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Abstract
Recent works show that discourse analysis ben-001
efits from modeling intra- and inter-sentential002
levels separately, where proper representations003
for text units of different granularities are de-004
sired to capture both the meaning of text units005
and their relation to the context. In this paper,006
we propose to take advantage of transformers007
to encode contextualized representations to dy-008
namically capture the information required for009
discourse dependency analysis on intra- and010
inter-sentential levels. Motivated by the ob-011
servation of writing patterns shared across ar-012
ticles, we propose to design sequence label-013
ing methods to take advantage of such struc-014
tural information from the context, which sub-015
stantially outperforms traditional direct classi-016
fication methods. Experiments show that our017
model achieves state-of-the-art results on both018
English and Chinese datasets.019

1 Introduction020

Discourse dependency parsing (DDP) is the task of021

identifying the structure and relationship between022

Elementary Discourse Units (EDU) in a document.023

It is a fundamental task of natural language under-024

standing and can benefit many downstream appli-025

cations.026

Although existing works have achieved much027

progress using transition systems (Jia et al.,028

2018b,a; Hung et al., 2020) or graph-based models029

(Li et al., 2014a; Shi and Huang, 2018; Afantenos030

et al., 2015), this task still remains a challenge.031

Different from syntactic parsing, the basic compo-032

nents in a discourse are EDUs, sequences of words,033

which are not trivial to represent in a straightfor-034

ward way like word embeddings. Predicting the035

dependency and relationship between EDUs some-036

times necessitates the help of a global understand-037

ing of the context so that contextualized EDU repre-038

sentations in the discourse is needed. Furthermore,039

previous studies have shown the benefit of breaking040

discourse analysis into intra- and inter-sentential041

levels, building sub-trees for each sentence first 042

and then assembling sub-trees to form a complete 043

discourse tree. In this Sentence-First (Sent-First) 044

framework, it is even more crucial to produce ap- 045

propriate contextualized representations for text 046

units when analyzing in intra- or inter-sentential 047

levels. 048

Automatic metrics are widely used in machine 
translation as a substitute for human assessment .

This is often measured by correlation with human 
judgment .

In this paper , we introduce a significance test

When applied to a range of metrics across seven 
language pairs ,

tests show

that for a high proportion of metrics , there is 
insufficient evidence
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Figure 1: An example of discourse dependency tree in
SciDTB. Each indexed block is an EDU, and the origin
of the arrow pointing to a particular EDU is its head.

Figure 1 shows a discourse dependency structure 049

for a scientific abstract from SciDTB (Yang and 050

Li, 2018). The lengths of EDUs vary a lot, from 051

more than 10 words to 2 words only (EDU 12: tests 052

show), making it especially hard to encode by them- 053

selves alone. Sometimes it is sufficient to consider 054

the contextual information in a small range as in 055

the case of EDU 13 and 14, other times we need to 056

see a larger context as in the case of EDU 1 and 4, 057

crossing several sentences. This again motivates us 058

to consider encoding contextual representations of 059

EDUs separately on intra- and inter-sentential lev- 060

els to dynamically capture specific features needed 061

for discourse analysis on different levels. 062

Another motivation from this example is the dis- 063

covery that the distribution of discourse relations 064

between EDUs seems to follow certain patterns 065

shared across different articles. Writing patterns 066
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are document structures people commonly use to067

organize their arguments. For example, in scientific068

abstracts like the instance in Figure 1, people usu-069

ally first talk about background information, then070

introduce the topic sentence, and conclude with071

elaborations or evaluations. Here, the example first072

states the background of widely used automatic073

metrics, introduces the topic sentence about their074

contribution of a significance test followed by eval-075

uation and conclusion. Taking advantage of those076

writing patterns should enable us to better capture077

the interplay between individual EDUs with the078

context.079

In this paper, we explore different contextual-080

ized representations for DDP in a Sent-First parsing081

framework, where a complete discourse tree is built082

up sentence by sentence. We seek to dynamically083

capture what is crucial for DDP at different text084

granularity levels. We further propose a novel dis-085

course relation identification method that addresses086

the task in a sequence labeling paradigm to exploit087

common conventions people usually adopt to de-088

velop their arguments. We evaluate our models089

on both English and Chinese datasets, and experi-090

ments show our models achieve the state-of-the-art091

results by explicitly exploiting structural informa-092

tion in the context and capturing writing patterns093

that people use to organize discourses.094

In summary, our contributions are mainly095

twofold: (1) We incorporate the Pre-training and096

Fine-tuning framework into our design of a Sent-097

First model and develop better contextualized EDU098

representations to dynamically capture different099

information needed for DDP at different text gran-100

ularity levels. Experiments show that our model101

outperforms all existing models by a large margin.102

(2) We formulate discourse relation identification103

in a novel sequence labeling paradigm to take ad-104

vantage of the inherent structural information in105

the discourse. Building upon a stacked BiLSTM106

architecture, our model brings a new state-of-the-107

art performance on two benchmarks, showing the108

advantage of sequence labeling over the common109

practice of direct classification for discourse rela-110

tion identification.111

2 Related Works112

A key finding in previous studies in discourse anal-113

ysis is that most sentences have an independent114

well-formed sub-tree in the full document-level dis-115

course tree (Joty et al., 2012). Researchers have116

taken advantage of this finding to build parsers that 117

utilize different granularity levels of the document 118

to achieve the state-of-the-art results (Kobayashi 119

et al., 2020). This design has been empirically ver- 120

ified to be a generally advantageous framework, 121

improving not only works using traditional feature 122

engineering (Joty et al., 2013; Wang et al., 2017), 123

but also deep learning models (Jia et al., 2018b; 124

Kobayashi et al., 2020). We, therefore, introduce 125

this design to our dependency parsing framework. 126

Specifically, sub-trees for each sentence in a dis- 127

course are first built separately, then assembled to 128

form a complete discourse tree. 129

However, our model differs from prior works 130

in that we make a clear distinction to derive bet- 131

ter contextualized representations of EDUs from 132

fine-tuning BERT separately for intra- and inter- 133

sentential levels to dynamically capture different 134

information needed for discourse analysis at differ- 135

ent levels. We are also the first to design stacked 136

sequence labeling models for discourse relation 137

identification so that its hierarchical structure can 138

explicitly capture both intra-sentential and inter- 139

sentential writing patterns. 140

In the case of implicit relations between EDUs 141

without clear connectives, it is crucial to introduce 142

sequential information from the context to resolve 143

ambiguity. Feng and Hirst (2014) rely on linear- 144

chain CRF with traditional feature engineering to 145

make use of the sequential characteristics of the 146

context for discourse constituent parsing. However, 147

they greedily build up the discourse structure and 148

relations from bottom up. At each timestep, they 149

apply the CRF to obtain the locally optimized struc- 150

ture and relation. In this way, the model assigns 151

relation gradually along with the construction of 152

the parsing tree from bottom up, but only limited 153

contextual information from the top level of the 154

partially constructed tree can be used to predict 155

relations. Besides, at each time-step, they sequen- 156

tially assign relations to top nodes of the partial 157

tree, without being aware that those nodes might 158

represent different levels of discourse units (e.g. 159

EDUs, sentences, or even paragraphs). In contrast, 160

we explicitly train our sequence labeling models on 161

both intra- and inter-sentential levels after a com- 162

plete discourse tree is constructed so that we can 163

infer from the whole context with a clear intention 164

of capturing different writing patterns occurring at 165

intra- and inter-sentential levels. 166
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3 Task Definition167

We define the task of discourse dependency pars-168

ing as following: given a sequence of EDUs of169

length l, (e1, e2, ..., el) and a set of possible rela-170

tions between EDUs Re, the goal is to predict an-171

other sequence of EDUs (h1, h2, ..., hl) such that172

∀hi, hi ∈ (e1, e2, ..., el) is the head of ei and a se-173

quence of relations (r1, r2, ..., rl) such that ∀ri, ri174

is the relation between tuple (ei, hi).175

4 Our Model176

We follow previous works (Wang et al., 2017) to177

cast the task of discourse dependency parsing as a178

composition of two separate yet related subtasks:179

dependency tree construction and relation identi-180

fication. We design our model primarily in a two-181

step pipeline. We incorporate Sent-First design as182

our backbone (i.e. building sub-trees for each sen-183

tence and then assembling them into a complete184

discourse tree), and formulate discourse relation185

identification as a sequence labeling task on both186

intra- and inter-sentential levels to take advantage187

of the structure information in the discourse. Fig-188

ure 1 shows the overview of our model.189

4.1 Discourse Dependency Tree Constructor190

To take advantage of the property of well-formed191

sentence sub-trees inside a full discourse tree, we192

break the task of dependency parsing into two dif-193

ferent levels, discovering intra-sentential sub-tree194

structures first and then aseembling them into a full195

discourse tree by identifying the inter-sentential196

structure of the discourse.197

Arc-Eager Transition System Since discourse198

dependency trees are primarily annotated as projec-199

tive trees (Yang and Li, 2018), we design our tree200

constructor as a transition system, which converts201

the structure prediction process into a sequence of202

predicted actions. At each timestep, we derive a203

state feature to represent the state, which is fed into204

an output layer to get the predicted action. Our205

model follows the standard Arc-Eager system, with206

the action set: O= {Shift, Left−Arc,Right−207

Arc,Reduce}.208

Specifically, our discourse tree constructor main-209

tains a stack S, a queue I, and a set of assigned210

arcs A during parsing. The stack S and the set of211

assigned arcs A are initialized to be empty, while212

the queue I contains all the EDUs in the input se-213

quence. At each time step, an action in the action214

set O is performed with the following definition: 215

Shift pushes the first EDU in queue I to the top of 216

stack S; Left-Arc adds an arc from the first EDU in 217

queue I to the top EDU in stack S (i.e. assigns the 218

first EDU in I to be the head of the top EDU in S) 219

and removes the top EDU in S; Right-Arc adds an 220

arc from the top EDU in stack S to the first EDU 221

in queue I (i.e. assigns the top EDU in S to be the 222

head) and pushes the first EDU in I to stack S; Re- 223

duce removes the top EDU in S. Parsing terminates 224

when I becomes empty and the only EDU left in 225

S is selected to be the head of the input sequence. 226

More details of Arc-Eager transition system can be 227

referred from Nivre (2003). 228

We first construct a dependency sub-tree for each 229

sentence, and then treat each sub-tree as a leaf node 230

to form a complete discourse tree across sentences. 231

In this way, we can break a long discourse into 232

smaller sub-structures to reduce the search space. 233

A mathematical bound for the reduction of search 234

space of our Sent-First framework for DDP and 235

discourse constituent parsing is also provided in 236

Appendix. 237

Contextualized State Representation Ideally, 238

we would like the feature representation to con- 239

tain both the information of the EDUs directly in- 240

volved in the action to be executed and rich clues 241

from the context from both the tree-structure and 242

the text, e.g. the parsing history and the interac- 243

tions between individual EDUs in the context with 244

an appropriate scope of text. In order to capture 245

the structural clues from the context, we incorpo- 246

rate the parsing history in the form of identified 247

dependencies in addition to traditional state repre- 248

sentations to represent the current state. At each 249

timestep, we select 6 EDUs from the current state 250

as our feature template, including the first and the 251

second EDU at the top of stack S, the first and the 252

second EDU in queue I, and the head EDUs for 253

the first and the second EDU at the top of stack S, 254

respectively. A feature vector of all zeros is used if 255

there is no EDU at a certain position. 256

EDU Representations To better capture an EDU 257

in our Sent-First framework, we use pre-trained 258

BERT (Devlin et al., 2018) to obtain representa- 259

tions for each EDU according to different context. 260

We argue that an EDU should have different repre- 261

sentations when it is considered in different parsing 262

levels, and thus requires level-specific contextual 263

representations. For intra-sentential tree construc- 264
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Figure 2: An overview of our model. Intra-sentential dependencies are discovered first and inter-sentential
dependencies are constructed after that to form a complete dependency tree.

tor, we feed the entire sentence to BERT and repre-265

sent each EDU by averaging the last hidden states266

of all tokens in that EDU. The reason behind is267

that sentences are often self-contained sub-units268

of the discourse, and it is sufficient to consider269

interactions among EDUs within a sentence for270

intra-sentential analysis. On the other hand, for271

inter-sentential tree constructor, we concatenate all272

the root EDUs of different sentences in the dis-273

course to form a pseudo sentence, feed it to BERT,274

and similarly, represent each root EDU by aver-275

aging the last hidden states of all tokens in each276

root EDU. In this way, we aim to encourage EDUs277

across different sentences to directly interact with278

each other, in order to reflect the global properties279

of a discourse. Figure 2 shows the architecture for280

our two-stage discourse dependency tree construc-281

tor.282

4.2 Discourse Relation Identification283

After the tree constructor is trained, we train sepa-284

rate sequence labeling models for relation identifi-285

cation. Although discourse relation identification286

in discourse dependency parsing is traditionally287

treated as a classification task, where the common288

practice is to use feature engineering or neural lan-289

guage models to directly compare two EDUs in-290

volved isolated from the rest of the context (Li et al.,291

2014a; Shi and Huang, 2018; Cheng et al., 2021),292

sometimes relations between EDU pairs can be293

hard to be classified in isolation, as global informa-294

tion from the context like how EDUs are organized295

to support the claim in the discourse is sometimes296

required to infer the implicit discourse relations297

without explicit connectives. Therefore, we pro- 298

pose to identify discourse relation identification as 299

a sequence labeling task. 300

Structure-aware Representations For sequence 301

labeling, we need proper representations for EDU 302

pairs to reflect the structure of the dependency 303

tree. Therefore, we first tile each EDU in 304

the input sequence (e1, e2, ..., el) with their pre- 305

dicted heads to form a sequence of EDU pairs 306

((e1, h1), (e2, h2), ..., (el, hl)). Each EDU pair is 307

reordered so that two arguments appear in the same 308

order as they appear in the discourse. We derive 309

a relation representation for each EDU pair with 310

a BERT fine-tuned on the task of direct relation 311

classification of EDU pairs with the [CLS] repre- 312

sentation of the concatenation of two sentences. 313

Position Embeddings We further introduce posi- 314

tion embeddings for each EDU pair (ei, hi), where 315

we consider the position of ei in its correspond- 316

ing sentence, and the position of its sentence in 317

the discourse. Specifically, we use cosine and sine 318

functions of different frequencies (Vaswani et al., 319

2017) to include position information as: 320

PEj = sin(No/10000j/d) + cos(ID/10000j/d) 321

where PE is the position embeddings, No is the 322

position of the sentence containing ei in the dis- 323

course, ID is the position of ei in the sentence, j 324

is the dimension of the position embeddings, d is 325

the dimension of the relation representation. The 326

position embeddings have the same dimension as 327

relation representations, so that they can be added 328
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directly to get the integrated representation for each329

EDU pair.330

Stacked BiLSTM We propose a stacked BiL-331

STM neural network architecture to capture both332

intra-sentential and inter-sentential interplay of333

EDUs. After labeling the entire sequence of EDU334

pairs ((e1, h1), (e2, h2), ..., (el, hl)) with the first335

layer of BiLSTM, we select the root EDU for each336

sentence (namely the root EDU selected from our337

intra-sentential tree constructor for each setence)338

to form another inter-sentential sequence. Another339

separately trained BiLSTM is then applied to label340

those relations that span across sentences. Note that341

we will overwrite predictions of inter-sentential re-342

lations of the previous layer if there is a conflict of343

predictions.344

4.3 Training345

Our models are trained with offline learning. We346

train the tree constructor first, while relation label-347

ing models are trained separately after that. We348

attain the static oracle to train tree constructors349

and use the gold dependency structure to train our350

discourse relation labelling models. Intra- and inter-351

sentential tree constructors are trained separately.352

To label discourse relations, we fine-tune the BERT353

used to encode the EDU pair with an additional354

output layer for direct relation classification. Se-355

quence labeling models for relation identification356

are trained on top of the fine-tuned BERT. We use357

cross entropy loss for training.358

5 Experiments359

Our experiments are designed to investigate how360

we can better explore contextual representations to361

improve discourse dependency parsing.362

We evaluate our models on two discourse tree-363

banks of different language, i.e., Discourse Depen-364

dency Treebank for Scientific Abstracts (SciDTB)365

(Yang and Li, 2018) in English and Chinese366

Discourse Treebank (CDTB) (Li et al., 2014b).367

SciDTB contains 1,355 English scientific abstracts368

collected from ACL Anthology. Averagely, an ab-369

stract includes 5.3 sentences, 14.1 EDUs, where an370

EDU has 10.3 tokens in average. On the other hand,371

CDTB was originally annotated as connective-372

driven constituent trees, and manually converted373

into a dependency style by Cheng et al. (2021).374

CDTB contains 2,332 news documents. The av-375

erage length of a paragraph is 2.1 sentences, 4.5376

EDUs. And an EDU contains 23.3 tokens in aver- 377

age. 378

We evaluate model performance using Unlabeled 379

Attachment Score (UAS) and Labeled Attachment 380

Score (LAS) for dependency prediction and dis- 381

course relation identification. UAS is defined as 382

the percentage of nodes with correctly predicted 383

heads, while LAS is defined as the percentage 384

of nodes with both correctly predicted heads and 385

correctly predicted relations to their heads. We 386

report LAS against both gold dependencies and 387

model predicted dependencies. We adopt the fine- 388

granularity discourse relation annotations in the 389

original datasets, 26 relations for SciDTB and 17 390

relations for CDTB. 391

For both datasets, we trained our dependency 392

tree constructors with an Adam optimizer with 393

learning rate 2e-5 for 3 epochs. Our relation la- 394

beling models are all trained with an Adam opti- 395

mizer for 15-20 epochs. Learning rate is set to 2e-5, 396

weight-decay is set to be 1e-4.1 397

5.1 Baselines 398

Structure Prediction We compare with the fol- 399

lowing competitive methods for structure predic- 400

tion. (1) Graph adopts the Eisner’s algorithm to 401

predict the most probable dependency tree struc- 402

ture (Li et al., 2014a; Yang and Li, 2018; Cheng 403

et al., 2021). (2) Two-stage, which is the state- 404

of-the-art model on CDTB and SciDTB, uses an 405

SVM to construct a dependency tree (Yang and 406

Li, 2018; Cheng et al., 2021). (3) Sent-First 407

LSTM is our implmentation of the state-of-the- 408

art transition-based discourse constituent parser 409

on RST (Kobayashi et al., 2020), where we use a 410

vanilla transition system with pretrained BiLSTM 411

as the EDU encoder within the Sent-First frame- 412

work to construct dependency trees. (4) Complete 413

Parser is modified from the best constituent dis- 414

course parser on CDTB (Hung et al., 2020), using 415

a transition system with BERT as the EDU encoder 416

to construct a dependency tree. 417

We also implement several model variants for 418

comparison and ablation stmodel udy. (5) Com- 419

plete Parser (contextualized) is our modified ver- 420

sion of Complete Parser where, instead of encoding 421

each EDU separately, we obtain the EDU represen- 422

tations by encoding the whole sentence with BERT 423

and average the corresponding token representa- 424

tions for the EDU. (6) BERT + Sent-First (shared) 425

1Our code is available at: [url redacted for blind review].
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Figure 3: The architecture of our relation labeling stacked BiLSTM model. Hierarchical sequence labeling is used
for labeling relations on intra-sentential and inter-sentential levels.

incorporate different contextualized embeddings426

from BERT into the Sent-First framework for pars-427

ing at intra- and inter-sentential levels, with the428

same BERT layer shared across intra-sentential and429

inter-sentential parsing. (7) BERT + Sent-First430

fine-tunes separate BERT layers for intra-sentential431

and inter-sentential parsing independently.432

SciDTB CDTB

Model UAS

Graph (Cheng21) 57.6 58.5
Two-stage (Cheng21) 70.2 80.3
Sent-First LSTM (Kobayashi20) 63.9 /
Complete Parser (Hung20) 75.4 77.7
Complete Parser (contextualized) 76.1 79.1
BERT + Sent-First (shared) 77.3 81.5
BERT + Sent-First 79.3 82.2
Human 80.2 89.7

Table 1: Model performance of structure prediction on
SciDTB and CDTB.

Relation Identification (1) Graph uses an aver-433

aged perceptron to classify relations by direct clas-434

sification (Cheng et al., 2021; Yang and Li, 2018).435

(2) Two-stage exploits careful feature engineering436

and trains an SVM to classify the relations for pairs437

of EDUs (Cheng et al., 2021; Yang and Li, 2018). 438

(3) Sent-First LSTM uses biLSTM to encode each 439

EDU separately and a feed forward neural network 440

for direct relation classification. (4) BERT is our 441

implementation of the state-of-the-art model from 442

Cheng et al. (2021) and Hung et al. (2020), which 443

fine-tunes a BERT model with an additional output 444

layer to directly classify both intra-sentential and 445

inter-sentential relations. (5) BERT + BiL formu- 446

lates dependency discourse relation identification 447

as a sequence labeling task, training an additional 448

layer of BiLSTM on top of the BERT layer fine- 449

tuned on direct classification. (6) BERT SBiL 450

trains another BiLSTM to label inter-sentential re- 451

lations on top of the original model BERT + BiL. 452

5.2 Main Results 453

Dependency Prediction Table 1 summarizes the 454

performances of different models on both datasets 455

in terms of UAS. For traditional feature engineer- 456

ing models, Two-stage has already achieved sat- 457

isfactory performance, even beating several neu- 458

ral models like Sent-First LSTM and Complete 459

Parser. This is probably because traditional fea- 460

ture engineering methods design delicate structural 461

features in addition to representations of EDUs 462
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SciDTB CDTB

Model Gold Pred. Gold Pred.

Graph (Cheng21) / 42.5 / 41.5

Two-stage (Cheng21) / 54.5 / 58.7

Sent-First LSTM (Kobayashi20) 52.5 44.6 / /

BERT (Cheng21) 75.5 63.6 74.9 64.1

BERT + BiL 76.6 64.8 76.5 64.8
BERT + SBiL 77.4 65.0 76.5 64.4

Human / 62.2 / 77.4

Table 2: Model performance of relation identification
on SciDTB and CDTB.

so that they can include contextual clues to facili-463

tate parsing. Complete Parser leverages the bene-464

fit of better representations from pre-trained trans-465

formers to encode the information of individual466

EDUs, achieving a significant improvement over467

Sent-First LSTM model with LSTM as primary468

encoders. However, we show that our model BERT469

+ Sent-First that exploits the potential of Sent-First470

framework with proper contextualized representa-471

tions to capture the interactions between individual472

EDUs and the context surpasses all the existing473

baselines. The performance of our model can be474

further improved if we encode contextualized em-475

beddings separately for intra-sentential and inter-476

sentential parsing to dynamically capture different477

information required to parsing at different text478

granularity levels.479

Relation Identification Although previous meth-480

ods like Graph, Two-stage, and Sent-First LSTM481

achieve decent results on both datasets, their perfor-482

mances are not comparable to transformer methods483

developed in recent years. BERT (Cheng21) is our484

implementation of the state-of-the-art method for485

relation classification in discourse dependency pars-486

ing, which improves the baseline by a large margin.487

Although BERT is still a very strong baseline in488

many NLP tasks, direct classification with BERT489

neglects the contextual clues in the discourse that490

can be exploited to aid discourse relation identifica-491

tion, as have been discussed in section 1. We show492

that the results can be further improved by making493

use of the sequential structure of the discourse. We494

design multiple novel sequence labeling models on495

top of the fine-tuned BERT and all of them achieve496

a considerable improvement (more than 1%) over497

BERT in terms of accuracy both on the gold de-498

pendencies and the predicted dependencies from499

our Sent-First (separate), showing the benefit of en-500

SciDTB CDTB

Model intra- inter- intra- inter-

Complete Parser (contextualized) 85.6 60.7 79.9 78.0

BERT+Sent-First (shared) 87.6 61.1 81.5 81.6

BERT+Sent-First 88.5 64.7 82.5 82.0

Table 3: Model performance (UAS) on intra- and inter-
sentential dependencies.

hancing the interactions between individual EDUs 501

with the context. It yields another large gain when 502

we introduce another layer of inter-sentential level 503

BiLSTM, showing again that it is crucial to capture 504

the interactions between EDUs and their context in 505

both intra- and inter-sentential levels. 506

5.3 Detailed Analysis 507

Contextualized Representations for Tree Con- 508

struction Intuitively, a model should take dif- 509

ferent views of context when analyzing intra- and 510

inter-sentential structures. As we can see in Table 1, 511

BERT + Sent-First (shared) improves Complete 512

Parser (contextualized) by 1.2% and 2.4% on Sc- 513

iTDB and CDTB, respectively. The only difference 514

is BERT + Sent-First makes explicit predictions on 515

two different levels, while Complete Parser (con- 516

textualized) treats them equally. When we force 517

BERT + Sent-First to use different BERTs for intra- 518

and inter-sententential analysis, we observe further 519

improvement, around 3% on both datasets. 520

If we take a closer look at their performance in 521

intra- and inter-sentential views in Table 3, we can 522

see that BERT + Sent-First (shared) performs better 523

than single BERT model, Complete Parser (contex- 524

tualized), on both intra- and inter- levels of SciDTB 525

and CDTB, though in some cases we only observe 526

marginal improvement like inter-sentential level 527

of SciDTB. However, when we enhance BERT + 528

Sent-First with different encoders for intra- and 529

inter-sentential analysis, we can observe significant 530

improvement in all cases. That again shows the 531

importance of anaylzing with different but more 532

focused contextual representations for the two pars- 533

ing levels. 534

Classification or Sequence Labeling? Most pre- 535

vious works treat discourse relation identification 536

as a straightforward classification task, where given 537

two EDUs, a system should identify which rela- 538

tionship the EDU pair hold. As can be seen from 539

Table 2, all sequence labeling models (our main 540

model as well as the variants) achieve a consid- 541
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BERT BERT+BiL BERT+SBiL

intra- 81.8 82.4 82.4
inter- 58.1 60.2 62.6

Table 4: Model performance (classification accuracy)
on intra- and inter-sentential relations on SciDTB with
gold dependencies. ’ROOT’ relation is not counted.

BERT BERT+BiL BERT+SBiL

original 72.0 71.8 73.6
modified 50.9 52.3 53.4

Table 5: Model performance (classification accuracy)
on automatically generated implicit relation extraction
on SciDTB before and after modification.

erable gain over direct classification models on542

both datasets, especially in terms of accuracy on543

gold dependencies. This result verifies our hypoth-544

esis about the structural patterns of discourse rela-545

tions shared across different articles. It is noticed546

that BERT + SBiL performs the best because its547

hierarchical structure can better capture different548

structured representations occuring at intra- and549

inter-sentential levels.550

In Table 4, we include the performances of differ-551

ent models on intra- and inter-sentential relations552

on SciDTB with gold dependency structure. We553

observe that although our BERT+BiL model im-554

proves accuracies on both levels compared to the555

traditional classification model, the more signifi-556

cant improvement is on the inter-sentential level (by557

2.1%). We show that it can even be promoted by an-558

other 2.4% if we stack an additional BiLSTM layer559

on top to explicitly capture the interplay between560

EDUs on the inter-sentential level. That’s probably561

because writing patterns are more likely to appear562

in a global view so that discourse relations on the563

inter-sentential level tend to be more structurally564

organized than that on the intra-sentential level.565

To test the effectiveness of our model for implicit566

discourse relation identification, We delete some567

freely omissible connectives identified by Ma et al.568

(2019) to automatically generate implicit discourse569

relations. This results in 564 implicit instances in570

the test discourses. We run our model on the mod-571

ified test data without retraining and compare the572

accuracies on those generated implicit relations. Ta-573

ble 5 shows the accuracies for those 564 instances574

before and after the modification. After the mod-575

ification, although accuracies of all three models576

drop significantly, our sequence labeling model577

BERT+BiL and BERT+SBiL outperform the tra- 578

ditional direct classification model BERT by 1.4% 579

and 2.5% respectively, showing that our sequence 580

labeling models can make use of clues from the 581

context to help identify relations in the case of im- 582

plicit relations. 583

In addition, we experiment with other empirical 584

implementations of contextualized representations 585

instead of averaging tokens like using [CLS] for 586

aggregate representations of sentences for inter- 587

sentential dependency parsing, but we did not ob- 588

serve a significant difference. Averaging token rep- 589

resentations turns out to have better generalizability 590

and more straightforward for implementation. 591

5.4 Case Study 592

For the example shown in Figure 1, the relation 593

between EDU 9 and EDU 13 is hard to classify 594

using traditional direct classification because both 595

of them contain only partial information of the 596

sentences but their relation spans across sentences. 597

Therefore, traditional direct classification model 598

gets confused on this EDU pair and predicts the 599

relation to be "elab-addition", which is plausible if 600

we only look at those two EDUs isolated from the 601

context. However, given the gold dependency struc- 602

ture, our sequence labeling model fits the EDU pair 603

into the context and infers from common writing 604

patterns to successfully yield the right prediction 605

"evaluation". This shows that our model can refer 606

to the structural information in the context to help 607

make better predictions of relation labels. 608

6 Conclusion 609

In this paper, we incorporate contextualized repre- 610

sentations to our Sent-First general design of the 611

model to dynamically capture different information 612

required for discourse analysis on intra- and inter- 613

sentential levels. We raise the awareness of taking 614

advantage of writing patterns in discourse parsing 615

and contrive a paradigm shift from direct classifi- 616

cation to sequence labeling for discourse relation 617

identification. We come up with a stacked biL- 618

STM architecture to exploit its hierarchical design 619

to capture structural information occurring at both 620

intra- and inter-sentential levels. Future work will 621

involve making better use of the structural informa- 622

tion instead of applying simple sequence labeling. 623
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length(in terms of the number of EDUs) greater or 729

equal to 2 satisfying |si| ≥ 2. Let T be the set of 730

all projective dependency trees obtainable from D, 731
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and let T ′ be the set of all projective dependency732

trees obtainable from D in a Sent-First fashion.733

Then the following inequality holds:734

|T ′| ≤ 2

n+ 1
|T |735

Proof of Theorem 1: By the definition of our736

Sent-First method, trees in T ′ satisfy the property737

that there is exactly one EDU in each sentence738

whose head or children lies outside the sentence.739

It is clear that T ′ ⊂ T . We consider a document740

D with m sentences (s1, s2, ..., sm) and n of the741

sentences have length(in terms of the number of742

EDUs) greater or equal to 2 satisfying |si| ≥ 2.743

∀σ′ ∈ T ′, σ′ is a valid projective dependency744

tree obtainable from D in a Sent-First fashion. We745

define a t-transformation to a sentence si, |si| > 1746

with its local root of the sentence eia not being the747

root of the document in σ′ with the following rules:748

1. If eia has no child outside si, eib is its furthest749

(in terms of distance to eia) child or one of750

its furthest children inside si, then delete the751

edge between eia) and eib and set the head of752

eib to be the head of eia.753

2. Else if eia has at least one child before eia754

inside si, and eib is its furthest child before755

eia inside si. Delete the edge between eia and756

eib. If i > 1, set the head of eib to be the local757

root of sentence si−1, else i = 1, set the head758

of eib to be the local root of sentence si+1.759

3. Else, eia has at least one child after eia inside760

si, and eib is its furthest child after eia inside761

si. Delete the edge between eia) and eib. If762

i < m, set the head of eib to be the local root763

of sentence si+1, else i = m, set the head of764

eib to be the local root of sentence sm−1.765

Suppose σi is obtained by applying t-766

transformation to the sentence si, it is obvious to767

show that σi ∈ T/T ′. n−1 valid t-transformations768

can be applied to σ′. A reverse transformation t−1769

can be applied to σi with the following rule: if a770

sentence has two local roots, change the head of771

one of the roots to the other root. In this way, at772

most two possibly valid trees ∈ T ′ can be obtained773

because we are not sure which one is the original774

local root of the sentence. Therefore, at most 2775

different σ′ ∈ T ′ can be found to share the same776

tree structure after a t-transformation. See Figure777

T' T/T'

Figure 4: An illustration of transformation t for Theo-
rem 1.

5 for illustration. Therefore, 778

|T/T ′| ≥ n− 1

2
|T ′| 779

|T ′| ≤ 2

n+ 1
|T | 780

Theorem 1 shows that the search space shrinks 781

with the number of sentences. Therefore, Sent-First 782

approach is especially effective at the reduction of 783

search space so that the parser has a better chance to 784

find the correct result, no matter what kind of parser 785

is used specifically. Since the effectiveness has 786

been proved, this approach can even be confidently 787

generalized to other cases where similar sentence- 788

like boundaries can be identified. 789

Besides, an even stronger bound regarding the 790

use of Sent-First method can also be proved for 791

constituent parsing. 792

Theorem 2: For a document D with m > 1 sen- 793

tences (s1, s2, ..., sm) and n of the sentences have 794

length(in terms of the number of EDUs) greater 795

or equal to 2 satisfying |si| ≥ 2. Let T be the set 796

of all binary constituency trees obtainable from D, 797

and let T ′ be the set of all binary constituency trees 798

obtainable from D in a Sent-First fashion. Then 799

the following inequality holds: 800

|T ′| ≤ (
1

2
)n|T | 801

Proof of Theorem 2: By the definition of our 802

Sent-First method, trees in T ′ satisfy the property 803

that EDUs in a sentence forms a complete sub- 804

tree. It is clear that T ′ ⊂ T . We define a tree 805

transformation t, for a tree u1 with child u2 and 806

u3, u3 being a complete discourse tree of a sen- 807

tence with more than 2 EDUs. u3 must also have 2 808

children named u4 and u5 where u4 is adjacent to 809

u2 in the sentence. After transformation t, a new 810

tree u′1 is derived whose children are u5 and a sub- 811

tree u6 with children u2 and u4. u1 ∈ T ′, while 812

u′1 ∈ T/T ′. Illustration see Figure 6. Note that t is 813

one-to-one so that different u1 will be transformed 814

10



to different u′1 after t-transformation and u1 can815

be applied t-transformation twice if both children816

of u1 are complete DTs for a sentence (more pos-817

sible trees u′1 can be transformed into if the order818

of transformation is also considered). Transforma-819

tion t is a local transformation and does not affect820

sub-trees u2, u4, and u5.821

T' T/T'Sentence 
Boundary Sentence 

Boundary

Figure 5: An illustration of transformation t for Theo-
rem 2.

∀σ′ ∈ T ′, σ′ is a valid projective dependency822

tree obtainable from D in a Sent-First fashion.823

Since all sub-trees representing a sentence must824

merge into one complete discourse tree represent-825

ing the whole document, there must be n inde-826

pendent t transformations applicable to some sub-827

trees in σ′, so that at least 2n − 1 trees can be828

obtained after i ≥ 1 t transformations ∈ T/T ′.829

Since t-transformation is one-to-one, ∀σ1, σ2 ∈830

T ′, σ1 ̸= σ2, σ′
1 is a tree obtained after some t-831

transformations on σ1, σ′
2 is a tree obtained after832

some t-transformations on σ2, σ′
1 ̸= σ′

2.833

Therefore,834

|T/T ′| ≥ (2n − 1)|T ′|835

|T ′| ≤ (
1

2
)n|T |836

B Additional Detailed Results837

Relation BERT BERT+BiL BERT+SBiL

elab-addition 77.5 78.9 80.2
evaluation 76.3 77.8 81.6
joint 81.7 80.4 82.5
attribution 92.7 95.5 95.5
enablement 82.1 84.1 83.4
manner-means 86.2 85.0 86.2
contrast 73.9 75.0 77.1
bg-goal 59.3 63.5 67.7
same-unit 89.7 93.2 93.2
progression 19.0 6.1 15.4
bg-compare 43.8 44.1 60.9
elab-aspect 29.2 28.1 36.2
bg-general 70.2 94.3 91.7
condition 57.1 54.2 52.0

Table 6: Model performance (F1 score) for the 14 most
frequent relation types on gold dependencies of SciDTB.
The first 14 relations are listed in descending order in
terms of their frequencies in the test dataset (652, 178,
156, 131, 127, 121, 71, 56, 54, 48, 46, 45, 37, 33).

Span BERT BERT+BiL BERT+SBiL

1 82.7 83.1 82.9
2 63.6 67.5 67.1
3 51.6 55.6 59.5
4 61.0 58.4 59.7
5 52.2 53.7 62.7
6 63.0 63.0 60.9
7 70.6 73.5 58.9
8 52.9 50.0 73.5
9 64.0 64.0 64.0

Table 7: Model performance (accuracy) of relations
with gold dependencies on SciDTB against their spans.
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