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ABSTRACT

When deployed for risk-sensitive tasks, deep neural networks must include an
uncertainty estimation mechanism. Here we examine the relationship between
deep architectures and their respective training regimes, with their corresponding
selective prediction and uncertainty estimation performance. We consider some of
the most popular estimation performance metrics previously proposed including
AUROC, ECE, AURC as well as coverage for selective accuracy constraint. We
present a novel and comprehensive study of selective prediction and the uncertainty
estimation performance of 523 existing pretrained deep ImageNet classifiers that are
available in popular repositories. We identify numerous and previously unknown
factors that affect uncertainty estimation and examine the relationships between
the different metrics. We find that distillation-based training regimes consistently
yield better uncertainty estimations than other training schemes such as vanilla
training, pretraining on a larger dataset and adversarial training. Moreover, we find
a subset of ViT models that outperform any other models in terms of uncertainty
estimation performance. For example, we discovered an unprecedented 99% top-1
selective accuracy on ImageNet at 47% coverage (and 95% top-1 accuracy at 80%)
for a ViT model, whereas a competing EfficientNet-V2-XL cannot obtain these
accuracy constraints at any level of coverage. Our companion paper, also published
in ICLR 2023 (Galil et al., 2023), examines the performance of these classifiers in
a class-out-of-distribution setting.

1 INTRODUCTION

The excellent performance of deep neural networks (DNNs) has been demonstrated in a range of
applications, including computer vision, natural language understanding and audio processing. To
deploy these models successfully, it is imperative that they provide an uncertainty quantification of
their predictions, either via some kind of selective prediction or a probabilistic confidence score.

Notwithstanding, what metric should we use to evaluate the uncertainty estimation performance?
There are many and diverse ways so the answer to this question is not obvious, and to demonstrate
the difficulty, consider the case of two classification models for the stock market that predict whether
a stock’s value is about to increase, decrease, or remain neutral (three-class classification). Suppose
that model A has a 95% true accuracy, and generates a confidence score of 0.95 on every prediction
(even on misclassified instances); model B has a 40% true accuracy, but always gives a confidence
score of 0.6 on correct predictions, and 0.4 on incorrect ones. Model B can be utilized easily to
generate perfect investment decisions. Using selective prediction (El-Yaniv & Wiener, 2010; Geifman
& El-Yaniv, 2017), Model B will simply reject all investments on stocks whenever the confidence
score is 0.4. While model A offers many more investment opportunities, each of its predictions
carries a 5% risk of failure.

Among the various metrics proposed for evaluating the performance of uncertainty estimation are:
Area Under the Receiver Operating Characteristic (AUROC or AUC), Area Under the Risk-Coverage
curve (AURC) (Geifman et al., 2018), selective risk or coverage for a selective accuracy constraint
(SAC), Negative Log-likelihood (NLL), Expected Calibration Error (ECE), which is often used for
evaluating a model’s calibration (see Section 2) and Brier score (Brier, 1950). All these metrics
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Figure 1: A comparison of 523 models by their AUROC (×100, higher is better) and -log(ECE)
(higher is better) on ImageNet. Each marker’s size is determined by the model’s number of parameters.
A full version graph is given in Figure 8. Distilled models are better than non-distilled ones. A subset
of ViT models is superior to all other models for all aspects of uncertainty estimation (“ViT” in the
legend, marked as a red triangle facing upwards); the performance of EfficientNet-V2 and GENet
models is worse.

are well known and are often used for comparing the uncertainty estimation performance of models
(Moon et al., 2020; Nado et al., 2021; Maddox et al., 2019; Lakshminarayanan et al., 2017). Somewhat
surprisingly, NLL, Brier, AURC, and ECE all fail to reveal the uncertainty superiority of Model B
in our investment example (see Appendix A for the calculations). Both AUROC and SAC, on the
other hand, reveal the advantage of Model B perfectly (see Appendix A for details). It is not hard
to construct counterexamples where these two metrics fails and others (e.g., ECE) succeed. To sum
up this brief discussion, we believe that the ultimate suitability of a performance metric should be
determined by its context. If there is no specific application in mind, there is a strong incentive to
examine a variety of metrics, as we choose to do in this study.

This study evaluates the ability of 523 models from the Torchvision and Timm repositories (Paszke
et al., 2019; Wightman, 2019) to estimate uncertainty1. Our study identifies several major factors that
affect confidence rankings, calibration, and selective prediction, and lead to numerous empirical
contributions important to selective predictions and uncertainty estimation. While no new algorithm
or method is introduced in our paper, our study generates many interesting conclusions that will help
practitioners achieve more powerful uncertainty estimation. Moreover, the research questions that
are uncovered by our empirical study shed light on uncertainty estimation, which may stimulate the
development of new methods and techniques for improving uncertainty estimation. Among the most
interesting conclusions our study elicits are:

(1) Knowledge distillation training improves estimation. Training regimes incorporating any
kind of knowledge distillation (KD) (Hinton et al., 2015) lead to DNNs with improved uncertainty
estimation performance evaluated by any metric, more than by using any other training tricks (such
as pretraining on a larger dataset, adversarial training, etc.). In Galil et al. (2023) we find similar
performance boosts for class-out-of-distribution (C-OOD) detection.

(2) Certain architectures are more inclined to perform better or worse at uncertainty estima-
tion. Some architectures seem more inclined to perform well on all aspects of uncertainty estimation,
e.g., a subset of vision transformers (ViTs) (Dosovitskiy et al., 2021) and the zero-shot language–
vision CLIP model (Radford et al., 2021), while other architectures tend to perform worse, e.g.,
EfficientNet-V2 and GENet (Tan & Le, 2021; Lin et al., 2020). These results are visualized in
Figure 1. In Galil et al. (2023) we find that ViTs and CLIPs are also powerful C-OOD detectors.

(3) Several training regimes result in a subset of ViTs that outperforms all other architectures
and training regimes. These regimes include the original one from the paper introducing ViTs
(Dosovitskiy et al., 2021; Steiner et al., 2022; Chen et al., 2022; Ridnik et al., 2021). These ViTs

1Our code is available at https://github.com/IdoGalil/benchmarking-uncertainty-estimation-performance
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achieve the best uncertainty estimation performance on any aspect measured, both in absolute terms
and per-model size (# parameters, see Figures 9 and 10 in Appendix B).

(4) Temperature scaling improves selective and ranking performance. The simple post-training
calibration method of temperature scaling (Guo et al., 2017), which is known to improve ECE, for
the most part also improves ranking (AUROC) and selective prediction—meaning not only does it
calibrate the probabilistic estimation for each individual instance, but it also improves the partial
order of all instances induced by those improved estimations, pushing instances more likely to be
correct to have a higher confidence score than instances less likely to be correct (see Section 3).

(5) The correlations between AUROC, ECE, accuracy and the number of parameters are de-
pendent on the architecture analyzed. Contrary to previous work by (Guo et al., 2017), we observe
that while there is a strong correlation between accuracy/number of parameters and ECE or AUROC
within each specific family of models of the same architecture, the correlation flips between a strong
negative and a strong positive correlation depending on the type of architecture being observed. For
example, as DLA (Yu et al., 2018) architectures increase in size and accuracy, their ECE deteriorates
while their AUROC improves. The exact opposite, however, can be observed in XCiTs (Ali et al.,
2021) as their ECE improves with size while their AUROC deteriorates (see Appendix L).

(6) The best model in terms of AUROC or SAC is not always the best in terms of calibration,
as illustrated in Figure 1, and the trade-off should be considered when choosing a model based on its
application.

2 HOW TO EVALUATE DEEP UNCERTAINTY ESTIMATION PERFORMANCE

Let X be the input space and Y be the label space. Let P (X ,Y) be an unknown distribution over
X × Y . A model f is a prediction function f : X → Y , and its predicted label for an image
x is denoted by ŷf (x). The model’s true risk w.r.t. P is R(f |P ) = EP (X ,Y)[`(f(x), y)], where
` : Y × Y → R+ is a given loss function, for example, 0/1 loss for classification. Given a labeled
set Sm = {(xi, yi)}mi=1 ⊆ (X × Y), sampled i.i.d. from P (X ,Y), the empirical risk of model f is
r̂(f |Sm) , 1

m

∑m
i=1 `(f(xi), yi). Following Geifman et al. (2018), for a given model f we define

a confidence score function κ(x, ŷ|f), where x ∈ X , and ŷ ∈ Y is the model’s prediction for x, as
follows. The function κ should quantify confidence in the prediction of ŷ for the input x, based on
signals from model f . This function should induce a partial order over instances in X .

The most common and well-known κ function for a classification model f (with softmax at its last
layer) is its softmax response values: κ(x, ŷ|f) , f(x)ŷ (Cordella et al., 1995; De Stefano et al.,
2000). We chose to focus on studying uncertainty estimation performance using softmax response as
the models’ κ function because of its extreme popularity, and its importance as a baseline due to its
solid performance compared to other methods (Geifman & El-Yaniv, 2017; Geifman et al., 2018).
While this is the main κ we evaluate, we also test the popular uncertainty estimation technique of
Monte Carlo dropout (MC dropout) (Gal & Ghahramani, 2016), which is motivated by Bayesian
reasoning. Although these methods use the direct output from f , κ could be a different model
unrelated to f and unable to affect f ’s predictions. Note that to enable a probabilistic interpretation,
κ can only be calibrated if its values reside in [0, 1] whereas for ranking and selective prediction any
value in R can be used.

A selective model f (El-Yaniv & Wiener, 2010; Chow, 1957) uses a selection function g : X →
{0, 1} to serve as a binary selector for f , enabling it to abstain from giving predictions for certain
inputs. g can be defined by a threshold θ on the values of a κ function such that gθ(x|κ, f) =
1[κ(x, ŷf (x)|f) > θ]. The performance of a selective model is measured using coverage and risk,
where coverage, defined as φ(f, g) = EP [g(x)], is the probability mass of the non-rejected instances
in X . The selective risk of the selective model (f, g) is defined as R(f, g) , EP [`(f(x),y)g(x)]

φ(f,g) . These
quantities can be evaluated empirically over a finite labeled set Sm, with the empirical coverage
defined as φ̂(f, g|Sm) = 1

m

∑m
i=1 g(xi), and the empirical selective risk defined as r̂(f, g|Sm) ,

1
m

∑m
i=1 `(f(xi),yi)g(xi)

φ̂(f,g|Sm)
. Similarly, SAC is defined as the largest coverage available for a specific

accuracy constraint. A way to visually inspect the behavior of a κ function for selective prediction
can be done using the risk-coverage (RC) curve (El-Yaniv & Wiener, 2010)—a curve showing the
selective risk as a function of coverage, measured on some chosen test set; see Figure 2 for an
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Figure 2: The RC curve made by a ResNet18 trained on CIFAR-10, measured on the test set. The
risk is calculated using a 0/1 loss (meaning the model has about 95% accuracy for 1.0 coverage); the
κ used was softmax-response. The value of the risk at each point of coverage corresponds to the
selective risk of the model when rejecting inputs that are not covered at that coverage slice. e.g., the
selective risk for coverage 0.8 is about 0.5%, meaning that an end user setting a matching threshold
would enjoy a model accuracy of 99.5% on the 80% of images the model would not reject.

example. In general, though, two RC curves are not necessarily comparable if one does not fully
dominate the other (Figure 3 shows an example of lack of dominance).

The AURC and E-AURC metrics were defined by (Geifman et al., 2018) for quantifying the selective
quality of κ functions via a single number, with AURC being defined as the area under the RC
curve. AURC, however, is very sensitive to the model’s accuracy, and in an attempt to mitigate this,
E-AURC was suggested. The latter also suffers from sensitivity to accuracy, as we demonstrate in
Appendix C. The advantage of scalar metrics such as the above is that they summarize the model’s
overall uncertainty estimation behavior by reducing it to a single scalar. When not carefully chosen,
however, these reductions could result in a loss of vital information about the problem (recall the
investment example from Section 1, which is also discussed in Appendix A: reducing an RC curve
to an AURC does not show that Model B has an optimal 0 risk if the coverage is smaller than 0.4).
Thus, the choice of the “correct” single scalar performance metric unfortunately must be task-specific.
When comparing the uncertainty estimation performance of deep architectures that exhibit different
accuracies, we find that AUROC and SAC can effectively “normalize” accuracy differences that
plague the usefulness of other metrics (see Figure 3). This normalization is essential in our study
where we compare uncertainty performance of hundreds of models that can greatly differ in their
accuracies.

For risk-sensitive deployment, let us consider the two models in Figure 3 ; EfficientNet-V2-XL (Tan
& Le, 2021) and ViT-B/32-SAM (Chen et al., 2022). While the former model has better overall
accuracy and AURC (metrics that could lead us to believe the model is best for our needs), it cannot
guarantee a Top-1 ImageNet selective accuracy above 95% for any coverage. ViT-B/32-SAM, on the
other hand, can provide accuracies above 95% for all coverages below 50%.

In applications where risk (or coverage) constraints are dictated (Geifman & El-Yaniv, 2017), the
most straightforward and natural metric is SAC (or selective risk), which directly measures the
coverage (resp., risk) given at the required level of risk (resp., coverage) constraint. We demonstrate
this in Appendix I, evaluating which models give the most coverage for an ambitious SAC of 99%. If
instead a specific range of coverages is specified, we could measure the area under the RC curve for
those coverages: AURCC(κ, f |Sm) = 1

|C|
∑
c∈C

r̂(f, gc|Sm), with C being those required coverages.

Often, these requirements are not known or can change as a result of changing circumstances
or individual needs. Also, using metrics sensitive to accuracy such as AURC makes designing
architectures and methods to improve κ very hard, since an improvement in these metrics could be
attributed to either an increase in overall accuracy (if such occurred) or to a real improvement in the
model’s ranking performance. Lastly, some tasks might not allow the model to abstain from making
predictions at all, but instead require interpretable and well-calibrated probabilities of correctness,
which could be measured using ECE.
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Figure 3: A comparison of RC curves made by the best (ViT-L/16-384) and worst (EfficientNet-
V2-XL) models we evaluated in terms of AUROC. Comparing ViT-B/32-SAM to EfficientNet-V2
exemplifies the fact that neither accuracy nor AURC reflect selective performance well enough.

2.1 MEASURING RANKING AND CALIBRATION

A κ function is not necessarily able to change the model’s predictions. Therefore, it can improve the
selective risk by ranking correct and incorrect predictions better, inducing a more accurate partial
order over instances in X . Thus, for every two random samples (x1, y1), (x2, y2) ∼ P (X ,Y) and
given that `(f(x1), y1) > `(f(x2), y2), the ranking performance of κ is defined as the probability
that κ ranks x2 higher than x1:

Pr[κ(x1, ŷ|f) < κ(x2, ŷ|f)|`(f(x1), y1) > `(f(x2), y2)] (1)

We discuss this definition in greater detail in Appendix D. The AUROC metric is often used in the
field of machine learning. When the 0/1 loss is in play, it is known that AUROC in fact equals
the probability in Equation (1) (Fawcett, 2006) and thus is a proper metric to measure ranking in
classification (AKA discrimination). AUROC is furthermore equivalent to Goodman and Kruskal’s
γ-correlation (Goodman & Kruskal, 1954), which for decades has been extensively used to measure
ranking (known as “resolution”) in the field of metacognition (Nelson, 1984). The precise relationship
between γ-correlation and AUROC is γ = 2 · AUROC − 1 (Higham & Higham, 2018). We note
also that both the γ-correlation and AUROC are nearly identical or closely related to various other
correlations and metrics; γ-correlation (AUROC) becomes identical to Kendall’s τ (up to a linear
transformation) in the absence of tied values. Both metrics are also closely related to rank-biserial
correlation, the Gini coefficient (not to be confused with the measure from economics) and the
Mann–Whitney U test, hinting at their importance and usefulness in a variety of fields and settings.
In Appendix E, we briefly compare the ranking performance of deep neural networks and humans
in metacognitive research, and in Appendix F we address criticism of using AUROC to measure
ranking.

The most widely used metric for calibration is ECE (Naeini et al., 2015). For a finite test set of size
N , ECE is calculated by grouping all instances into m interval bins (such that m� N ), each of size
1
m (the confidence interval of bin Bj is ( j−1m , jm ]). With acc(Bj) being the mean accuracy in bin Bj
and conf(Bj) being its mean confidence, ECE is defined as

ECE =

m∑
j=1

|Bj |
N

∑
i∈Bj

∣∣∣∣1[ŷf (xi) = yi]

|Bj |
− κ(x, ŷf (xi)|f)

|Bj |

∣∣∣∣
=

m∑
j=1

|Bj |
N
|acc(Bj)− conf(Bj)|
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Since ECE is widely accepted we use it here to evaluate calibration, and follow (Guo et al., 2017) in
setting the number of bins to m = 15. Many alternatives to ECE exist, allowing an adaptive binning
scheme, evaluating the calibration on the non-chosen labels as well, and other various methods
(Nixon et al., 2019; Vaicenavicius et al., 2019; Zhao et al., 2020). Relevant to our objective is that by
using binning, this metric is not affected by the overall accuracy as is the Brier score (mentioned in
Section 1), for example.

3 PERFORMANCE ANALYSIS
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Figure 4: A comparison of different methods and their improvement in terms of (a) AUROC and (b)
ECE, relative to the same model’s performance without employing the method. Markers above the
x-axis represent models that benefited from the evaluated method, and vice versa. The numbers in the
legend to the right of each method indicate the number of pairs compared. Temperature scaling can
sometimes harm ECE, even though its purpose is to improve it.

In this section we study the performance of 523 different models (available in timm 0.4.12 and
torchvision 0.10). Note that all figures from our analysis are available as interactive plotly plots in the
supplementary material, which provides information about every data point.

1) Among the training regimes evaluated, knowledge distillation improves performance the
most. We evaluated several training regimes: (a) Training that involves KD in any form, including
Touvron et al. (2021b), knapsack pruning with distillation (in which the teacher is the original
unpruned model) (Aflalo et al., 2020) and a pretraining technique that employs distillation (Ridnik
et al., 2021); (b) adversarial training (Xie et al., 2020a; Tramèr et al., 2018); (c) pretraining on
ImageNet21k (“pure”, with no additions) (Tan & Le, 2021; Touvron et al., 2021a; 2022); and (d)
various forms of weakly or semi-supervised learning (Mahajan et al., 2018; Yalniz et al., 2019;
Xie et al., 2020b). To make a fair comparison, we only compare pairs of models such that both
models have identical architectures and training regimes, with the exception of the method itself
being evaluated (e.g., training with or without knowledge distillation). More information about each
data point of comparison is available in the supplementary material. Note that the samples are of
various sizes due to the different number of potential models available for each.

Of the methods mentioned above, training methods incorporating distillation improve AUROC and
ECE the most. For example, looking at Figure 4a, it is evident that distillation (purple box) almost
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Figure 5: Comparing teacher models (yellow markers) to their KD students (represented by markers
with thick borders and a dot). The performance of each model is measured in AUROC (higher is
better) and -log(ECE) (higher is better).

always improves AUROC, and moreover, its median improvement is the best of all techniques
evaluated. The same observation can be made with regards to improving ECE; see Figure 4b.
Distillation seems to greatly improve both metrics even when the teacher itself is much worse at both
metrics. Figure 5 nicely shows this by comparing the teacher architecture and the students in each
case. Additionally, in a pruning scenario that included distillation in which the original model was
also the teacher (Aflalo et al., 2020), the pruned models outperformed their teachers. The fact that KD
improves the model over its original form is surprising, and suggests that the distillation process itself
helps uncertainty estimation. In Galil et al. (2023) we find that KD also improves C-OOD detection
performance, measured by AUROC. We discuss these effects in greater detail in Appendix G.

2) Temperature scaling greatly benefits AUROC and selective prediction. Evaluations of the
simple post-training calibration method of temperature scaling (TS) (Guo et al., 2017), which
is widely known to improve ECE without changing the model’s accuracy, also revealed several
interesting facts: (a) TS consistently and greatly improves AUROC and selective performance (see
Figure 4a)—meaning not only does TS calibrate the probabilistic estimation for each individual
instance, but it also improves the partial order of all instances induced by those improved estimations.
While TS is well known and used for calibration, to the best of our knowledge, its benefits for
selective prediction were previously unknown. (b) While TS is usually beneficial, it could harm
some models (see Figures 4a and 4b). While it is surprising that TS—a calibration method—would
harm ECE, this phenomenon is explained by the fact that TS optimizes NLL and not ECE (to avoid
trivial solutions), and the two may sometimes misalign. (c) Models that benefit from TS in terms
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   Method

Figure 6: Out of 523 models evaluated, models that were assigned a temperature higher than 1 by the
calibration process tended to degrade in AUROC performance rather than improve. Markers above
the x-axis represent models that benefited from TS, and vice versa.

of AUROC tend to have been assigned a temperature smaller than 1 by the calibration process (see
Figure 6). This, however, does not hold true for ECE (see Figure 14 in Appendix H). This example
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also emphasizes the fact that improvements in terms of AUROC do not necessarily translate into
improvements in ECE, and vice versa. (d) While all models usually improve with TS, the overall
ranking of uncertainty performance between families tends to stay similar, with the worse (in terms
of ECE and AUROC) models closing most of the gap between them and the mediocre ones (see
Figure 13 in Appendix H). .

3) A subset of ViTs outperforms all other architectures in selective prediction, ranking and
calibration, both in absolute terms and per-model size. Several training regimes (including the
original regime from the paper introducing ViT) Dosovitskiy et al. (2021); Steiner et al. (2022); Chen
et al. (2022); Ridnik et al. (2021) result in ViTs that outperform all other architectures and training
regimes in terms of AUROC and ECE (see Figure 1; Figure 13 in Appendix H shows this is true
even after using TS) as well as for the SAC of 99% we explored (see Figure 7 and Appendix I).
These ViTs also outperform all other models in terms of C-OOD detection performance (Galil et al.,
2023). Moreover, for any size, ViT models outperform their competition in all of these metrics (see
Figures 9 and 10 in Appendix B and Figure 15 in Appendix I).
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Figure 7: Comparison of models by their overall accuracy and the coverage they are able to provide
given a selective accuracy constraint of Top-1 99% on ImageNet. A higher coverage is better. Only
ViT models are able to provide coverage beyond 30% for this constraint. They provide more coverage
than any other model compared to their accuracy or size. “Various” refers to all other models (out of
the 523) that were not mentioned by name.

Further research into other training regimes, however, reveals that not all training regimes result
in superb performance (Touvron et al., 2021b; 2022; Singh et al., 2022; Paszke et al., 2019) (these
ViTs are dubbed “ViT∗” in the figures), even when a similar amount of data is introduced into the
training and strong augmentations are used. In fact, the models trained by Chen et al. (2022) were not
pretrained at all and yet reach superb ranking. Even the largest model introduced by Tran et al. (2022),
which is a large modified ViT that was pretrained on JFT-4B (a dataset containing 4 billion images)
with the aim of excelling in uncertainty estimation (and other areas), is outperformed by the best ViT
we evaluated: Plex L achieves an AUROC of 87.7 (while its smaller versions, Plex M and Plex S,
achieve an AUROC of 87.4 and 86.7, respectively), compared to 88.5 achieved by ViT-L/16-384 that
has less parameters and was pretrained on ImageNet-21k. In total, 18 ViTs trained on ImageNet-21k
outperform2 Plex L, among which are two variations of small ViTs (each with 36 or 22 million
parameters). In Appendix J we analyze the different hyperparameters and augmentations used for
training the ViT models evaluated in this paper. Unfortunately, no clear conclusions emerge to explain
the advantage of the successful training regimes. There is, however, ample evidence to show that
advanced augmentations are unlikely to be part of such an explanation.

The above facts suggest that the excellent performance exhibited by some ViTs cannot be attributed
to the amount of data or to the augmentations used during training. These observations warrant

2The authors had not released clear results for Plex ECE performance on ImageNet, making a comparison
of calibration difficult. The authors mentioned that the average ECE of Plex L in CIFAR-10, CIFAR-100 and
ImageNet is slightly below 0.01. Our evaluations revealed six ViTs that achieved the same results, with the most
calibrated model being ViT-T/16 with an ECE of 0.0054 on ImageNet.
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additional research with the hope of either training more robust ViTs or transferring the unidentified
ingredient of the successful subset of ViTs into other models.

4) Correlations between AUROC, ECE, accuracy and the model’s size could either be positive
or negative, and depend on the family of architectures evaluated. This observation contradicts
previous smaller scale studies on calibration. While AUROC and ECE are (negatively) correlated
(they have a Spearman correlation of -0.44, meaning that generally, as AUROC improves, so does
ECE), their agreement on the best performing model depends greatly on the architectural family in
question. For example, the Spearman correlation between the two metrics evaluated on 28 undistilled
XCiTs is 0.76 (meaning ECE deteriorates as AUROC improves), while for the 33 ResNets (He et al.,
2016) evaluated, the correlation is -0.74. Another general observation is that contrary to previous
work by (Guo et al., 2017) concerning ECE, the correlations between ECE and the accuracy or the
number of model parameters are nearly zero, although each family tends to have a strong correlation,
either negative or positive. We include a family-based comparison in Appendix L for correlations
between AUROC/ECE and accuracy, number of parameters and input size. These results suggest that
while some architectures might utilize extra resources to achieve improved uncertainty estimation
capabilities, other architectures do not and are even harmed in this respect.

5) The zero-shot language–vision CLIP model is well-calibrated, with its best instance outper-
forming 96% of all other models. CLIP (Radford et al., 2021) enables zero-shot classification
and demonstrates impressive performance. We find it is also inclined to be well-calibrated. See
Appendix K for details about how we use CLIP. The most calibrated CLIP is based on ViT-B/32
with a linear-probe added to it, and obtains an ECE of 1.3%, which outperforms 96% of models
evaluated. Moreover, for their size category, CLIP models tend to outperform their competition in
calibration, with the exception of ViTs (see Figure 10 in Appendix B). While this trend is clear for
zero-shot CLIPs, we note that some models’ calibration performance deteriorates with the addition
of a linear-probe. Further research is required to understand the ingredients of multimodal models’
contribution to calibration, and to find ways to utilize them to get better calibrated models. For
example, could a multimodal pretraining regime be used to get better calibrated models?

6) MC dropout does not improve selective performance, in accordance with previous works.
We evaluate the performance of MC dropout using predictive entropy as its confidence score and
30 dropout-enabled forward passes. We do not measure its effects on ECE since entropy scores
do not reside in [0, 1]. Using MC dropout causes a consistent drop in both AUROC and selective
performance compared with using the same models with softmax as the κ (see Appendix M and
Figure 4a). MC dropout’s underperformance was also previously observed in (Geifman & El-Yaniv,
2017). We note, however, that evaluations we have conducted in Galil et al. (2023) show that MC
dropout performs well when dealing with C-OOD data.

4 CONCLUDING REMARKS

We presented a comprehensive study of the effectiveness of numerous DNN architectures (families)
in providing reliable uncertainty estimation, including the impact of various techniques on improv-
ing such capabilities. Our study led to many new insights and perhaps the most important ones
are: (1) architectures trained with distillation almost always improve their uncertainty estimation
performance, (2) temperature scaling is very useful not only for calibration but also for ranking and
selective prediction, and (3) no DNN (evaluated in this study) demonstrated an uncertainty estimation
performance comparable—in any metric tested—to a subset of ViT models (see Section 3).

Our work leaves open many interesting avenues for future research and we would like to mention a
few. Perhaps the most interesting question is why distillation is so beneficial in boosting uncertainty
estimation. Next, is there an architectural secret in vision transformers (ViT) that enables their
uncertainty estimation supremacy under certain training regimes? This issue is especially puzzling
given the fact that comparable performance is not observed in many other supposedly similar
transformer-based models that we tested. If the secret is not in the architecture, what is the mysterious
ingredient of the subset of training regimes that produces such superb results, and how can it be used
to train other models? Finally, can we create specialized training regimes (e.g., Geifman & El-Yaniv
(2019)), specialized augmentations, special pretraining regimes (such as CLIP’s multimodal training
regime) or even specialized neural architecture search (NAS) strategies that can promote superior
uncertainty estimation performance?
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A THE INVESTMENT EXAMPLE

Let us consider two classification models for the stock market that predict whether a stock’s value
is about to increase, decrease or remain neutral (three-class classification). Suppose that Model
A has a 95% true accuracy, and generates a confidence score of 0.95 on any prediction (even on
misclassified instances); Model B has a 40% true accuracy, but always gives a confidence score of 0.6
on correct predictions, and 0.4 on incorrect ones. We now try and evaluate these two models using the
uncertainty metrics mentioned in Section 1 to see which can reveal Model B’s superior uncertainty
estimation performance. AURC will fail due to its sensitivity to accuracy (the AURC of Model B is
0.12, more than twice as bad as the AURC for Model A, which is 0.05). NLL will rank Model A four
times higher (Model A’s NLL is 0.23 and Model B’s is 0.93). The Brier score would also much prefer
Model A (giving it a score of 0.096 while giving Model B a score of 0.54). Evaluating the models’
calibration with ECE will also not reveal Model B’s advantages, since it is less calibrated than Model
A, which has perfect calibration (Model A has an ECE of 0, and Model B has a worse ECE of 0.4).

AUROC, on the other hand, would give Model B a perfect score of 1 and a terrible score of 0.5 to
Model A. The selective risk for Model B would be better for any coverage of stock predictions below
40%, and for any SAC above 95% the coverage for Model A would be 0, but 0.4 for Model B.

Those two metrics are not perfect for any example. Let us instead compare two different models for
the task of predicting the weather when we cannot abstain from making predictions. Accordingly,
being required to provide an accurate probabilistic uncertainty estimation of the model’s predictions,
AUROC and selective risk would be meaningless (due to the model’s inability to abstain in this task),
but ECE or the Brier Score would better evaluate the performance the new task requires.

B RANKING AND CALIBRATION VISUAL COMPARISON

A comparison of 523 models by their AUROC (×100, higher is better) and -log(ECE) (higher is
better) on ImageNet is visualized in Figure 8. An interactive version of this figure is provided
as supplementary material. To compare models fairly by their size, we plot two graphs with the
logarithm of the number of parameters as the X-axis, so that models sharing the same x value can be
compared solely based on their y value. In Figure 9 we set the X axis to be AUROC (higher is better),
and see ViTs outperform any other architecture with a comparable amount of parameters by a large
margin. We can also observe that using distillation creates a consistent improvement in AUROC. In
Figure 10 we set the X axis to be the negative logarithm of ECE (higher is better) and observe a very
similar trend, with ViT outperforming its competition for any model size.

C DEMONSTRATION OF E-AURC’S DEPENDENCE ON THE MODEL’S
ACCURACY

Excess-AURC (E-AURC) was suggested by Geifman et al. (2018) as an alternative to AURC
(explained in Section 2). To calculate E-AURC, two AURC scores need to be calculated: (1)
AURC(model), the AURC value of the actual model and (2) AURC(model∗), the AURC value of
a hypothetical model with identical predicted labels as the first model, but that outputs confidence
values that induce a perfect partial order on the instances in terms of their correctness. The latter
means that all incorrectly predicted instances are assigned confidence values lower than the correctly
predicted instances.

E-AURC is then defined asAURC(model)−AURC(model∗). In essence, this metric acknowledges
that given a model’s accuracy, the area of AURC(model∗) is always unavoidable no matter how
good the partial order is, but anything above that could have been minimized if the κ function was
better at ranking, assigning correct instances higher values than incorrect ones and inducing a better
partial order over the instances.

This metric indeed helps to reduce some of the sensitivity to accuracy suffered by AURC, and for the
example presented in Section 1, E-AURC would have given a perfect score of 0 to the model inducing
a perfect partial order by its confidence values (Model B). It is easy, however, to craft examples
showing that E-AURC prefers models with higher accuracy, even if they have lower or equal capacity
to rank.
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Figure 8: A comparison of 523 models by their AUROC (×100, higher is better) and log(ECE) (lower
is better) on ImageNet. Each marker’s size is determined by the model’s number of parameters. Each
dotted marker represents a distilled version of the original. An interactive version of this figure is
provided as supplementary material.
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model’s parameters) on ImageNet. Each dotted marker represents a distilled version of the original.

To demonstrate this in a simple way, let us consider two models with a complete lack of capacity to
rank correct and incorrect predictions correctly, always outputting the same confidence score. Model
A has an accuracy of 20% (thus an error rate of 80%), and Model B has an accuracy of 80% (and an
error rate of 20%). A good ranking metric should evaluate them equally (the same way E-AURC
gives the same score for two models that rank perfectly regardless of their accuracy). In Figure 11 we
plot their RC curves with dashed lines, which are both straight lines due to their lack of ranking ability.
We can calculate both of these models’ AURCs, AURC(modelA) = 0.8, AURC(modelB) = 0.2.

The next thing to calculate is the best AURC values those models could have achieved given the
same accuracy if they had a perfect partial order. We plot these hypothetical models’ RC curves
in Figure 11 as solid lines. Their selective risk remains 0 for every coverage below their total
accuracy, since these hypothetical models assigned the highest confidence to all of their correct
instances first. As the coverage increases and they have no more correct instances to select, they begin
to give instances that are incorrect, and thus their selective risk deteriorates for higher coverages.
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Figure 11: The RC curves for Models A and B are plotted with dashed lines. The RC curves for the
hypothetically optimal versions of Models A and B are plotted with solid lines.

Calculating both of these hypothetical models’ AURCs gives us the following: AURC(modelA∗) =
0.482, AURC(modelB∗) = 0.022. Subtracting our results we get: E-AURC(modelA) = 0.8 −
0.482 = 0.318,E-AURC(modelB) = 0.2− 0.022 = 0.178 Hence, E-AURC prefers Model B over
Model A, even though both do not discriminate at all between incorrect and correct instances.

D MORE ON THE DEFINITION OF RANKING

Let us consider a finite set Sm = {(xi, yi)}mi=1 ∼ PX,Y . We assume that there are no two identical
values given by κ on Sm. Such an assumption is reasonable when choosing a continuous confidence
signal.

We further denote c as the number of concordant pairs (i.e., pairs in Sm that satisfy the condition
[κ(xi, ŷ|f) < κ(xj , ŷ|f) ∩ `(f(xi), yi) > `(f(xj), yj)]) and d as the number of discordant pairs
(i.e., pairs in Sm that satisfy the condition [κ(xi, ŷ|f) > κ(xj , ŷ|f) ∩ `(f(xi), yi) > `(f(xj), yj)].

We assume, for now, that there are no two identical values given by ` on Sm. Accordingly, we can
further develop Equation (1) from Section 2.1 using the definition of conditional probability,

Pr[κ(xi, ŷ|f) < κ(xj , ŷ|f)|`(f(xi), yi) > `(f(xj), yj)] =

Pr[κ(xi, ŷ|f) < κ(xj , ŷ|f) ∩ `(f(xi), yi) > `(f(xj), yj)]

Pr[`(f(xi), yi) > `(f(xj), yj)]
,

which can be approximated empirically, using the most likelihood estimator, as

c(
m
2

) . (2)

We note that the last equation is identical to Kendall’s τ up to a linear transformation, which equals
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c− d(
m
2

) =
c− d+ c− c(

m
2

)
=

2c− (c+ d)(
m
2

) =
2c(
m
2

) − c+ d(
m
2

) =

2 · c(
m
2

) − 1 = 2 · [Equation 2]− 1.

Otherwise, if the loss assigns two identical values to a pair of points in Sm, but κ does not, then we
get:

c

c+ d
. (3)

which is identical to Goodman & Kruskal’s γ-correlation up to a linear transformation

c− d
c+ d

=
c− d+ c− c

c+ d
=

2c− (c+ d)

c+ d
=

2c

c+ d
− c+ d

c+ d
= 2 · [Equation 3]− 1.

D.1 INEQUALITIES OF THE DEFINITION

One might wonder why Equation (1) should have strict inequalities rather than non-strict ones to
define ranking. As we discuss below, this would damage the definition:

(1) If the losses had a non-strict inequality:

Pr[κ(x1, ŷ|f) < κ(x2, ŷ|f)|`(f(x1), y1) ≥ `(f(x2), y2)]

Consequently, in the case of classification, for example, this probability would increase for any pairs
consisting of correct instances with different confidences. This would yield no benefit in ranking
between incorrect and correct instances and motivates giving different confidence values for instances
with the same loss—a fact that would not truly add any value.

(2) If the κ values had a non-strict inequality:

Pr[κ(x1, ŷ|f) ≤ κ(x2, ŷ|f)|`(f(x1), y1) > `(f(x2), y2)].

This probability would increase for any pair (x1, x2) such that κ(x1, ŷ|f) = κ(x2, ŷ|f) and
`(f(x1)) > `(f(x2)), although κ should have ranked x1 with a lower value. Furthermore, if a
κ function were to assign the same confidence score to all x ∈ X , then when there are no two
identical values of losses, the definition’s probability would be 1; otherwise, the more different
values for losses there are, the larger the probability would grow. In classification with a 0/1 loss, for
example, assigning the same confidence score to all instances would result in the probability being
Accuracy(f) · (1−Accuracy(f)), which is largest when Accuracy(f) = 0.5.

E RANKING CAPACITY COMPARISON BETWEEN HUMANS AND NEURAL
NETWORKS

In the field of metacognition, interestingly, the predictive value of confidence is evaluated by two
different aspects: by its ability to discriminate between correct and incorrect predictions (also known
as resolution in metacognition or ranking in our context) and by its ability to give well-calibrated
confidence estimations, not being over- or under-confident (Fiedler et al., 2019). These two aspects
correspond perfectly with much of the research done in the deep learning field, with the nearly
matching metric to AUROC of γ-correlation (see Section 2).

This allows us to compare how well humans rank predictions in various tasks versus how well
models rank their own in others. Human AUROC measurements in various tasks (translated from
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γ-correlation) tend to range from 0.6 to 0.75 (Undorf & Bröder, 2019; Basile et al., 2018; Ackerman
et al., 2016), but could vary, usually towards much lower values (Griffin et al., 2019). In our
comprehensive evaluation on ImageNet, AUROC ranged from 0.77 to 0.88 (with the median value
being 0.85), and in CIFAR-10 these measurements jump to the range of 0.92 to 0.94.

While such comparisons between neural networks and humans are somewhat unfair due to the
great sensitivity required for the task, research that directly compares humans and machine learning
algorithms performing the same task exist. For example, in Ackerman et al. (2019), algorithms far
surpass even the group of highest performing individuals in terms of ranking.

F CRITICISMS OF AUROC AS A RANKING METRIC

In this section, addressing the criticism of AUROC as a ranking metric, we show why AUROC does
not simply reward models for having lower accuracy, . The paper by Ding et al. (2019) presented
a semi-artificial experiment to demonstrate that AUROC might get larger the worse the model’s
accuracy becomes. They consider a model f and its κ function evaluated on a classification test
set X , giving each a prediction ŷf (x) and a confidence score κ(x, ŷf (x)|f), which in this case is
the model’s softmax response. Let X c = {xc ∈ X |ŷf (xc) = y(x)} be the set of all instances
correctly predicted by the model f , and define xc(i) ∈ X

c to be the correct instance that received
the i-lowest confidence score from κ. Their example continues and considers an artificial model
fm to be an exact clone of f with the following modification: for every i ≤ m, the model fm now
predicts a different, incorrect label for xc(i); however, its given confidence score remains identical:
κ(xc(i), ŷf (x

c
(i))|f) = κ(xc(i), ŷfm(xc(i))|f

m). f0 is exactly identical to f , by this definition, not
changing any predictions. The paper shows how an artificially created model fm obtains a higher
AUROC score the bigger its m. This happens even though “nothing” changed but a hit to the model’s
accuracy performance (by making mistakes on more instances).

First, to understand why this happens, let us consider f1: AUROC for κ increases the more pairs
of [κ(x1) < κ(x2)|ŷf (x1) 6= y(x1), ŷf (x2) = y(x2)] there are. The model f1 is now giving
an incorrect classification to xc(1), but this instance’s position in the partial order induced by κ has
remained the same (since κ(xc(1)) is unchanged); therefore, |X c|−1 correctly ranked pairs were added:
[κ(xc(1)) < κ(xc(i))|ŷf (x

c
(1)) 6= y(xc(1)), ŷf (x

c
(i)) = y(xc(i))] for every 1 < i ≤ |X c|. Nevertheless,

this does not guarantee an increase to AUROC by itself: if, previously, all pairs of (correct,incorrect)
instances were ranked correctly by κ, AUROC would already be 1.0 for f0 and would not change
for f1. If AUROC for f1 is higher than it was for f0, this means there exists at least one instance
xw that was incorrectly predicted by the original model f0 such that κ(xc(1)) < κ(xw). Every such
originally wrongly ranked pair (by f0) of [κ(xc(1)) < κ(xw)|ŷf (xw) 6= y(xw), ŷf (x

c
(1)) = y(xc(1))]

has been eliminated by f1 wrongly predicting xc(1). This, therefore, causes AUROC to increase at the
expense of the model’s accuracy.

Such an analysis neglects many factors, which is probably why such an effect is only likely to be
observed in artificial models (and not among the actual models we have empirically tested):

1. It is unreasonable to assume that the confidence score given by κ will remain exactly the
same for an instance xc(i) given it now has a different prediction. In the case of κ being
softmax, it assumes the model’s logits have changed in a very precise and nontrivial manner.
Additionally, by our broad definition of κ, which allows κ to even be produced from an
entirely different model than f , κ receives the prediction and model as a given input (and
cannot change or affect either), and it is unlikely to assume changing its inputs will not
change its output.

2. Suppose we find the setting reasonable and assume we can actually create a model fm as
described. Let us observe a model fp such that p = minm(AUROC of fm=1), meaning
that fp ranks its predictions perfectly, unlike the original f0. Is it really true that fp has no
better uncertainty estimation than f0? Model fp behaves very much like the investment in
“Model B” from our example in Section 1, possessing perfect knowledge of when it is wrong
and when it is correct, allowing its users risk-free classification. So, given a model f , we can
use the above process to produce an improved model fp, and then we can even calibrate its
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κ to output 0% for all instances below its threshold and 100% for all those above to produce
a perfect model, which might have a small coverage but is correct every time, knows it and
notifies its user when it truly knows the prediction. The increase in AUROC reflects such an
improvement.

Not only do we disagree with such an analysis and its conclusions, but we also have vast empirical
evidence to show that AUROC does not prefer lower accuracy models unless there is a good reason
for it to do so, as we demonstrate in Figure 3 (comparing EfficientNet-V2-XL to ViT-B/32-SAM). In
fact, out of the 523 models we tested, the model with the highest AUROC also has the 4th highest
accuracy of all models, and the overall Spearman correlation between AUROC and accuracy of all the
models we tested is 0.03. Furthermore, Figure 3 also exemplifies why AURC, which was suggested
by the just mentioned paper as the alternative to AUROC, is a bad choice as a single number metric,
and might lead us to deploy a model that has a worse selective risk for most coverages only due to its
higher overall accuracy.

G KNOWLEDGE DISTILLATION EFFECTS ON UNCERTAINTY ESTIMATION
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Figure 12: Comparing vanilla models to those incorporating KD into their training (represented by
markers with thick borders and a dot). In a pruning scenario that includes distillation, yellow markers
indicate that the original model was also the teacher. The performance of each model is measured in
AUROC (higher is better) and -log(ECE) (higher is better).

Figure 12 compares vanilla models to those incorporating KD into their training (represented by
markers with thick borders and a dot). In a pruning scenario that includes distillation, yellow markers
indicate that the original model was also the teacher (Aflalo et al., 2020). While distillation using a
different model tends to improve uncertainty estimation in both aspects, distillation by the model
itself seems to improve only one—suggesting it is generally more beneficial to use a different model
as a teacher. The fact that KD improves the model over its original form, however, is surprising, and
implies that the distillation process itself helps uncertainty estimation. Note that although this specific
method involves pruning, evaluations of models pruned without incorporating distillation (Frankle &
Carbin, 2018) revealed no improvement.

It seems, moreover, that the teacher does not have to be good in uncertainty estimation itself; Figure 5
in Section 3 shows this by comparing the teacher architecture and the students in each case.

While the training method by Ridnik et al. (2021) included pretraining on ImageNet-21k and
demonstrated impressive improvements, comparison of models that were pretrained on ImageNet21k
(Tan & Le, 2021; Touvron et al., 2021a; 2022) with identical models that were not pretrained
showed only a slight improvement in ECE, and, in fact, exhibit a degradation of AUROC (see

21



Published as a conference paper at ICLR 2023

Figures 4a and 4b in Section 3). This suggests that pretraining alone does not improve uncertainty
estimation.

H MORE INFORMATION ABOUT TEMPERATURE SCALING
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Figure 13: A comparison of 523 models after being calibrated with TS, evaluated by their AUROC
(×100, higher is better) and -log(ECE) (higher is better) on ImageNet. Each marker’s size is
determined by the model’s number of parameters. ViT models are still among the best performing
architectures for all aspects of uncertainty estimation.

In Figure 13 we see how temperature scaling (TS) affects the overall ranking of models in terms
of AUROC and ECE. While the ranking between the different architecture remains similar, the
poorly performing models are much improved and minimize the gap between them and the best
models. One particularly notable exception is HardCoRe-NAS (Nayman et al., 2021), with its lowest
latency versions becoming the top performers in terms of ECE. In addition, models that benefit from
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Figure 14: Here the relationship between temperature and the success of TS, unlike the case for
AUROC, seems unrelated.

TS in terms of AUROC tend to have been assigned a temperature lower than 1 by the calibration
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process (see Figure 6 in Section 3). The same, however, does not hold true for ECE (see Figure 14).
This example also emphasizes the fact that models benefiting from TS in terms of AUROC do not
necessarily benefit in terms of ECE, and vice versa. Therefore, determining whether to calibrate the
deployed model with TS is, unfortunately, a task-specific decision.

We perform TS as was suggested in Guo et al. (2017). For each model we take a random stratified
sampling of 5,000 instances from the ImageNet validation set on which to calibrate, and reserve
the remainder 45,000 instances for testing. Using the box-constrained L-BFGS (Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno) algorithm, we optimize for 5,000 iterations (though fewer
iterations usually converge into the same temperature parameter) using a learning rate of 0.01.

I ARCHITECTURE CHOICE FOR PRACTICAL DEPLOYMENT BASED ON
SELECTIVE PERFORMANCE

As discussed in Section 2, when we know the coverage or risk we require for deployment, the most
direct metric to check is which model obtains the best risk for the coverage required (selective risk),
or which model gets the largest coverage for the accuracy constraint (SAC). While each deployment
scenario specifies its own constraints, for demonstration purposes we consider a scenario in which
misclassifications are by far more costly than abstaining from giving correct predictions. An example
of this could be classifying a huge unlabeled dataset (or cleaning bad labels from a labeled dataset).
While it is desirable to assign labels to a larger portion of the dataset (or to correct more of the wrong
labels), it is crucial that these labels are as accurate as possible (or that correctly labeled instances are
not replaced with a bad label).
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Figure 15: A comparison of 523 models by their log(number of model’s parameters) and the coverage
they are able to provide for a SAC of 99% (higher is better) on ImageNet.

To explore such a scenario, we evaluate all models on ImageNet to see which ones give us the largest
coverage for a required accuracy of 99%. In Figure 7, Section 3 (paper’s main body) we observe
that of all the models studied, only ViT models are able to provide coverage beyond 30% for such
an extreme constraint. Moreover, we note that the coverage they provide is significantly larger than
that given by models with comparable accuracy or size, and that ViT models that provide similar
coverage to their counterparts do so with less overall accuracy.

In Figure 15 we see that not only do ViT models provide more coverage than any other model, but that
they are also able to do so in any size category. To compare models fairly by their size, we present
Figure 15, which sets the Y axis to be the logarithm of the number of parameters, so that models
sharing the same y value can be compared solely based on their x value—which is the coverage they

23



Published as a conference paper at ICLR 2023

Table 1: A comparison of different training regimes of ViTs. *The paper introducing ViTs (Dosovit-
skiy et al., 2021) had also trained ViT models with the JFT-300M dataset; however, their weights are
unavailable to the general public. All evaluations of ViTs from that paper were conducted on ViTs
pretrained on ImageNet-21k, which are publicly available. **Pretrained DeiT3 models were first
pretrained with a learning rate of 3 · 10−3 and then fine-tuned with a learning rate of 3 · 10−4

Regime ViT (original) Steiner et al. Chen et al. DeiT DeiT3 DeiT3
+Pretraining Torchvision

Reference Dosovitskiy et al. (2021) Steiner et al. (2022) Chen et al. (2022) Touvron et al. (2021b) Touvron et al. (2022) Paszke et al. (2019)

Pretraining dataset ImageNet-21k* ImageNet-21k - - - ImageNet-21k -
Batch Size 4096 4096 4096 1024 2048 2048 512
Optimizer AdamW AdamW SAM LAMB LAMB LAMB AdamW

LR 3 · 10−3 3 · 10−3 3 · 10−3 1 · 10−3 3 · 10−3 3 · 10−3** 3 · 10−3
LR decay cosine cosine cosine cosine cosine cosine cosine

Weight decay 0.1 0.3 0.1 0.05 0.02 0.02 0.3
Warmup epochs 3.4 3.4 3.4 5 5 5 30

Label smoothing ε 0.1 0.1 0.1 0.1 7 0.1 0.11
Dropout 3 3 3 7 7 7 7

Stoch. Depth 7 3 7 3 3 3 7
Repeated Aug 7 7 7 3 3 7 3
Gradient Clip. 1.0 1.0 1.0 7 1.0 1.0 1.0

H. flip 3 3 3 3 3 3 3
Random Resized Crop 3 3 3 3 3 7 3

Rand Augment 7 Adapt. 7 9/0.5 7 7 Adapt.
3 Augment 7 7 7 7 3 3 7
LayerScale 7 7 7 7 3 3 7

Mixup alpha 7 Adapt. 7 0.8 0.8 7 0.2
Cutmix alpha 7 7 7 1.0 1.0 1.0 1.0
Erasing prob. 7 7 7 0.25 7 7 7

ColorJitter 7 7 7 7 0.3 0.3 7
Test crop ratio 0.875 0.875 0.875 0.875 1.0 1.0 0.875

Loss CE CE CE CE BCE CE CE

Superb performance 3 3 3 7 7 7 7

provide for a SAC of 99%. We see that ViT models provide a larger coverage even when compared
with models of a similar size.

J COMPARISON OF VIT TRAINING REGIMES AND THEIR EFFECTS ON
UNCERTAINTY ESTIMATION PERFORMANCE

In Table 1 we compare the different hyperparameters and augmentations used for training the ViT
models evaluated in this paper, with the aim of revealing why some training regimes consistently
result in superb ViTs, while others do not. An analysis of the various differences between these
regimes, however, eliminates the obvious suspects.

1) Pretraining, on its own, does not seem to offer an explanation: First, we analyze eight pairs of
models (provided by Touvron et al. 2022) such that both models have identical architecture and
training regimes, with the exception that one was pretrained on ImageNet-21k, and the other was not.
Pretraining results in only a slight improvement of 0.16 in AUROC and 0.01 in ECE. Moreover, as
mentioned in detail in Section 3, ViT models trained on JFT-4B (Tran et al., 2022) were outperformed
by the successful ViT models evaluated in this paper, most of which were pretrained on ImageNet-21k
(and even by one ViT SAM model that was not pretrained at all). Second, we note that ViTs trained
with the SAM optimizer (Chen et al., 2022), and not pretrained at all, reach superb ranking (AUROC)
as well. These facts lead us to conclude that pretraining, at least by itself, is not the main contributor
to training successful ViTs.

2) The selection of optimizers and other hyperparameters (such as learning rate, label smoothing etc.)
does not seem to have a significant impact. For example, while AdamW (Loshchilov & Hutter, 2019)
was used by two of the successful regimes, it was also used by Paszke et al. (2019), and on the other
hand was replaced by SAM (Foret et al., 2021) in another successful training regime.

3) Advanced augmentations are unlikely to explain the gaps in uncertainty estimation performance,
as regimes producing superior ViT models (Dosovitskiy et al., 2021; Chen et al., 2022) did not use
advanced augmentations (in comparison to Touvron et al. (2021b) and Touvron et al. (2022), for
example).

For these reasons, for the moment, the explanation for the gap remains elusive. The only remaining
“suspect” is the batch size used, with all successful regimes using a batch size of 4096, while others
use a smaller batch size of 2048 or lower. One could argue, however, that a two-fold increase in batch
size is not sufficient to explain the huge gaps in performance measured.
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Table 2: The relationship between uncertainty estimation performance and the model’s attributes
and resources (accuracy, number of parameters and input size), measured by Spearman correlation.
Positive correlations indicate good utilization of resources for uncertainty estimation.

Architecture AUROC & Accuracy -ECE & Accuracy AUROC & #Parameters -ECE & #Parameters AUROC & Input Size -ECE & Input Size # Models Evaluated

EfficientNet -0.16 -0.29 -0.22 -0.29 -0.26 -0.38 50
ResNet -0.28 -0.22 0.16 0.03 -0.40 -0.44 33

ViT 0.84 -0.17 0.50 -0.67 0.04 -0.13 31
XCiT distilled 0.60 0.09 0.35 0.02 0.51 0.12 28

XCiT -0.68 0.89 -0.79 0.94 - - 28
ViT* 0.23 0.38 -0.04 0.41 0.14 -0.12 26

SE ResNet -0.46 -0.02 -0.53 0.20 -0.02 -0.35 18
EfficientNetV2 -0.70 -0.45 -0.63 -0.47 -0.59 -0.40 15

NFNet 0.56 0.78 0.63 0.81 0.48 0.60 13
Inception -0.29 0.09 -0.43 0.30 -0.08 0.23 13
RegNetY -0.03 -0.98 0.27 -0.86 - - 12
RegNetX 0.20 -0.96 0.20 -0.96 - - 12

CaiT distilled 0.44 -0.87 0.35 -0.87 0.58 -0.50 10
DLA 0.64 -0.90 0.77 -0.90 - - 10

MobileNetV3 0.37 0.59 0.42 0.60 - - 10
Res2Net -0.70 0.27 -0.68 0.60 - - 9

CLIP Zero-Shot 1.0 -0.63 0.9 -0.8 0.55 -0.58 9
CLIP + Linear Probe 0.88 0.26 0.71 0.1 0.19 -0.27 8

VGG 0.81 -0.98 0.71 -0.90 - - 8
RepVGG -0.71 0.50 -0.57 0.21 - - 8

BiT -0.33 -0.81 -0.20 -0.85 -0.46 -0.25 8
ResNeXt -0.96 0.39 -0.22 -0.30 - - 7

ResNet RS 0.00 0.79 -0.18 0.82 -0.30 0.82 7
MixConv -0.11 0.89 -0.24 0.86 - - 7
DenseNet 0.43 -0.14 0.72 0.12 - - 6

HardCoReNAS -0.60 0.26 -0.49 0.37 - - 6
Swin 0.71 0.14 0.77 0.26 0.41 0.00 6

ECANet -0.20 0.60 -0.43 0.37 0.83 0.37 6
Twins -0.26 0.94 -0.14 0.89 - - 6

SWSL ResNet 0.94 -0.89 0.77 -0.83 - - 6
GENet 0.50 -1.00 0.50 -1.00 0.87 -0.87 6

SSL ResNet 0.14 -1.00 0.26 -0.94 - - 6
TResNet 0.10 -0.30 0.53 0.53 -0.58 -0.87 5

CoaT -0.10 0.90 -0.10 0.50 - - 5
LeViT distilled 0.60 -0.90 0.60 -0.90 - - 5

ResMLP 0.20 1.00 0.15 0.97 - - 5
MobileNetV2 -0.30 0.00 -0.21 0.10 - - 5
ViT* Distilled 0.8 -1.0 0.71 -0.77 0.22 -0.77 4
PiT distilled 1.00 -1.00 1.00 -1.00 - - 4

PiT -0.40 1.00 -0.40 1.00 - - 4
WSP ResNeXt 1.00 0.80 1.00 0.80 - - 4

ResMLP distilled 0.80 0.20 0.80 0.20 - - 4
MnasNet 0.40 0.20 0.63 0.95 - - 4

K EVALUATIONS OF THE ZERO-SHOT LANGUAGE–VISION CLIP MODEL

In this section we describe how we use CLIP model and extract confidence signals from it during
inference. To evaluate CLIP on ImageNet, we first prepare it following the code provided by its
authors (https://github.com/openai/CLIP): The labels of ImageNet-1k are encoded into normalized
embedding vectors. At inference time, the incoming image is encoded into another normalized
embedding vector. A cosine similarity is then calculated between each label embedding vector
and the image embedding vector, and lastly, softmax is applied. The highest score is then taken as
the confidence score for that prediction. We also evaluate the same models when adding a trained
“linear-probe” to them (as described in Radford et al. (2021), which is essentially a logistic regression
head), that results in a large boost in their accuracy.

L EFFECTS OF THE MODEL’S ACCURACY, NUMBER OF PARAMETERS AND
INPUT SIZE ON UNCERTAINTY ESTIMATION PERFORMANCE

Table 2 shows the relationship between uncertainty estimation performance and model attributes
and resources (accuracy, number of parameters and input size), measured by Spearman correlation.
We measure uncertainty estimation performance by AUROC (higher is better) and -ECE (higher
is better). Positive correlations indicate good utilization of resources for uncertainty estimation
(for example, a positive correlation between -ECE and the number of parameters indicates that as
the number of parameters increases, the calibration improves). An interesting observation is that
distillation can drastically change the correlation between a resource and the uncertainty estimation
performance metrics. For example, undistilled XCiTs have a Spearman correlation of -0.79 between
their number of parameters and AUROC, indicating that more parameters are correlated with lower
ranking performance, while distilled XCiTs have a correlation of 0.35 between the two.
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Table 3: Comparing using MC dropout to softmax-response (vanilla).

Architecture Method Accuracy AUROC

Vanilla 74.04 86.88MobileNetV3 Large MC dropout 74 86.14

Vanilla 67.67 86.2MobileNetV3 Small MC dropout 67.55 84.54

Vanilla 71.88 86.05MobileNetV2 MC dropout 71.81 84.68

Vanilla 70.37 86.31VGG11 MC dropout 70.21 84.3

Vanilla 69.02 86.19VGG11 (no BatchNorm) MC dropout 68.95 83.94

Vanilla 71.59 86.3VGG13 MC dropout 71.43 84.37

Vanilla 69.93 86.24VGG13 (no BatchNorm) MC dropout 69.71 84.3

Vanilla 73.36 86.76VGG16 MC dropout 73.33 85.02

Vanilla 71.59 86.63VGG16 (no BatchNorm) MC dropout 71.47 84.97

Vanilla 74.22 86.52VGG19 MC dropout 74.17 85.06

Vanilla 72.38 86.55VGG19 (no BatchNorm) MC dropout 72.37 84.99

M EVALUATIONS OF MONTE CARLO DROPOUT RANKING PERFORMANCE

MC Dropout (Gal & Ghahramani, 2016) is computed using several dropout-enabled forward passes to
produce uncertainty estimates. In classification, the mean softmax score of these passes, is calculated,
and then a predictive entropy score is used as the final uncertainty estimate. In our evaluations, we use
30 dropout-enabled forward passes. We do not measure MC Dropout’s effect on ECE since entropy
scores do not reside in [0, 1].

We test this technique using MobileNetV3 (Howard et al., 2019), MobileNetv2 (Sandler et al., 2018)
and VGG (Simonyan & Zisserman, 2015), all trained on ImageNet and taken from the PyTorch
repository (Paszke et al., 2019).

The results comparing these models with and without using MC dropout are provided in Table 3.

The table shows that using MC dropout causes a consistent drop in both AUROC and selective
performance compared with using the same models with softmax as the κ. These results are also
visualized in comparison to other methods in Figure 4a in Section 3. MC dropout underperformance
in an ID setting was also previously observed in Geifman & El-Yaniv (2017).
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