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Abstract

Reporting meaningful confidence intervals for the predictions of a regression neural network
is critical in medical imaging applications since clinical decisions rely on network predic-
tions. We expect to obtain larger intervals for difficult examples and smaller ones for easier
examples to predict. We demonstrate that training a Gaussian regression network, fol-
lowed by a non-parametric conformal prediction technique to scale the estimated variance,
is the most effective way to achieve a small confidence interval with a coverage guarantee.
Through extensive experiments on various medical imaging datasets and network architec-
tures, we show that this combined training and calibration procedure produces improved
results compared to previous methods

Keywords: confidence interval, uncertainty calibration, conformal prediction

1. introduction

Regression neural networks, which predict continuous quantities, have been a major focus of
research in many areas including medical diagnosis (Leibig et al., 2017), weather forecasting
(Scher and Messori, 2018) and autonomous driving (Carvalho et al., 2015). Regression
neural networks are applied in medical image analysis to measure the size of pathological
lesions and the size of anatomical parts and the distance between them. One example is
ultrasound-based automatic estimation of fetal biometry which is used to assess the growth
and well-being of the fetus (Avisdris et al., 2022). Another example is estimating the bone
age of pediatric patients based on radiographs of their hand (Halabi et al., 2019).

The performance of neural network systems has improved dramatically in recent years.
However, for safety-critical embodied applications, accurate prediction alone is not suffi-
cient. Uncertainty estimates are important in a wide range of applications, and reporting
the confidence of a prediction is essential for reliable and interpretable models. One widely
adopted approach to conveying uncertainty is confidence intervals, which enclose the “true
value” with a specified probability. The size of these intervals is expected to be small and
linked to the case’s complexity.

Standard regression networks are trained by minimizing the Mean Squared Error (MSE).
These networks provides prediction intervals that have the same length for all test examples,
and thus potentially cannot directly report an instance-based confidence interval. However,
it is much more informative to provide larger confidence intervals for difficult examples and
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smaller ones for easier examples to predict. An alternative to the MSE approach is to predict
the mean and variance simultaneously. The training loss is then formed by the negative
Gaussian log-likelihood. During the testing phase, assuming a Gaussian distribution, the
predicted mean and variance values can be translated into an instance-based confidence
interval.

Consider a regression model that reports confidence intervals with a claimed coverage of
1−α. If 1−α of the intervals indeed contain the true value, the model is called calibrated.
Deep networks are not well-calibrated and are known to produce unreliable confidence
information (Guo et al., 2017). Several recent methods are available for measuring the
calibration of a regression network such as the Expected Normalized Calibration Error
(ENCE) (Levi et al., 2022) and the Uncertainty Calibration Error (UCE) (Laves et al.,
2020; Küppers et al., 2022). Several studies (Laves et al., 2020; Levi et al., 2022; Frenkel
and Goldberger, 2023) have proposed a simple calibration method that scales the predictive
variance by optimizing a likelihood criterion on a validation set. However, these calibration
methods explicitly assume that the conditional density of the correct value given the image
is Gaussian, which is not always the case.

Conformal Prediction (CP) (Vovk et al., 2005; Angelopoulos and Bates, 2023) is a gen-
eral non-parametric calibration method which, given a confidence value, aims to build a
confidence interval such that the probability that the correct value is within this set, is
indeed the given value. The Conformalized Quantile Regression (CQR) algorithm (Ro-
mano et al., 2019) is a calibrated regression method that directly finds a confidence interval
without any parametric assumption of the prediction distribution. It consists of a Quantile
Regression (QR) (Koenker and Bassett Jr, 1978) followed by a conformalization step. On
one hand, CQR is more adaptive to heteroscedasticity and outliers than a Gaussian regres-
sion. On the other hand, the pinball loss which is used to train the Quantile regression is
less reliable and stable than the Gaussian loss.

CQR is considered the state-of-the-art method to obtain a calibrated instance-based con-
fidence interval of a prediction obtained by a neural network. However, we are not aware
of any comparative research, either in medical or non-medical data, (see e.g., a discussion
in a recent review paper (Kato et al., 2023)). In the current study, we first analyze and
demonstrate the advantages and disadvantages of the current methods. We then propose a
calibration strategy based on training a Gaussian network followed by a parameter-free CP
calibration of the computed variance. We show that this strategy improves the confidence
calibration procedure. We report extensive experiments on several medical imaging regres-
sion tasks and network architectures that support this combined training and calibration
procedure.

2. Calibrating regression networks

In this section we review the current parametric and non-parametric methods for instance-
dependent calibration of a regression network. Consider a regression network that out-
puts mean ŷ = µ(x) and variance σ2(x) for each input image x. The mean represents
the value predicted by the network, while the variance is the level of uncertainty in the
prediction. The network output can be viewed as a Gaussian distribution in the form
of y|x ∼ N (µ(x), σ2(x)). Given labeled training data (x1, y1), ..., (xn, yn), the network is
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trained by minimizing the loss function:

L(θ) = −
n∑

t=1

logN (yt;µθ(xt), σ
2
θ(xt)) (1)

such that θ is the network parameter set. From the distribution y ∼ N (µ(x), σ2(x)) we can
extract a confidence interval. Define, φ(a) =

∫ a
−a f(z)dz such that z ∼ N (0, 1) and f(z)

is its density function. For example, a 90% confidence interval for the prediction µ(x) is
defined by:

{y | c|y − µ(x)|/σ(x) ≤ φ−1(0.9)}. (2)

Since the variance σ2(x) is predicted by the neural network, it may not be well-calibrated
and may be either underestimated or overestimated. The training loss function (1) assumes
Gaussian distribution, which may not be correct so that the conversion from variance to
confidence interval (2) can be wrong. Gaussian Variance Scaling (Gaussian-VS) (Laves
et al., 2020; Levi et al., 2022; Frenkel and Goldberger, 2023) is a method to calibrate the
variance σ(x) that yields a meaningful confidence interval. This method is based on a
Gaussian assumption of the conditional density f(y|x). Gaussian-Vs computes a scalar
r, which scales the variance predicted by the network: σ(x) → r · σ(x). Given labeled
validation data (x1, y1), ..., (xn, yn), we look for a scalar r that minimizes the loss:

L(r) = −
n∑

t=1

logN (yt;µθ(xt), r
2σ2

θ(xt)). (3)

It is easy to verify that the optimal r is:

r̂2 =
1

n

n∑
t=1

s2t s.t., st =
|yt − µ(xt)|

σ(xt)
. (4)

Given a test image x, the calibrated confidence interval with coverage 1−α is:

[µ(x)− φ−1(1−α) · r̂ · σ(x), µ(x) + φ−1(1−α) · r̂ · σ(x)]. (5)

Neural networks tend to be very robust to model mismatch and inaccurate ground
truth measurements due to their high non-linearity and over-parameterization. In contrast,
Gaussian-VS calibration is linear and consists of a single parameter. Thus if f(y|x) is uni-
modal but not Gaussian, while network training works well, Gaussian-VS fails to produce
an accurate confidence interval.

The CQR calibration approach (Romano et al., 2019) consists of a non-parametric Quan-
tile Regression (QR) (Koenker and Bassett Jr, 1978) followed by a conformalization step.
Define the γ-quantile (pinball) loss:

Lγ(y, t) = 1{t<y}(y − t)γ + 1{t>y}(t− y)(1− γ).

Given a training set (x1, y1), . . . , (xn, yn) the QR algorithm trains a γ-quantile estimation
t̂γ(x) using the pinball loss:

Lγ(θ) =
1

n

n∑
i=1

Lγ(yi, t̂γ(xi, θ)),
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such that θ is the network parameter set. Given a miss-coverage rate α, we train a QR
network with two heads t̂α/2(x) and t̂1−α/2(x) to obtain an instance-dependent confidence

interval: [t̂α/2(x), t̂1−α/2(x)]. The CQR algorithm applies a CP procedure to ensure that
the coverage is indeed 1− α. Define the following conformal score:

s(x, y) = max{t̂α/2(x)− y, y − t̂1−α/2(x)}.

The score s(x, y) is the minimum number q such that y ∈ [t̂α/2(x)− q, t̂1−α/2(x) + q)]. Let
s1, . . . , sn be the conformal scores of a given validation set (x1, y1), . . . , (xn, yn) and let q̂ be
the (1− α) quantile of s1, . . . , sn. The calibrated confidence interval is:

Cq̂(x) = [t̂α/2(x)− q̂, t̂1−α/2(x) + q̂].

Unlike Gaussian-VS, the interval obtained by CPR has a coverage guarantee. The CP
theory (Vovk et al., 2005) guarantees that:

1−α ≤ p(y ∈ Cq̂(x)) ≤ 1− α+
1

n− 1

where y is the (unknown) true label. QR is much more difficult to train than a Gaussian
regression network and when QR produces poor interval estimations, the performance of
CQR is also affected since it tries to cover the guaranteed validity by sacrificing efficiency
(Chung et al., 2021; Kato et al., 2023).

3. CP-based Variance Scaling

In this section we present a method that combines the benefits of the two methods described
above. We first train a parametric Gaussian network to predict the target and its variance
and then apply a non-parametric CP to calibrate the estimated variance. Assume we trained
a regression network that outputs mean ŷ = µ(x) and variance σ2(x) for each input image
x as described in Section 2. Given a threshold 1−α, we can apply CP to scale the variance
and find a confidence interval around µ(x) in the form of:

Cq(x) = [µ(x)− q · σ(x), µ(x) + q · σ(x)] (6)

such that the true value y is within this interval with probability 1−α, i.e., p(y ∈ Cq(x)) =
1 − α. The calibration parameter q is found in the following way. For each labeled data
(x, y) define the conformal score:

s = |y − µ(x)|/σ(x).

It is easy to verify that:

Cs(x) = [µ(x)− |y − µ(x)|, µ(x) + |y − µ(x)|]

and y ∈ Cq(x) if and only if q ≥ s. In other words, Cs(x) is the minimal interval centered at
µ(x) which contains the true value y. Let s1, ...., sn be the conformal scores of the validation
set (x1, y1), ..., (xn, yn) respectively. The calibration value q computed by the CP algorithm
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Algorithm 1 Conformal-Prediction based Variance Scaling (CP-VS)

input: A labeled dataset divided into training and validation subsets and a confidence
level 1−α.
- Train a regression network x → (µθ(xt), σ

2
θ(x)) by minimizing loss (1).

- Compute the conformal scores on the validation set:

st = |yt − µ(xt)|/σ(xt), t = 1, ..., n

- Sort the scores s1≤s2, ...,≤sn and set q = s⌈(n+1)(1−α)⌉.
- The confidence interval of a new test point x is: C(x) = [µ(x)− q ·σ(x), µ(x)+ q ·σ(x)].
- There is a coverage guarantee: p(y ∈ C(x)) ≥ 1− α.

is the ⌈(n+1)(1−α)⌉
n quantile of s1, ..., sn. In other words, q is the minimal value for which

the true value lies within the confidence interval defined by q in the (1− α) portion of the
validation set. The CP theory (Vovk et al., 2005) guarantees that regardless of the data
distribution, for test data (x, y), the value q found by the CP algorithm satisfies:

1− α ≤ p(y ∈ Cq(x)) ≤ 1− α+
1

n− 1
(7)

such that n is the size of the validation set.
Note that both Gaussian-VS and CP-VS calibrate by scaling the estimated standard

deviation σ(x) using a scalar value that is learned from the same conformal scores s1, ..., sn
(4) obtained from the validation set. Gaussian-VS is based on the scores’ average while
CP-VS is based on a quantile of the scores. In case the conditional density of the target
value given the input image is indeed Gaussian, the two calibration methods asymptotically
coincide. In case the conditional density is not Gaussian, the quantile is a more effective
measure than the mean when constructing a confidence interval. The CP-VS algorithm is
summarized in Algorithm Box 1.

The CP-VS has several benefits. Firstly, network training is conducted using the robust
Gaussian loss (unlike CQR which uses the pinball loss). Secondly, CP-VS achieves calibra-
tion through the CP procedure which has a parameter-free theoretical coverage guarantee
(unlike Gaussian-VS which has neither a theoretical nor practical coverage guarantee).

4. Experimental Results

In this section, we empirically compare the performance of the confidence intervals computed
by CP-VS to those computed by Gaussian-VS and CQR in terms of both interval length
and coverage.

Datasets. We implemented the proposed calibration methods on several medical imag-
ing regression tasks to evaluate their performance. The experimental setup follows the one
used in (Laves et al., 2020) and includes the following medical datasets:

• BoneAge - Hand CT age regression from the RSNA pediatric bone age dataset (Halabi
et al., 2019). The task here is to infer a person’s age in months from CT scans of
the hand. This dataset is the largest used in this study and has 12,811 images, from
which we used 6811/2000/4000 images for training/validation/testing.
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Table 1: Calibration results for 1−α = 0.90 (top) and 1−α = 0.95 (bottom), measured by
average confidence interval length and coverage (%). The method which reports
the minimal length among those satisfying the coverage requirement, is shown in
bold.

1− α = 0.9 Gaussian-VS CQR CP-VS
Dataset Architecture length ↓ coverage length ↓ coverage length ↓ coverage

BoneAge
DenseNet-201 0.184 ± 0.003 91.10 ± 0.71 0.411 ± 0.005 90.02 ± 0.78 0.176 ± 0.003 89.92 ± 0.85
EfficientNet-B4 0.190 ± 0.003 90.19 ± 0.56 0.602 ± 0.007 90.02 ± 0.83 0.189 ± 0.003 89.95 ± 0.72

OCT
DenseNet-201 0.128 ± 0.001 99.94 ± 0.06 0.106 ± 0.002 90.11 ± 0.99 0.048 ± 0.001 90.47 ± 1.32
EfficientNet-B4 0.127 ± 0.001 99.93 ± 0.06 0.157 ± 0.003 89.97 ± 1.50 0.050 ± 0.001 90.07 ± 1.80

DLS1
DenseNet201 0.185 ± 0.001 91.67 ± 0.42 0.278 ± 0.003 89.68 ± 1.01 0.180 ± 0.001 90.35 ± 0.69
EfficientNet-B4 0.175 ± 0.001 89.34 ± 0.54 0.350 ± 0.004 90.37 ± 1.16 0.177 ± 0.001 90.18 ± 0.72

DLS2
DenseNet201 0.121 ± 0.001 87.44 ± 0.64 0.316 ± 0.002 90.36 ± 0.89 0.129 ± 0.001 90.08 ± 0.84
EfficientNet-B4 0.143 ± 0.001 92.70 ± 0.60 0.299 ± 0.002 89.93 ± 0.78 0.132 ± 0.002 89.76 ± 1.09

DLS3
DenseNet201 0.150 ± 0.001 94.35 ± 0.42 0.178 ± 0.002 90.18 ± 0.90 0.134 ± 0.002 90.33 ± 0.87
EfficientNet-B4 0.113 ± 0.001 90.63 ± 0.54 0.299 ± 0.002 89.96 ± 0.78 0.113 ± 0.002 90.43 ± 0.81

DLS4
DenseNet201 0.147 ± 0.001 88.41 ± 0.59 0.220 ± 0.002 89.92 ± 0.99 0.154 ± 0.002 90.36 ± 0.87
EfficientNet-B4 0.150 ± 0.001 89.04 ± 0.62 0.328 ± 0.005 90.21 ± 0.93 0.154 ± 0.001 90.28 ± 0.86

DLS5
DenseNet201 0.225 ± 0.001 90.78 ± 0.59 0.227 ± 0.003 90.19 ± 0.89 0.223 ± 0.002 90.25 ± 0.88
EfficientNet-B4 0.269 ± 0.001 96.83 ± 0.38 0.474 ± 0.011 89.75 ± 1.14 0.225 ± 0.002 90.27 ± 0.87

1− α = 0.95 Gaussian-VS CQR CP-VS
Dataset Architecture length ↓ coverage length ↓ coverage length ↓ coverage

BoneAge
DenseNet-201 0.219 ± 0.004 95.40 ± 0.43 0.539 ± 0.011 94.97 ± 0.87 0.224 ± 0.004 94.91 ± 0.53
EfficientNet-B4 0.227 ± 0.003 94.71 ± 0.43 0.489 ± 0.008 95.08 ± 0.58 0.233 ± 0.004 95.26 ± 0.47

OCT
DenseNet-201 0.153 ± 0.001 99.94 ± 0.06 0.146 ± 0.005 95.07 ± 1.20 0.057 ± 0.001 94.96 ± 0.87
EfficientNet-B4 0.152 ± 0.002 99.98 ± 0.02 0.235 ± 0.006 95.12 ± 0.69 0.059 ± 0.001 94.99 ± 1.06

DLS1
DenseNet201 0.221 ± 0.001 97.27 ± 0.20 0.362 ± 0.004 95.09 ± 0.67 0.204 ± 0.003 95.17 ± 0.60
EfficientNet-B4 0.208 ± 0.001 95.82 ± 0.33 0.425 ± 0.004 95.20 ± 0.65 0.202 ± 0.003 95.12 ± 0.67

DLS2
DenseNet201 0.144 ± 0.001 93.76 ± 0.59 0.352 ± 0.003 95.14 ± 0.71 0.151 ± 0.003 94.90 ± 0.84
EfficientNet-B4 0.170 ± 0.001 96.98 ± 0.35 0.379 ± 0.003 94.88 ± 0.58 0.156 ± 0.002 94.96 ± 0.68

DLS3
DenseNet201 0.179 ± 0.001 97.96 ± 0.21 0.172 ± 0.003 95.17 ± 0.78 0.156 ± 0.003 95.37 ± 0.62
EfficientNet-B4 0.135 ± 0.001 95.33 ± 0.45 0.432 ± 0.006 95.06 ± 0.47 0.136 ± 0.003 95.38 ± 0.70

DLS4
DenseNet201 0.175 ± 0.001 94.39 ± 0.45 0.251 ± 0.003 95.05 ± 0.72 0.180 ± 0.003 95.16 ± 0.71
EfficientNet-B4 0.178 ± 0.001 95.06 ± 0.46 0.363 ± 0.008 94.97 ± 0.63 0.179 ± 0.003 95.16 ± 0.69

DLS5
DenseNet201 0.269 ± 0.001 96.93 ± 0.34 0.283 ± 0.003 95.21 ± 0.59 0.252 ± 0.003 95.20 ± 0.67
EfficientNet-B4 0.320 ± 0.001 99.32 ± 0.14 0.552 ± 0.012 94.70 ± 0.64 0.253 ± 0.003 95.10 ± 0.65

• OCT - Six degrees of freedom (6DoF) needle pose estimation on optical coherence to-
mography (OCT). This dataset contains 5,000 3D-OCT scans with the accompanying
needle pose y ∈ [0, 1]6, from which we use 3300/850/850 for training/validation/testing
(Laves et al., 2020).

• DLS - This dataset is designed to facilitate the detection and classification of de-
generative lumbar spine (DLS) conditions using MRI images. Each image includes
annotations for the (x, y) positions of five vertebrae. For each vertebra, the dataset is
divided into 60% for training, 20% for validation, and 20% for testing, with approxi-
mately 10,000 images per vertebra (Richards et al., 2024).
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Figure 1: Histograms of the normalized network prediction values computed on the valida-
tion sets using DenseNet-201.

Implementation details. The network architectures used were EfficientNet-B4 (Tan
and Le, 2019) and DenseNet-201 (He et al., 2016; Guo et al., 2017), which are the state-of-
the-art for deep models. The last linear layer of all networks was replaced by two linear layers
predicting the mean and log-variance. The networks were trained until no further decrease
of the loss on the validation set could be observed. To implement the CQR algorithm, we
used the code from the CQR project GitHub1. CQR is trained to minimize the average
length while keeping the coverage valid. For reproducibility, we have made Gaussian-VS
and CP-VS code available2.

Evaluation measures. The standard direct way to evaluate the performance of
confidence-interval estimators on a given test set (x1, y1), ..., (xn, yn) is by computing the de-
gree of coverage and the average length of the prediction intervals. Smaller average interval
widths indicate higher precision. The length and coverage are formally defined as:

length =
1

n

∑
i

|C(xi)|, coverage =
1

n

∑
i

1(yi ∈ C(xi))

such that C(xi) is the confidence interval of xi and |C(xi)| is its length. The best algorithm
is the one that reports the minimal average interval length among those that satisfy the
coverage requirement.

Results. Table 1 shows the comparative calibration results (length and coverage) for
the three methods (Gaussian-VS, CQR and CP-VS) on the test set. The results were
averaged over 20 random splits of the data into validation and test sets. Both CP-VS and
CQR, which apply a CP procedure, obtained the exact required coverage, as guaranteed
by the CP theorem. However, the average length reported by the CQR was much larger
due to the non-robust training of the QR algorithm. The coverage rate of Gaussian-VS was
inconsistent. In some cases, it was below the required coverage (1 − α); in other cases, it
was above (resulting in a large average interval). Note that Gaussian-VS has no theoretical
coverage guarantee.

Visual examples. We next illustrate the proposed method on several examples. Figure
2 shows examples from the BoneAge dataset. The figures illustrate the same trend that

1. https://github.com/yromano/cqr
2. https://anonymous.4open.science/r/Calibrated-Instance-Dependent-95F9
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was reported in Tables 1 and 2, namely that the CP-VS yields confidence intervals with the
smallest size.

Normality check. We next analyzed whether the output distribution of the Gaussian
network was indeed Gaussian for each dataset. For each image x in the validation set, we
computed the scalar (y − µ(x))/σ(x) such that y was the correct value and µ(x) and σ(x)
were predicted by the network. Note that y ∼ N (µ(x), σ2(x)) implies that (y−µ(x))/σ(x) ∼
N (0, 1). The histograms of the three datasets (BoneAge, OCT and DLS) are shown in Fig. 1.
We also applied the Kolmogorov–Smirnov test to check the data’s normality and obtained
0.018 (BoneAge), 1.42e-60 (OCT), and 0.001 (DLS1). Hence, the BoneAge task histogram
was the only one that resembled a Normal distribution and passed the Gaussianity test.
We can see in Table 1 and Table 2 that when the normal assumption is valid, Gaussian-
VS works well and produces an effective confidence interval. However, when the normal
assumption fails Gaussian-VS has inconsistent behaviors. In some cases it doesn’t satisfy
the coverage requirement and in other cases it yields large confidence intervals.

(a) (b) (c)

Figure 2: Samples from the BoneAge test set. (a) Target is 0.47, intervals are - Gaussian-
VS: [0.37,0.57], CP-VS: [0.38,0.56], CQR: [0.20,0.83]. (b) Target is 0.76, intervals
are - Gaussian-VS: [0.67,0.79], CP-VS: [0.68,0.78], CQR: [0.23,0.81]. (c) Tar-
get is 0.21, intervals are - Gaussian-VS: [0.17,0.31], CP-VS: [0.17,0.31], CQR:
[0.24,0.90].

5. Conclusions

To conclude, in this study, we focused on reporting a reliable prediction uncertainty of a
regression network in the form of a confidence interval that varies in size across the images
and reflects instance-specific uncertainty. We showed that Gaussian-VS cannot be used in
medical applications since its confidence interval has no statistical meaning. We also showed
that CQR achieves poor results in terms of average interval length. We demonstrated
that CP-VS, which is based on training a network using a Gaussian loss followed by a
distribution-free calibration based on CP, achieved the best results. We focused here on
medical imaging applications but the conclusions are general and relevant for calibration of
any regression network.
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