick curve is the ground truth, the
red segment is past, the black segment is future, and the orange curves are simulated futures. See
Section 3 for the definition of the different models and Appendix F for more insight.
Our aim of predicting dynamic performance on static experiments will require not only score design
but also data set design. In this paper we evaluate our models on two data sets. The first is generated
by running a random policy π(1) on Acrobot. We found that this was too easy to learn, so scores
hardly predicted the dynamic performance of the models (Schaul et al., 2019). To create a more

5See Table 5 in Appendix D for more discussion on MARopt.

6

Published as a conference paper at ICLR 2021

“skewed” data set, we execute the MBRL loop (Section 2.2.2) for one iteration using the linear
ARLinσ model (see Section 3), and generate traces using the resulting policy π(2)

ARLinσ . On both
data sets we use ten-fold cross validation on 5K training points and report test scores on a held-out
test set of 20K points. All sets comprise of episodes of length 500, starting from an approximately
hanging position: all state variables (the angles and the angular velocities) are uniformly sampled in
[−0.1, 0.1].

3 MODELS AND RESULTS

A commonly held belief (Lee et al., 2019; Wang et al., 2019) is that MBRL learns fast but cannot
reach the asymptotic performance of model-free RL. It presumes that models either “saturate” (their
approximation error cannot be eliminated even when the size of the training set grows high) and/or
they get stuck in local minima (since sampling and learning are coupled). Our research goal is to
design models that alleviate these limitations. The first step is to introduce and study models that are
learnable with small data but are flexible enough to represent complicated functions (see the summary
in Table 1). Implementation details are given in Appendix D.

Table 1: Summary of the different models satisfying (or not) the various requirements from Sec-
tion 2.1. (R1): efficient simulation; (R2): explicit likelihood; (R3): y-interdependence (yellow means
“partially”); (R4): heteroscedasticity (yellow means “at training”); (R5): multimodality (yellow means
“in principle, yes, in practice, no”); (R6): ability to model different feature types; (R7): robustness and
debuggability. The last two columns indicate whether the model is among the optimal ones on the
Acrobot sincos and raw angles systems (Section 2.3 and Table 2; yellow means significantly worse
than the best model but within 5% of the optimum).

Model (R1) (R2) (R3) (R4) (R5) (R6) (R7) sincos raw angles

ARLinσ

DARNNσ

GP
DMDN(1)
DMDN(10)
DARMDN(1)
DARMDN(10)
PETS (bagged DMDN(1))
VAE
RealNVP
DARNNdet

DMDN(1)det

DARMDN(1)det

AUTOREGRESSIVE DETERMINISTIC REGRESSOR + FIXED VARIANCE. We learn dy determinis-
tic regressors f1(x1), . . . , fdy(x

dy) by minimizing MSE and estimate a uniform residual variance
σ2
j = 1

T−2
∑T−1
t=1

(
yjt+1 − fj(x

j
t)
)2

for each output dimension j = 1, . . . , dy. The probabilistic
model is then Gaussian pj(yj |xj) = N

(
yj ; fj(x

j), σj
)
. The two baseline models of this type are

linear regression (ARLinσ) and a neural net (DARNNσ). These models are easy to train, they can
handle y-interdependence (since they are autoregressive), but they fail (R5) and (R4): they cannot
handle multimodal posterior predictives and heteroscedasticity.
GAUSSIAN PROCESS (GP) is the method of choice in the popular PILCO algorithm (Deisenroth
& Rasmussen, 2011). On the modelling side, it cannot handle non-Gaussian (multimodal or het-
eroscedastic) posteriors and y-interdependence, failing Req (R6). More importantly, similarly to
Wang et al. (2019) and Chatzilygeroudis et al. (2020), we found it very hard to tune and slow to
simulate from. We have reasonable performance on the sincos data set which we report, however
GPs failed the raw angles data set (as expected due to angle non-continuity) and, more importantly,
the hyperparameters tuned lead to suboptimal dynamical performance, so we decided not to report
these results. We believe that generative neural nets that can learn the same model family are more
robust, faster to train and sample from, and need less babysitting in the MBRL loop.

7

Published as a conference paper at ICLR 2021

Table 2: Model evaluation results on the dynamic
environments using random shooting MPC agents.
RMAR is the percentage of the optimum reward
achieved asymptotically, and MRCP(70) is the
number of system access steps needed to achieve
70% of the optimum reward (Section 2.2.2). ↓ and
↑ mean lower and higher the better, respectively.
Unit is given after the / sign.

Method RMAR/10−3↑ MRCP(70)↓

Acrobot raw angles system

ARLinσ 215±7 NaN±NaN
DARNNσ 612±9 14070±3350
DARNNdet 703±7 5660±980
DMDN(10) 968±8 2200±240
DARMDN(1) 730±7 3320±680
DARMDN(10) 963±7 1680±100
DARMDN(10)det 709±7 3960±570
PETS 715±7 7260±2200
VAE 668±11 15100±3450

Acrobot sincos system

ARLinσ -11±3 NaN±NaN
DARNNσ 947±8 1600±170
DARNNdet 963±8 1440±80
DMDN(10) 980±8 1670±90
DARMDN(1) 982±7 1400±50
DARMDN(10) 977±8 1340±100
DARMDN(10)det 986±7 1300±100
DARMDN(1)det 987±7 1300±80
PETS 992±7 1040±110
PETSdet 995±7 840±40
VAE 952±10 1770±190
RealNVP 536±27 NaN±NaN

MIXTURE DENSITY NETS. A classical
deep mixture density net DMDN(D) (Bishop,
1994) is a feed-forward neural net outputting
D(1 + 2dy) parameters [w`,µ`,σ`]D`=1, µ` =
[µ`j]

dy
j=1, σ` = [σ`j]

dy
j=1 of a multivari-

ate independent Gaussian mixture p(y|s) =∑D
`=1 w

`(s)N
(
y;µ`(s), diag(σ`(s)2)

)
. Its

autoregressive counterpart DARMDN(D)
learns dy independent neural nets outputting the
3Ddy parameters

[
w`j , µ

`
j , σ

`
j

]
j,`

of dy mixtures
p1, . . . , pdy (2). Both models are trained to max-
imize the log likelihood (3). They can both
represent heteroscedasticity and, for D > 1,
multimodal posterior predictives. In engineer-
ing systems we prefer DARMDN for its better
handling of y-interdependence and its ability
to model different types of system variables.
DARMDN(D) is similar to RNADE (Uria et al.,
2013) except that in system modelling we do
not need to couple the dy neural nets. While
RNADE was used for anomaly detection (Iwata
& Yamanaka, 2019), acoustic modelling (Uria
et al., 2015), and speech synthesis (Wang et al.,
2017), to our knowledge, neither DARMDN
nor RNADE have been used in the context of
MBRL. DMDN has been used in robotics by
Khansari-Zadeh & Billard (2011) and it is an
important brick in the world model of Ha & Schmidhuber (2018). Probabilistic Ensembles with
Trajectory Sampling (PETS) (Chua et al., 2018) is an important contribution to MBRL that trains a
DMDN(D) model by bagging D DMDN(1) models. In our experiments we also found that bagging
can improve the LR score (4) significantly, and bagging seems to accelerate learning by being more
robust for small data sets (MRCP(70) score in Table 2 and learning curves in Appendix E); however
bagged single Gaussians are not multimodal (all bootstrap samples will pick instances from every
mode) so PETS fails on the raw angles data.
DETERMINISTIC MODELS are important baselines, used successfully by Nagabandi et al. (2018)
and Lee et al. (2019) in MBRL. They fail Req (R2) but can be alternatively validated using R2.
On the other hand, when used in an autoregressive setup, if the mean prediction represents the
posterior predictives well (unimodal distributions with small uncertainty), they work well. In fact, in
our experiments we found that deterministic models are consistently (although non-significantly)
better than their probabilistic versions, possibly because the mean prediction is more precise.
We implemented deterministic models by “sampling” the mean of the DARNNσ and DARMDN(·)
models, obtaining DARNNdet and DARMDN(·)det, respectively.
VARIATIONAL AUTOENCODERS AND FLOWS. We tested two other popular techniques, variational
autoencoders (VAE) (Kingma & Welling, 2014; Rezende et al., 2014) and the flow-based RealNVP
(Dinh et al., 2017). VAE does not provide exact likelihood (R2); RealNVP does, but the R2 and
KS scores are harder to compute. In principle they can represent multimodal posterior predictives,
but in practice they do not seem to be flexible enough to work well on the raw angles system. A
potential solution would be to enforce a multimodal output as done by Moerland et al. (2017). VAE
performed well (although significantly worse than the mixture models) on the sincos system.

Our results are summarized in Tables 2 and 3. We show mean reward learning curves in Appendix E.
We found that comparing models solely based on their performance on the random policy data is a
bad choice: most models did well in both the raw angles and sincos systems. Static performance
on the linear policy data is a better predictor of the dynamic performance; among the scores, not
surprisingly, and also noted by Nagabandi et al. (2018), the R2(10) score correlates the most with
dynamic performance.

8

Published as a conference paper at ICLR 2021

Table 3: Model evaluation results on static data sets. ↓ and ↑ mean lower and higher the better,
respectively. Unit is given after the / sign.

Method LR↑ OR/10−4↓ R2/10−4↑ KS/10−3↓ R2(10)/10−4↑ KS(10)/10−3↓ trt/min↓ tst/sec↓

Acrobot raw angles, data generated by random policy

ARLinσ 27±1 44±7 9763±0 177±3 8308±485 157±11 0±0 0±0
DARNNσ 54±8 171±37 9829±9 171±36 8711±491 212±48 2±0 1±0
DMDN(10) 430±26 0±0 9790±2 124±10 8973±456 129±29 15±0 2±0
DARMDN(1) 424±18 10±2 9784±2 126±6 9267±269 106±17 19±0 2±0
DARMDN(10) 410±8 3±1 9782±2 135±8 9049±375 122±17 18±0 2±0

Acrobot raw angles, data generated by linear policy after one epoch

ARLinσ 3±0 20±5 6832±9 85±1 398±270 87±14 0±0 0±0
DARNNσ 25±1 176±31 9574±13 193±16 4844±477 139±23 2±0 1±0
DMDN(10) 137±10 40±11 8449±443 72±9 5659±1086 135±19 15±0 2±0
DARMDN(1) 120±2 56±12 5677±6 47±5 1291±846 114±20 20±1 2±0
DARMDN(10) 143±6 22±6 9571±70 62±5 8065±363 100±11 20±0 2±0

Acrobot sincos, data generated by random policy

ARLinσ 6±0 47±10 8976±1 118±3 5273±320 110±11 0±0 0±0
DARNNσ 50±4 188±20 9987±5 176±22 9249±623 257±64 4±0 2±0
GP 88±2 0±0 9999±0 224±11 9750±85 168±29 0±0 9±1
DMDN(10) 361±22 0±0 9957±4 139±15 8963±538 146±35 21±1 1±0
DARMDN(1) 281±5 3±1 9950±5 151±3 8953±337 131±18 27±1 3±0
DARMDN(10) 288±7 1±0 9983±4 153±10 9296±233 140±25 28±1 4±1

Acrobot sincos, data generated by linear policy after one epoch

ARLinσ 2±0 11±4 6652±9 46±1 354±304 127±18 0±0 0±0
DARNNσ 32±2 166±34 9986±2 156±16 7944±1061 194±29 4±0 2±0
GP 56±1 6±1 9995±0 113±4 8334±185 133±15 0±0 9±1
DMDN(10) 95±5 29±6 9993±1 85±9 9001±285 128±17 21±0 1±0
DARMDN(1) 125±4 12±4 9991±1 80±4 8693±286 89±13 32±2 3±0
DARMDN(10) 119±4 9±5 9991±2 68±4 8655±269 95±15 30±1 4±0

Our most counter-intuitive result (although Wang et al. (2019) and Wang & Ba (2020) observed a
similar phenomenon) is that DARMDN(·)det and PETSdet are tied for winning on the sincos system,
which suggests that a deterministic model can be on par with (or even slightly better than) the
best probabilistic models if the system requires no multimodality. What is even more surprising is
that classical neural net DARNNdet is slightly but significantly worse, suggesting that the optimal
model, even if it is deterministic, needs to be trained for a likelihood score in a generative setup.
The lower R2(10) score of DARNNdet (and the case study in Appendix F) suggest that classical
regression optimizing MSE leads to error accumulation and thus subpar performance down the
horizon. Our hypothesis is that heteroscedasticity at training time acts as a regularizer, leading
somehow to less error accumulation at a longer horizon.

On the sincos system PETS reaches the optimum MARopt within statistical uncertainty which means
that this setup of the Acrobot system is essentially solved. We improve the convergence pace
MCPR(70) of the PETS implementation of Wang & Ba (2020) by two to four folds (Figure 3 in
Appendix E) by using a more ambitious learning schedule (short epochs and frequent retraining).
The real forte of D(AR)MDN(10) is the 95% RMAR score on the raw angles system that requires
multimodality, beating the other models by more than 20%. It suggests remarkable robustness
that makes it the method of choice for larger systems with more complex dynamics.

4 CONCLUSION AND FUTURE WORK

Our study was made possible by developing a toolbox of good practices for model evaluations and
debuggability in model-based reinforcement learning, particularly useful when trying to solve real
world applications with domain engineers. We found that heteroscedasticity at training time alleviates
error accumulation down the horizon. Then at planning time, we do not need stochastic models:
the deterministic mean prediction suffices. That is, unless the system requires multimodal posterior
predictives, in which case deep (autoregressive or not) mixture density nets are the only current
generative models that work. Our findings lead to state-of-the-art sample complexity (by far) on the
Acrobot system by applying an aggressive training schedule. The most important future direction is
to extend the results to more complex systems requiring larger planning horizons and to planning
strategies beyond random shooting.

9

Published as a conference paper at ICLR 2021

REFERENCES

Zaheer Abbas, Samuel Sokota, Erin J. Talvitie, and Martha White. Selective Dyna-style planning
under limited model capacity. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. CoRR, abs/2008.05556,
2020. URL https://arxiv.org/abs/2008.05556.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human benchmark. ArXiv,
abs/2003.13350, 2020.

Christopher M. Bishop. Mixture density networks. Technical report, 1994.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings
of the 21st International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730.
ACM, 2015.

Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Freek Stulp, Sylvain Calinon, and Jean-Baptiste
Mouret. A survey on policy search algorithms for learning robot controllers in a handful of trials.
IEEE Transactions on Robotics, 36(2):328–347, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems 31, pp. 4754–4765. Curran Associates, Inc., 2018.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement
learning through optimistic policy search and planning. In Neural Information Processing Systems
(NeurIPS), 2020. URL https://arxiv.org/abs/2006.08684.

Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134, 2004.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on Machine Learning,
2011.

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-
efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014.

Stefan Depeweg, Jos Miguel Hernndez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
position of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning. In
Proceedings of the 35th International Conference on Machine Learning, pp. 1192–1201. PMLR,
2018.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, 2017.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal, Rowan McAllister, and Carl E. Rasmussen. Improving PILCO with Bayesian neural
network dynamics models. In Data-Efficient Machine Learning workshop, ICML, April 2016.

Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gordon Wilson.
GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In
Advances in Neural Information Processing Systems, 2018.

10

https://arxiv.org/abs/2008.05556
https://arxiv.org/abs/2006.08684

Published as a conference paper at ICLR 2021

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 2450–2462. Curran Associates, Inc., 2018.

E. Hullermeier and W. Waegeman. Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. arXiv: Learning, 2019.

Tomoharu Iwata and Yuki Yamanaka. Supervised anomaly detection based on deep autoregressive
density estimators. arXiv preprint arXiv:1904.06034, 2019.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Modeling the long term future in model-based reinforcement learning. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=SkgQBn0cF7.

Balázs Kégl, Alexandre Boucaud, Mehdi Cherti, Akin Kazakci, Alexandre Gramfort, Guillaume
Lemaitre, Joris Van den Bossche, Djalel Benbouzid, and Camille Marini. The RAMP framework:
from reproducibility to transparency in the design and optimization of scientific workflows. In
ICML workshop on Reproducibility in Machine Learning, 2018.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems with
Gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent Actor-Critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953, 2019.

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and Stefano Ermon.
Calibrated model-based deep reinforcement learning. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
4314–4323. PMLR, 2019.

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Learning multimodal transition
dynamics for model-based reinforcement learning. In Scaling Up Reinforcement Learning (SURL)
Workshop @ European Machine Learning Conference (ECML), 2017.

Jean-Baptiste Mouret. Micro-Data Learning: The Other End of the Spectrum. ERCIM News, (107):2,
September 2016. URL https://hal.inria.fr/hal-01374786.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018, pp. 7559–7566. IEEE, 2018.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems 31, pp. 8617–8629. Curran
Associates, Inc., 2018.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems 30, pp. 2338–2347. Curran
Associates, Inc., 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

11

https://openreview.net/forum?id=SkgQBn0cF7
https://openreview.net/forum?id=SkgQBn0cF7
https://hal.inria.fr/hal-01374786

Published as a conference paper at ICLR 2021

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouart Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

Anil Rao. A survey of numerical methods for optimal control. Advances in the Astronautical Sciences,
135, 01 2010.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis Bach
and David Blei (eds.), Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pp. 1530–1538, Lille, France, 07–09
Jul 2015. PMLR.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp.
1278–1286. PMLR, 2014.

Arthur George Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcemen learning. arXiv preprint arXiv:1904.11455, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters Chess,
Shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. ISSN 0036-8075. doi:
10.1126/science.aar6404.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp. 3483–3491. Curran
Associates, Inc., 2015.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in Neural
Information Processing Systems 8, pp. 1038–1044. MIT Press, 1996.

R. Ueda and T. Arai. Dynamic programming for global control of the Acrobot and its chaotic aspect.
In 2008 IEEE International Conference on Robotics and Automation, pp. 2416–2422, 2008.

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive
density-estimator. In Advances in Neural Information Processing Systems 26, pp. 2175–2183.
Curran Associates Inc., 2013.

Benigno Uria, Iain Murray, Steve Renals, Cassia Valentini-Botinhao, and John Bridle. Modelling
acoustic feature dependencies with artificial neural networks: Trajectory-RNADE. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4465–4469,
2015.

Oriol Vinyals, Igor Babuschkin, Wojciech Czarnecki, Michal Mathieu, Andrew Dudzik, Junyoung
Chung, David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John Agapiou, Max Jaderberg,
and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575, 11 2019. doi: 10.1038/s41586-019-1724-z.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. In 8th
International Conference on Learning Representations, ICLR 2020, 2020.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

12

Published as a conference paper at ICLR 2021

Xin Wang, Shinji Takaki, and Junichi Yamagishi. An autoregressive recurrent mixture density
network for parametric speech synthesis. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4895–4899, 2017.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank
Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for model-based
reinforcement learning. AISTATS, 2021.

13

Published as a conference paper at ICLR 2021

A AUTOREGRESSIVE MIXTURE DENSITIES

The multi-variate density p(yt+1|st) is decomposed into a chain of one-dimensional densities

p(yt+1|st) = p1(y
1
t+1|st)

dy∏
j=2

pj(y
j
t+1|y1t+1, . . . , y

j−1
t+1 , st) = p1(y

1
t+1|x1

t)

dy∏
j=2

pj(y
j
t+1|x

j
t), (1)

where, for simplicity, we denote the input (condition) of the jth autoregressive predictor by
xjt =

(
y1t+1, . . . , y

j−1
t+1 , st

)
. First, p is a proper dy-dimensional density as long as the components pj

are valid one-dimensional densities (Req (R2)). Second, if it is easy to draw from the components
pj , it is easy to simulate Y t+1 following the order of the chain (1) (Req (R1)). Third, Req (R3)
is satisfied by construction. But the real advantages are on the logistics of modelling. Unlike in
computer vision (pixels) or NLP (words), engineering systems often have inhomogeneous features
that should be modeled differently. There exists a plethora of different one-dimensional density
models which we can use in the autoregressive setup, whereas multi-dimensional extensions are
rare, especially when feature types are different (Req (R6)). At the debuggability side (Req (R7))
the advantage is the availability of one-dimensional goodness of fit metrics and visualization tools
which make it easy to pinpoint what goes wrong if the model is not working. On the negative side,
autoregression breaks the symmetry of the output variables by introducing an artificial ordering and,
depending on the family of the component densities pj , the modelling quality may depend on the
order.

To preserve these advantages and alleviate the order dependence we found that we needed a rich
family of one-dimensional densities so we decided to use mixtures

pj(y
j |xj) =

D∑
`=1

w`j(x
j)P `j

(
yj ; θ`j(x

j)
)
, (2)

where component types P `j , component parameters θ`j , and component weights w`j can all depend on
j, `, and the input xj . In general, the modeller has a large choice of easy-to-fit component types to
choose from given the type of variable yj (Req (R6)); in this paper all our variables were numerical
so we only use Gaussian components with free mean and variance. Contrary to the widely held
belief (Papamakarios et al., 2017), in our experiments we found no evidence that the ordering of
the variables matters, arguably because of the flexibility of the one-dimensional mixture models
that can pick up non-Gaussian features such as multimodality (Req (R5)). Finally a computational
advantage: given a test point x, we do not need to carry around (density) functions: our representation
of p(y|x) is a numerical vector concatenating

[
w`j , P

`
j , θ

`
j

]
j,`

.

B y-INTERDEPENDENCE

Figure 2: How different models handle y-interdependence. GP (and DMDN(1)) “spreads” the
uncertainty in all directions, leading to non-physical predictions. DMDN(D > 1) may “tile” the
nonlinear y-interdependence with smaller Gaussians, and in the limit of D → ∞ it can handle
y-interdependence for the price of a large number of parameters to learn. DARMDN, with its
autoregressive function learning, can put the right amount of dependent uncertainty on y2|y1, learning
for example the noiseless functional relationship between cos θ and sin θ.

14

Published as a conference paper at ICLR 2021

y-interdependence is the dependence among the dy elements of yt+1 = (y1t+1, . . . , y
dy
t+1) given Tt.

Some popular algorithms such as PILCO (Deisenroth & Rasmussen, 2011) suppose that elements of
yt+1 are independent given Tt. It is a reasonable assumption when modelling aleatoric uncertainty in
stochastic systems with independent noise, but it is clearly wrong when the posterior predictive has a
structure due to functional dependence. It happens even in the popular AI Gym benchmark systems
(Brockman et al., 2016) (think about usual representation of angles: cos θt+1 is clearly dependent of
sin θt+1 even given Tt; see Figure 2), let alone systems with strong physical constraints in telecom-
munication or robotics. Generating non-physical traces due to not modelling y-interdependence
may lead not only to subpar performance but also to reluctance to accept the models (simulators) by
system engineers.

C STATIC METRICS

We define our static metrics from the decomposition of the multivariate density p(yt+1|st) into the
product of one-dimensional densities (see Appendix A for details):

p(yt+1|st) = p1(y
1
t+1|x1

t)

dy∏
j=2

pj(y
j
t+1|x

j
t) where xjt =

(
y1t+1, . . . , y

j−1
t+1 , st

)
.

LIKELIHOOD RATIO TO A SIMPLE BASELINE (LR) is our “master” metrics. The (average)
log-likelihood

L(TT ; p) =
1

dy

dy∑
j=1

1

T − 1

T−1∑
t=1

log pj

(
yjt+1|x

j
t

)
(3)

can be evaluated easily on any trace TT thanks to Req (R2). Log-likelihood is a unitless metrics
which is hard to interpret and depends on the unit in which its input is measured (this variability
is particularly problematic when pj is a mixed continuous/discrete distribution). To have a better
interpretation, we normalize the likelihood

LR(T ; p) = eL(T ;p)

eLb(T)
(4)

with a baseline likelihood Lb(T) which can be adapted to the feature types. In our experiments
Lb(T) is a multivariate independent unconditional Gaussian. LR is between 0 (although LR < 1
usually indicates a bug) and∞, the higher the better.

OUTLIER RATE (OR). We found that LR works well in an i.i.d. setup but distribution shift often
causes “misses”: test points with extremely low likelihood. Since these points dominate L and LR,
we decided to clamp the likelihood at6 pmin = 1.47 × 10−6. Given a trace T and a model p, we
define T (p; pmin) =

{
(yt,at) ∈ T : p(yt|xt−1) > pmin

}
, report LR

(
T (p; pmin); p

)
instead of

LR(T ; p
)
, and measure the “surprise” of a model on trace T by the outlier rate (OR)

OR(T ; p) = 1− |T (p; pmin)|
|T |

. (5)

OR is between 0 and 1, the lower the better.

EXPLAINED VARIANCE (R2) assesses the mean performance (precision) of the methods. For-
mally

R2(TT ; p) =
1

dy

dy∑
j=1

(
1− MSEj(TT ; p)

σ2
j

)
with MSEj(TT ; p) =

1

T − 1

T−1∑
t=1

(
yjt+1 − fj(xt)

)2
,

(6)
where fj(xt) = Epj(·|xjt)

{
yj
}

is the expectation of yjt+1 given xjt under the model pj (point

prediction), and σ2
j is the sample variance of (yj1, . . . , y

j
T). We prefer using this metrics over the

6As a salute to five sigma, using the analogy of the MBRL loop (Section 2.2.2) being the iterated scientific
method.

15

Published as a conference paper at ICLR 2021

MSE because it is normalized so it can be aggregated over the dimensions of y. R2 is between 0
and 1, the higher the better.

CALIBRATEDNESS (KS). Well-calibrated models have been shown to improve the performance
of algorithms (Malik et al., 2019). A well-calibrated density estimator has the property that the
quantiles of the (test) ground truth are uniform. To assess this, we compute the Kolmogorov-Smirnov
(KS) statistics. Formally, let Fj(yj |xj) =

∫ yj
−∞ pj(y

′|xj)dy′ be the cumulative distribution function

(CDF) of pj , and let the order statistics of Fj =
[
Fj

(
yjt+1|x

j
t

)]T−1
t=1

be sj , that is, Fj
(
yjsj |x

j
sj

)
is

the sj th largest quantile in Fj . Then we define

KS(TT ;F) =
1

dy

dy∑
j=1

max
sj∈[1,T−1]

∣∣∣∣Fj (yjsj |xjsj)− sj
T − 1

∣∣∣∣ . (7)

Computing KS requires that the model can provide conditional CDFs, which further filters the
possible models we can use. On the other hand, the aggregate KS and especially the one-dimensional
CDF plots (Fj(yjsj |x

j
sj) vs. sj/(T − 1)) are great debugging tools. KS is between 0 and 1, the

lower the better.

All four metrics (LR, OR, R2, KS) are averaged over the dimensions, but for debugging we can also
evaluate them dimension-wise.

LONG HORIZON METRICS KS(L) AND R2(L). All our density estimators are trained to predict
the system one step ahead yet arguably what matters is their performance at a longer horizon L
specified by the control agent. Our models do not provide explicit likelihoods L steps ahead, but we
can simulate from them (following ground truth actions) and evaluate the metrics by a Monte-Carlo
estimate. Given n random estimates YL = [ŷt+L,`]

n
`=1, we can use fj(xt) = 1

n

∑
ŷ∈YL ŷ

j in (6) to
obtain an unbiased R2(L) estimate. To obtain a KS(L) estimate, we order YL and approximate
Fj(y

j |xj) by 1
n |{ŷ ∈ YL : ŷj < yj}| in (7). LR and OR would require approximate techniques

so we omit them. In all our experiments we use L = 10, n = 100, and, for computational reasons,
sample the test set at 100 random positions, which explains the high variance on these scores.

All six metrics (LR, OR, R2, KS, R2(10), KS(10)) are averaged over the dimensions to obtain single
scores for the environment/model pair, but for debugging we can also evaluate them dimension-
wise. LR is the “master” score that combines precision (R2) and calibratedness (KS). R2 is a good
single measure to assess the models, especially when iterated to obtain R2(L). OR and KS are
excellent debugging tools. The single-target KS and quantile plots are especially useful to spot how
the models are miscalibrated: e.g., points accumulating in the middle indicate that we overestimate the
tails, leading to nonphysical simulations, and vice versa, accumulation at the edges means our model
is missing modes. OR is great to detect catastrophic failures or distribution shifts, so monitoring it
on the deployed system is crucial. Finally, correlating these metrics to the dynamic performance
(Section 2.2.2) for the given system can form the basis of a comprehensive monitoring system which
is as important as model performance in practice.

D IMPLEMENTATION DETAILS

Note that all experimental code is publicly available at https://github.com/ramp-kits/
rl_simulator. In this section we give enough information so that all models can be reproduced
by a moderately experienced machine learning expert.

The sincos and raw angles Acrobot systems are based on the OpenAI Gym implementation (Brockman
et al., 2016). The starting position of each episode is the one obtained from the default reset
function of this implementation: all state variables (the angles and the angular velocities) are uniformly
sampled in [−0.1, 0.1]. For the linear regression model we use the implementation of Scikit-learn
(Pedregosa et al., 2011) without regularization. We use Pytorch (Paszke et al., 2019) for the neural
network based models (DARNN, DMDN and DARMDN) and Gpytorch (Gardner et al., 2018) for the
GP models. The hyperparameter search for these models was done in two steps: first using random
search over a coarse hyperparameter grid, then using a second step of random search over a finer grid
around values of interest. The steps of the coarse grid were defined to contain five values of each

16

https://github.com/ramp-kits/rl_simulator
https://github.com/ramp-kits/rl_simulator

Published as a conference paper at ICLR 2021

hyperparameters (or less where applicable), the finer grid was defined to contain five values of each
hyperparameter (or less where applicable) between two interesting spots close in the hyperparameter
space. The selected hyperparameters are given in Table 4.

”Nb layers” corresponds to the number of fully connected layers, except for the two following models:

• RealNVP (Dinh et al., 2017): it is the number of coupling layers.

• CVAE (Sohn et al., 2015): it is the total number of layers (encoder plus decoder).

”Nb components” is the number of components in the outputted density mixture. In the GP and
deterministic NN cases, it is trivially one.

Table 4: Model hyperparameters.

Method Learning rate Neurons per layer Nb layers Nb components Validation size Nb epochs

Tried values

DARNNσ [1e-4, 1e-1] [20, 300] [1, 4] 1 [0.05, 0.4] [10, 300]
DMDN [1e-5, 1e-2] [100, 600] [2, 5] [2, 20] [0.05, 0.4] [50, 500]
DARMDN [1e-5, 1e-2] [20, 300] [1, 4] [2, 20] [0.05, 0.4] [50, 500]
CVAE [1e-5, 1e-2] [20, 300] [4, 10] NaN [0.05, 0.4] [50, 500]
RealNVP [1e-5, 1e-2] [10, 300] [2, 5] NaN [0.05, 0.4] [50, 500]
GP [1e-3, 1e-1] NaN NaN 1 [0.05, 0.4] [10, 300]

Best values

DARNNσ 4e-3 200 3 1 0.05 100
DMDN(10) 5e-3 200 3 10 0.1 300
DARMDN(1) 1e-3 50 3 1 0.1 300
DARMDN(10) 1e-3 100 3 10 0.1 300
CVAE 1e-3 60 4 NaN 0.15 100
RealNVP 5e-3 20 3 NaN 0.15 200
GP 5e-2 NaN NaN 1 0.15 50

For PETS we use the code shared by Wang et al. (2019) for the Acrobot sincos system. Following
Chua et al. (2018), the size of the ensemble is set to 5. For the Acrobot raw angles system we use the
same PETS neural network architecture as the one available for the original sincos system. Although
the default number of epochs was set to 5 in the available code we reached better results with 100
epochs and use this value in our results. Finally, the RS agent is configured to be the same as the one
we use: planning horizon L = 10, search population size n = 100 and 5 particles.

We selected the planning strategy (random shooting with search population size n = 100) by
evaluating the performance of random shooting and the cross entropy method (CEM) on the true
dynamics for different values of n. Results are presented in Table 5. Although for both RS and CEM
with n = 500 leads to a better performance, n = 100 is already sufficient to achieve more than decent
mean rewards and outperform the result of Wang et al. (2019) while reducing the total computational
cost of the study. CEM was implemented with a learning rate of 0.1, an elite size equal to 50 and 5
iterations. For a fair comparison between RS and CEM n means the total number of sampled action
sequences. This means that, for CEM, n means a search population size of n/5 for each of the 5
iterations.

Table 5: Comparison of RS and CEM on the true dynamics. The ± values are 90% Gaussian
confidence intervals based on 100 random repetitions of a 200-step rollout.

RS with n = 100 RS with n = 500 RS with n = 1000 CEM with n = 500 CEM with n = 1000

2.10± 0.035 2.27± 0.025 2.29± 0.024 2.32± 0.021 2.30± 0.021

We implemented reusable system models and static experiments within the RAMP framework (Kégl
et al., 2018).

All ± values in the results tables are 90% Gaussian confidence intervals based on i) 10-fold cross-
validation for the static scores in Table 3, ii) 50 epochs and two to ten seeds in the RMAR column,
and iii) ten seeds in the MRCP(70) column of Table 2.

17

Published as a conference paper at ICLR 2021

E MEAN REWARD LEARNING CURVES

Figure 3 shows the mean reward learning curves on the Acrobot raw angles and sincos systems.
The top models PETS and DARMDN(10)det converge close to the optimum at around the same
pace on the sincos system. PETS converges slightly faster than the other models in the early phase.
Our hypothesis is that bagging creates more robust models in the extreme low data regime (100s of
training points). Our models were tuned using 5000 points which seems to coincide with the moment
when the bagging advantage disappears.

On the raw angles system DARMDN(10) and DMDN(10) separate from the pack indicating that
this setup requires non-deterministic predictors and mixture densities to model multimodal posterior
predictives. The reward is between 0 (hanging) and 4 (standing up). Each epoch starts at hanging
position and it takes about 100 steps to reach the stationary regime where the tip of acrobot is above
the horizontal line most of the time. This means that reaching an average reward above 2 needs an
excellent control policy.

Figure 3: Acrobot learning curves on the raw angles (top) and sincos (bottom) systems. Reward is
between 0 (hanging) and 4 (standing up). Episode length is T = 200, number of epochs is N = 100
with one episode per epoch. Mean reward curves are averaged across three to ten seeds and smoothed
using a running average of five epochs, plotted at the middle of the smoothing window (so the first
point is at step 600).

F THE POWER OF DARMDN: PREDICTING THROUGH CHAOS

Acrobot is a chaotic system (Ueda & Arai, 2008): small divergence in initial conditions may lead to
large differences down the horizon. This behavior is especially accentuated when the acrobot slowly
approaches the unstable standing position, hovers, “hesitates” which way to go, and “decides” to fall
back left or right. Figures 4 and 5 depict this precise situation (from the test file of the “linear” data,

18

Published as a conference paper at ICLR 2021

see Section 2.3): around step 18 both angular momenta are close to zero and θ1 ≈ π. To make the
modelling even harder, θ· = π is the exact point where the trajectory is non-continuous in the raw
angles data, making it hard to model by predictive densities that cannot handle non-smooth traces.

In both figures we show the ground truth (red: past, black: future) and hundred simulated traces
(orange) starting at step 18. There is no “correct” solution here since one can imagine several
plausible “beliefs” learned using limited data. Yet it is rather indicative about their performance how
the different models handle this situation.

First note how diverse the models are. On the sincos data (Figure 4) most posterior predictives
after ten steps are unimodal. GP and DARMDN(10) are not, but while GP predicts a coin toss
whether Acrobot falls left or right, DARMDN(10) bets more on the ground truth mode. Among
the deterministic models, both DARNNdet and DARMDN(10)det work well one step ahead (on
average, according to their R2 score in Table 3), but ten steps ahead DARMDN(10)det is visibly better,
illustrating its excellent R2(10) score.

On the raw angles data (Figure 5) we see a very different picture. The deterministic DARNNdet picks
one of the modes which happens to be the wrong one, generating a completely wrong trajectory.
DARMDN(10)det predicts average of two extremem modes (around π and −π), resulting in a
non-physical prediction (θ1) which has in fact zero probability under the posterior predictive of
DARMDN(10). The homoscedastic DARNNσ has a constant sigma which, in this situation is
too small: it cannot “cover” the two modes, so the model picks one, again the wrong one. The
heteroscedastic DARMND(1) correctly outputting a huge uncertainty, but since it is a single unimodal
Gaussian, it generates a lot of non-physical predictions between and outside of the modes. This shows
that heteroscedasticity without multimodality may be harmful in these kinds of systems. Finally,
DARMDN(10) has a higher variance than on the sincos data, especially on the mode not validated by
the ground truth, but it is the only model which puts high probability on the ground truth after ten
steps, and whose uncertainty is what a human would judge reasonable.

19

Published as a conference paper at ICLR 2021

DARNNσ

GP

DARNNdet

DMDN(10)

DARMDN(1)

DARMDN(10)

DARMDN(10)det

Figure 4: Ground truth and simulation of “futures” by the models trained on the sincos system. The
thick curve is the ground truth, the red segment is past, the black segment is future. System models
start generating futures from their posterior predictives at step 18. We show a sample of hundred
trajectories and a histogram after ten time steps (orange).

.

20

Published as a conference paper at ICLR 2021

DARNNσ

DARNNdet

DMDN(10)

DARMDN(1)

DARMDN(10)

DARMDN(10)det

Figure 5: Ground truth and simulation of “futures” by the models trained on the raw angles system.
The thick curve is the ground truth, the red segment is past, the black segment is future. System
models start generating futures from their posterior predictives at step 18. We show a sample of
hundred trajectories and a histogram after ten time steps (orange).

21

	Introduction
	The formal setup
	Model requirements
	Evaluation metrics
	Static metrics
	Dynamic metrics

	The evaluation environment

	Models and results
	Conclusion and future work
	Autoregressive mixture densities
	bold0mu mumu yy2005/06/28 ver: 1.3 subfig packageyyyy-interdependence
	Static metrics
	Implementation details
	Mean reward learning curves
	The power of DARMDN: predicting through chaos

