
Published as a conference paper at ICLR 2026

ADAPTIVE WIDTH NEURAL NETWORKS

Federico Errica
NEC Laboratories Europe
federico.errica@neclab.eu

Henrik Christiansen
NEC Laboratories Europe

Viktor Zaverkin
NEC Laboratories Europe

Mathias Niepert
University of Stuttgart
NEC Laboratories Europe

Francesco Alesiani
NEC Laboratories Europe

ABSTRACT

For almost 70 years, researchers have typically selected the width of neural net-
works’ layers either manually or through automated hyperparameter tuning meth-
ods such as grid search and, more recently, neural architecture search. This paper
challenges the status quo by introducing an easy-to-use technique to learn an un-
bounded width of a neural network’s layer during training. The method jointly
optimizes the width and the parameters of each layer via standard backpropagation.
We apply the technique to a broad range of data domains such as tables, images,
text, sequences, and graphs, showing how the width adapts to the task’s difficulty.
A by product of our width learning approach is the easy truncation of the trained
network at virtually zero cost, achieving a smooth trade-off between performance
and compute resources. Alternatively, one can dynamically compress the network
until performances do not degrade. In light of recent foundation models trained on
large datasets, requiring billions of parameters and where hyper-parameter tuning is
unfeasible due to huge training costs, our approach introduces a viable alternative
for width learning.

1 INTRODUCTION

Since the construction of the Mark I Perceptron machine (Rosenblatt, 1958) the effective training
of neural networks has remained an open research problem of great academic and practical value.
The Mark I solved image recognition tasks with a layer of 512 fixed “association units” that in
modern language are the hidden units of a Multi-Layer Perceptron (MLP). MLPs possess universal
approximation capabilities when assuming arbitrary width (Cybenko, 1989) and sigmoidal activations,
and their convergence to good solutions was studied, for instance, in Rumelhart et al. (1986) where
the backpropagation algorithm was introduced as “simple, easy to implement on parallel hardware”,
and improvable by other techniques such as momentum that preserve locality of weight updates.

Yet, after almost 70 years of progress (LeCun et al., 2015), the vast majority of neural networks, be
they shallow or deep, still rely on a fixed choice of the number of neurons in their hidden layers.
The width is typically treated as one of the many hyper-parameters that have to be carefully tuned
whenever we approach a new task (Wolpert, 1996). The tuning process has many names, such as
model selection, hyper-parameter tuning, and cross-validation, and it is associated with non-negligible
costs: Different architectural configurations are trained until one that performs best on a validation set
is selected (Mitchell, 1997). The configurations’ space grows exponentially in the number of layers,
so practitioners often resort to shortcuts such as picking a specific number of hidden units for all layers
and trying a few values, which greatly reduces the search space together with the chances of selecting
a better architecture for the task. Other techniques to tune hyper-parameters include constructive
approaches (Fahlman & Lebiere, 1989; Wu et al., 2020), which alternate parameter optimization
and creation of new neurons, natural gradient-based heuristics that dynamically modify the network
(Mitchell et al., 2023), bi-level optimization (Franceschi et al., 2018), and neural architecture search
(White et al., 2023), which often requires separate training runs for each configuration.

1

Published as a conference paper at ICLR 2026

The hyper-parameters’ space exploration problem is exacerbated by the steep increase in size of recent
neural architectures for language (Brown et al., 2020) and vision (Zhai et al., 2022), for example,
where parameters are in the order of billions to accommodate for a huge dataset. Training these
models requires an amount of time, compute power, and energy that currently makes it unfeasible
for most institutions to perform a thorough model selection and find good width parameters; the
commonly accepted compromise is to stick to previously successful hyper-parameter choices. This
may also explain why network pruning (Blalock et al., 2020; Mishra et al., 2021), distillation (Zhang
et al., 2019) and quantization (Mishra et al., 2021) techniques have recently been in the spotlight, as
they trade-off hardware requirements and performance.

This work introduces a simple and easy to use technique to learn the width of each neural network’s
layer without imposing upper bounds (we refer to it as unbounded width). The width of each
layer is dynamically adjusted during backpropagation (Paszke et al., 2017), and it only requires a
slight modification to the neural activations that does not alter the ability to parallelize computation.
The technical strategy is to impose a soft ordering of hidden units by exploiting any monotonically
decreasing function with unbounded support on natural numbers. With this, we do not need to fix a
maximum number of neurons, which is typical of orthogonal approaches like supernetworks (White
et al., 2023). As a by-product, we can achieve a straightforward trade-off between parametrization
and performance by deleting the last rows/columns of weight matrices, i.e., removing the “least
important” neurons from the computation. Finally, we break symmetries in the parametrization
of neural networks: it is not possible anymore to obtain an equivalent neural network behavior by
permuting the weight matrices, which reduces the “jostling” effect where symmetric parametrizations
compete when training starts (Barber, 2012).

We test our method on MLPs for tabular data, a Convolutional Neural Network (CNN) (LeCun
et al., 1989) for images, a Transformer (Vaswani et al., 2017) for text, a Recurrent Neural Network
(RNN) for sequences, and a Deep Graph Network (DGN) (Micheli, 2009; Scarselli et al., 2009) for
graphs, showcasing a broad scope of applicability as MLPs are ubiquitous in modern architectures.
Empirical results show, as may be intuitively expected, that the width adapts to the task’s difficulty
with performances comparable to fixed-width baseline. We also encourage compression of the
network at training time while preserving accuracy, as well as a post-hoc truncation inducing a
controlled trade-off at zero additional cost. Ablations suggest that the learned width is not influenced
by the starting width (under bounded activations) nor by the batch size, advocating for a potentially
large reduction of the hyper-parameter configuration space.

2 RELATED WORK

Constructive methods dynamically learn the width of neural networks and are related in spirit to this
work. The cascade correlation algorithm (Fahlman & Lebiere, 1989) alternates standard training with
the creation of a new hidden unit minimizing the neural network’s residual error. Similarly, the firefly
network descent (Wu et al., 2020) grows the width and depth of a network every N training epochs
via gradient descent on a dedicated loss. Yoon et al. (2018) propose an ad-hoc algorithm for lifelong
learning that grows the network by splitting and duplicating units to learn new tasks. Wu et al. (2019)
alternate training the network and then splitting existing neurons into offspring with equal weights.
These works mostly focus on growing the neural network; Mitchell et al. (2023) propose natural
gradient-based heuristics to grow/shrink layers and hidden units of MLPs and CNNs. The main
difference from our work is that we grow and shrink the network by simply computing the gradient
of the loss, without relying on human-defined heuristics. The unbounded depth network of Nazaret
& Blei (2022), from which we draw inspiration, learns the number of layers of neural networks.
Compared to that work, we focus our attention to the number of neurons, modifying the internals
of the architecture rather than instantiating a multi-output one. In particular: i) learning the width
requires a different formulation of the evidence lower-bound; and ii) the importance distribution
needs to be monotonically decreasing, which does not encode the right inductive bias for the depth of
a neural network. We also mention Bayesian nonparametric approaches (Orbanz & Teh, 2010) that
learn a potentially infinite number of clusters in an unsupervised fashion, as well as dynamic neural
networks (Han et al., 2021) that condition the architecture on input properties. Finally, the work of
Caron et al. (2025) investigates, in a similar spirit to this work, how to introduce decreasing rescaling
of the pre-activations of neurons in the context of very wide networks; the authors provide interesting
global convergence results in the Neural Tangent Kernel (NTK) regime.

2

Published as a conference paper at ICLR 2026

Orthogonal Methods Neural Architecture Search (NAS) is an automated process that designs
neural networks for a given task (Elsken et al., 2019b; White et al., 2023) and has been applied to
different contexts (Zoph et al., 2018; Liu et al., 2019; So et al., 2019). Typically, neural network
elements are added, removed, or modified based on validation performance (Elsken et al., 2019a;
White et al., 2021; 2023), by means of reinforcement learning (Zoph & Le, 2016), evolutionary
algorithms (Real et al., 2019), and gradient-based approaches (Liu et al., 2019). Typical NAS methods
require enormous computational resources, sometimes reaching thousands of GPU days (Zoph &
Le, 2016), due to the retraining of each new configuration. While recent advances on one-shot NAS
models (Brock et al., 2018; Pham et al., 2018; Bender et al., 2018; Berman et al., 2020; Su et al.,
2021b;a) have drastically reduced the computational costs, they mostly focus on CNNs, assume
a bounded search space, and do not learn the width. As such, NAS methods are complementary
to our approach. Bi-level optimization algorithms have also been used for hyper-parameter tuning
(Franceschi et al., 2018), where hyper-parameters are the variables of the outer objective and the
model parameters those of the inner objective. The solution sets of the inner problem are usually
not available in closed form, which has been partly addressed by repeated application of (stochastic)
gradient descent (Domke, 2012; Maclaurin et al., 2015; Franceschi et al., 2017). These methods are
restricted to continuous hyper-parameters’ optimization and cannot be applied to width optimization.
Finally, pruning (Blalock et al., 2020) and distillation (Hinton et al., 2015) are two methods that
reduce the size of neural networks by trading-off performances; the former deletes neural connections
(Mishra et al., 2021) or entire neurons (Valerio et al., 2022; Dufort-Labbé et al., 2024), the latter trains
a smaller network (student) to mimic a larger one (teacher) (Gou et al., 2021). In particular, dynamic
pruning techniques can compress the network at training time (Guo et al., 2016), by applying hard
or soft masks (He et al., 2018); for a comprehensive survey on pruning, please refer to (He & Xiao,
2023). It is worth mentioning the pruning strategy of Wolinski et al. (2020), which promotes learning
in some neurons and penalizes others by appropriate rescaling of a potentially (infinite-dimensional)
input; this work shares conceptual similarities with the our approach, though it does not consider
learning the rescaling factor as a proxy for the width. Compared to most pruning approaches, our work
can delete connections and reduce the model’s memory, but also grow it indefinitely; compared to
distillation, we do not necessarily need a new training to compress the network. These techniques can
be easily combined with our approach, whose main goal is not compression but rather the automatic
adaptation of a neural network’s width.

3 ADAPTIVE WIDTH LEARNING

We now introduce Adaptive Width Neural Networks (AWN), a probabilistic framework that maxi-
mizes a simple variational objective via backpropagation over a neural network’s parameters.

We are given a dataset of N i.i.d. samples, with input x ∈ RF , F ∈ N+ and target y whose domain
depends on whether the task is regression or classification. For samples X ∈ RN×F and targets Y ,
the learning objective is to maximize the log-likelihood

log p(Y |X) = log

N∏
i=1

p(yi|xi) =

N∑
i=1

log p(yi|xi) (1)

with respect to the learnable parameters of p(y|x).
We define p(y|x) according to the graphical model of Figure 1 (left), to learn a neural network
with unbounded width for each hidden layer ℓ. To do so, we assume the existence of an infinite
sequence of i.i.d. latent variables θℓ = {θℓn}∞n=1, where θℓn is a multivariate variable over the
learnable weights of neuron n at layer ℓ. However, since working with an infinite-width layer is not
possible in practice, we also introduce a latent variable λℓ that samples how many neurons to use
for layer ℓ. That is, it truncates an infinite width to a finite value so that we can feasibly perform
inference with the neural network. For a neural network of L layers, we define θ = {θℓ}Lℓ=1 and
λ = {λℓ}Lℓ=1, assuming independence across layers. Therefore, by marginalization one can write
p(Y |X) =

∫
p(Y,λ,θ|X)dλdθ.

3

Published as a conference paper at ICLR 2026

fℓ

. . .

dynamic
truncation
level Dℓ

neuron ID1 Dℓ

ℓ ∈ {1, ..., L}

n ∈ {1, ...,∞}

xi

yi

i ∈ {1, ..., N}

λℓ

∞

∑
σ

...

×fℓ(1)

layer ℓ

hi
dd

en
un

its

∑
σ ×fℓ(Dℓ)

∑
σ ×fℓ(2)

θℓn

Figure 1: (Left) The graphical model of AWN, with dark observable random variables and white
latent ones. (Middle) The distribution fℓ over hidden units’ importance at layer ℓ is parametrized by
λℓ. The width of layer ℓ is chosen as the quantile function of the distribution fℓ evaluated at k and
denoted by Dℓ. (Right) The hidden units’ activations at layer ℓ are rescaled by their importance.

We then decompose the joint distribution using the independence assumptions of the graphical model:

p(Y,λ,θ|X) =

N∏
i=1

p(yi,λ,θ|xi) p(yi,λ,θ|xi) = p(yi|λ,θ, xi)p(λ)p(θ) (2)

p(λ) =

L∏
ℓ=1

p(λℓ) =

L∏
ℓ=1

N (λℓ;µ
λ
ℓ , σ

λ
ℓ) p(θ) =

L∏
ℓ=1

∞∏
n=1

p(θℓn)=
L∏

ℓ=1

∞∏
n=1

N (θℓn;0, diag(σθ
ℓ))

(3)
p(yi|λ,θ, xi) = Neural Network as will be introduced in Section 3.1 (4)

where σθ
ℓ , µ

λ
ℓ , σ

λ
ℓ are hyper-parameters. For simplicity, we assumed a Gaussian prior for λ, but

please note that, when strict positivity is required, one should formally turn to Folded Normal priors.
The neural network is parametrized by realizations λ ∼ p(λ),θ ∼ θ – it relies on a finite number of
neurons as detailed later and in Section 3.1 – and it outputs either class probabilities (classification) or
the mean of a Gaussian distribution (regression) to parametrize p(yi|λ,θ, xi) depending on the task.
Maximizing Equation (1), however, requires computing the evidence

∫
p(Y,λ,θ|X)dλdθ, which is

intractable. Therefore, we turn to mean-field variational inference (Jordan et al., 1999; Blei et al.,
2017) to maximize an expected lower bound (ELBO) instead. This requires to define a variational
distribution over the latent variables q(λ,θ) and re-phrase the objective as:

log p(Y |X) ≥ Eq(λ,θ)

[
log

p(Y,λ,θ|X)

q(λ,θ)

]
, (5)

where q(λ,θ) is parametrized by learnable variational parameters. Before continuing, we define the
truncated width Dℓ, that is the finite number of neurons at layer ℓ, as the quantile function evaluated
at k, with k a hyper-parameter, of a distribution1 fℓ with infinite support over N+ and parametrized
by λℓ; Appendix A provides desirable properties of fℓ in a similar vein to Nazaret & Blei (2022).
In other words, we find the integer such that the cumulative mass function of fℓ takes value k, and
that integer Dℓ is the truncated width of layer ℓ. We implement fℓ as a discretized exponential
distribution adhering to Def. A.2, following the discretization strategy of Roy (2003): For every
x ∈ N+, the discretized distribution relies on the exponential’s cumulative distribution function:

fℓ(x;λℓ) = (1− e−λℓ(x+1))− (1− e−λℓx). (6)

We choose the exponential because it is a monotonically decreasing function and allows us to impose
an ordering of importance among neurons, as detailed in Section 3.1.
Then, we can factorize the variational distribution q(λ,θ) into:

q(λ,θ) = q(λ)q(θ|λ) q(λ) =

L∏
ℓ=1

q(λℓ) =

L∏
ℓ=1

N (λℓ; νℓ, 1) (7)

q(θ|λ) =
L∏

ℓ=1

Dℓ∏
n=1

q(θℓn)

∞∏
n′=Dℓ+1

p(θℓn′) q(θℓn) = N (θℓn; ρℓn, I). (8)

1General functions are allowed if a threshold can be computed.

4

Published as a conference paper at ICLR 2026

Here, νℓ, ρℓn are learnable variational parameters and, as before, we define ρℓ = {ρℓn}Dℓ

n=1, ρ =

{ρℓ}Lℓ=1 and ν = {νℓ}Lℓ=1. Note that the set of variational parameters is finite as it depends on Dℓ.

By expanding Equation 5 using the above definitions and approximating the expectations at the first
order, i.e., Eq(λ)[f(λ)]=f(ν) and Eq(θ|λ)[f(θ)] = f(ρ) as in Nazaret & Blei (2022), we obtain the
final form of the ELBO (the full derivation is in Appendix C):

L∑
ℓ

log
p(νℓ;µ

λ
ℓ , σ

λ
ℓ)

q(νℓ; νℓ)
+

L∑
ℓ

Dℓ∑
n=1

log
p(ρℓn;σ

θ
ℓ)

q(ρℓn; ρℓn)
+

N∑
i=1

log p(yi|λ=ν,θ=ρ, xi), (9)

where distributions’ parameters are made explicit to distinguish them. The first two terms in the ELBO
regularize the width of the layers and the magnitude of the parameters when priors are informative,
whereas the third term accounts for the predictive performance.
In practice, the finite variational parameters ν,ρ are those used to parametrize the neural network
rather than sampling λ,θ, which enables easy optimization via backpropagation. Maximizing
Equation (9) will update each variational parameter νℓ, which in turn will change the value of Dℓ

during training. If Dℓ increases we initialize new neurons and draw their weights from a standard
normal distribution, otherwise we discard the weights of the extra neurons. When implementing
mini-batch training, the predictive loss needs to be rescaled by N/M , where M is the mini-batch size.
From a Bayesian perspective, this is necessary as regularizers should weigh less if we have more data.

Compared to a fixed-width network with weight decay, we need to choose the priors’ values of
µλ
ℓ , σ

λ
ℓ , as well as initialize the learnable νℓ. The latter can be initially set to same value across layers

since they can freely adapt later, or it can be sampled from the prior p(λℓ). Therefore, we have two
more hyper-parameters compared to the fixed-width network, but we make some considerations: i)
it is always possible to use an uninformative prior over λℓ, removing the extra hyper-parameters
letting the model freely adapt the width of each layer (as is typical of frequentist approaches); ii) the
choice of higher level of hyper-parameters is known to be less stringent than that of hyper-parameters
themselves (Goel & Degroot, 1981; Bernardo & Smith, 2009), so we do not need to explore many
values of µλ

ℓ and σλ
ℓ ; iii) our experiments suggest that AWN can converge to similar widths regardless

of the starting point νℓ, so that we may just need to perform model selection over one/two sensible
initial values; iv) the more data, the less the priors will matter.

3.1 IMPOSING A SOFT ORDERING ON NEURONS’ IMPORTANCE

Now that the learning objective has been formalized, the missing ingredient is the definition of the
neural network p(yi|λ=ν,θ=ρ, xi) of Equation 4 as a modified MLP. Compared to a standard MLP,
we use the variational parameters ν that affect the truncation width at each hidden layer, whereas
ρ are the weights. We choose a monotonically decreasing function fℓ, thus when a new neuron is
added its relative importance is low and will not drastically impact the network output and hidden
activations. In other words, we impose a soft ordering of importance among neurons.
We simply modify the classical activation hℓ

j of a hidden neuron j at layer ℓ as

hℓ
j = σ

Dℓ−1∑
k=1

wℓ
jkh

ℓ−1
k

 fℓ(j; νℓ), (10)

where Dℓ−1 is the truncated width of the previous layer, σ is a non-linear activation function and
wℓ

jk ∈ ρℓj . That is, we rescale the activation of each neuron k by its “importance" fℓ(j; νℓ). Note
that the bias parameter is part of the weight vector as usual.

It is easy to see that, in theory, the optimization algorithm could rescale the weights of the next
layer by a factor 1/fℓ(j; νℓ) to compensate for the term fℓ(j; νℓ). This could lead to a degenerate
situation where the activations of the first neurons are small relative to the others, thus breaking the
soft-ordering and potentially wasting neurons. There are two strategies to address this undesirable
effect. The first is to regularize the magnitude of the weights thanks to the prior p(θℓ+1n), so that it
may be difficult to compensate for the least important neurons that have a high 1/fℓ(j). The second
and less obvious strategy is to prevent the units’ activations of the current layer to compensate for
high values by bounding their range, e.g., using a ReLU6 or tanh activation (Sandler et al., 2018). We
apply both strategies to our experiments, although we noted that they do not seem strictly necessary
in practice.

5

Published as a conference paper at ICLR 2026

3.2 RESCALED WEIGHT INITIALIZATION FOR DEEP AWN

Rescaling the activations of hidden units using Equation 10 causes activations of deeper layers to
quickly decay to zero for an AWN MLP with ReLU nonlinearity initialized using the well known
Kaiming scheme (He et al., 2015). This affects convergence since gradients get close to zero and
it becomes slow to train deep AWN MLPs. We therefore derive a rescaled Kaiming weight that
guarantees that the variance of activation across layers is constant at initialization.
Theorem 3.1. Consider an MLP with activations as in Equation 10 and ReLU nonlinearity. At ini-
tialization, given αℓ

j = σ
(∑Dℓ−1

k=1 wℓ
jkh

ℓ−1
k

)
,Var[wℓ

jk] =
2∑Dℓ−1

j=1 f2
ℓ (j)

⇒ Var[αℓ
j] ≈ Var[αℓ−1

j].

Proof. See Appendix E for an extended proof.

The extended proof shows there is a connection between the variance of activations and the variance of
gradients. In particular, the sufficient conditions over Var[wℓ

j∗] are identical if one initializes νℓ in the
same way for all layers. Therefore, if we initialize weights from a Gaussian distribution with standard
deviation

√
2√∑Dℓ−1

j=1 f2
ℓ (j)

, we guarantee that at initialization the variance of the deep network’s gradi-

ents will be constant. The effect of the new initialization (dubbed “Kaiming+”) can be seen in Figure 7,
where the distribution of activation values at initialization does not collapse in subsequent layers. This
change drastically impacts overall convergence on the SpiralHard synthetic dataset (described in Sec-
tion 4), where it appears it would be otherwise hard to converge using a standard Kaiming initialization.

Algorithm 1 AWN Training Procedure
1: Input: Dataset D, initialized AWN modelM (Section 3.2)
2: Output: Trained AWN ModelM
3: for each training epoch do
4: for batch in D do
5: update_width(M)
6: ŷ ←M(batch)
7: loss← ELBO(M, batch, ŷ) // Eq. 9
8: M← backpropagation(M, loss)
9: function update_width(M):

10: for layer ℓ inM.hidden_layers do
11: Dℓ ← quantile function of fℓ(·; νℓ) evaluated at k
12: Use Dℓ to update ρℓ,ρℓ+1 // add/remove neurons

Algorithm 1 summarizes the main
changes to the training procedure,
namely the new initialization and the
update of the model’s truncated width
at each training step.

3.3 FUTURE
DIRECTIONS AND LIMITATIONS

MLPs are ubiquitous in modern deep
architectures. They are used at
the very end of CNNs, in each
Transformer layer, and they process
messages coming from neighbors in
DGNs. Our experiments focus on
MLPs to showcase AWN’s broad ap-
plicability, but there are many other scenarios where one can apply AWN’s principles. For instance,
one could impose a soft ordering of importance on CNNs’ filters at each layer, therefore learning the
number of filters during training. However, doing so would require a distinct formalization, which is
why this lies beyond the scope of the present work.
From a more theoretical perspective, we believe one could draw connections between our technique
and the Information Bottleneck principle (Tishby et al., 2000), which seeks maximally representative
(i.e., performance) and compact representations (e.g., width). In addition, we could try to revisit
the theoretical results of Caron et al. (2025) in the NTK regime to better understand convergence
properties of adaptive-width neural networks. since both are based on asymmetric rescaling of
activations.

4 EXPERIMENTS AND SETUP

The purpose of the empirical analysis is not to claim AWN is generally better than the fixed-width
baseline. Rather, we demonstrate how AWN overcomes the problem of fixing the number of neurons
by learning it end-to-end, thus reducing the amount of hyper-parameter configurations to test. As
such, due to the nature of this work and similarly to Mitchell et al. (2023), we use the remaining
space to thoroughly study the behavior of AWN, so that it becomes clear how to use it in practice. We
first quantitatively verify that AWN does not harm the performance compared to baseline models and
compare the chosen width by means of grid-search model selection with the learned width of AWN.

6

Published as a conference paper at ICLR 2026

Second, we check that AWN chooses a larger width for harder tasks, which can be seen as increasing
the hypotheses space until the neural network finds a good path to convergence. Third, we verify
that convergence speed is not significantly altered by AWN, so that the main limitation lies in the
extra overhead for adapting the network at each training step. As a sanity check, we study conditions
under which AWN’s learned width does not seem to depend on starting hyper-parameters, so that
their choice does not matter much. In addition, we analyze other practical advantages of training
a neural network under the AWN framework: the ability to compress information during training
or post training, and the resulting trade-offs. Finally, we analyze the impact of different families of
functions fℓ(j; νℓ) compared to the exponential mainly used in this work. Further analyses are in the
Appendix.

We compare baselines that undergo proper hyper-parameter tuning (called “Fixed”) against its AWN
version, where we replace any fixed MLP with an adaptive one. First, we train an MLP on 3 synthetic
tabular tasks of increasing binary classification difficulty, namely a double moon, a spiral, and a
double spiral that we call SpiralHard. A stratified hold-out split of 70% training/10% validation/20%
test for risk assessment is chosen at random for these datasets. Then, we consider 3 larger real-world
tabular tasks with higher feature dimensionality, namely pol, MiniBooNE, and credit card clients
(Beyazit et al., 2023). Similarly, we consider a ResNet-20 (He et al., 2016) trained on 3 image
classification tasks, namely MNIST (LeCun, 1998), CIFAR10, and CIFAR100 (Krizhevsky, 2009),
where data splits and preprocessing are taken from the original paper and AWN is applied to the
downstream classifier. In the sequential domain, we implemented a basic adaptive Recurrent Neural
Network (RNN) and evaluated on the PMNIST dataset (Zenke et al., 2017) with the same data split as
MNIST. In the graph domain, we train a Graph Isomorphism Network (Xu et al., 2019) on the NCI1
and REDDIT-B classification tasks, where topological information matters, using the same split and
evaluation setup of Errica et al. (2020). Here, the first 1 hidden layer MLP as well as the one used
in each graph convolutional layer are replaced by adaptive AWN versions. On all these tasks, the
metric of interest is the accuracy. Finally, for the textual domain we train a Transformer architecture
(Vaswani et al., 2017) on the Multi30k English-German translation task (Elliott et al., 2016), using a
pretrained GPT-2 Tokenizer, and we evaluate the cross-entropy loss over the translated words. On
tabular, image, and text-based tasks, an internal validation set (10%) for model selection is extracted
from the union of outer training and validation sets, and the best configuration chosen according to
the internal validation set is retrained 10 times on the outer train/validation/test splits, averaging test
performances after an early stopping strategy on the validation set. Due to space reasons, we report
datasets statistics and the hyper-parameter tried for the fixed and AWN versions in Appendix F and
G, respectively2. We ran the experiments on a server with 64 cores, 1.5TB of RAM, and 4 NVIDIA
A40 with 48GB of memory.

5 RESULTS

We begin by discussing the quantitative results of our experiments: Table 1 reports means and
standard deviations across the 10 final training runs. In terms of performance, we observe that AWN
is more stable or accurate than a fixed MLP on tabular and sequential datasets; all other things being
equal, it seems that using more neurons and their soft ordering are the main contributing factors to
these improvements. On the image datasets, performances of AWN are comparable to those of the
fixed baseline but for CIFAR100, due to an unlucky run that did not converge. There, AWN learns a
smaller total width compared to grid search.

Results on graph datasets are interesting in two respects: First, the performance on REDDIT-B is
significantly improved by AWN both in terms of average performance and stability of results; second,
and akin to PMNIST, the total learned width is significantly higher than those tried in Xu et al. (2019);
Errica et al. (2020), meaning a biased choice of possible widths had a profound influence on risk
estimation for DGN models (i.e., GIN). This result makes it evident that it is important to let the
network decide how many neurons are necessary to solve the task. Appendix H shows what happens
when we retrain Fixed baselines using the total width as the width of each layer.
Finally, the results on the Multi30k show that the AWN Transformer learns to use 200x parameters
less than the fixed Transformer for the feed-forward networks, achieving a statistically comparable

2Code to reproduce results is available at https://github.com/nec-research/
Adaptive-Width-Neural-Networks.

7

https://github.com/nec-research/Adaptive-Width-Neural-Networks
https://github.com/nec-research/Adaptive-Width-Neural-Networks

Published as a conference paper at ICLR 2026

Table 1: Performances and total width of MLP layers for the fixed and AWN versions of the various
models used. The exact width chosen by model selection on the graph datasets is unknown since we
report published results. “Linear" means the chosen downstream classifier is a linear model.

Fixed AWN Width
(Fixed)

Width
(AWN)

Mean (Std) Mean (Std) Mean (Std)

DoubleMoon 100.0 (0.0) 100.0 (0.0) 8 8.1 (2.8)
Spiral 99.5 (0.5) 99.8 (0.1) 16 65.9 (8.7)
SpiralHard 98.0 (2.0) 100.0 (0.0) 32 227.4 (32.4)
pol 99.3 (0.2) 99.2 (0.1) 48 84 (11.0)
MiniBooNE 92.9 (0.3) 93.2 (0.1) 32 53 (11.1)
credit card 81.6 (0.1) 81.8 (0.1) 16 51 (12.0)
PMNIST 91.1 (0.4) 95.7 (0.2) 24 806.3 (44.5)
MNIST 99.6 (0.1) 99.7 (0.0) Linear 19.4 (4.8)
CIFAR10 91.4 (0.2) 91.4 (0.2) Linear 80.1 (12.4)
CIFAR100 66.5 (0.4) 63.1 (4.0) 256 161.9 (57.8)
NCI1 80.0 (1.4) 80.0 (1.1) (96-320) 731.3 (128.2)
REDDIT-B 87.0 (4.4) 90.2 (1.3) (96-320) 793.6 (574.0)
Multi30k (↓) 1.43 (0.4) 1.51 (0.2) 24576 123.2 (187.9)

test loss. This result is appealing when read through the lenses of modern deep learning, as the power
required by some neural networks such as Large Language Models (Brown et al., 2020) is so high
that cannot be afforded by most institutions, and it demands future investigations.

Adaptation to Task Difficulty and Convergence Intuitively, one would expect that AWN learned
larger widths for more difficult tasks. This is indeed what happens on the tabular datasets (and image
datasets, see Appendix I) where some tasks are clearly harder than others. Figure 2 (left) shows
that, given the same starting width per layer, the learned number of neurons grows according to
the task’s difficulty. It is also interesting to observe that the total width for a multi-layer MLP on
SpiralHard is significantly lower than that achieved by a single-layer MLP, which is consistent with
the circuit complexity theory arguments put forward in Bengio et al. (2006); Mhaskar et al. (2017). It
also appears that convergence is not affected by the introduction of AWN, as investigated in Figure
2 (right), which was not obvious considering the parametrization constraints encouraged by the
rescaling of neurons’ activations.

100 101 102 103

Epoch

100

101

102

103

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

DoubleMoon
Spiral
SpiralHard (L=1)
SpiralHard (L=2)

100 101 102 103

Epoch

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Dataset
DoubleMoon
Spiral
SpiralHard (L=1)
SpiralHard (L=2)
Network
AWN
Fixed

Figure 2: (Left) The learned width adapts to the increasing difficulty of the task, from the DoubleMoon
to SpiralHard. (Right) AWN reaches perfect test accuracy with a comparable amount of epochs on
DoubleMoon and Spiral, while it converges faster on SpiralHard.

Training Stability Analysis To support our argument that AWN can reduce the time spent per-
forming hyper-parameter selection, we check whether AWN learns a consistent amount of neurons
across different training runs and hyper-parameter choices. Figure 3 reports the impact of the batch
size and starting width averaged across the different configurations tried during model selection.
Smaller batch sizes cause more instability, but in the long run we observe convergence to a similar

8

Published as a conference paper at ICLR 2026

width. Convergence with respect to different rates holds, instead, for the bounded ReLU6 activation;
Appendix K shows that unbounded activations may cause the network to converge more slowly to the
same width, which is in accord with the considerations about counterbalancing the rescaling effect of
Section 3.1. Therefore, whenever possible, we recommend using bounded activations.

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Batch Size
32
128
256
512
1024

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Rate ν
0.001
0.005
0.01
0.05
0.1

Figure 3: Training converges to similar widths on SpiralHard for different batch sizes (left) and
starting rates ν, but the latter seems to require a bounded nonlinearity such as ReLU6 to converge in
a reasonable amount of epochs (right).

Online Network Compression via Regularization So far, we have used an uninformative prior
p(λ) over the neural networks’ width. We demonstrate the effect of an informative prior by performing
a width-annealing experiment on the SpiralHard dataset. We set an uninformative p(θ) and ReLU6
nonlinearity. At epoch 1000, we introduce p(λℓ) = N (λℓ; 0.05, 1), and gradually anneal the standard
deviation up to 0.1 at epoch 2500. Figure 4 shows that the width of the network reduces from
approximately 800 neurons to 300 without any test performance degradation. We hypothesize that the
least important neurons carry negligible information, therefore they can be safely removed without
drastic changes in the output of the model. This technique might be particularly useful to compress
large models with billions of parameters.

0 1000 2000 3000 4000 5000

Epoch

102

103

104

L
ea

rn
ed

H
id

d
en

N
eu

ro
n

s

Start: Width Regularization

0 1000 2000 3000 4000 5000

Epoch

60

70

80

90

100

A
cc

u
ra

cy
(%

)

0 1000 2500 5000

Epoch

0

1

2

lo
g
p
(ν

)
−

lo
g
q
(ν

)

Figure 4: It is possible to regularize the width at training time by increasing the magnitude of the loss
term log p(ν)

q(ν) . The total width is reduced by more than 50% (left) while preserving accuracy (right).
The inset plot refers to the loss term that AWN tries to maximize.

Post-hoc Truncation Achieves a Trade-off between Performance and Compute Resources To
further investigate the consequences of imposing a soft ordering among neurons, we show that it
is possible to perform straightforward post-training truncation while still controlling the trade-off
between performance and network size. Figure 5 shows an example for an MLP on the Spiral dataset,
where the range of activation values (Equation 10) computed for all samples follows an exponential
curve (right). Intuitively, removing the last neurons may have a negligible performance impact
at the beginning and a drastic one as few neurons remain. This is what happens, where we are
able to cut an MLP with hidden width 83 by 30% without loss of accuracy, after which a smooth
degradation happens. If one accepts such a trade-off, this technique may be used to “distill” a trained
neural network at virtually zero additional cost while reducing the memory requirements. Note that

9

Published as a conference paper at ICLR 2026

truncation heuristics that are either random or based on the magnitude of neurons’ activations (i.e.,
excluding the rescaling term) do not perform as well.

1
.0

0

0
.9

0

0
.8

0

0
.7

0

0
.6

0

0
.5

0

0
.4

0

0
.3

0

0
.2

0

0
.1

0

0
.0

1

Fraction of original neurons (83)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(%

)

AWN Truncation
Random Truncation
Magnitude-based Truncation

0 20 40 60 80

Neuron ID

0.00

0.05

0.10

0.15

A
ct

iv
at

io
n

V
al

ue
s

Figure 5: (Left) Thanks to the soft ordering imposed on the neurons, one can also truncate the neural
network after training by simply removing the last neurons. (Right) The distribution of neurons’
activations for all Spiral test samples follows an exponential-like curve.

Impact of Different Functions fℓ(j; νℓ) We conclude our main analyses with an ablation study
on the use of different decreasing functions fℓ(j; νℓ), considering the SpiralHard dataset, to un-
derstand how different functions have different properties. We tested: i) a Power Law distribution
fℓ(j; νℓ, α) = Z(j + jsat)

−νℓ , with Z being a normalizing term, initial νℓ ∈ [2., 3.] and low degree
saturation jsat chosen between [0., 2.]; ii) a sigmoid-like function fℓ(j; νℓ, b) = 1−σ(j−νℓ), where
σ is the sigmoidal activation, νℓ ∈ [128, 256] is the transition point.

The results are reported in Table 2. When averaged over all possible hyper-parameter configurations,
there is no significant deviation in performance between distribution, and there is always at least one
configuration attaining the best performance. However, the Power Law distribution introduces more
neurons than the exponential due to its long-tail. Instead, the Sigmoidal function tends to allocates
less neurons, but the drawback is the loss of the ability to truncate the network after training, since
the importance of neurons is very close to 1 before the transition point and the transition itself, for the
chosen fixed parameters, is relatively sharp. The choice of the function family fℓ(j; νℓ) remains an
interesting direction of further exploration, given that each family has different properties that might
be more or less suitable depending on the use cases.

Table 2: Analysis of the impact of different families of importance functions on SpiralHard validation
performance and learned width, averaged across different hyper-parameter configurations.

fℓ(j; νℓ) Mean Accuracy Max Accuracy Mean Total Width
Exponential 80.27 (19.9) 100.00 954.4 (1083.9)
Power Law 81.82 (16.6) 100.00 2952.4 (3371.6)
Sigmoidal 76.85 (18.3) 100.00 426.8 (268.4)

6 CONCLUSIONS

We introduced a new methodology to learn an unbounded width of neural network layers within a
single training, by imposing a soft ordering of importance among neurons. Our approach requires very
few changes to the architecture, adapts the width to the task’s difficulty, and does not impact negatively
convergence. We showed stability of convergence to similar widths under bounded activations for
different hyper-parameters configurations, advocating for a practical reduction of the width’s search
space. A by-product of neurons’ ordering is the ability to easily compress the network during or after
training, which is relevant in the context of foundational models trained on large data, which are
believed to require billions of parameters. Finally, we have tested AWN on different models and data
domains to prove its broad scope of applicability: a Transformer architecture achieved a similar loss
with 200x less parameters.

10

Published as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The code provided in the supplementary material relies on libraries for automatic experimentation,
which enforce reproducibility of the results. These libraries require that the user specifies every detail,
from data splitting strategies to hyper-parameter selection and final evaluations, and subsequently the
experiment is automatized and results are provided.

REFERENCES

David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In Proceedings of the 35th International Conference
on Machine Learning (ICML), 2018.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In Proceedings of the 20th Conference on Neural Information Processing Systems
(NIPS), 2006.

Maxim Berman, Leonid Pishchulin, Ning Xu, Matthew B Blaschko, and Gérard Medioni. Aows:
Adaptive and optimal network width search with latency constraints. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

José M Bernardo and Adrian FM Smith. Bayesian theory, volume 405. John Wiley & Sons, 2009.

Ege Beyazit, Jonathan Kozaczuk, Bo Li, Vanessa Wallace, and Bilal Fadlallah. An inductive bias for
tabular deep learning. In Proceedings of the 37th Conference on Neural Information Processing
Systems (NeurIPS), volume 36, 2023.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? In Proceedings of machine learning and systems (MLSys), 2020.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In 6th International Conference on Learning Representations
(ICLR), 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint,
abs/2005.14165, 2020.

Francois Caron, Fadhel Ayed, Paul Jung, Hoil Lee, Juho Lee, and Hongseok Yang. Over-
parameterised shallow neural networks with asymmetrical node scaling: Global convergence
guarantees and feature learning. Transactions on Machine Learning Research, 2025. ISSN
2835-8856.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Justin Domke. Generic methods for optimization-based modeling. In Proceedings of the 15th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

Simon Dufort-Labbé, Pierluca D’Oro, Evgenii Nikishin, Razvan Pascanu, Pierre-Luc Bacon, and
Aristide Baratin. Maxwell’s demon at work: Efficient pruning by leveraging saturation of neurons.
arXiv preprint, 2024.

11

Published as a conference paper at ICLR 2026

D. Elliott, S. Frank, K. Sima’an, and L. Specia. Multi30k: Multilingual english-german image
descriptions. In Proceedings of the 5th Workshop on Vision and Language, 2016.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In 7th International Conference on Learning Representations
(ICLR), 2019a.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20:1–21, 2019b.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. In 8th International Conference on Learning Representations
(ICLR), 2020.

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In Proceedings
of the 3rd Conference on Neural Information Processing Systems (NIPS), 1989.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In Proceedings of the 34th International Conference
on Machine Learning (ICML), 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In Proceedings of the 35th
International Conference on Machine Learning (ICML), 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010.

Prem K. Goel and Morris H. Degroot. Information about hyperparamters in hierarchical models.
Journal of the American Statistical Association, 76:140–147, 1981.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
Conference on Computer Vision (ICCV), pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 2023.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI), 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint, 2015.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37:183–233, 1999.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

12

Published as a conference paper at ICLR 2026

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In 7th
International Conference on Learning Representations (ICLR), 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. When and why are deep networks better than
shallow ones? In Proceedings of the AAAI conference on Artificial Intelligence (AAAI), 2017.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions
on Neural Networks, 20(3):498–511, 2009.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint,
2021.

Rupert Mitchell, Martin Mundt, and Kristian Kersting. Self expanding neural networks. arXiv
preprint, 2023.

Tom Mitchell. Machine learning. McGraw-hill, 1997.

Achille Nazaret and David Blei. Variational inference for infinitely deep neural networks. In
Proceedings of the 39th International Conference on Machine Learning (ICML), 2022.

Peter Orbanz and Yee Whye Teh. Bayesian nonparametric models. Encyclopedia of machine learning,
1, 2010.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS),
2017.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In Proceedings of the 35th International Conference on Machine Learning
(ICML), 2018.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69. Springer,
1998.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI), 2019.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

Dilip Roy. The discrete normal distribution. Communications in Statistics - Theory and Methods, 32:
1871–1883, 2003. doi: 10.1081/sta-120023256.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

13

Published as a conference paper at ICLR 2026

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

David R So, Chen Liang, and Quoc V Le. The evolved transformer. In Proceedings of the 36th
International Conference on Machine Learning (ICML), 2019.

Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Locally free
weight sharing for network width search. In Proceedings of the 9th International Conference on
Learning Representations (ICLR), 2021a.

Xiu Su, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Bcnet: Searching for
network width with bilaterally coupled network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2175–2184, 2021b.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint, 2000.

Lorenzo Valerio, Franco Maria Nardini, Andrea Passarella, and Raffaele Perego. Dynamic hard prun-
ing of neural networks at the edge of the internet. Journal of Network and Computer Applications,
200:103330, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Conference on
Neural Information Processing Systems (NIPS), 2017.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Colin White, Sam Nolen, and Yash Savani. Local search is state of the art for nas benchmarks. In
Proceedings of the 37th Uncertainty in Artificial Intelligence Conference (UAI), 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint,
2023.

Pierre Wolinski, Guillaume Charpiat, and Yann Ollivier. Asymmetrical scaling layers for stable
network pruning. Preprint, 2020.

David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural computation,
8(7):1341–1390, 1996.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural architectures.
In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS),
2019.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general ap-
proach for growing neural networks. In Proceedings of the 34th Conference on Neural Information
Processing Systems (NeurIPS), volume 33, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations (ICLR), 2019.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In 6th International Conference on Learning Representations (ICLR), 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR),
2022.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

14

Published as a conference paper at ICLR 2026

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In 4th
International Conference on Learning Representations (ICLR), 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

A TRUNCATED DISTRIBUTIONS’ NOTIONS

Since we were mostly inspired by the work of Nazaret & Blei (2022), we complement the main text
with an introduction to truncated distributions. In particular, by truncating a distribution at its quantile
function evaluated at k (see Appendix B for a visual explanation), the support of the distribution
becomes finite and countable, hence we can compute expectations in a finite number of steps. A
truncated distribution should ideally satisfy some requirements defined in Nazaret & Blei (2022) and
illustrated below.
Definition A.1 (Nazaret & Blei (2022)). A variational family Q = q(x;ω) over N+ is unbounded
with connected and bounded members if

1. ∀q ∈ Q, support(q) is bounded

2. ∀L ∈ N+,∃q ∈ Q such that L ∈ argmax(q)

3. Each parameter in the set ω is a continuous variable.

The first condition allows us to compute the expectation over any q ∈ Q in finite time, condition 2
ensures there is a parametrization that assigns enough probability mass to each point in the support of
q, and condition 3 is necessary for learning via backpropagation.

An important distinction with Nazaret & Blei (2022) is that we do not need nor want condition 2 to
be satisfied. As a matter of fact, we want to enforce a strict ordering of neurons where the first is
always the most important one. Condition 2 is useful, as done in Nazaret & Blei (2022), to assign
enough ‘importance” to a specific layer of an adaptive-depth architecture, while previous layers are
still functional to the final result. In the context of adaptive-width networks, however, this mechanism
may leave a lot of neurons completely unutilized, letting the network grow indefinitely. That is why
we require that each distribution fℓ is monotonically decreasing and all possible widths should have
non-zero importance. We change the definition for the distributions we are interested in as follows:
Definition A.2. A family of distributions Q = f(x;λ) over N+ is unbounded with connected,
bounded, and decreasing members if

1. ∀f ∈ Q, support(f) is bounded

2. ∀f ∈ Q, f is monotonically decreasing and ∀x ∈ N+, f(x) > 0

3. Each parameter in the set λ is a continuous variable.

B HOW TO COMPUTE Dℓ IN PRACTICE

To aid the understanding of how one computes Dℓ, we provide a visualization of the exponential
distribution, its discretized version (Equation 6) and the quantile function evaluated at k = 0.9 in
Figure 6 below.

Note that typically, newly introduced neurons are multiplied by a very small importance, and their
random weights are sampled from a standard Gaussian. This makes their initial contribution very
small, so it does not drastically alter the loss/gradients/convergence. From a backpropagation
viewpoint, the reason why new neurons are introduced is that previous neurons need to become
relatively more important. So, when the chosen importance distributions grow too slowly, as in the
case of a Power law family of distributions, this can slow down convergence because it takes a long
time to make the last neurons more important, and in addition a large tail or unimportant neurons is
added if the chosen quantile is too high. The exponential distribution, instead, worked pretty well
without having to tune it extensively.

15

Published as a conference paper at ICLR 2026

0 5 10 15 20 25

x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
D

en
si

ty

Exponential

pdf
cdf
quantile function at k=0.90

0 5 10 15 20 25

x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
M

as
s

Discretized Exponential

pmf
cmf
quantile function at k=0.90

Figure 6: On the left, we provide a visualization of the exponential density with λ = 0.5, its
cumulative density, and the quantile function evaluated at k = 0.9, which returns a value close to 5.
On the right, we show the discretized exponential and its cumulative mass function; we can see that
the quantile function of the continuous density provides an upper bound for the natural where the
cumulative mass function is greater than k = 0.9. Therefore, one can safety use the ceiling of the
output of the quantile function to determine the width Dℓ to use for a given value of λ.

C FULL ELBO DERIVATION

The full ELBO derivation is as follows:

Eq(λ,θ)

[
log

p(Y,λ,θ|X)

q(λ,θ)

]
= (11)

Eq(λ)Eq(θ|λ)[log p(Y,λ,θ|X)− log q(λ,θ)] = (12)

Eq(λ)Eq(θ|λ)[log(p(Y |λ,θ, X)p(θ)p(λ))− log(q(λ)q(θ|λ))] (13)

where we factorized probabilities according to the independence assumptions of the graphical model.
Then

Eq(λ)Eq(θ|λ)[log p(Y |λ,θ, X) + log p(λ) + log p(θ)− log q(λ)− log q(θ|λ)] = (14)

Eq(λ)Eq(θ|λ)[log
p(λ)

q(λ)
+ log

p(θ)

q(θ|λ)
+ log p(Y |λ,θ, X)] ≈ (15)

log
p(ν)

q(ν)
+ log

p(ρ)

q(ρ|ν)
+ log p(Y |ν,ρ, X)] (16)

where we use the first-order approximation in the last step. Note that when computing p(θ)
q(θ|λ) , the

products from Dℓ+1 to infinity cancel out. Equation 13 follows by simply applying definitions, the
iid assumption p(Y |ν,ρ, X) =

∏N
i p(yi|ν,ρ, xi), and by transforming products into summations

using the logarithm.

An important note about the first-order (Taylor) approximation Eq(λ;ν)q(θ|λ;ρ)[f(λ,θ)] ≈
Eq(λ;ν)[f(λ,ρ)] ≈ f(ν,ρ) is that the function f(λ,θ) = log p(λ)

q(λ) + log p(θ)
q(θ|λ) + log p(Y |λ,θ, X)

is not differentiable with respect to Dℓ when there is a jump in the quantile evaluated at k, so it
would seem we cannot apply it. This also happens in Nazaret & Blei (2022), Equation 11, when
the function is a neural network containing non-differentiable activations like ReLU, but we could
not find a discussion about it. Importantly, the function is not differentiable at a countable set of
points (one for each possible width), which has a measure null. Since the Lebesgue integral of the
expectation is over reals, we should be able to remove this set from the integral while ensuring that
the approximation still holds mathematically.

D LIPSCHITZ CONTINUITY OF THE ELBO

Whenever the quantile of the finite distribution changes, we need to change the number of neurons of
the neural network. Here, we want to show that the change in the ELBO after a change in the number

16

Published as a conference paper at ICLR 2026

of neurons is bounded. Therefore, we provide a theoretical result (theorem D.1) that shows that the
ELBO satisfies the Lipschitz continuity.
Proposition D.1 (AWN ELBO Lipschitz continuity). The ELBO loss of eq. (9), with respect to the
change in the depth Dℓ for the layer ℓ, is Lipschitz continuous.

Proof. We focus on the term involving Dℓ of the ELBO, we write eq. (9) as

log
p(ν)

q(ν)
+ log

p(ρ)

q(ρ|ν)
+ log p(Y |ν,ρ, X)

where only the second and last terms depend on D = {Dℓ}Lℓ=1 . Let’s first define

log
p(ρ)

q(ρ|ν)
=

L∑
ℓ=1

Dℓ∑
n=1

log
p(ρℓn)

q(ρℓn|ν)
=

L∑
ℓ=1

f1(Dℓ)

We have that f1(Dℓ) is Lipschitz continuous, indeed, when Dℓ changes to Dl′ , we have

|f1(Dℓ′)− f1(Dℓ)| = |
Dℓ′∑

n=Dℓ

log
p(ρn)

q(ρn|ν)
| (17)

≤
Dℓ′∑

n=Dℓ

| log p(ρn)

q(ρn|ν)
| (18)

≤ max
n

| log p(ρn)

q(ρn|ν)
||Dℓ′ −Dℓ| (19)

Therefore
|f1(Dℓ′)− f1(Dℓ)| ≤ M |Dℓ′ −Dℓ|

with M = maxn | log p(ρn)
q(ρn|ν) |. We now look at the last term,

f2(D) = log p(Y |ν,ρ, X)

This function is a neural network followed by the squared norm. Therefore, f2(D) is continuous
almost everywhere (Virmaux & Scaman, 2018), therefore Lipschitz on both parameters and the
input. When we change Dℓ to Dℓ′ , we are adding network parameters, in particular, if we look at the
two-layer network, we have

y = V σ(Wx+ b) + c, V ∈ Rm×n,W ∈ Rn×d

we then have new parameters, which can be shown to be

y′ = V σ(Wx+ b) + c+ V ′σ(W ′x+ b′) + c′︸ ︷︷ ︸
new neurons

, V ′ ∈ Rm×n′
,W ′ ∈ Rn′×d, b′ ∈ Rn′

, c′ ∈ Rm

the second term is also Lipschitz, therefore the function f2(D) is also Lipschitz. Indeed the network
is composed of a linear operation and the element-wise activation functions. If the activation functions
are continuous and of bounded gradient, then the whole network is Lipschitz continuous.

E FULL DERIVATION OF THE RESCALED WEIGHT INITIALIZATION

This Section derives the formulas for the rescaled weight initialization both in the case of ReLU and
activations like tanh.

Background We can rewrite Equation 10 as

hℓ
i = αℓ

ip
ℓ
i (20)

αℓ
i = σ

Dℓ−1∑
j=1

wℓ
ij α

ℓ−1
j pℓ−1

j︸ ︷︷ ︸
hℓ−1
j

 (21)

17

Published as a conference paper at ICLR 2026

where pℓi = fℓ(i).

As a refresher, the chain rule of calculus states that, given two differentiable functions g : RD → R
and f = (f1, . . . , fD) : R → RD, their composition g ◦ f : R → R is differentiable and

(g ◦ f)′ (t) = ∇g(f(t))T f ′(t)

∇g(f(t)) =

(
∂g(f1(t))

∂f1(t)
, . . . ,

∂g(fD(t))

∂fD(t)

)
∈ R1×D

f ′(t) = (f ′
1(t), . . . , f

′
D(t)) ∈ RD×1

For reasons that will become clear later, we may want to compute the gradient of the loss function with

respect to the intermediate activations αℓ at a given layer, that is ∇L(αℓ) =

(
∂L(αℓ

1)

∂αℓ
1

, . . . ,
∂L(αℓ

Nℓ)

∂αℓ

Nℓ

)
.

We focus on the i-th partial derivative ∂L(αℓ
i)

∂αℓ
i

, where the only variable is αℓ
i . Then, we view the

computation of the loss function starting from αℓ
i as a composition of a function αℓ+1 : R →

RNℓ+1

=
(
αℓ+1
1 (αℓ

i) . . . , α
ℓ+1
Nℓ+1(α

ℓ
i)
)

and another function (abusing the notation) L : RNℓ+1 → R
that computes the loss value starting from αℓ+1. By the chain rule:

∂L(αℓ
i)

∂αℓ
i︸ ︷︷ ︸

(g◦f)′(t)

=

(
∂L(αℓ+1

1)

∂αℓ+1
1

, . . . ,
∂L(αℓ+1

Nℓ+1)

∂αℓ+1
Nℓ+1

)T

︸ ︷︷ ︸
∇g(f(t))T

(
∂αℓ+1

1 (αℓ
i)

∂αℓ
i

, . . . ,
∂αℓ+1

Nℓ+1(α
ℓ
i)

∂αℓ
i

)
︸ ︷︷ ︸

f ′(t)

(22)

Theorem 3.1 Let us consider an MLP with activations as in Equation 21. Let us also assume that
the inputs and the parameters have been sampled independently from a Gaussian distribution with
zero mean and variance σ2 = Var[wℓ

ij] ∀i, j, ℓ. At initialization, the variance of the responses αℓ
i

across layers is constant if, ∀ℓ ∈ {1, . . . , L}

Var[wℓ] =
1∑Dℓ−1

j

(
pℓ+1
j

)2 for activation σ such that σ′(0) ≈ 1 (23)

Var[wℓ] =
2∑Dℓ−1

j

(
pℓ+1
j

)2 for the ReLU activation. (24)

In addition, we provide closed form formulas to to preserve the variance of the gradient across layers.

Proof. Let us start from the first case of σ′(0) ≈ 1. Using the Taylor expansions for the moments of
functions of random variables as in Glorot & Bengio (2010)

Var[αℓ
i] = Var

σ
Dℓ−1∑

j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 (25)

≈ σ′

E

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

Var

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 (26)

Using the fact that pj is a constant and that w and α are independent from each other

E

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 =

Dℓ−1∑
j=1

E[wℓ
ij]︸ ︷︷ ︸

0

E[αℓ−1
j]pℓ−1

j = 0. (27)

Therefore, recalling that σ′(0) ≈ 1

σ′

E

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 = 1. (28)

18

Published as a conference paper at ICLR 2026

As a result, we arrive at

Var[αℓ
i] ≈ Var

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 . (29)

Because w and α are independent, they are also uncorrelated and their variances sum. Also, using the
fact that Var[aX] = a2Var[X] for a constant a,

Var

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 =

Dℓ−1∑
j=1

Var
[
wℓ

ijα
ℓ−1
j pℓ−1

j

]
=

Dℓ−1∑
j=1

Var
[
wℓ

ijα
ℓ−1
j

] (
pℓ−1
j

)2
(30)

Finally, because the mean of the independent variables involved is zero by assumption, it holds
that Var[wℓ

ijα
ℓ−1
j] = Var[wℓ

ij]Var[α
ℓ−1
j]. We can also abstract from the indexes, since the weight

variables are i.i.d. and from that it follows that Var[αℓ
i] = Var[αℓ

j] ∀i, j, i, j ∈ {1, . . . , Dℓ},
obtaining3

Var[αℓ] ≈ Var[wℓ]Var[αℓ−1]

Dℓ−1∑
j=1

(
pℓ−1
j

)2
, (31)

noting again that the previous equation does not depend on i. We want to impose Var[αℓ] ≈
Var[αℓ−1], which can be achieved whenever

Var[wℓ] ≈ 1∑Dℓ−1

j=1

(
pℓ−1
j

)2 . (32)

Condition on the gradients From a backpropagation perspective, a similar desideratum would be

to ensure that Var
[
∂L(αℓ

i)

∂αℓ
i

]
= Var

[
∂L(αℓ+1

i)

∂αℓ+1
i

]
4.

Using Equation 22, and considering as in Glorot & Bengio (2010) that at initialization we are in a
linear regime where σ′(x) ≈ 1,

Var

[
∂L(αℓ

i)

∂αℓ
i

]
= Var

Dℓ+1∑
j=1

∂L(αℓ+1
j)

∂αℓ+1
j

∂αℓ+1
j (αℓ

i)

∂αℓ
i

 = Var

Dℓ+1∑
j=1

∂L(αℓ+1
j)

∂αℓ+1
j

∂αℓ+1
j (αℓ

i)

∂αℓ
i

 (33)

= Var


Dℓ+1∑
j=1

∂L(αℓ+1
j)

∂αℓ+1
j

σ′

(
Dℓ∑
k=1

wℓ+1
jk αℓ

kp
ℓ
k

)
︸ ︷︷ ︸

≈1

wℓ+1
ji pℓi

 . (34)

Using the same arguments as above one can write

Var

[
∂L(αℓ

i)

∂αℓ
i

]
≈ Var[wℓ+1]

Dℓ+1∑
j=1

Var

[
∂L(αℓ+1

j)

∂αℓ+1
j

pℓi

]
= Var[wℓ+1](pℓi)

2

Dℓ+1∑
j=1

Var

[
∂L(αℓ+1

j)

∂αℓ+1
j

]
.

(35)

3It is worth noting that, in standard MLPs, pℓj = 1 so we recover the derivation of Glorot & Bengio (2010),
since

∑Dℓ−1

j=1

(
pℓ−1
j

)2
would be equal to Dℓ−1. In Glorot & Bengio (2010) our Dℓ−1 is denoted as “ni′" (see

Equation 5).
4Note that what we impose is different from Glorot & Bengio (2010), where the specific position i is

irrelevant. Here, we are asking that the variance of the gradients for neurons in the same position i, but at
different layers, stays constant. Alternatively, we could impose an equivalence for all i ̸= i′.

19

Published as a conference paper at ICLR 2026

Expanding, we get

Var[wℓ+1](pℓi)
2

Dℓ+1∑
j=1

Var

[
∂L(αℓ+1

j)

∂αℓ+1
j

]
(36)

= (pℓi)
2

(
ℓ+2∏

i=ℓ+1

Var[wℓ+1]

)
Dℓ+1∑
j=1

(pℓ+1
j)2

Dℓ+2∑
j′=1

Var

[
∂L(αℓ+2

j′)

∂αℓ+2
j′

]
︸ ︷︷ ︸

constant w.r.t. j

(37)

= (pℓi)
2

(
ℓ+2∏

i=ℓ+1

Var[wℓ+1]

)Dℓ+2∑
j′=1

Var

[
∂L(αℓ+2

j′)

∂αℓ+2
j′

]Dℓ+1∑
j=1

(pℓ+1
j)2

 (38)

Therefore, we can recursively expand these terms and obtain

Var

[
∂L(αℓ

i)

∂αℓ
i

]
= (pℓi)

2

(
L∏

k=ℓ+1

Var[wk]

) DL∑
j′=1

Var

[
∂L(αDL

j′)

∂αDL

j′

] L−1∏
k=ℓ+1

Dk∑
jk=1

(pkjk)
2

 .

(39)

In this case, the variance depends on i just for the term (pℓi)
2. Finally, by imposing

Var

[
∂L(αℓ

i)

∂αℓ
i

]
= Var

[
∂L(αℓ+1

i)

∂αℓ+1
i

]
(40)

and simplifying common terms we obtain

(pℓi)
2Var[wℓ+1]

Dℓ+1∑
j=1

(pℓ+1
j)2

 = (pℓ+1
i)2 (41)

Var[wℓ+1] =
(pℓ+1

i)2

(pℓi)
2
∑Dℓ+1

j=1

(
pℓ+1
j

)2 . (42)

Both Equations 32 and 42 are verified when we initialize the distributions fℓ in the same way for all
layers, which implies (pℓi)

2 = (pℓ+1
i)2. Note that without this last requirement, Equation 42 would

violate the i.i.d. assumption of the weights.

To show a similar initialization for ReLU activations, we need the following lemma.

Lemma E.1. Consider the ReLU activation y = max(0, x) and a symmetric distribution p(x) around
zero. Then E[y2] = 1

2V ar[x].

Proof.

E[y2] =
∫ +∞

−∞
max(0, x)2p(x)dx =

∫ +∞

0

x2p(x)dx =
1

2

∫ +∞

−∞
x2p(x)dx (43)

Because p(x) is symmetric, E[x] = 0. Then

1

2

∫ +∞

−∞
x2p(x)dx =

1

2

∫ +∞

−∞
(x− E[x])2p(x)dx =

1

2
Var[x]. (44)

Using Lemma E.1, we can rewrite Equation 26 as

Var[αℓ
i] = Var

σ
Dℓ−1∑

j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 =
1

2
Var

Dℓ−1∑
j=1

wℓ
ijα

ℓ−1
j pℓ−1

j

 (45)

=
1

2
Var[wℓ]Var[αℓ−1]

Dℓ−1∑
j=1

(
pℓ−1
j

)2
(46)

20

Published as a conference paper at ICLR 2026

where no approximation has been made. Similar to prior results, it follows that

Var[wℓ] =
2∑Dℓ−1

j=1

(
pℓ−1
j

)2 . (47)

From a backpropagation perspective, since σ′(x) ̸≈ 1, we use similar arguments as in He et al.
(2015): we assume that the pre-activations α have zero mean, then the derivative of the ReLU can
have values zero or one with equal probability. One can show, by expanding the definition of variance,
that Var[σ′

(∑Dℓ

k=1 w
ℓ+1
jk αℓ

kp
ℓ
k

)
wℓ+1

ji] = 1
2Var[w

ℓ+1
ji]. As a result, one can re-write Equation 26 as

Var

Dℓ+1∑
j=1

∂L(αℓ+1
j)

∂αℓ+1
j

σ′

(
Dℓ∑
k=1

wℓ+1
jk αℓ

kp
ℓ
k

)
wℓ+1

ji pℓi

 (48)

≈ 1

2
Var[wℓ+1](pℓi)

2

Dℓ+1∑
j=1

Var

[
∂L(αℓ+1

j)

∂αℓ+1
j

]
, (49)

where we have made the assumption of independence between σ′
(∑Dℓ

k=1 w
ℓ+1
jk αℓ

kp
ℓ
k

)
and wℓ+1

ji

since the former term is likely a constant. Following an identical derivation as above, we obtain

Var[wℓ+1] =
2(pℓ+1

i)2

(pℓi)
2
∑Dℓ+1

j=1

(
pℓ+1
j

)2 (50)

which is almost identical to Equation 47 and not dependent on i when we initialize fℓ in the same
way for all layers.

Comparison of convergence for different initializations Below, we provide a comparison of
convergence between an AWN ReLU MLP initialized with the standard Kaiming scheme and one
initialized according to our theoretical results (“Kaiming+").

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Activation Values

10−5

10−3

10−1

101

103

D
en

si
ty

kaiming - Layer 1
kaiming - Layer 2
kaiming - Layer 3
kaiming - Layer 4
kaiming - Layer 5

kaiming+ - Layer 1
kaiming+ - Layer 2
kaiming+ - Layer 3
kaiming+ - Layer 4
kaiming+ - Layer 5

0 100 200 300 400 500

Epoch

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

kaiming+
kaiming

Figure 7: (Left) Effect of the rescaled initialization scheme (“Kaiming+”) on a ReLU-based MLP,
where neurons’ activations are computed using Equation 10. Compared to the standard initialization,
the variance of activations agrees with the theoretical result. (Right) Without the rescaled initialization,
convergence is hard to attain on the SpiralHard dataset (please refer to the next section for details
about the dataset).

F DATASET INFO AND STATISTICS

The synthetic datasets DoubleMoon, Spiral, and SpiralHard are shown in Figure 8. These binary
classification datasets have been specifically created to analyze the behavior of AWN in a controlled
scenario where we are sure that the difficulty of the task increases. We provide the code to generate
these datasets in the supplementary material.

Table 3 reports information on all datasets’ statistics and the data splits created to carry out model
selection (inner split) and risk assessment (outer split), respectively. Note that for Multi30k, the

21

Published as a conference paper at ICLR 2026

−20 −10 0 10 20

X1

−20

−10

0

10

20

X
2

−20 −10 0 10 20

X1

X
2

−20 −10 0 10 20

X1

X
2

Figure 8: The DoubleMoon, Spiral, and SpiralHard synthetic datasets are used to test AWN’s inner
workings, and are ordered difficulty. Orange and blue colors denote different classes.

Table 3: Dataset statistics and number of samples in each split are shown.

Samples # Features # Classes Outer Split (TR/VL/TE) Inner Split (TR/VL)

DoubleMoon 5000 2 2 3600/400/1000 3600/400
Spiral 5000 2 2 3600/400/1000 3600/400
SpiralHard 10000 2 2 7200/800/2000 7200/800
pol 15000 48 2 10800/1200/3000 10800/1200
MiniBooNE 130064 50 2 93645/10406/26013 93645/10406
credit card clients 30000 23 2 21600/2400/6000 21600/2400
MNIST 70000 28x28 10 48610/9723/11667 48610/9723
CIFAR10 60000 32x32x3 10 41665/8334/10001 41665/8334
CIFAR100 60000 32x32x3 100 41665/8334/10001 41665/8334
NCI1 4110 37 2 3328/370/412 3328/370
REDDIT-B 2000 1 2 1620/180/200 1620/180
Multi30k 31000 128x50257 Multilabel 29046/968/1000 29046/968

maximum sequence length is 128 and the number of possible tokens is 50527. The classification loss
is computed by comparing the predicted token against the expected one, ignoring any token beyond
the length of the actual target. For a detailed description of the graph datasets, the reader can refer to
Errica et al. (2020).

G HYPER-PARAMETERS FOR FIXED AND AWN MODELS

For each data domain, we discuss the set of hyper-parameters tried during model selection for the
fixed baseline and for AWN. We try our best to keep architectural choices identical with the exception
of the width of the MLPs used by each model. In all experiments, we either run patience-based early
stopping (Prechelt, 1998) or simply select the epoch with best validation score.

G.1 SYNTHETIC TABULAR DATASETS AND PERMUTED MNIST

We report the hyper-parameter configurations tried for the fixed MLP/RNN and AWN in Table
4. In particular, the starting width of AWN under the quantile function evaluated at k = 0.9 is
approximately 256 hidden neurons. We also noticed that a learning rate value of 0.1 makes learning
the width unstable, so we did not use it in our experiments. The total number of configurations for
the fixed models is 180, for AWN is 18. We also did not impose any prior on an expected size to see
if AWN recovers a similar width compared to the best fixed model (please refer to Table 1) starting
from the largest configuration among the fixed models.

G.2 IMAGE CLASSIFICATION DATASETS

We train from scratch a ResNet20 and focus our architectural choices on the MLP that performs
classification using the flattened representation provided by the previous CNN layers. This ensures
that any change is performance is only due to the changes we apply to the MLP. The configurations

22

Published as a conference paper at ICLR 2026

Table 4: Hyper-parameter configurations for standard MLP/RNN and AWN versions on tabular
datasets.

Hyper-Parameter DoubleMoon Spiral SpiralHard/pol/MiniBooNE/credit c.

Batch Size 32 [32, 128] (MLP/RNN), 128 (AWN) [32, 128] (MLP/RNN), 128 (AWN)
Epochs 500 1000 5000
Hidden Layers 1 1 [1, 2, 4]
Layer Width [8, 16, 24, 128, 256]
Non-linearity [ReLU, LeakyReLU, ReLU6]
Optimizer Adam, learning rate ∈ [0.1, 0.01] (MLP/RNN), 0.01 (AWN)

AWN Specific

Quantile Fun. Threshold k 0.9
Exponential Distributions Rate 0.01

σθ
ℓ [1.0, 10.0]

Prior over λ Uninformative

are shown in Table 5; note that a width of 0 implies a linear classifier instead of a 1 hidden layer MLP.
After previous results on tabular datasets showed that a LeakyReLU performs very well, we fixed it
in the rest of the experiments. In this case, we test 5 different configurations of the fixed baseline,

Table 5: Hyper-parameter configurations for standard MLP and AWN versions on image classification
datasets.

Hyper-Parameter MNIST / CIFAR10 / CIFAR100

Batch Size 128
Epochs 200
Layer Width (classification layer) [0, 32, 128, 256, 512]
Optimizer SGD, learning rate 0.1, weight decay 0.0001, momentum 0.9
Scheduler Multiply learning rate by 0.1 at epochs 50, 100, 150

AWN Specific

Quantile Fun. Threshold k 0.9
Exponential Distributions Rate 0.02
σθ
ℓ 1.0

Prior over λ Uninformative

whereas we do not have to perform any model selection for AWN. The rate of the exponential
distribution has been chosen to have a starting width of approximately 128 neurons, which is the
median value among the ones tried for the fixed model.

G.3 TEXT TRANSLATION TASKS

Due to the cost of training a Transformer architecture from scratch on a medium size dataset like
Multi30k, we use most hyper-parameters’ configurations of the base Transformer in Vaswani et al.
(2017), with the difference that AWN is applied to the MLPs in each encoder and decoder layer. We
train an architecture with 6 encoder and 6 decoder layers for 500 epochs, with a patience of 250
epochs applied to the validation loss. We use an Adam optimizer with learning rate 0.01, weight
decay 5e-4, and epsilon 5e-9. We also introduce a scheduler that reduces the learning rate by a factor
0.9 when a plateau in the loss is reached. The number of attention heads is set to 8 and the dropout to
0.1. We try different widths for the MLPs, namely [128,256,512,1024,2048]. The embedding size is
fixed to 512 and the batch size is 128. The AWN version starts with an exponential distribution rate
of 0.004, corresponding to approximately 512 neurons, and a σα

ℓ =1.

G.4 GRAPH CLASSIFICATION TASKS

We train the AWN version of Graph Isomorphism Network, following the setup of Errica et al. (2020)
and reusing the published results. We test 12 configurations as shown in the table below. Please note
that an extra MLP with 1 hidden layer is always placed before the sequence of graph convolutional
layers.

23

Published as a conference paper at ICLR 2026

Table 6: Hyper-parameter configurations for AWN versions on graph classification datasets.

Hyper-Parameter NCI1 / REDDIT-B

Batch Size [32,128]
Epochs 1000
Graph Conv. Layers [1, 2, 4]
Global Pooling [sum, mean]
Optimizer Adam, learning rate 0.01

AWN Specific

Patience 500 epochs
Quantile Fun. Threshold k 0.9
Exponential Distributions Rate 0.02
σθ
ℓ 10.0

Prior over λ Uninformative

H RE-TRAINING A FIXED NETWORK WITH THE LEARNED WIDTH

While on DoubleMoon AWN learns a similar number of neurons chosen by the model selection
procedure and the convergence to the perfect solution over 10 runs seem much more stable, this is not
the case on Spiral, SpiralHard and REDDIT-B, where AWN learns a higher total width over layers.
To investigate whether the width learned by AWN on these datasets is indeed the reason behind the
better performances (either a more stable training or better accuracy), we run again the experiments
on the baseline networks, this time by fixing the width of each layer to the average width over hidden
layers learned by AWN and reported in Table 1. We call this experiment “Fixed+”.

Spiral SpiralHard REDDIT-B

Fixed 99.5(0.5) 98.0(2.0) 87.0(4.4)
AWN 99.8(0.1) 100.0(0.0) 90.2(1.3)
Fixed+ 100.0(0.1) 83.2(17.0) 90.7(1.4)

The results suggest that by using more neurons than those selected by grid search – possibly because
the validation results were identical between different configurations – it is actually possible to
improve both accuracy and stability of results on Spiral and REDDIT-B, while we had a convergence
issue on SpiralHard. Notice that the number of neurons learned by AWN on REDDIT-B was well
outside of the range investigated by Xu et al. (2019) and Errica et al. (2020), demonstrating that the
practitioner’s bias can play an important role on the final performance.

Because we are not aware of the best width achieved by the grid search approach of Errica et al.
(2020) on REDDIT-B, we ran an additional experiment on fixed models, testing smaller and larger
widths compared to the one selected by AWN (average of ∼793). What we discover is the following.

Table 7: We report REDDIT-B validation performances, averaged across the 10 outer folds, for a
fixed-width DGN. The other hyper-parameters match those selected by AWN during model selection,
as per this specific experiment.

Total Width Mean Std

50 89.28 3.50
250 92.89 1.45
500 92.67 2.03
793 92.83 3.55
1000 93.06 1.60
1250 92.78 2.33
1500 91.78 2.41

Though these results are statistically comparable, the average performance obtained using AWN’s
learned width seems to be close to a local optimum for the fixed-width model.

24

Published as a conference paper at ICLR 2026

I FURTHER QUALITATIVE RESULTS ON IMAGE CLASSIFICATION DATASETS

Because it is well known that MNIST, CIFAR10, and CIFAR100 are datasets of increasing difficulty,
we attach a figure depicting the learned number of neurons and the convergence of AWN on these
datasets, following the practices highlighted in He et al. (2016) and described in Table 5 to bring
the ResNet20 to convergence. Akin to the tabular datasets, we see a clear pattern where the learned
number of neurons, averaged over the 10 final training runs, increases together with the task difficulty.
The AWN version of the ResNet20 converges in the same amount of epochs as the fixed one.

0 25 50 75 100 125 150 175 200

Epoch

100

200

300

400

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Dataset
MNIST
CIFAR10
CIFAR100

0 25 50 75 100 125 150 175 200

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Dataset
MNIST
CIFAR10
CIFAR100

Figure 9: We present an analysis similar to Figure 2 but for image classification datasets of increasing
difficulty. One can observe the jumps caused by the learning rate’s scheduling strategy.

J COMPARISON WITH NEURAL ARCHITECTURE SEARCH (NAS)

Although complementary to our approach, we thought instructive to run a some basic NAS methods
on the image classification datasets. Most NAS methods fix an upper bound on the maximum width,
whereas AWN’s methodology does not. The truncation ability of AWN is not intended as a substitute
for pruning but rather as a confirmation of our claims. In fact, NAS and pruning can actually be
combined with AWN and do not necessarily be seen as “competing” strategies.

The results are shown in Table 8. That said, we compared the performance of AWN against simple
NAS methods on the vision datasets. We tested grid search, random search (Following Wu et al.
(2020)), local search (White et al., 2021), and Bayesian Optimization (Barber, 2012), fixing the same
budget of 5 for all methods and width values between 0 (Linear classifier) and 512 neurons. Results
are comparable to those of AWN.

Table 8: Comparison between different NAS approaches and AWN. We remind the reader that NAS
is an orthogonal and complementary research direction to AWN.

Grid Search Random Search Local Search Bayes. Optim. AWN

MNIST 99.6(0.1) 99.6(0.0) 99.5 99.4 99.7(0.0)
CIFAR10 91.4(0.2) 90.1(0.5) 90.6 91.2 91.4(0.2)
CIFAR100 66.5(0.4) 64.9(1.1) 64.9 65.9 63.1(4.0)

25

Published as a conference paper at ICLR 2026

K NON-LINEARITY ABLATION STUDY

Below, we report an ablation study on the impact of non-linear activation functions. We analyze the
convergence to the same width across different batch sizes and exponential starting rates λ on the
SpiralHard dataset.

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Leaky ReLU

Batch Size
32
128
256
512
1024

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

ReLU

Batch Size
32
128
256
512
1024

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

ReLU6

Batch Size
32
128
256
512
1024

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Leaky ReLU

Rate ν
0.001
0.005
0.01
0.05
0.1

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

ReLU

Rate ν
0.001
0.005
0.01
0.05
0.1

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

ReLU6

Rate ν
0.001
0.005
0.01
0.05
0.1

100 101 102 103 104

Epoch

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Leaky ReLU

Rate λ
0.001
0.005
0.01
0.05
0.1

100 101 102 103 104

Epoch

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

ReLU

Rate λ
0.001
0.005
0.01
0.05
0.1

100 101 102 103 104

Epoch

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

ReLU6

Rate λ
0.001
0.005
0.01
0.05
0.1

Figure 10: Impact of different batch sizes and starting exponential rates λ, organized by type of
non-linear activation function.

These qualitative analyses support our claims that using a bounded activation is one way to encourage
the network not to counterbalance the learned rescaling of each neuron. In fact, using a ReLU6
shows a distinctive convergence to the same amount of neurons among all configurations tried. The
decreasing trend for LeakyReLU and ReLU activations may suggest that these configurations are
also converging to a similar value than ReLU6, but they are taking a much longer time.

26

Published as a conference paper at ICLR 2026

L LEARNED WIDTH FOR EACH LAYER ON GRAPH DATASETS

100

101

102

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Split 1 Split 2 Split 3 Split 4 Split 5

0 500 1000

Epoch

100

101

102

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Split 6

0 500 1000

Epoch

Split 7

0 500 1000

Epoch

Split 8

0 500 1000

Epoch

Split 9

0 500 1000

Epoch

Split 10

1 2 3 4 5

100

101

102

103

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Split 1 Split 2 Split 3 Split 4 Split 5

0 500 1000

Epoch

100

101

102

103

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Split 6

0 500 1000

Epoch

Split 7

0 500 1000

Epoch

Split 8

0 500 1000

Epoch

Split 9

0 500 1000

Epoch

Split 10

1 2 3 4 5

Figure 11: Learned neurons per layer (from 1 to 5), averaged over 10 final runs for each of the 10
best configurations selected in the outer folds. The first and second rows refer to NCI1, the third and
fourth refer to REDDIT-B. One can observe similar trends in most cases.

27

Published as a conference paper at ICLR 2026

M QUANTILE ABLATION STUDY

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Quantile
0.1

100 101 102 103 104

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Quantile
0.1

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Quantile
0.3

100 101 102 103 104

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Quantile
0.3

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Quantile
0.5

100 101 102 103 104

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Quantile
0.5

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Quantile
0.7

100 101 102 103 104

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Quantile
0.7

100 101 102 103 104

Epoch

100

101

102

103

104

105

L
ea

rn
ed

H
id

de
n

N
eu

ro
ns

Quantile
0.9

100 101 102 103 104

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Quantile
0.9

Figure 12: We report learned width and validation accuracy trends averaged over 1-layer AWN
configurations on SpiralHard. We see how a higher quantile k (i.e., a better ELBO approximation)
grants more stable performances. All architectures keep adapting to the task.

28

Published as a conference paper at ICLR 2026

N REGULARIZATION ABLATION STUDY

In Section 3, we argued there are two ways we can maximize the importance rescaling effect, namely
by using bounded activation functions and by regularizing the weights. In this section, we show with
an ablation that these strategies are generally not required, in the sense that AWN is still able to solve
the tasks, although it might introduce a more neurons than needed. The table below compares our
original results on tabular data (Table 1) with those where we did not consider ReLU6 and where we
imposed an almost null regularizer on the weights (σθ

ℓ = 100).

Table 9: We compare performances and learned width of AWN, where we removed regularization
and bounded activations from hyper-parameters, with the results in the main paper.

AWN AWN - NoReg Width
(AWN)

Width
(AWN - NoReg)

Mean (Std) Mean (Std) Mean (Std) Mean (Std)

DoubleMoon 100.0 (0.0) 100.0 (0.2) 8 (2.8) 17 (16.6)
Spiral 99.8 (0.1) 100.0 (0.0) 66 (8.7) 108 (26.8)
SpiralHard 100.0 (0.0) 100.0 (0.0) 227 (32.4) 539 (809.8)
pol 99.2 (0.1) 99.2 (0.1) 84 (11.0) 2335 (552.8)
MiniBooNE 93.2 (0.1) 93.8 (0.2) 53 (11.1) 4907 (1141)
credit card 81.8 (0.1) 81.8 (0.1) 51 (12.0) 53 (13)

We see that in all cases, not using regularization nor bounded activations leads to comparable
performances but definitely higher widths. For some of the configurations tried, the width tends
to grow a lot, which is why we set a maximum width of 5000 in the interest of time, although
performances do not seem to decrease in spite of that. Further investigation into the results revealed
that the weight regularization is what helps the most in controlling a stable behavior of the width,
while the bounded activation did not have a clear impact on that. We therefore recommend some
degree of regularization to make sure that the effect of the importance rescaling is properly taken into
account by the optimization process.

29

Published as a conference paper at ICLR 2026

O WALL-CLOCK TIME COMPARISON

To further highlight the advantages brought by AWN, we report the average runtime (in seconds)
required to complete a single model selection configuration for AWN and for the fixed model. In
cases where model selection is not performed (e.g., AWN on vision tasks), we instead report the
average runtime of a final run. Results for NCI1 and REDDIT are excluded from this comparison,
since they were taken directly from the literature. Based on these runtimes, we compute two measures:
i) the ratio of average single-run times (Single-Run Ratio), and ii) the ratio of total time required by
AWN and the fixed models to complete the entire model selection process (Model Selection Ratio).

Table 10: We report average wall-clock times for AWN and the fixed model, measured either over
model selection configurations or final runs when no selection is performed. We also provide two
ratios: i) single-run wall-clock times and ii) total model selection time (fixed models always test at
least five widths).

Dataset Avg Fixed (s) Avg AWN (s) Single-Run Ratio (↓) Model Selection Ratio (↓)
DoubleMoon 70 218 3.1× 0.62×
Spiral 120 141 1.1× 0.24×
SpiralHard 1982 7772 3.9× 0.78×
pol 1251 1088 0.87× 0.17×
MiniBooNE 11794 4496 0.38× 0.07×
creditcards 2104 1815 0.90× 0.14×
PMNIST 842 2014 2.4× 0.48×
MNIST 1838 3000 1.6× 0.33×
CIFAR10 1444 2880 2× 0.40×
CIFAR100 1474 1740 1.2× 0.24×
Multi30k 45100 19800 0.42× 0.09×

The results confirm that AWN’s overhead of adapting the network vanishes for larger datasets with
higher feature dimensionality. Interestingly, on some of these datasets the average single-run wall
time is even shorter than the fixed models. By being able to reduce hyper-parameter tuning of the
width while preserving most performances, the total model selection time ratios are consistently
in favor of AWN, and in principle scale favorably with the number of widths tested. Note that
memory consumption scales with the width of the layers, but our methodology does not introduce
any noticeable extra memory requirements.

30

Published as a conference paper at ICLR 2026

P IMPACT OF REMOVING MOST IMPORTANT NEURONS

We complement the truncation analysis of Figure 5 by showing what happens when we remove
individual neurons or a group of them, starting from the most important ones. This analysis provides
further insights about how neurons behave in AWN.

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Number of Neurons Removed (from most important to least)

50

60

70

80

90

A
cc

ur
ac

y

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Single Neuron ID Removed

0.0

0.2

0.4

0.6

0.8

D
ro

p
in

A
cc

ur
ac

y

Single
Cumulative

Figure 13: We show the impact of removing the most important neurons, either in batch (top) or
individually (bottom) on Spiral performances, using the same experiment as Figure 5.

We observe that performance quickly drops, as expected, and we reach random performance after
removing the first ∼40 neurons out of 83. The second analysis prunes individual neurons to understand
how much their absence influences performance – which can have a different effect compared to
removal of a set of neurons – to see if there exist two neighboring neurons that contribute similarly to
the performance drop or do not contribute at all. Removing most of the first 25 neurons out of 83
contributes majorly to performance degradation, but interestingly the removal of some neurons does
not affect performances. Instead, removing any subsequent neuron has little impact (but for one)
on performances, as one would expect. This suggests that we may be able to compress the neural
network even more: we leave this investigation to future work.

31

	Introduction
	Related Work
	Adaptive Width Learning
	Imposing a Soft Ordering on Neurons' Importance
	Rescaled Weight Initialization for Deep AWN
	Future Directions and Limitations

	Experiments and Setup
	Results
	Conclusions
	Reproducibility Statement
	Truncated Distributions' Notions
	How to Compute D in Practice
	Full ELBO Derivation
	Lipschitz Continuity of the ELBO
	Full derivation of the rescaled weight initialization
	Dataset Info and Statistics
	Hyper-parameters for fixed and AWN models
	Synthetic Tabular Datasets and Permuted MNIST
	Image Classification Datasets
	Text Translation Tasks
	Graph Classification Tasks

	Re-training a fixed network with the learned width
	Further qualitative results on image classification datasets
	Comparison with Neural Architecture Search (NAS)
	Non-linearity ablation study
	Learned width for each layer on Graph Datasets
	Quantile Ablation Study
	Regularization Ablation Study
	Wall-Clock Time Comparison
	Impact of Removing Most Important Neurons

