
Published in Transactions on Machine Learning Research (11/2024)

Deep Tabular Learning via Distillation and Language Guid-
ance

Ruohan Wang wang_ruohan@i2r.a-star.edu.sg
Institute for Infocomm Research (I2R), A*STAR, Singapore

Wenhao Fu fu_wenhao@i2r.a-star.edu.sg
Institute for Infocomm Research (I2R), A*STAR, Singapore

Carlo Ciliberto c.ciliberto@ucl.ac.uk
AI Center, University College London

Reviewed on OpenReview: https: // openreview. net/ forum? id= p6KIteShzf

Abstract

Tabular data is arguably one of the most ubiquitous data structures in application domains
such as science, healthcare, finance and manufacturing. Given the recent success of deep
learning (DL), there has been a surge of new DL models for tabular learning. However,
despite the efforts, tabular DL models still clearly trail behind tree-based approaches. In this
work, we propose DisTab, a novel framework for tabular learning based on the transformer
architecture. Our method leverages model distillation to mimic the favorable inductive
biases of tree-based models, and incorporates language guidance for more expressive feature
embeddings. Empirically, DisTab outperforms existing tabular DL models and is highly
competitive against tree-based models across diverse datasets, effectively closing the gap
with these methods.

1 Introduction

Deep learning (DL) has achieved remarkable progress in learning from visual (He et al., 2016; Dosovitskiy
et al., 2020), textual (Vaswani et al., 2017; Brown et al., 2020) or audio data (Arik et al., 2018; Qin et al.,
2023), emerging as the preferred approach for various tasks such as image classification Deng et al. (2009)
and language translation Poibeau (2017). Inspired by these successes, there is a surge of interest in extending
DL capabilities to tabular learning. Tabular data stands out as one of the most ubiquitous data structures
for diverse domains, from patient records in healthcare to experimental results in scientific research. The
ability to effectively glean insights from tabular data holds immense significance with many applications.

Among the existing works on tabular DL, a major research direction adopts model pre-training by initially
bootstrapping DL models through pre-text (or pre-training) tasks before training (or fine-tuning) them on the
actual labeled data of interest. Pre-text tasks tailored for tabular learning includes contrastive learning, input
reconstruction and/or data synthesis via random perturbations of the labeled data (Ucar et al., 2021; Bahri
et al., 2022; Majmundar et al., 2022). Orthogonally, Wang & Sun (2022); Ye et al. (2024); Yan et al. (2024)
proposed cross-table pre-training approaches to learn features that can generalize across different tabular
datasets. Empirical evidence supports the efficacy of pre-training, demonstrating superior generalization
performance compared to direct training on the labeled data from scratch.

On the other hand, following the successes of transformer architectures (Vaswani et al., 2017) in challenging
domains including natural language processing (NLP) (Ouyang et al., 2022), computer vision (CV) (Doso-
vitskiy et al., 2020), and reinforcement learning (RL) (Chen et al., 2021), recent works have investigated
their impact on tabular applications (Gorishniy et al., 2021; Somepalli et al., 2021; Wang & Sun, 2022).
The core idea behind these “tabular transformers” is to represent table columns (or features) as a sequence

1

https://openreview.net/forum?id=p6KIteShzf


Published in Transactions on Machine Learning Research (11/2024)

of tokens, aligning with the input format required by transformers. Gorishniy et al. (2021) demonstrated
that transformer architectures outperform classical models such as multi-layer perceptrons (MLP) on tabu-
lar learning benchmarks. Recent work also explored different strategies for embedding tabular features into
token sequences, aimed at further improving model performance (Gorishniy et al., 2022; Wang & Sun, 2022).

While the recent interest in tabular DL has unarguably led to significant advancements on the topic, bench-
mark evaluations (Chen et al., 2023; Zhu et al., 2023; Shwartz-Ziv & Armon, 2022; Borisov et al., 2022)
indicate that more traditional algorithms, such as gradient boosting decision trees (GBDT) (see for example
Ke et al., 2017), remain the state-of-the-art for tabular learning. In particular, tree-based approaches demon-
strate overall better generalization performance across diverse dataset sizes and exhibit robustness without
requiring extensive hyper-parameter tuning, in clear contrast to tabular DL methods (Prokhorenkova et al.,
2018). Consequently, Grinsztajn et al. (2022); Shwartz-Ziv & Armon (2022) have specifically investigated
why DL trials behind tree-based methods, and bridging the performance gap between DL methods and
tree-based ones remain an open and important challenge for tabular learning.

Despite these challenges, there exist compelling motivations for using DL models for tabular learning. Specif-
ically, DL models could generate expressive tabular representations for downstream tasks (Grinsztajn et al.,
2022) and are capable of knowledge transfer across different tabular datasets (Wang & Sun, 2022; Hollmann
et al., 2022; Yan et al., 2024; Ye et al., 2024). For instance, Hollmann et al. (2022) allows the trained tabular
model to solve small classification tasks efficiently with significant speed-up via knowledge transfer. More-
over, DL allows for more efficient integration of different input modalities or information sources to enhance
model capabilities (as demonstrated in vision-language models (Alayrac et al., 2022; Zhang et al., 2021)).

To address these limitations, we introduce DisTab, a new tabular DL framework aimed at bridging the gap
with tree-based approaches. DisTab leverages knowledge distillation (Hinton et al., 2015) for pre-training,
directly employing a suitable tree-based model as the teacher. This enables our model to emulate the
favorable inductive biases inherent in tree-based approaches (Grinsztajn et al., 2022), effectively closing the
performance disparity between tabular DL and GBDTs.

Furthermore, DisTab showcases how tabular DL models can capitalize on the capabilities of neural archi-
tectures (in particular transformer models) to organically incorporate different information sources without
need for ad-hoc model design. In particular, we introduce the concept of language-guidance for DisTab to
integrate available textual information (e.g., textual descriptions for column headers or categorical features)
for embedding tabular features. We show that this choice enhances the conventional tabular embeddings
with semantic context to improve generalization performance. This integration serves two purposes: from
the practical perspective, it enables DisTab to achieve state-of-the-art performance on tabular data. From
the methodological perspective, it showcases the benefits of tabular transformers as a natural architecture
to integrate different (meta) information available for tabular learning. In contrast, tree-based methods
are relatively more rigid and the integration of unstructured information such as language would be less
straightforward.

Empirically, we conduct a extensive comparison of DisTab against existing tabular learning approaches
across diverse tabular datasets. Our results demonstrate that DisTab not only outperforms existing tabular
DL methods but also achieves competitive performance against GBDT models. Furthermore, we conduct
comprehensive ablation studies on DisTab, where we systematically analyze the contributions of each of its
components. Our findings consistently indicate that knowledge distillation and language guidance both play
crucial roles in enhancing model performance.

The contributions of this paper are summarized as follows: 1) we introduce DisTab, a novel framework
for tabular deep learning, incorporating knowledge distillation for pre-training and language guidance for
feature embedding. 2) Our framework outperforms existing tabular DL methods and stands as a competitive
alternative to GBDT models. 3) We present extensive ablation experiments to study the impact of individual
model components, offering valuable insights for exploring new avenues in building tabular DL models.

2



Published in Transactions on Machine Learning Research (11/2024)

2 Related Works

Tabular Pre-training. Inspired by the success of pre-training in CV and NLP, recent studies have explored
applying these strategies to tabular data settings, where training data scarcity is a significant concern. (e.g.,
Bahri et al., 2022; Yoon et al., 2020; Majmundar et al., 2022; Rubachev et al., 2022; Zhu et al., 2023). Among
these approaches, Ucar et al. (2021) introduced an auto-encoder model equipped with an objective function
to reconstruct randomly masked columns of a table. Bahri et al. (2022) adapted contrastive learning as
the pre-training objective for tabular tasks, extending the SimCLR framework (Chen et al., 2020) originally
designed for visual representation learning. Furthermore, Rubachev et al. (2022); Wang & Sun (2022)
integrated "target-aware" pre-training objectives by incorporating target labels, resulting in performance
enhancements.

The majority of existing pre-training approaches are domain-specific: the labeled training data also serve
as pre-training data (Bahri et al., 2022; Ucar et al., 2021), or they are closely related Wang & Sun (2022).
In contrast, Zhu et al. (2023) showcased the viability of pre-training on a large collection of tables span-
ning diverse domains through multi-task learning Sener & Koltun (2018). In this paradigm, each tabular
learning task possesses its independent feature embeddings and objective functions, while sharing a tabular
transformer model trained to generalize across different tabular datasets.

Our proposed DisTab also adopts domain-specific pre-training but opts for knowledge distillation (Hinton
et al., 2015) as the pre-training objective. Like existing pre-training methodologies, DisTab leverages syn-
thetic training samples generated during pre-training to mitigate data scarcity. However, it possesses the
added potential to learn the inductive biases of tree-based models favorable for tabular tasks, as hypothesized
in Grinsztajn et al. (2022).

Tabular transformers. Transformer models (Vaswani et al., 2017) have recently gained significant pop-
ularity in tabular learning scenarios. For instance, Gorishniy et al. (2021) introduced FT-Transformers,
demonstrating superior performance in tabular classification/regression tasks compared to classical DL ar-
chitectures like MLPs and ResNets. Additionally, Somepalli et al. (2021) proposed column-wise attention
to capture inter-sample interactions, while Fastformer utilizes additive attention on tabular tasks, offering a
lightweight attention mechanism with linear complexity relative to the length of input sequences (Wu et al.,
2021).

A crucial aspect in designing tabular transformers is how to embed tabular features into token sequences,
aligning with the input format required by transformer models. Most existing approaches (Zhu et al., 2023;
Somepalli et al., 2021; Gorishniy et al., 2021) use a single token to represent each column and learn linear
mappings from raw tabular features to token embeddings. Conversely, Wang & Sun (2022) map each column
as a variable number of tokens, with column headers and text for categorical features represented by multiple
tokens based on their word counts. Moreover, (Gorishniy et al., 2022) investigated piece-wise linear encoding
and periodic encoding for numerical features, demonstrating improved generalization over linear mappings.
Our DisTab adopts a transformer architecture, however it differs from the existing approaches by introducing
language-guided embeddings, which encode textual information for columns as context tokens to augment
previously proposed feature embeddings (e.g., learned linear mappings).

GBDTs for Tabular Learning. Despite the advancements in tabular DL methods, recent large-scale
benchmarks have demonstrated that gradient boosting decision tree (GBDT) models remain the state-of-
the-art for tabular learning (Grinsztajn et al., 2022; Chen et al., 2023; Zhu et al., 2023). Commonly used
GBDT models include XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), and
LightGBM (Ke et al., 2017). They also offer several advantages, such as interpretability, the capability
to handle heterogeneous features including null values, and robustness without hyper parameter tuning.
However, a critical challenge of these models is to properly integrate large-scale vectorial data (such as
text or image representation from a vision or language model respectively). For instance, while Ye et al.
(2024); Wang & Sun (2022); Yan et al. (2024) have demonstrated the effectiveness of incorporating textual

3



Published in Transactions on Machine Learning Research (11/2024)

headers into tabular deep learning (DL) models to improve generalization performance, it is neither trivial
nor clear how to integrate such information in tree-based models. This creates an opportunity for tabular
DL approaches to compete in scenarios where the input data includes modalities typically represented as
vectors (e.g., column header information in tabular datasets). Given the reliable performance of GBDTs on
tabular data, DisTab directly utilizes trained tree-based models for pre-training, employing them as teacher
models. We evaluate DisTab alongside tree-based models to compare their relative performance.

3 Method

In this section, we detail the key components for DisTab, including the proposed feature embeddings with
language guidance in Sec. 3.1, the pre-training process in Sec. 3.2 and the overall algorithm in Sec. 3.3.

Figure 1: Left: Language-guided categorical (Top) and numerical (Bottom) embeddings for DisTab.
Right: DisTab architecture. A categorical or numerical embedding is extracted from individual column
entry, processed by a transformer and an MLP before returning a prediction.

Notation. For a given supervised learning problem on tabular data, we denote the dataset as D = {xi, yi}N
i=1

where xi ∈ X is a row in the table and yi ∈ Y the corresponding label. Let Xj represent the j-th column
of D, hj the text header (if available) for the j-th column, and xi

j the j-th column of xi. Lastly, we denote
fenc : T → Rd as the text embedding function (e.g., BehnamGhader et al., 2024) that maps a text string
t ∈ T to a continuous embedding fenc(t) ∈ Rd.

3.1 Input Embeddings for Tabular Features

Similar to previous works (Gorishniy et al., 2021; 2022; Zhu et al., 2023; Somepalli et al., 2021). we choose
to represent each column with a single token. We observe that this design, when coupled with a suitable
transformer architecture (Sec. 3.3), satisfies output invariance for all permutations of a input sequence. We
argue that this is a potentially desirable inductive bias for tabular data, since permutations of a table’s
columns should not affect the underlying learning task.

Language-Guided Embeddings. Most existing approaches for tabular learning overlook valuable textual
information embedded within tabular datasets, such as column headers or text descriptions associated with
categorical values. These textual elements provide rich semantic context, which could lead to better input
representation and in turn improved performance. Tabular data is a human construct and textual column
headers are often necessary even for human interpretation. It is thus reasonable to assume the presence of

4



Published in Transactions on Machine Learning Research (11/2024)

meaningful headers and to allow ML models access to them. Therefore, we propose to augment input tokens
for each table column with available textual information.

Categorical Embedding. We embed a categorical feature xi
j as follows,

Ej(xi
j) = mj(xi

j) + fenc(hj ⊕ xi
j) (1)

where mj : T → Rd denotes the learnable embedding function that embeds xi
j via look-up, commonly

adopted in tabular transformer models (Zhu et al., 2023; Wu et al., 2024; Gorishniy et al., 2021). The term
fenc(hj ⊕xi

j) provides semantic context for the feature by concatenating the column header hj and the textual
description for xj as a text string to be embedded by fenc. We combine the two embeddings additively to
derive the final embedding for xi

j . The embedding process is depicted in Fig. 1: the lookup embeddings (top
stream, denoted in green) is linearly combined with the language-based embedding fenc (bottom stream). We
define fenc = fproj ◦ flm, where flm : Rn×d → Rn×d outputs the sequence representation flm(t) = v ∈ Rn×d

from a language model. Then, fproj = MLP(AvgPool(v)) summarizes the sequence representation into a
single vector, followed by a small learnable projection network. Please see App. B.2 for further model
details.

Numerical Embedding. We utilize a periodic activation function pσ(·) for encoding numerical features.
Specifically, we define pσ(·) as follows:

pσ(x) = sin(v) ⊕ cos(v) ∈ Rk where v = [c1x, . . . , ck/2x], with ci ∼ N (0, σ2) (2)

where sin(v) and cos(v) apply the corresponding function entry-wise to v. Notably, Rahimi & Recht (2008;
2007) showed that pσ(x) is a feature map that approximates the Gaussian RBF kernel, namely pσ(x)·pσ(y) ≈
exp(− σ2(x−y)2

2 ) (with the approximation improving as the latent dimension k in (2) increases). pσ(x) is also
known as random features in the kernel literature Rahimi & Recht (2007). Evidently, the bandwidth σ is
crucial to the quality of encoding, as it determines how “similar” two values x, y should be regarded within
a table column.

Using pσ(·), we embed a numerical feature xi
j as follows,

Ej(xi
j) =

⊕
σ∈Σ

pσ(xi
j) + fenc(hj) × xi

j (3)

where Σ = {σ1, . . . , σm} is a set of bandwidths. To account for different length scales for similarity, we use⊕
σ∈Σ pσ(xi

j) to concatenate multiple pσ(xi
j) with different σ into a single embedding of dimension d with

k = d
|Σ| in (2). Our formulation differs from Gorishniy et al. (2022) that uses only a single pσ(·) for encoding,

but requires expensive hyper-parameter tuning for σ. In our experiments, we set Σ = {0.1, 1, 10}.

The embedding process modeled in (3) is depicted in Fig. 1: the random-feature embedding (top stream,
depicted in red) is linearly combined with the language model embedding fenc of the header (bottom stream),
scaled proportionally to the numerical feature that is being embedded. This latter quantity provides semantic
context to encode the associated numerical value suitably.

Relation to Previous Works. Our embedding functions generalize previous works by incorporating
language guidance. Specifically, we recover the embedding functions in Gorishniy et al. (2021; 2022); Zhu
et al. (2023); Somepalli et al. (2021) if we remove fenc(·) from (1) and (3). Another key difference is that
our embedding functions combine different representations of a given feature additively to derive a unified
embedding, which we find to work well in practice.

3.2 Model Pre-training

It is well established that pre-training improves the generalization performance of tabular DL methods (Ucar
et al., 2021; Bahri et al., 2022; Zhu et al., 2023). We argue that there are two key factors contributing to the

5



Published in Transactions on Machine Learning Research (11/2024)

Figure 2: The distillation-based pre-training pipeline for DisTab.

improved performance. Most directly, pre-training synthesizes new training data from real one, significantly
increasing the size of the training data and in turn improves generalization performance. This is particularly
crucial for small tabular datasets, for which DL models tend to overfit.

On the other hand, pre-training provides auxiliary learning signals to improve generalization performance.
As discussed in Sec. 2, commonly used self-supervised objectives include reconstruction loss and contrastive
loss using random perturbation of real data. For reconstruction learning, we observe that some table columns
cannot be learned from others. For instance, tables involving transaction data (e.g., house sales) often include
sales date as a column, which cannot be reliably predicted from other columns describing product features
(e.g., house size or room count). This may limit the effectiveness of reconstruction learning. For contrastive
learning, heuristics are required to generate similar views of the same data, which may not align with the
desired data similarity with respect to the actual learning task. For instance, random perturbation of a
critical column (e.g., lab results in medical diagnosis) could drastically change the target label, but is viewed
as a similar view since only a single column is perturbed.

Distillation for Pre-training. We therefore propose to utilize knowledge distillation of tree-based models
for pre-training. Knowledge distillation aims to directly mimic the superior performance of tree-based models
in tabular settings, without needing to heuristically constructing a pre-text task with potential limitations
discussed above. Formally, given a tabular dataset D = (xi, yi)N

i=1 and access to a teacher model gT , we
denote the teacher-labeled dataset as gT (D) ≜ (xi, gT (xi))N

i=1. We also modifies the mix-up technique (Zhang
et al., 2017) for data augmentation Aug(D),

x ∼ Aug(D) where x = xi ⊙ m + xj ⊙ (1 − m), mk ∼ B(1, 0.5) (4)

where ⊙ denotes point-wise multiplication, and B(1, 0.5) a Bernoulli distribution with probability 0.5. The
augmentation synthesizes new samples by randomly mixing columns, as determined by m, from 2 random
samples xi, xj from the real data.

With the notations introduced above, the distillation pre-text task is

arg min
θ

∑
(x,y)∈gT (D∪Aug(D))

ℓ(fθ(x), y) (5)

where ℓ is the suitable loss function for the tabular task, such as least-square errors for the regression setting.

By combining model distillation and mix-up augmentation, we are able to sidestep heuristics needed to
define target labels for synthetic samples. For instance, the original mix-up approach determines labels for
synthetic samples using yi, yj and m. Instead, our approach labels all real and synthetic samples with the
teacher model and pre-train on this dataset to emulate the teacher’s behavior.

The pre-training pipeline described above is summarized in Fig. 2: first, the teacher is trained on the
ground-truth data. In all experiments we choose CatBoost as the teacher model, which has been observed to

6



Published in Transactions on Machine Learning Research (11/2024)

achieve consistently state-of-the-art performance (in particular average ranking) according to recent bench-
marks (Zhu et al., 2023; Chen et al., 2023) and our experiments in Sec. 4. The ground-truth (input) data is
then augmented via mix-up in (4) and labeled by the teacher. The augmented dataset is used to pre-train
a tabular DL architecture, followed by fine-tuning solely on the original data to yield the final model.

3.3 DisTab Algorithm

Model Architecture. Our model fθ = fout ◦ ftrans consists of a transformer model ftrans : Rn×d → Rn×d

that processes table rows and fout : Rn×d → Y that maps the transformer output to target labels. We
use a simplified Llama transformer architecture (Touvron et al., 2023) for ftrans, which removes all position
encoding. fout(x) = MLP(AvgPool(x)) apply average pooling to the transformer output to obtain sample
representations, followed by a linear layer for final output. We note that fθ is invariant to all permutations
of a given input, a desirable inductive bias for tabular data as discussed earlier.

For model training, we first transform the training data using the embedding functions (Sec. 3.1). followed
by distillation pre-training (Sec. 3.2). Since pre-training only uses teacher labels, we further fine-tune the
pre-trained model using on only the real data with original labels.

4 Experiments

In this section, we evaluate our proposed method against different tabular learning methods on test perfor-
mance, over a diverse set of benchmark datasets. We first describe the experimental settings below, followed
by the detailed results and discussion1.

Datasets. We use 25 datasets from OpenML for all evaluations (see Appendix A for details). We follow the
datasets used in Zhu et al. (2023), but focus on those with meaningful textual column headers, since they
allow us to apply and evaluate the proposed language-guided embeddings. For each OpenML dataset, we
use the default train/test splits defined by the OpenML library to ensure better reproducibility (10% data
is reserved for testing for each split). For each training split, we randomly partition 90% of data for training
and the rest for validation. All methods are trained and evaluated using the same splits.

Data Preprocessing. For DL approaches designed with MLP architectures, we follow the previous
works (Bahri et al., 2022; Yoon et al., 2020) to represent categorical features by one-hot encoding. For
transformer-based architectures, categorical features are represented using a ordinal encoding. For all DL-
based approaches, numerical features are scaled by z-score. For tree-based approaches, we adopt the default
prepossessing associated with each method in AutoGluon (Erickson et al., 2020), a tabular learning library
that provides strong performance for tree-based methods.

Model Training. For DisTab, we use a batch size of 1024 for pre-training and 128 during fine-tuning.
For the existing DL tabular methods, we use the batch size 128 for both pre-training and fine-tuning, as
recommended in Bahri et al. (2022); Zhu et al. (2023). All DL-based methods use Adam optimizer with a
learning rate of 1e-4, with a weight decay of 1e-5, following Gorishniy et al. (2021); Rubachev et al. (2022).
Number of pre-training and fine-tuning epochs are empirically determined for each method, but remain
consistent across different tasks. For DisTab, we use 30 epochs for pre-training and 20 for fine-tuning.

Evaluation methods. We divide the datasets into regression, binary classification and multi-class clas-
sification tasks. For model performance, we use root mean least square (RMS) for regression tasks, area
under the receiver operating characteristic curve (AUC) for binary classification, and accuracy for multi-class
classification. For each task, every model is trained and evaluated using the same 5 splits, and we use the
average performance over the 5 splits as a model’s task performance.

1Our code is available at https://github.com/RuohanW/DisTab

7

https://github.com/RuohanW/DisTab


Published in Transactions on Machine Learning Research (11/2024)

Given the diversity of tabular datasets evaluated, we use the following metrics to effectively compare different
methods over all datasets:

Win matrix. Following Bahri et al. (2022), we report our findings in the form of a M × M matrix W where
the (i, j)-th entry Wi,j denotes the ratio of datasets for which method i outperformed method j. We present
this information in fractional form to include the total number of tasks evaluated and as a heat map to
highlight scale.

Average ranks. While win matrix effectively conveys pair-wise comparison, it does not directly provide an
overall ranking of all methods. We follow Zhu et al. (2023) to report the more traditional average ranking
of all methods across each task category.

Task performance. We also include raw task performances for each method that underlies the win matrix
and average ranking. For brevity, these results are deferred to the Appendix C.

Baselines. We consider a wide range of existing tabular methods for comparison, including CatBoost
(CAT) (Prokhorenkova et al., 2018), random forests (RF) (Breiman, 2001), LightGBM (GBM) (Ke et al.,
2017), and XGBoost (XGB) (Chen & Guestrin, 2016) for tree-based methods. For DL approaches, we
include FastAI tabular (FastAI) (Howard & Gugger, 2020), FT-Transformer (FTT) (Gorishniy et al., 2021),
XTab (Zhu et al., 2023), Saint (Somepalli et al., 2021), VIME (Yoon et al., 2020), SCRAF (Bahri et al., 2022),
SwitchTab (Switch) (Wu et al., 2024) and TP-BERTa (TBERT) (Yan et al., 2024). The DL approaches
include both transformer and MLP architectures, along with different pre-training strategies and models
learned from scratch.

4.1 Comparison with DL Methods

We compare DisTab against a diverse set of existing DL tabular methods in Tab. 1 and Fig. 3. The evaluated
methods include both MLP and transformer architectures, various pre-training strategies, as well as baseline
models trained from scratch (FastAI and FTT).

For average rankings in Tab. 1, DisTab clearly outperforms the existing methods, with over 0.5 rank higher
than the 2nd best performing method. Similarly in Fig. 3, our proposed method outperforms the DL baselines
in all settings, winning in over 75% tasks in all pairwise comparison.

MLP Transformer
Task Type FASTAI Vime Scraf FTT XTab Saint SwitchTab TBERT DisTab
Regression 4.8 ± 2.8 6.4 ± 1.7 6.0 ± 2.5 3.4 ± 1.7 3.9 ± 2.1 5.1 ± 1.8 5.5 ± 1.4 7.4 ± 2.4 2.6 ± 2.4
Binary 6.0 ± 2.4 4.9 ± 2.5 6.2 ± 2.4 4.1 ± 1.9 3.4 ± 1.4 4.4 ± 2.0 6.3 ± 2.1 6.7 ± 2.9 3.0 ± 2.4
Multiclass 8.1 ± 0.6 5.8 ± 1.9 4.5 ± 0.8 2.9 ± 2.0 5.1 ± 2.3 5.7 ± 2.6 6.2 ± 1.6 4.6 ± 2.4 2.0 ± 2.1

Overall 6.2 ± 2.6 5.6 ± 2.2 5.6 ± 2.2 3.5 ± 1.9 4.0 ± 2.1 5.0 ± 2.2 6.0 ± 1.8 6.3 ± 2.8 2.6 ± 2.3

Table 1: Comparison of tabular prediction performance between DisTab and other tabular DL methods.
Average rank and its standard deviation reported for each method. DisTab outperforms the existing methods
for all task categories and is overall best performing.

While existing pre-training strategies perform generally well for classification settings: they beat the trained-
from-scratch baseline in majority of tasks in Fig. 3. Their performance on regression tasks are mixed. this
result indicates that general pre-training strategies adapted primarily from visual learning tasks may not be
suitable for tabular learning, as we argued in Sec. 3.2. In contrast, distillation pre-training shows its efficacy
by consistently outperforming the trained-from-scratch baseline and other pre-training strategies.

Lastly, we note that transformer-based models noticeable outperform MLP-based ones, validating similar
observations in Grinsztajn et al. (2022); Gorishniy et al. (2021). The results empirically supports our
hypothesis that transformers provide good prior for tabular learning with its permutation invariance with
respect to table columns.

8



Published in Transactions on Machine Learning Research (11/2024)

Regression Tasks Binary Tasks Multiclass Tasks

Figure 3: Win matrices between DisTab and existing DL tabular methods. DisTab outperforms all other
methods in pairwise comparison.

4.2 Comparison with Tree-based Methods

To further assess DisTab’s performance, we compared it against tree-based methods in Tab. 2. In terms
of average rank, DisTab outperforms all tree-based methods for regression and multiclass tasks, while only
trailing behind CatBoost for binary tasks. Our method is also the overall best performing over all tasks.

Task Type Metric CAT RF GBM XGB DisTab
Regression RMSE 1.88 ± 1.05 4.12 ± 1.05 3.38 ± 1.11 3.88 ± 0.78 1.75 ± 0.97
Binary AUC 1.90 ± 0.54 4.20 ± 1.60 3.80 ± 0.60 3.10 ± 1.30 2.00 ± 0.89
Multiclass Accuracy 3.86 ± 0.83 3.71 ± 1.48 2.71 ± 1.39 2.57 ± 1.05 2.14 ± 1.36
Overall 2.44 ± 1.20 4.04 ± 1.43 3.36 ± 1.13 3.20 ± 1.20 1.96 ± 1.08

Table 2: Comparison of tabular prediction performance between DisTab and tree-based methods. Average
rank and its standard deviation reported for each method.

Consistent with previous benchmark results from Zhu et al. (2023); Chen et al. (2023), we re-validated
CatBoost as the overall best performing tree-based method, which we used as the teacher model. For both
regression and multiclass settings, DisTab outperforms the teacher model, suggesting that it is not merely
“parroting” predictions from the teacher. In particular, CatBoost is in fact the worst performing model for
multiclass setting. Despite distilling from a clearly sub-optimal model during pre-training, DisTab eventually
emerged as the best performing model is this setting, indicating the robustness of the proposed approach.

Fig. 4 expands Tab. 2 to focus on pairwise comparison via the win matrices. For regression and binary
setting, DisTab performs comparably to CatBoost and dominates the other tree-based approaches. For
multi-class setting, DisTab clearly outperform random forests and CatBoost and is marginally better than
LightGBM and XGBoost.

We highlight that the evaluated datasets not only include different task settings, but with diverse dataset
sizes (from only 1k to over 580k samples), column counts (from 7 to 80) and presence of missing values.
Across these datasets, Tab. 2 and Fig. 4 indicate that DisTab either surpasses or performs comparably to
tree-based methods, effectively bridging the performance gap between tabular DL and tree-based approaches.

In Appendix C, we compare DisTab with tree-based methods using average task performance, to further
quantify the scale of performance difference among them. The results are consistent with those in Tab. 2,
showing that DisTab matches or surpass tree-based methods on the evaluated datasets.

4.3 Ablation Study

In this section, we investigate the efficacy of key components in DisTab, including distillation pre-training,
language-guided embedding, and supervised fine-tuning. There are in total 6 valid combinations of the

9



Published in Transactions on Machine Learning Research (11/2024)

Regression Tasks Binary Tasks Multiclass Tasks

Figure 4: Win matrices between DisTab and tree-based methods.

above components and we compare their test performance in Tab. 3 and Fig. 5. As described in Sec. 3.1,
model variants without “+LM” use standard input embeddings for tabular datasets, including learnable
lookup embeddings and random features. The remaining models additionally include language-guided
embeddings to provide additional context to input data. We also include CatBoost, the teacher model, in
Fig. 5 as a comparison reference.

Model Distillation LangEmbed Finetune Regression Binary Multiclass All
Base ✓ 4.38 ± 2.00 3.90 ± 1.14 4.29 ± 1.48 4.16 ± 1.57
Base+LM ✓ ✓ 4.62 ± 1.58 4.60 ± 1.28 4.21 ± 1.89 4.50 ± 1.57
Distil ✓ 3.62 ± 1.49 3.95 ± 1.56 4.57 ± 1.29 4.02 ± 1.51
Distil+LM ✓ ✓ 3.38 ± 1.49 3.40 ± 1.69 4.14 ± 0.83 3.60 ± 1.47
FT ✓ ✓ 2.50 ± 1.32 2.65 ± 1.52 2.29 ± 0.88 2.50 ± 1.31
DisTab ✓ ✓ ✓ 2.50 ± 0.87 2.50 ± 1.91 1.50 ± 0.60 2.22 ± 1.41

Table 3: Ablation comparison on DisTab. Each variant has one or more components turned off with respect
to DisTab. Base model denotes standard supervised learning on the datasets. DisTab outperforms all
variants, suggesting that pre-training, language embedding and fine-tuning all contributed meaningfully to
model performance.

Regression Tasks Binary Tasks Multi-class Tasks

Figure 5: Win matrices between DisTab and its variants, with one or more components disabled. DisTab
outperforms all DL variants, and achieves parity or surpasses the CatBoost teacher model.

Distillation. Tab. 3 indicates that distillation improves model performance: Distil beats Base in 14 out
of the 25 tasks, while Distil+LM beats Base+LM in 17 tasks. However, the impact of distillation varies
across different task settings. it is most beneficial for regression to improve 6 out of 8 tasks from Base,

10



Published in Transactions on Machine Learning Research (11/2024)

but provides mixed results for classification. The results suggest that distillation of tree-based methods
alone may be insufficient to reliably improve tabular DL models. However, FT, which combines distillation
and fine-tuning, clearly outperforms Base, winning 20 out of the 25 tasks. The improvement also becomes
consistent across all task settings. This strongly suggests the efficacy of distillation as a pre-training strategy
to offer a robust model prior, and the necessity of fine-tuning for improved performance.

Language-guided Embedding. In Tab. 3, DisTab is able to improve the average rank over all tasks from
2.5 (obtained by FT) to 2.2 by incorporating semantic information in model input. The table also shows
that language guidance performs robustly across all task settings and is particularly effective for multi-class
setting, with an increase of 0.79 in average rank. Fig. 5 shows similar results when focused on pairwise
comparison between DisTab and FT: the former outperforms the latter in 18 out of 25 tasks. The results
clearly indicate the effectiveness of language guidance for tabular prediction.

Without pre-training, we observe that Base+LM underperforms Base. This effect is due to degraded perfor-
mance on tasks of smaller size, since the added degrees of freedom introduced by language-guidance impact
negatively Base+LM model, which is already prone to overfitting on small data volumes (see Sec. 3.2). The
results suggest that language guidance is most useful when given sufficient training data, either leveraging
synthetic data from pre-training, or using a training set of adequate size.

5 Discussion and Conclusion

In this work, we introduced DisTab as a framework to bridge the performance gap between DL and tree-based
methods for tabular prediction tasks. We demonstrated that a straightforward yet previously overlooked
strategy is to leverage distillation for model pre-training, employing an appropriate tree-based model as
teacher. We also introduced a simple yet effective data augmentation strategy compatible with distillation
to tackle training data scarcity, a common scenario in tabular domains. Empirically, our results suggest
that DisTab compares favorably to other DL methods, including a variety of alternative pre-training strate-
gies, model architectures customized for tabular learning, and learning from scratch. More importantly,
our approach either surpasses or matches the performance of tree-based methods, effectively closing the
performance gap between the two classes of methods.

Beyond these practical contributions, our work demonstrates also the potential structural advantages of
tabular DL over tree-based methods, namely the flexibility and ease of integrating different information
sources during learning, such as language. In particular, we showed how to incorporate semantic information
during learning, including column headers and textual descriptions for categorical data. Our results show that
language guidance is effective for tabular learning, improving the model performance for the vast majority
of datasets. We believe that exploring such structural potentials of DL models is crucial for their further
improvements in tabular learning, as the performance gap closes between DL and tree-based methods.

Limitation and Future work. An under-explored aspect of this work is the impact of extensive hyper-
parameters tuning on tabular learning. In our experiments, we focused our hyper-parameter search to
identify, for each method, a set of default values that work well across all datasets. This is because task-level
hyper-parameter tuning can be computationally prohibitive (especially for tabular DL) and produces mixed
results (Yan et al., 2024; Chen et al., 2023). However, tree-based methods are generally more advantageous
than DL ones in terms of computational efficiency, and the former could afford more extensive hyper-
parameter search to yield better models. We leave the investigation on the trade-off between computational
budget and model performance to future works.

Our proposed framework is a general strategy compatible with recent advancements in tabular DL and
beyond. For instance, distillation could be directly combined with transformer architectures tailored for
tabular learning (e.g., Somepalli et al., 2021; Chen et al., 2023), or with cross-tabular pre-training (e.g.,
Zhu et al., 2023; Yan et al., 2024; Ye et al., 2024). In addition, our framework could leverage different data
augmentation techniques or language models. We leave these exploration to future works.

11



Published in Transactions on Machine Learning Research (11/2024)

Acknowledgments

This work is supported by Career Development Fund (grant C210812045) from A*STAR Singapore.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. Advances in neural information processing systems, 35:23716–23736, 2022.

Sercan Arik, Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou. Neural voice cloning with a few samples.
Advances in neural information processing systems, 31, 2018.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning using
random feature corruption. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=CuV_qYkmKb3.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv preprint
arXiv:2404.05961, 2024.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci.
Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang. Trompt: Towards
a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084–15097, 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505,
2020.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models
for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943, 2021.

12

https://openreview.net/forum?id=CuV_qYkmKb3
https://openreview.net/forum?id=CuV_qYkmKb3


Published in Transactions on Machine Learning Research (11/2024)

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in tabular deep
learning. Advances in Neural Information Processing Systems, 35:24991–25004, 2022.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? Advances in neural information processing systems, 35:507–520, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer that
solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848, 2022.

Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning. Information, 11(2):108, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30, 2017.

Kushal Majmundar, Sachin Goyal, Praneeth Netrapalli, and Prateek Jain. Met: Masked encoding for tabular
data. arXiv preprint arXiv:2206.08564, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Thierry Poibeau. Machine translation. MIT Press, 2017.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features. Advances in neural information processing systems,
31, 2018.

Zengyi Qin, Wenliang Zhao, Xumin Yu, and Xin Sun. Openvoice: Versatile instant voice cloning. arXiv
preprint arXiv:2312.01479, 2023.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. Advances in neural information processing systems, 21, 2008.

Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. Revisiting pretraining objectives
for tabular deep learning. arXiv preprint arXiv:2207.03208, 2022.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in neural
information processing systems, 31, 2018.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information Fusion,
81:84–90, 2022.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein. Saint:
Improved neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

13



Published in Transactions on Machine Learning Research (11/2024)

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data for
self-supervised representation learning. Advances in Neural Information Processing Systems, 34:18853–
18865, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables. Advances
in Neural Information Processing Systems, 35:2902–2915, 2022.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fastformer: Additive attention can be
all you need. arXiv preprint arXiv:2108.09084, 2021.

Jing Wu, Suiyao Chen, Qi Zhao, Renat Sergazinov, Chen Li, Shengjie Liu, Chongchao Zhao, Tianpei Xie,
Hanqing Guo, Cheng Ji, et al. Switchtab: Switched autoencoders are effective tabular learners. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 15924–15933, 2024.

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Chen, Jimeng Sun, Jian Wu, and Jintai Chen.
Making pre-trained language models great on tabular prediction. arXiv preprint arXiv:2403.01841, 2024.

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao. Towards cross-
table masked pretraining for web data mining. In Proceedings of the ACM on Web Conference 2024, pp.
4449–4459, 2024.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the success of
self-and semi-supervised learning to tabular domain. Advances in Neural Information Processing Systems,
33:11033–11043, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng
Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5579–5588, 2021.

Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. Xtab: Cross-table
pretraining for tabular transformers. arXiv preprint arXiv:2305.06090, 2023.

14



Published in Transactions on Machine Learning Research (11/2024)

Supplementary Material
We provide additional details on the experimental protocol used to compare DisTab with other Tabular
learning strategies.

• Appendix A outlines the specific choice of benchmark dataset used in our experiments.

• Appendix B reviews previous methods for tabular prediction (both tree-based and DL-based), in-
cluding the hyperparameters used in our experiments.

• Appendix C reports in-depth results for the individual datasets, providing further insight on the
models performance and comparison.

A Dataset Statistics

We use 25 OpenML datasets for our experiments, comprising 8 regression tasks, 10 binary classification
tasks, and 7 multi-class classification tasks. Tab. 4 lists the statistics for each dataset, as well as its OpenML
ID for reproducibility. The datasets range from 506 samples (boston) to 581012 (covertype), and from 5
columns (blood-transfusion) to 80 (house_prices_nominal).

Task name OpenML ID Number of rows Number of columns Task type
abalone 359944 4177 9 regression
black_friday 359937 166821 10 regression
boston 359950 506 14 regression
diamonds 233211 53940 10 regression
house_prices_nominal 359951 1460 80 regression
house_sales 359949 21613 22 regression
moneyball 167210 1232 15 regression
space_ga 359933 3107 7 regression
adult 7592 48842 15 binary
bank-marketing 14965 45211 17 binary
blood-transfusion 359955 748 5 binary
churn 359968 5000 21 binary
credit-g 31 1000 21 binary
higgs 146606 98050 29 binary
kc1 3917 2109 22 binary
kick 359991 72983 33 binary
pc4 359958 1458 38 binary
qsar-biodeg 359956 1055 42 binary
car 146821 1728 7 multiclass
covertype 7593 581012 13 multiclass
diabetes130us 168877 101766 50 multiclass
okcupid-stem 359993 50789 20 multiclass
segment 146822 2310 17 multiclass
steel-plates-fault 168784 1941 27 multiclass
wine-quality-white 359974 4898 12 multiclass

Table 4: Table statistics for datasets used in our experiments

15



Published in Transactions on Machine Learning Research (11/2024)

B Baseline Methods

B.1 Tree-based models

As tree-based models achieve state-of-the-art performance on tabular tasks (Grinsztajn et al., 2022; Chen
et al., 2023; Zhu et al., 2023), we evaluate popular tree-based models comprising XGBoost (Chen & Guestrin,
2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018), and Random Forest (Breiman,
2001). We use the recommended hyperparameters (see Tab. 5, Tab. 6,Tab. 7, Tab. 8), early stopping strategy,
and feature pre-processing implemented in AutoGluon (Erickson et al., 2020) 1.0.0 release for each tree-based
model, which achieves strong performance on the evaluated datasets.

Name Value Description
n_estimators 10000 Number of boost round
max_depth 6 Maximum depth of a tree.
learning_rate 0.1 Learning rate
reg_alpha 0 ℓ1 regularization.
reg_lambda 1 ℓ2 regularization.
proc.max_category_levels 100 maximum number of allowed levels per categorical feature
booster gbtree Which booster to use
early_stopping_rounds adaptive Patience for early stopping adapts to training set size.

Table 5: Hyperparemeters for XGBoost

Name Value Description
num_leaves 30 Max number of leaves in one tree
max_depth -1 Max tree depth. -1 denotes unlimited depth.
learning_rate 0.05 Learning rate
n_estimators 100 Number of boosting iterations
reg_alpha 0.0 ℓ1 regularization
reg_lambda 0.0 ℓ2 regularization
subsample 1 Bagging fraction
early_stopping_rounds adaptive Patience for early stopping adapts to training set size.

Table 6: Hyperparemeters for LightGBM.

Name Value Description
learning_rate 0.05 Learning rate.
random_strengh 5 The amount of randomness to use for scoring splits.
l2_leaf_reg 3.0 ℓ2 regularization on leaf node.
leaf_estimation_iterations 1 Number of iterations for calculating leaf values.
iterations 10000 Maximum number of trees to be built.

Table 7: Hyperparemeters for CatBoost

Name Value Description
n_estimators 1000 The number of trees in random forest.
max_leaf_nodes 15000 Maximum number of leaf nodes.
max_features 0.5 The number of features to consider when looking for the best split.
bootstrap True Whether bootstrap samples are used when building trees.

Table 8: Hyperparemeters for Random forest.

16



Published in Transactions on Machine Learning Research (11/2024)

B.2 DL models

We evaluate a diverse set of DL tabular methods in our experiments, including both MLP-based and
transformer-based models. We also consider different pre-training strategies and learning from scratch.
We highlight their implementation details below.

FastAI. (Howard & Gugger, 2020) We use FastAI as our choice of MLP-based model trained from scratch.
It adaptively determines the embedding sizes of input features. We use the AutoGluon implementation with
the following hyper-parameters in Tab. 9.

Name Value Description
layers [200, 100] Size of hidden layers for MLP
emb drop 0.1 embedding layers dropout
ps 0.1 linear layers dropout
epochs 30 number of epochs
lr 1e-2 learning rate
bs 256 batch size

Table 9: Hyperparemeters for FastAI
Vime. (Yoon et al., 2020) Vime is a MLP-based tabular learning model. It uses a reconstruction loss for pre-
training. Our implementation is based on the repository TabularS3L (https://github.com/Alcoholrithm/
TabularS3L). The hyper-parameters are listed in Tab. 10.

Name Value Description
layer count 3 Number of hidden layers
hidden dim 1024 Dimension of hidden layers
pt epochs 40 Training epochs
epochs 100 Fine-tuning epochs
patience 20 Early-stopping patience during fine-tuning
learning rate 1.0e-4 Learning rate
weight decay 3e-6 Weight decay
batch size 128 Batch size

Table 10: Hyperparemeters for Vime.
Scraf. (Bahri et al., 2022) Scraf is another MLP model with contrastive loss for pre-training. Our imple-
mentation is based on TabularS3L, with the hyper-parameters listed in Tab. 11.

Name Value Description
layer count 3 Number of hidden layers
hidden dim 1024 Dimension of hidden layers
pt epochs 40 Training epochs
epochs 100 Fine-tuning epochs
patience 20 Early-stopping patience during fine-tuning
learning rate 1.0e-4 Learning rate
weight decay 3e-6 Weight decay
batch size 128 Batch size

Table 11: Hyperparemeters for Scraf.

17

https://github.com/Alcoholrithm/TabularS3L
https://github.com/Alcoholrithm/TabularS3L


Published in Transactions on Machine Learning Research (11/2024)

FT-Transformer. (Gorishniy et al., 2021) FTT is a transformer-based model trained from scratch. We use
its implementation from AutoGluon with the following hyper-parameters in Tab. 12.

XTab. (Zhu et al., 2023) XTab is a transformer-based model that utilizes multi-task learning for pre-training.
It pre-trains a shared transformer across different tabular datasets to learned features generalizable across
tables. XTab is based on FT-transformer and shares the same hyper-parameters (Tab. 12). We use the
official pre-trained checkpoint of XTab (https://github.com/BingzhaoZhu/XTab).

name value Description
token dim 192 Dimension of input tokens
num blocks 3 Number of transformer blocks
attention n heads 8 Number of attention heads
head activation relu Activation function of MLP layer performing inference
ffn activation reglu Activation function in feed-forward layer of transformer block
patience 20 Early-stopping patience
attention dropout 0.2 Dropout in attention layer
ffn dropout 0.1 Dropout in feed-forward layer of transformer block
learning rate 1.0e-4 Learning rate
weight decay 1.0e-5 Weight decay
batch size 128 Batch size

Table 12: Hyperparemeters for FTT and XTab.
Saint. (Somepalli et al., 2021) Saint is a transformer-based model with constrastive pre-training. It intro-
duces inter-sample attention block such that different samples within a training batch could attend to one
another. We use the official implementation (https://github.com/somepago/saint) with the following
hyper-parameters.

Name Value Description
embedding dim 32 Dimension of input tokens
attention n heads 8 Number of attention heads
self head dim 16 Dimension of the heads in Self-Attention block
inter head dim 64 Dimension of the heads in Inter-sample Attention block
pt epochs 50 Pre-training epochs
epochs 100 Fine-tuning epochs
attention dropout 0.1 Dropout in attention layer
ffn dropout 0.8 dropout rate in feed-forward layer in transformer block
learning rate 1.0e-4 learning rate during both pre-traing and fine-tuning
weight decay 1.0e-2 Weight decay during both pre-traing and fine-tuning
pt tasks contrastive, denoising pre-training objectives
batch size 128 Batch size

Table 13: Hyperparemeters for Saint.

SwitchTab. (Wu et al., 2024) SwitchTab is a transformer-based model with reconstructive pre-training.
During pre-training, the model learns to decouple mutual and salient features for each sample and synthesize
corrupted samples by recombining mutual and salient features from different samples. The pre-training
objective is thus to recover from the corrupted samples. Our implementation is based on TabularS3L, with
hyper-parameters in Tab. 14.

18

https://github.com/BingzhaoZhu/XTab
https://github.com/somepago/saint


Published in Transactions on Machine Learning Research (11/2024)

Name Value Description
token dim 192 Dimension of input tokens
num blocks 3 Number of transformer blocks
attention n heads 8 Number of attention heads
pt epochs 40 Pre-training epochs
epochs 100 Fine-tuning epochs
patience 20 Early-stopping patience during fine-tuning
attention dropout 0.1 Dropout in attention layer
ffn dropout 0.1 Dropout in feed-forward layer in transformer block
learning rate 1.0e-4 Learning rate
weight decay 3e-6 Weight decay
batch size 128 Batch size

Table 14: Hyperparemeters for SwitchTab.

DisTab. Our proposed method uses Llama-3-8B for computing the language-guided embeddings for each
column. Specifically, textual information for a column is first embedded by the Llama tokenizer into a
sequence of tokens X ∈ Rn×d, where n is the number of tokens and d the embedding dimension of Llama
model. We define fenc = fproj◦flm, where flm : Rn×d → Rn×d outputs the sequence representation O ∈ Rn×d

from Llama model. fproj = MLP(AvgPool(O)), which summarizes the sequence representation into a single
vector, followed by a learnable projection MLP.

We list the hyper-parameters used for DisTab below.

Name Value Description
token dim 512 Dimension of input tokens
num blocks 3 Number of transformer blocks
attention n heads 8 Number of attention heads
pt epochs 30 Pre-training epochs
epochs 20 Fine-tuning epochs
learning rate 1.0e-4 Learning rate
weight decay 1e-6 Weight decay
batch size 1024 Batch size
aug_size 100000 Number of synthetic data generated for pre-training

Table 15: Hyperparemeters for DisTab.

B.3 Hyper-parameter Tuning

We performed grid search for all methods to determine the key hyper-parameter values that have been
reported in the previous section. For each task, we use the validation performance on the first train/test
split, as specified by OpenML, to guide the grid search. Validation performance across different tasks is
averaged to select the best performing hyper-parameter configuration for each model. We use a single set
of hyper-parameters for different tasks, which is a common experiment setting also adopted in previous
works (Zhu et al., 2023; Chen et al., 2023; Yan et al., 2024). We stress that robustness to hyper-parameter
choice is crucial for tabular models, since they are expected to perform well across diverse datasets. This is
especially important for tabular DL methods since hyper-parameter tuning over a large pre-trained model
is often prohibitive from the computational standpoint (Yan et al., 2024).

We list the grid search space for each method below.

19



Published in Transactions on Machine Learning Research (11/2024)

Name Search space
n_estimators [100, 1000, 10000]
max_depth [4, 6, 10]
learning_rate [0.01, 0.1, 0.5]

Table 16: Search Grid for XgBoost

Name Search space
num_leaves [5, 30, 50]
max_depth [3, 20, -1]
learning_rate [0.01, 0.05, 0.1]
n_estimators [100, 1000, 10000]

Table 17: Search Grid for LightGBM

Name Search space
learning_rate [0.01, 0.05, 0.1]
random_strengh [1, 5, 10]
l2_leaf_reg [0.1, 1, 3]
iterations [100, 1000, 10000]

Table 18: Search Grid for CatBoost

Name Grid search space
n_estimators [10, 50, 100, 300, 1000]
max_leaf_nodes [100, 500, 1000, 4000, 15000]
max_features [’sqrt’, 0.5, 0.25]

Table 19: Search Grid for Random Forests

Name Search space
emb_drop [0.1, 0.2, 0.5]
ps [0.1, 0.2, 0.5]
epochs [30, 50, 100]
lr [0.001, 0.01, 0.1]

Table 20: Search Grid for FastAI

Name Grid search space
layer_count [2, 3, 5]
hidden_dim [256, 512, 1024]
epochs [50, 100]
learning_rate [1e-4, 1e-3, 1e-2]

Table 21: Search Grid for Vime

Name Grid search space
layer_count [2, 3, 5]
hidden_dim [256, 512, 1024]
epochs [50, 100]
learning_rate [1e-4, 1e-3, 1e-2]

Table 22: Search Grid for Scarf

Name Grid search space
token_dim [192, 256, 512]
num_blocks [2, 3, 4]
attention_n_heads [4, 8]
learning_rate [1e-4, 1e-3, 1e-2]

Table 23: Search Grid for FT-Transformer and
XTab

Name Grid search space
token_dim [192, 256, 512]
num_blocks [2, 3, 4]
attention_n_heads [4, 8]
learning_rate [1e-4, 1e-3, 1e-2]

Table 24: Search Grid for SwitchTab

Name Grid search space
token_dim [192, 256, 512]
num_blocks [2, 3, 4]
attention_n_heads [4, 8]
learning_rate [1e-4, 1e-3, 1e-2]

Table 25: Search Grid for DisTab

C Further Experiment Results

C.1 Comparison with Tree-based methods with Average Performance

To compute average performance across different task settings, we transform RMSE metric in regression
tasks to R2 score, such that its range and directionality aligns with AUC in binary tasks and accuracy

20



Published in Transactions on Machine Learning Research (11/2024)

Metric CAT RF GBM XGB DisTab
Regression R2 0.81 0.784 0.795 0.795 0.809

Binary AUC 0.86 0.849 0.85 0.854 0.858
Multi-class ACC 0.813 0.812 0.821 0.822 0.821

All 0.831 0.818 0.824 0.826 0.832

Table 26: Average performance comparison between DisTab and tree-based methods

for multi-class tasks. Specifically, all three metrics share the range of [0, 1] and larger values imply better
performance.

We report the average task performance in Tab. 26. The results are consistent with those reported in
Tab. 2. In particular, DisTab matches the performance of CatBoost overall and outperform the others. In
the multi-class setting, DisTab noticeably outperforms CatBoost and matches the performance of LightGBM
and XgBoost.

C.2 Attention Activation Visualization

We visualize the average attention activation of DisTab v.s. FT on moneyball and steel-plates-fault datasets
below. The results suggest while both model variants learned to identify similar key predictive features,
language guidance provides slightly different feature mixing compared to FT. In both datasets, language
guidance yielded better test performance.

Layer 0 Layer 1 Layer 2

Layer 0 Layer 1 Layer 2

Figure 6: Average attention activation on FT vs. DisTab on moneyball.
21



Published in Transactions on Machine Learning Research (11/2024)

Layer 0 Layer 1 Layer 2

Layer 0 Layer 1 Layer 2

Figure 7: Average attention activation on FT vs. DisTab on steel-plates-fault.

C.3 Individual Task Performance

In Tab. 27, we report performance of all evaluated methods for each individual tasks. Each task contains
5 data splits and the average performance over the splits is reported. The evaluated tasks are discussed in
Appendix A and the evaluated methods in Appendix B.

22



Published in Transactions on Machine Learning Research (11/2024)

D
at

as
et

M
et

ri
c

Tr
ee

-b
as

ed
M

LP
-b

as
ed

m
od

el
s

Tr
an

sf
or

m
er

-b
as

ed
m

od
el

s

C
A

T
R

F
G

B
M

X
G

B
Fa

st
A

I
V

im
e

Sc
ra

f
F

T
T

X
Ta

b
Sa

in
t

T
P

-B
E

R
Ta

Sw
it

ch
Ta

b
O

ur
s

ab
al

on
e

R
M

SE
2.

19
7

2.
18

4
2.

20
3

2.
21

5
2.

13
3

2.
16

5
2.

18
2.

13
4

2.
18

2.
15

2
2.

28
8

2.
20

3
2.

17
2

bl
ac

k_
fr

id
ay

R
M

SE
34

56
.0

34
99

.1
34

46
.5

34
52

.3
35

92
.8

35
45

.3
35

19
.1

35
22

.0
35

21
.3

35
24

.0
35

15
.2

35
34

.5
34

45
.0

bo
st

on
R

M
SE

2.
67

2
3.

13
7

3.
42

2
3.

26
6

3.
98

7
3.

34
9

3.
02

3
3.

51
3

3.
35

1
3.

48
1

4.
29

3
3.

03
4

2.
43

9
di

am
on

ds
R

M
SE

51
2.

7
54

9.
7

52
5.

2
53

9.
1

55
3.

7
55

0.
7

60
6.

3
51

6.
2

51
9.

9
52

9.
5

63
3.

7
53

8.
7

51
5.

9
ho

us
e_

pr
ic

es
R

M
SE

21
82

0.
7

24
81

4.
9

25
29

7.
9

24
09

2.
5

23
95

3.
8

26
58

9.
2

26
72

9.
2

22
71

7.
1

22
59

5.
1

25
60

8.
1

26
08

8.
8

25
48

4.
5

23
20

4.
2

ho
us

e_
sa

le
s

R
M

SE
10

61
63

.1
12

14
09

.6
11

17
75

.9
11

41
48

.0
11

26
93

.5
12

16
12

.1
12

00
26

.5
11

10
15

.6
11

07
52

.9
11

79
57

.4
11

67
07

.8
11

79
31

.3
10

75
90

.2
m

on
ey

ba
ll

R
M

SE
22

.8
6

24
.2

5
23

.9
9

24
.2

4
22

.3
3

23
.5

9
24

.6
9

22
.0

1
21

.8
6

23
.8

5
27

.2
2

23
.4

21
.8

5
sp

ac
e_

ga
R

M
SE

0.
10

06
0.

10
98

0.
10

34
0.

10
53

0.
10

04
0.

10
5

0.
10

25
0.

10
17

0.
10

5
0.

10
12

0.
12

98
0.

10
28

0.
10

63
ad

ul
t

A
U

C
0.

92
87

0.
90

98
0.

92
87

0.
92

86
0.

91
06

0.
91

19
0.

91
15

0.
91

59
0.

91
57

0.
92

17
0.

92
90

0.
91

10
0.

93
01

ba
nk

-m
ar

ke
ti

ng
A

U
C

0.
93

83
0.

93
06

0.
93

77
0.

93
72

0.
93

41
0.

93
38

0.
93

12
0.

93
81

0.
93

80
0.

93
78

0.
94

36
0.

92
12

0.
94

03
bl

oo
d-

tr
an

sf
us

io
n

A
U

C
0.

75
57

0.
73

17
0.

73
28

0.
73

78
0.

74
43

0.
74

65
0.

76
25

0.
76

25
0.

75
95

0.
74

65
0.

73
89

0.
75

39
0.

74
16

ch
ur

n
A

U
C

0.
91

95
0.

91
10

0.
91

14
0.

92
04

0.
90

59
0.

90
24

0.
90

79
0.

91
19

0.
92

02
0.

90
88

0.
87

73
0.

91
76

0.
91

94
cr

ed
it

-g
A

U
C

0.
77

06
0.

77
57

0.
75

40
0.

75
08

0.
74

07
0.

76
30

0.
77

50
0.

74
05

0.
74

60
0.

78
96

0.
75

34
0.

74
05

0.
77

29
hi

gg
s

A
U

C
0.

81
31

0.
80

31
0.

80
97

0.
80

80
0.

81
33

0.
78

73
0.

77
33

0.
81

64
0.

81
54

0.
79

93
0.

79
65

0.
81

18
0.

82
10

kc
1

A
U

C
0.

81
31

0.
81

74
0.

78
86

0.
79

84
0.

80
61

0.
80

37
0.

79
31

0.
79

34
0.

80
00

0.
79

29
0.

78
68

0.
79

46
0.

80
66

ki
ck

A
U

C
0.

78
26

0.
76

12
0.

76
76

0.
78

40
0.

76
28

0.
78

08
0.

76
82

0.
77

35
0.

77
41

0.
77

74
0.

76
76

0.
74

84
0.

77
32

pc
4

A
U

C
0.

94
95

0.
94

46
0.

94
78

0.
94

94
0.

92
62

0.
92

67
0.

92
66

0.
94

45
0.

94
96

0.
94

84
0.

86
45

0.
93

39
0.

95
03

qs
ar

-b
io

de
g

A
U

C
0.

92
62

0.
91

88
0.

92
08

0.
92

45
0.

92
94

0.
93

10
0.

91
87

0.
92

47
0.

92
87

0.
92

36
0.

91
51

0.
91

89
0.

92
24

ca
r

A
cc

98
.3

8
97

.9
2

98
.9

6
98

.2
7

98
.3

8
99

.1
9

99
.1

9
99

.6
5

99
.0

8
97

.5
7

99
.1

9
99

.0
8

99
.5

4
co

ve
rt

yp
e

A
cc

94
.1

4
93

.1
8

97
.1

8
97

.0
0

91
.3

3
96

.3
6

96
.9

3
97

.2
8

97
.1

6
90

.7
9

96
.6

9
96

.3
9

95
.7

3
di

ab
et

es
13

0u
s

A
cc

60
.9

8
60

.6
1

60
.4

5
61

.0
1

59
.2

8
60

.2
8

60
.5

3
61

.0
4

60
.9

5
60

.0
8

60
.5

3
59

.4
1

61
.4

2
ok

cu
pi

d-
st

em
A

cc
75

.5
4

75
.6

1
75

.9
5

76
.2

4
74

.8
2

74
.8

7
75

.0
6

75
.2

7
75

.0
6

75
.1

1
75

.9
4

72
.1

7
76

.2
0

se
gm

en
t

A
cc

92
.7

3
94

.3
7

93
.8

5
93

.6
8

91
.8

6
91

.7
7

92
.6

4
92

.9
0

93
.0

7
93

.3
3

92
.2

9
92

.5
5

94
.4

6
st

ee
l-p

la
te

s-
fa

ul
t

A
cc

79
.7

1
79

.7
1

81
.3

6
80

.9
5

75
.5

9
76

.4
2

77
.3

4
78

.9
9

75
.1

8
77

.5
5

72
.6

1
77

.5
5

81
.0

5
w

in
e-

qu
al

ity
-w

hi
te

A
cc

67
.8

8
69

.0
6

67
.2

2
67

.9
6

58
.1

2
65

.1
0

64
.4

9
60

.7
8

58
.8

2
62

.3
7

65
.4

3
63

.8
8

66
.1

2

Ta
bl

e
27

:A
ve

ra
ge

ta
sk

pe
rfo

rm
an

ce
ov

er
5

da
ta

sp
lit

fo
rb

as
el

in
e

m
et

ho
ds

an
d

D
isT

ab
.

T
he

re
su

lts
ar

e
us

ed
to

co
m

pu
te

th
e

w
in

m
at

ric
es

an
d

av
er

ag
e

ra
nk

in
g

in
Se

c.
4

in
th

e
m

ai
n

te
xt

.

23


	Introduction
	Related Works
	Method
	Input Embeddings for Tabular Features
	Model Pre-training
	DisTab Algorithm

	Experiments
	Comparison with DL Methods
	Comparison with Tree-based Methods
	Ablation Study

	Discussion and Conclusion
	Dataset Statistics
	Baseline Methods
	Tree-based models
	DL models
	Hyper-parameter Tuning

	Further Experiment Results
	Comparison with Tree-based methods with Average Performance
	Attention Activation Visualization
	Individual Task Performance


