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ABSTRACT

The inexact stochastic proximal point algorithm (isPPA) is popular for solving
stochastic composite optimization problems with many applications in machine
learning. While the convergence theory of the (inexact) PPA has been well es-
tablished, the known convergence guarantees of isPPA require restrictive assump-
tions. In this paper, we establish the stability and almost sure convergence of
isPPA under mild assumptions, where smoothness and (restrictive) strong convex-
ity of the objective function are not required. Imposing a local Lipschitz condition
on component functions and a quadratic growth condition on the objective func-
tion, we establish last-iterate iteration complexity bounds of isPPA regarding the
distance to the solution set and the Karush–Kuhn–Tucker (KKT) residual. More-
over, we show that the established iteration complexity bounds are tight up to
a constant by explicitly analyzing the bounds for the regularized Fréchet mean
problem. We further validate the established convergence guarantees of isPPA by
numerical experiments.

1 INTRODUCTION

We consider the following stochastic composite optimization problem:

min
x∈Rd

ϕ(x) ≜ F (x) + r(x), where F (x) ≜ Es∼P [f(x; s)] , (ComOpt)

where S is a sample space, P represents a distribution over S, r : Rd → (−∞,+∞] is a proper
and closed function, and for P -almost s ∈ S, the component function f(·; s) : Rd → (−∞,+∞]
is proper and closed, while the composite component function f(·; s) + r(·) is proper and closed
convex. A special case of problem (ComOpt) is the regularized finite-sum problem, where the
sample space S is denoted by the finite discrete domain {1, · · · , n} for some positive integer n, the
function F is defined as a finite sum of component functions, and the regularizer r is typically used
to impose sparsity on the parameter x. Such discrete models are common in statistics and machine
learning, including linear regression model with Lasso regularizer or elastic net regularizer.

1.1 MOTIVATION AND RELATED WORKS

Numerous stochastic first-order methods have been proposed and analyzed for solving the stochastic
problem (ComOpt). The classical stochastic gradient descent (SGD) method developed by Robbins
& Monro (1951) remains popular due to its simplicity. Nevertheless, theoretical and empirical
results have shown that SGD suffers from instability and has significant difficulties and limitations
in stepsize selection (Moulines & Bach, 2011; Asi & Duchi, 2019). While SGD is commonly
used in practice, its drawbacks motivated developing alternative methods to alleviate these issues.
One such method is the stochastic proximal point algorithm (sPPA) developed by Bertsekas (2011)
for discrete problems and extended to continuous settings by Ryu & Boyd (2014). A significant
advantage of sPPA over SGD is the stability established in (Asi & Duchi, 2019). Specifically, when
each component function is convex and there exists a uniform upper bound on subgradients over the
optimal solution set, sPPA exhibits the following property: if the stepsizes are square summable but
not summable and the subdifferential exchange with the expectation, then the iterates generated by
sPPA are bounded almost surely.
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Several theoretical convergence results have been proven for sPPA under different assumptions.
Common assumptions include (restricted) strong convexity (Ryu & Boyd, 2014; Patrascu &
Necoara, 2018; Davis & Drusvyatskiy, 2019; Asi et al., 2020) and (Lipschitz) smoothness (Ryu
& Boyd, 2014; Toulis et al., 2016; Patrascu & Necoara, 2018; Yuan & Li, 2023) or (global) Lips-
chitz continuity (Patrascu & Necoara, 2018; Davis & Drusvyatskiy, 2019) of component functions.
Many other assumptions have also been proposed to obtain bounds of convergence rate for sPPA.
For instance, when applied to problem (ComOpt) with weak linear regularity of F and r = 0, Pa-
trascu (2021) proved an asymptotic O(k−β) sublinear convergence rate of sPPA with diminishing
stepsizes αk = α0k

−β in the expected squared distance to the optimal solution set. Some studies
assumed “easy optimization” (Patrascu, 2021; Asi & Duchi, 2019; Asi et al., 2020), which requires
that optimal solutions minimize each component function. However, this strong assumption is often
violated in machine learning models. Most analyses considered the exact sPPA with a batchsize of
one, which assumes the subproblem in each iteration is solved exactly. This is a strong assumption
that is typically difficult to achieve in practice. The only analysis of inexact sPPA was conducted
by Yuan & Li (2023), who established ergodic convergence under the assumption that r satisfies
Lipschitz continuity over the entire domain. Nevertheless, this condition is violated by the elastic
net regularizer. We refer to Table 1 in Appendix A for a detailed comparison of these convergence
rate results and their underlying assumptions.

Based on the above discussion, in this paper, we consider the inexact stochastic proximal point
algorithm (isPPA) and provide the corresponding convergence analysis. Specifically, we aim to:

• Establish convergence rate guarantees under assumptions that are satisfied by most com-
mon regularized regression models in practice, including linear regression and logistic
regression, while also allowing for nondifferentiability and local Lipschitz continuity of
component functions and the regularizer.

• Impose reasonable stopping criteria that can be implemented computationally for inexactly
solving subproblems.

• Derive various versions of convergence rate bounds, with some possessing theoretical in-
sight while others being practically meaningful for assessing algorithm termination.

We mainly focus on the bounds for last-iterate convergence rates due to: a) their easier extension to
nonconvex settings than ergodic convergence rates, which rely strongly on convexity; b) last iterates
preserving properties like sparsity versus averaged iterates.

1.2 CONTRIBUTIONS

The main contributions of this paper can be summarized as follows:

• Under mild conditions, we prove the stability of isPPA, extending the stability result for
exact sPPA in literature (Asi & Duchi, 2019) to the inexact variants.

• Assuming a local Lipschitz condition on component functions and a quadratic growth con-
dition on the objective function, on the event that the iterate sequence remains bounded,
we derive nonasymptotic last-iterate convergence rates for isPPA in terms of the expected
squared distance to the optimal solution set. Specifically, this method converges linearly
to an O(α0) neighborhood of the optimal solution set with constant stepsizes α0, and can
achieve an O(k−β) asymptotic rate with diminishing stepsizes αk = α0k

−β (β ∈ (0, 1]).
Based on these results, we can further obtain the corresponding rates in terms of the ex-
pected Karush–Kuhn–Tucker (KKT) residual. Since the KKT residual is commonly used
in algorithm termination criteria, these rates have clear practical applications.

• By using the Fréchet mean problem with squared ℓ2-norm regularizer as an illustrative
example, we provide lower bounds on the convergence rates of isPPA for solving problem
(ComOpt) under the assumptions proposed in this paper, demonstrating that our derived
convergence rate guarantees are tight up to constant factors.

Additionally, we verify the theoretical results by preliminary numerical experiments.
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1.3 NOTATIONS AND BASIC ASSUMPTIONS

Denote the set [n] ≜ {1, · · · , n}. For any x ∈ Rd, denote its q-norm as ∥x∥q . For any x ∈ Rd

and X ⊂ Rd, let dist(x,X ) ≜ infy∈X ∥x− y∥2 be the Euclidean distance from x to X , and set
proj(x,X ) to be the projection of x onto X if X is nonempty and closed convex. For any proper
and closed convex function p : Rd → (−∞,+∞], the subdifferential of p at x is denoted by ∂p(x),
and the proximal mapping proxp(·) associated with p is defined by

proxp(x) ≜ arg min
y∈Rd

{
p(y) +

1

2
∥y − x∥22

}
for all x ∈ Rd.

It is known from (Rockafellar, 1976b, Proposition 1) that proxp(·) is nonexpansive, i.e., Lipschitz
continuous with constant 1. Consider the stochastic composite optimization problem (ComOpt).
Let X ∗ ≜ argminx∈Rd ϕ(x) denote the optimal solution set and set ϕ∗ ≜ infx∈Rd ϕ(x). For each
s ∈ S, the composite component function φ(·; s) : Rd → (−∞,+∞] is defined by

φ(x; s) ≜ f(x; s) + r(x) for all x ∈ Rd,

where f(·; s) and r(·) denote the component function and regularizer of problem (ComOpt), respec-
tively. Then, the objective function ϕ(x) = Es∼P [φ(x; s)] for all x ∈ Rd. For each k ∈ Z+, we use
S1:m
k ≜ {Si

k}mi=1 ⊂ S to denote a random minibatch of size m and define

f(x;S1:m
k ) ≜

1

m

m∑
i=1

f(x;Si
k) for all x ∈ Rd, (1.1a)

φ
(
x;S1:m

k

)
≜

1

m

m∑
i=1

φ(x;Si
k) = f

(
x;S1:m

k

)
+ r(x) for all x ∈ Rd. (1.1b)

To solve problem (ComOpt), we consider the isPPA method shown in Algorithm 1. The symbol “
ϵk≈”

indicates that the next iterate xk+1 is obtained by approximately solving the following subproblem:

min
x∈Rd

f(x;S1:m
k ) + r(x) +

1

2αk
∥x− xk∥22

until xk+1 satisfies an accuracy ϵk specified by some stopping criterion (to be defined in Section 2).
To establish the convergence properties of isPPA (Algorithm 1), we make the following assumptions.
Assumption 1. The function F : Rd → R is locally Lipschitz and r : Rd → (−∞,+∞] is a proper
closed function. For P -almost all s ∈ S, f(·; s) : Rd → (−∞,+∞] is a proper closed function
satisfying dom(f(·; s)) ⊃ dom(r), and φ(·; s) : Rd → (−∞,+∞] is convex.
Assumption 2. The optimal solution set X ∗ is nonempty. There exists a scalar σϕ ∈ R++ such that

Es∼P

[
∥φ′(x∗; s)∥22

]
≤ σ2

ϕ for all x∗ ∈ X ∗ and all measurable selections φ′(x∗; s) ∈ ∂φ(x∗; s).

For any fixed x∗ ∈ X ∗ and ϕ′(x∗) ∈ ∂ϕ(x∗), there exists a measurable mapping φ′(x∗; ·) such that

Es∼P [φ′ (x∗; s)] = ϕ′(x∗) with φ′ (x∗; s) ∈ ∂φ(x∗; s) for P -almost s ∈ S,

where Es∼P [φ′ (x∗; s)] is defined as the integral
∫
S φ

′(x∗; s)dP (s).

Assumption 3. For any bounded open subset U ⊂ dom(r), there exists a measurable function
Lf,U : S → R+, satisfying

√
Es∼P [Lf,U (s)2] ≤ LF (U) for some constant LF (U) ∈ R+ depend-

ing on U , such that for P -almost all s ∈ S,

|f(x; s)− f(y; s)| ≤ Lf,U (s)∥x− y∥2
holds for all x, y ∈ U .
Assumption 4. The objective function ϕ satisfies the quadratic growth condition on X ∗ globally,
that is, there exists c1 > 0 such that

ϕ(x) ≥ ϕ∗ + c1dist(x,X ∗)2

holds for all x ∈ Rd.
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It is worth noting that Assumption 4 is not essential for establishing the stability or almost sure con-
vergence of isPPA. Moreover, this assumption can be relaxed to its localized version (Assumption
5) when deriving the convergence rate of isPPA with square summable diminishing stepsizes, i.e.,
αk = α0k

−β for some β ∈ ( 12 , 1].
Assumption 5. The objective function ϕ satisfies the quadratic growth condition on X ∗ locally, that
is, there exists c1 > 0 and δ > 0 such that

ϕ(x) ≥ ϕ∗ + c1dist(x,X ∗)2 for all x ∈ U (X ∗, δ) ,

where U(X ∗, δ) denotes the set {x ∈ Rd | dist(x,X ∗) ≤ δ}.
Remark 1.1. A sufficient condition for the optimal solution set X ∗ to be nonempty is the coercivity
of the objective function ϕ, which commonly holds for regularized regression models. The last
condition in Assumption 2 is implied by the equality

Es∼P [∂φ(x; s)] = ∂ϕ(x) for all x ∈ dom(ϕ), (1.2)

where Es∼P [∂φ(x; s)] is the expected subdifferential defined by

Es∼P [∂φ(x; s)] ≜

{
vϕ,x ∈ Rd | vϕ,x =

∫
S
φ′(x; s)dP (s)

with φ′(x; ·) measurable and φ′(x; s) ∈ ∂φ(x; s) for P -almost s ∈ S} .
In the discrete case where S = [n], it follows from (Rockafellar, 1998, Theorem 23.8) that
∩s∈Sri(dom(φ(·; s))) ̸= ∅ is sufficient for (1.2), with ri(dom(φ(·; s))) relaxed to dom(φ(·; s))
for polyhedral φ(·; s). For the continuous case, sufficient conditions are given in (Rockafellar &
Wets, 1982; Bertsekas, 1973). Specifically, if φ(·; s) is real-valued and convex for each s ∈ S, (1.2)
holds due to (Bertsekas, 1973, Proposition 2.2).

Algorithm 1 Inexact Stochastic Proximal Point Algorithm (isPPA)
Parameters: initial point x1, stepsizes {αk}k≥1, accuracy parameters {ϵk}k≥1, minibatch size m,

maximum iteration count K
1: for k = 1, 2, · · · ,K do
2: Draw a random minibatch S1:m

k with Si
k

i.i.d.∼ P
3: Update

xk+1
ϵk≈ arg min

x∈Rd

{
f(x;S1:m

k ) + r(x) +
1

2αk
∥x− xk∥22

}
(1.3)

where f(x;S1:m
k ) is defined in (1.1a)

4: end for
Output: last iterate xK

2 ANALYSIS OF INEXACT STOCHASTIC PROXIMAL POINT ALGORITHM

In this section, we establish the convergence properties of isPPA, including the stability, almost
sure convergence, and convergence rate guarantees in terms of the squared distance to the optimal
solution set and the KKT residual.

Given ϵk ≥ 0, we consider the following three criteria and say that xk+1 is obtained according to
(1.3) if it satisfies one of these criteria:∥∥∥xk+1 − proxαkφ(·;S1:m

k )(xk)
∥∥∥
2
≤ ϵk, (SCA)

Φαk,xk
(xk+1;S

1:m
k )− Φ∗

αk,xk,S1:m
k

≤ ϵ2k
2αk

, (SCB)

dist
(
0, ∂Φαk,xk

(xk+1;S
1:m
k )

)
≤ ϵk
αk
, (SCC)

where function Φαk,xk
(·;S1:m

k ) : Rd → (−∞,+∞] is defined by

Φαk,xk

(
x;S1:m

k

)
≜ φ

(
x;S1:m

k

)
+

1

2αk
∥x− xk∥22 for all x ∈ Rd,
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and Φ∗
αk,xk,S1:m

k
≜ minx∈Rd Φαk,xk

(
x;S1:m

k

)
denotes the minimum value. Leveraging the fact

that Φαk,xk
(·;S1:m

k ) is 1
αk

-strongly convex under Assumption 1, it is straightforward to verify that

Criterion (SCC) ⇒ Criterion (SCB) ⇒ Criterion (SCA). (2.2)

Therefore, it is sufficient to establish the convergence results for isPPA with {xk} satisfying criterion
(SCA). Due to (2.2), the derived conclusions also hold for isPPA with {xk} satisfying either criterion
(SCB) or criterion (SCC).

Unless otherwise stated, we will use the following notations for simplicity. For any β ∈ R, the
function ςβ : R++ → R is defined by

ςβ(t) ≜

{
tβ−1
β if β ̸= 0,

ln(t) if β = 0,
(2.3)

for all t ∈ R++. For any bounded open subset U ⊂ dom(r), we assume without loss of generality
that Es∼P [Lf,U (s)

2] > 0 and set

ηf,U ≜ 1− Var (Lf,U (s))

Es∼P [Lf,U (s)2]
and ρf,m,U ≜

(√
1 + (m− 1)ηf,U

m
+ 1

)2

. (2.4)

Fix any k ∈ Z+. Let Fk ≜ σ(S1:m
1 , · · · , S1:m

k ) be the σ-field generated by the first k random
minibatch {S1:m

i }ki=1, and denote the conditional expectation Ek[·] ≜ E[· | Fk−1]. Additionally, we
denote the proximal point proxαkφ(·;S1:m

k )(xk) by x̃k+1.

2.1 STABILITY AND ALMOST SURE CONVERGENCE

Before establishing convergence rate guarantees for isPPA, we first prove conditions sufficient to
ensure boundedness of the iterates {xk} generated by (1.3). By adopting the proof of (Asi & Duchi,
2019, Theorem 3.2 and Corollary 3.5) with suitable modifications, we have the following theorem.
The proof is omitted here and deferred to Appendix B.1.
Theorem 2.1. Let Assumption 1 and 2 hold, and let {xk} be generated by isPPA (Algorithm 1) with
stepsizes {αk} and parameters {ϵk}. Suppose that the parameters {ϵk} satisfy ϵk = γα2

k for each
k ∈ Z+ with γ ∈ R+. Then the following assertions hold:

(i) For all x ∈ X ∗ and k ∈ Z+, we have

Ek

[
∥xk+1 − x∥22

]
≤
(
1 + α2

k

)
∥xk − x∥22 +

(
1 + α2

k

)
α2
k

(
σ2
ϕ

m
+ γ2

)
. (2.5)

(ii) Assume further that the stepsizes {αk} satisfy
∑∞

k=1 α
2
k <∞. Then

sup
k∈Z+

∥xk∥2 <∞ with probability 1. (2.6)

Remark 2.1. For the finite-sum regularized regression model with real-valued nonnegative convex
component functions and a real-valued convex coercive regularizer, Remark 1.1, combined with the
compactness of the subdifferential of a real-valued convex function, implies that Assumption 1 and
2 hold. By Theorem 2.1, this observation shows that isPPA exhibits stability under mild conditions.

With Theorem 2.1 established, we are now positioned to demonstrate almost sure convergence
of isPPA with diminishing stepsizes, assuming local Lipschitz continuity of component functions.
Our proof sketch incorporates and modifies the methodologies from Davis & Drusvyatskiy (2019,
Lemma 4.2) and Bertsekas (2011, Proposition 9) to initially derive convergence results for exact
sPPA (i.e., ϵk ≡ 0), and subsequently extends these findings to inexact settings using the Cauchy-
Schwarz inequality. See Appendix B.2 for a detailed proof. It is worth noting that our proof tech-
nique diverges from that employed by Asi & Duchi (2019, Proposition 3.8); see Remark B.1 in
Appendix B.2 for more details.
Theorem 2.2. Let Assumption 1-3 hold, and let {xk} be generated by isPPA (Algorithm 1) with
stepsizes {αk} and parameters {ϵk}. Suppose that the stepsizes {αk} satisfy

∑∞
k=1 αk = ∞ and∑∞

k=1 α
2
k < ∞, and the parameters {ϵk} satisfy ϵk = γα2

k for each k ∈ Z+ with γ ∈ R+. Then
with probability 1, both lim infk→∞ ϕ(x̃k) = ϕ∗ and there exists x∗ ∈ X ∗ such that limk→∞ ∥xk−
x∗∥2 = 0 hold.
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2.2 CONVERGENCE RATE IN THE SQUARED DISTANCE TO OPTIMAL SOLUTION SET

Recall the function ςβ defined in (2.3) and the notation ρf,m,U introduced in (2.4). In this part, we
consider the bounds on the last-iterate convergence rate of isPPA, measured by the expected squared
distance to the optimal solution set, under a local Lipschitz conditon on f(·; s) and a quadratic
growth conditon on ϕ.

Unless stated otherwise, if there is a bounded open subset of dom(r) that contains the sequences
{xk} and {x̃k}, we denote this subset by U . Let s ∈ (0, 2) be an arbitrary scalar and define

C̃f,m,U,c1,γ(α) ≜ ρf,m,ULF (U)2 +
(1 + 2c1α) (1 + sc1α)

(2− s)c1
γ2 (2.7)

for all α ∈ R+. By utilizing Lemma B.3 (see Appendix B) and following the proof arguments
of (Moulines & Bach, 2011, Theorem 1), we can thus derive nonasymptotic convergence rates for
isPPA as summarized in Theorem 2.3 and 2.4 below.
Theorem 2.3. Let Assumption 1-4 hold, and let {xk} be generated by isPPA (Algorithm 1) with

constant stepsize αk = α0 and parameter ϵk = γα
3
2
0 for all k ∈ Z+, where α0 ∈ R++ and γ ∈ R+.

Denote by δ1 ≜ dist(x1,X ∗)2 and let s ∈ (0, 2) be an arbitrary scalar. Then, on the event that
supk∈Z+

∥xk∥2 <∞, we have

E
[
dist(xk,X ∗)2

]
≤
(

1

1 + sc1α0

)k−1

δ1 +
C̃f,m,U,c1,γ(α0)

sc1
α0 (2.8)

for all k ∈ Z+, where C̃f,m,U,c1,γ(·) is defined in (2.7).
Theorem 2.4. Let Assumption 1-4 hold, and let {xk} be generated by isPPA (Algorithm 1) with

diminishing stepsize αk = α0k
−β and parameter ϵk = γα

3
2

k for all k ∈ Z+, where α0 ∈ R++,
β ∈ (0, 1] and γ ∈ R+. Denote by δ1 ≜ dist(x1,X ∗)2 and let s ∈ (0, 2) be an arbitrary scalar.
Then, on the event that supk∈Z+

∥xk∥2 <∞, the following assertions hold:

(i) If β ∈ (0, 1), then

E
[
dist(xk,X ∗)2

]
≤ exp

(
− sc1α0

1 + sc1α0
ς1−β(k)

)
δ1

+ C̃f,m,U,c1,γ(α0) · 4β
α2
0

1− exp(− sc1α0

1+sc1α0
)
· 1

kβ

+ C̃f,m,U,c1,γ(α0) · 4βα2
0 · exp

(
− sc1α0

2 (1 + sc1α0)
k1−β

)
· ς1−2β

(
k

2

) (2.9)

holds for all k ∈ Z+, where C̃f,m,U,c1,γ(·) is defined in (2.7).

(ii) If β = 1, then

E
[
dist(xk,X ∗)2

]
≤


[

4δ1
1+sc1α0

+
4C̃f,m,U,c1,γ(α0)(2+sc1α0)α

2
0

2−sc1α0

]
·
(
1
k

) 2sc1α0
2+sc1α0 if c1α0 <

2
s ,

4δ1
3 · 1

k + 4C̃f,m,U,c1,γ(α0)α
2
0 ·

ln(k)
k if c1α0 = 2

s ,

4δ1
1+sc1α0

·
(
1
k

) 2sc1α0
2+sc1α0 +

4C̃f,m,U,c1,γ(α0)(2+sc1α0)α
2
0

sc1α0−2 · 1
k if c1α0 >

2
s ,

(2.10)

holds for all k ∈ Z+, where C̃f,m,U,c1,γ(·) is defined in (2.7).

Focusing on dominant terms, we can immediately derive the asymptotic convergence rate for isPPA
as shown in Corollary 2.5, which provides a clearer estimate of the convergence rate obtained in
Theorem 2.4.
Corollary 2.5. Consider the setting of Theorem 2.4 and let s ∈ (0, 2) be an arbitrary scalar. On
the event that supk∈Z+

∥xk∥2 <∞, the following assertions hold:

(i) If β ∈ (0, 1), then E
[
dist(xk,X ∗)2

]
≤ O

(
k−β

)
holds for all k ∈ Z+.
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(ii) If β = 1, then

E
[
dist(xk,X ∗)2

]
≤


O
(
k−

2sc1α0
2+sc1α0

)
if c1α0 <

2
s ,

O
(
k−1 ln(k)

)
if c1α0 = 2

s ,

O
(
k−1

)
if c1α0 >

2
s ,

holds for all k ∈ Z+.

The proofs of Theorem 2.3, 2.4, and Corollary 2.5 can be found in Appendix C.

Diminishing stepsizes and localized quadratic growth condition. In the context of isPPA with
diminishing stepsizes αk = α0k

−β and parameters ϵk = γα2
k, where α0 ∈ R++, β ∈ ( 12 , 1]

and γ ∈ R+, and considering the square summability of {αk}, Theorem 2.1 ensures the al-
most sure boundedness of {xk} under Assumption 1 and 2. In this setting, since αk ≤ α0 and
γα2

k = γα
1/2
k ·α3/2

k ≤ γα
1/2
0 ·α3/2

k , the iterates {xk} also satisfy Criterion (SCA) with ϵ̃k ≜ γ̃α
3/2
k ,

where γ̃ ≜ γα
1/2
0 . Consequently, all the results in Theorem 2.4 and Corollary 2.5 hold with

probability 1, even without assuming supk∈Z+
∥xk∥2 < ∞. Additionally, based on the fact that

{dist(xk,X ∗)} converges to zero almost surely as implied by Theorem 2.2, Assumption 4 in The-
orem 2.4 can be replaced with its localized version (Assumption 5). Under this localized quadratic
growth condition, convergence results analogous to those in Theorem 2.4 and Corollary 2.5 can be
achieved for sufficiently large k.

Relationship with prior work. When each component function is Lipschitz smooth and restricted
strongly convex, and the regularizer r is zero, the asymptotic convergence rate descirbed in Theo-
rem 4 of (Ryu & Boyd, 2014) for standard sPPA (i.e., exact sPPA with a minibatch size of one) with
stepsizes αk = α0k

−1 can be deduced from Corollary 2.5. Similarly, the last-iterate convergence
rate guarantees provided in Theorem 1 of (Toulis et al., 2016) for standard sPPA with stepsizes
αk = α0k

−β (β ∈ ( 12 , 1]) can be derived from Theorem 2.4. However, these guarantees established
by Toulis et al. (2016) require more restrictive assumptions, such as the twice continuous differen-
tiability and a specific structural condition on component functions. The last-iterate convergence
guarantees in Theorem 4.3 of (Patrascu, 2021) apply exclusively to standard sPPA, and achieving
the linear rate of (Patrascu, 2021, Corollary 4.5) requires the problem to be easy to optimize. The
O(k−1) ergodic convergence rates in Theorem 10 of (Yuan & Li, 2023) for inexact sPPA with step-
sizes αk = α0k

−1 are established under stringent conditions including Lipschitz smoothness of
component functions, Lipschitz continuity of the regularizer across the entire domain, and a suf-
ficiently large minibatch size. Most previous work have focused on the convergence properties of
standard sPPA when solving problem (ComOpt) with Lipschitz smooth component functions. As
noted in Remark 2.1, the assumptions applied in this paper are reasonable and feasible in practice,
and the above comparisons indicate that our derived convergence rate estimates are competitive.

2.3 CONVERGENCE RATE IN THE KKT RESIDUAL

The bounds on the rate of convergence in terms of the expected squared distance to the optimal
solution set given in Section 2.2 possess significant theoretical importance. However, termination
criteria in practice are frequently associated with the KKT residual. Consequently, it is essential to
establish convergence rate guarantees with respect to the KKT residual. Fortunately, the following
relationship between the KKT residual and squared distance to the optimal solution set holds.
Lemma 2.6. Let ϕ : Rd → (−∞,+∞] be a proper and closed convex function, and denote the set
of minimizers of ϕ by X ∗. If X ∗ is nonempty, then for any x ∈ Rd, we have∥∥x− proxϕ(x)

∥∥
2
≤ 2 dist (x,X ∗) ,

The established relationship enables us to extend all conclusions from Section 2.2 to the correspond-
ing convergence rate bounds in terms of the expected KKT residual. For the sake of brevity, we focus
exclusively on the asymptotic convergence rates of isPPA with diminishing stepsizes in this part.
Corollary 2.7. Consider the setting of Theorem 2.4 and let s ∈ (0, 2) be an arbitrary scalar. On
the event that supk∈Z+

∥xk∥2 <∞, the following assertions hold:
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(i) If β ∈ (0, 1), then E
[∥∥xk − proxϕ(xk)

∥∥
2

]
≤ O

(
k−

β
2

)
holds for all k ∈ Z+.

(ii) If β = 1, then

E
[∥∥xk − proxϕ(xk)

∥∥
2

]
≤


O
(
k−

sc1α0
2+sc1α0

)
if c1α0 <

2
s ,

O
(
k−

1
2 (ln(k))

1
2

)
if c1α0 = 2

s ,

O
(
k−

1
2

)
if c1α0 >

2
s ,

holds for all k ∈ Z+.

The proofs of Lemma 2.6 and Corollary 2.7 are deferred to Appendix D.

3 LOWER BOUNDS OF CONVERGENCE RATE

In this section, we establish a lower bound for the convergence rate of isPPA. The main results are
summarized in the following proposition; see Appendix E for a detailed proof.
Proposition 3.1. Let {pi}ni=1 ⊂ Rd be given points and λ ∈ R+. Consider the finite-sum convex
optimization problem:

min
x∈Rd

ϕ(x) ≜ F (x) + r(x) =
1

n

n∑
i=1

∥x− pi∥22 +
λ

2
∥x∥22 . (3.1)

Denote the set [n] ≜ {1, · · · , n}. Let {xk} be generated by (1.3) with stepsize αk ∈ R++ and
parameter ϵk ≡ 0 for all k ∈ Z+. Then the following assertions hold:

(i) Assumption 1-4 hold for (3.1) and x∗ ≜ 2
(2+λ)n

∑n
i=1 pi is the unique optimal solution.

(ii) Set Σ ≜ maxi∈[n] ∥pi∥2. Then supk∈Z+
∥xk∥2 ≤ ∥x1∥2 +Σ <∞, i.e., {xk} is bounded.

(iii) Assume further that there exists i0 ̸= j0 ∈ [n] with pi0 ̸= pj0 . Then σ2 ≜ 1
n

∑n
j=1 ∥pj −

1
n

∑n
i=1 pi∥22 > 0 and for any k ∈ Z+,

E
[
∥xk+1 − x∗∥22

]
≥


4σ2α2

0

m[(2+λ)α0+1]2
if αk ≥ α0 for some α0 ∈ R++,

4σ2α2
0

m[(2+λ)α0+1]4
· k−β if αk = α0

kβ for some α0 ∈ R++ and β ∈ (0, 1].

Tightness of derived bounds. Combined with the upper bounds derived in Section 2.2, the lower
bound established in Proposition 3.1 shows that for isPPA with last iterate output, solving problems
(ComOpt) satisfying Assumption 1-4, the following holds if the convergence rate is measured by
the expected squared distance and no other structure is known: a) when the stepsizes {αk} have
a uniform positive lower bound, the algorithm guarantees only convergence to a neighborhood of
the optimal solution (see Figure 1(b)), and thus the bound on the convergence rate of isPPA with
constant stepsizes from Theorem 2.3 cannot be improved; b) for the diminishing stepsizes {αk}
with αk = α0k

−β (β ∈ (0, 1]), the asymptotic convergence rate of O(k−β) from Corollary 2.5 is
tight up to constant factors (see Figure 1(c)).

Comparison with deterministic PPA. It is known that if the sequence of stepsizes {αk} satisfies
αk → α∞ for some α∞ ∈ R++, then inexact deterministic PPA exhibits linear convergence under
quadratic growth condition and can achieve superlinear convergence as αk → ∞ (Rockafellar,
1976a; Luque, 1984). In contrast, our analysis shows that even when solving Fréchet mean problem
(3.1) with Lipschitz smooth component functions and a strongly convex objective function, isPPA
with lower bounded stepsizes merely approaches a neighborhood of the optimal solution but fails
to achieve exact convergence to the optimal solution. This discrepancy may stem from the noise
introduced during subproblem minimization through the term f(·;S1:m

k ) (see (1.3)). As shown in
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Appendix C, this noise contributes to the term ρf,m,ULF (U)2 in the nonasymptotic estimate of
Theorem 2.3, while the first term in this estimate geometrically converges to zero. The distinctions
between the deterministic PPA and stochastic variants are empirically validated by the numerical
results presented in Figure 1(a) and 1(b).
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Figure 1: Performance comparison of PPA and isPPA for solving the Fréchet mean problem (3.1).
Legends “Algo-alpha0-α0” and “Algo-beta-β” denote methods with constant stepsizes αk = α0 and
diminishing stepsizes αk = α0k

−β (β ∈ (0, 1]), respectively, where “Algo” refers to either PPA or
isPPA.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical results to validate the theoretical convergence rate guarantees
derived in Section 2. For brevity, the discussion here is limited to the performance of isPPA on the
synthetic data, with details on real data sets available in Appendix F. We generate the synthetic data
using the model b = Ax∗ + σξ, where A is sampled from standard normal distribution, x∗ is the
predefined true solution, ξ is a noise vector from a standard normal distribution, and σ denotes the
noise level. The number of nonzero elements in x∗ is set to ⌊ρsd⌋ with ρs = 1%. The results are
averaged over 5 trials with consistent parameters and initialization across each trial of isPPA.

4.1 LASSO LINEAR REGRESSION MODEL

Consider the linear regression model with a Lasso regularizer (Tibshirani, 1996):

min
x∈Rd

ψLasso(x) ≜
1

2
∥Ax− b∥22 + λ1 ∥x∥1 , (4.1)

where matrix A ∈ Rn×d and vector b ∈ Rn are given data, with λ1 ∈ R++ as the regularization
parameter. For each trial of isPPA with diminishing stepsizes αk = α0k

−β where β ∈ ( 12 , 1], given
that the optimal solution may not be unique, we first obtain an approximation, denoted by x̂∗, of the
optimal solution, to which the sequence {xk} converges almost surely as indicated in Theorem 2.2.
See Appendix F.1 for details on obtaining x̂∗.

For the Lasso linear regression model (4.1), we utilize the efficient semismooth Newton (SSN)
method (Li et al., 2018, Algorithm SSN) to solve the inner-loop subproblem (1.3) inexactly, with
the sequence {xk} satisfying criterion (SCA); see Appendix F.1 for further details. In our numerical
experiments with synthetic data, we test with n = 10000 and d = 1000, setting σ to zero in noiseless
experiments and to 10−2 otherwise. The regularization parameter λ1 is set to λc

∥∥A⊤b
∥∥
∞ with

λc = 10−2. The accuracy parameter ϵk is defined as γα2
k with γ = 10−2, and the minibatch size m

is fixed at 32. The top row of Figure 2 displays the convergence curves of isPPA with diminishing
stepsizes αk = α0k

−β for various stepsize exponents β ∈ {0.55, 0.75, 0.9, 1}, starting with an
initial stepsize α0 = 50. It is observed that isPPA with a stepsize exponent of β = 1 exhibits
the best performance. The asymptotic convergence rate measured by the squared distance to the
solution set is O(k−β), considering ∥xk − x̂∗∥22 as an upper bound of dist(xk,X ∗)2. It also shows
that the asymptotic convergence rate regarding the KKT residual (defined in (F.5)) is O(k−β/2).
These observations confirm the results derived in Corollary 2.5 and 2.7.
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4.2 ELASTIC NET LINEAR REGRESSION MODEL

The linear regression model with an elastic net regularizer (Zou & Hastie, 2005) is defined by

min
x∈Rd

ψelastic(x) ≜
1

2
∥Ax− b∥22 + λ1 ∥x∥1 +

λ2
2

∥x∥22 , (4.2)

where λ1, λ2 ∈ R++ are the given regularization parameters. It is straightforward to verify that
the objective function ψelastic is λ2-strongly convex over Rd, ensuring the uniqueness of the optimal
solution to (4.2). The setup for the numerical experiments of isPPA for solving (4.2) is similar to that
previously described for (4.1); see Appendix F.2 for further details. Notably, given the uniqueness
of the solution to (4.2), we directly employ the semismooth Newton augmented Lagrangian (SS-
NAL) method (Li et al., 2018, Algorithm SSNAL) to approximate the optimal solution, to which the
sequence {xk} converges almost surely. This approximate optimal solution is denoted by x̃∗. The
numerical results, illustrated in the bottom row of Figure 2, demonstrate asymptotic convergence
rates of O(k−β) for the squared distance ∥xk − x̃∗∥22 and O(k−β/2) for the KKT residual (defined
in (F.8)), thereby validating the findings from Corollary 2.5 and 2.7.
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Figure 2: Performance of isPPA in solving the linear regression models (Lasso - top and elastic net -
bottom) for four values of stepsize exponents β = 0.55, 0.75, 0.9 and 1. The legend “isPPA-beta-β”
denotes isPPA with diminishing stepsizes αk = α0k

−β . (a) The noiseless setting with σ = 0. (b)
The noisy setting with σ = 10−2.

5 CONCLUSION

In this paper, we consider inexact stochastic proximal point algorithm (isPPA) for solving stochastic
composite optimization problems, allowing subproblems to be solved inexactly via suitable inner-
loop stopping criteria. Under mild conditions, we demonstrate the stability and almost sure con-
vergence of this method. By further assuming a local Lipschitz condition on component functions
and a quadratic growth condition on the objective function, we establish convergence rate guaran-
tees. These rates are measured by the expected squared distance to the optimal solution set and the
expected KKT residual. While the former provides theoretical insights, the latter offers practical
estimates for algorithm termination. Our findings confirm that these convergence rate guarantees
are asymptotically tight up to constant factors. Empirical validation from numerical experiments
supports our theoretical analyses. In future work, we will focus on enhancing its efficiency with
acceleration strategies and variance reduction techniques, and establishing the corresponding con-
vergence analysis.

REPRODUCIBILITY STATEMENT

Upon acceptance of the paper, we will release the code used for the demonstration examples in the
numerical experiments.
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A COMPARISON OF CONVERGENCE RESULTS FOR SPPA SCHEMES

Table 1 summarizes and compares convergence rate guarantees and associated assumptions for
sPPA-type schemes in solving problem (ComOpt). We use the following abbreviations:

• bd (bounded), cld (closed)
• lin.reg (linear regularity)
• cvx (convex), s.cvx (strongly convex), r.s.cvx (restricted strongly convex), wk.cvx (weakly

convex);
• Lip (Lipschitz continuous), loc.Lip (locally Lipschitz continuous), Lip.sm (Lipschitz con-

tinuous gradient), C2 (twice continuously differentiable), sm (differentiable)
• wk.lin.reg (weak linear regularity), qd.grow (quadratic growth), e.qd.grow (expected

quadratic growth), e.sharp.grow (expected sharp growth)
• easy.opt (easy to optimize)
• l.e (sufficiently large)

• sq.dist (convergence rate in terms of {E[∥xk − x∗∥22]}), sq.dist.set (convergence rate in
terms of {E[dist(xk,X ∗)2]}), func.gap (convergence rate in terms of {ϕ(xk) − ϕ∗}),
sq.norm.grad.ME (convergence rate in terms of the squared gradient ℓ2-norm of Moreau
envelope with respect to ϕ)

Table 1: Comparison of convergence rates for sPPA-type methods solving stochastic composite
optimization problem (ComOpt).

Method Literature Model Assumptions Stepsize Rate

sPPA

Ryu & Boyd (2014) r = 0

f(·; s) r.s.cvx & Lip.sm α0
k

sq.dist O( 1
k
)

{α0 l.e.}
f(·; s) r.s.cvx α0

linear convergence to
O(α0) (dist)

Toulis et al. (2016) r = 0

f(x; s) = f(a⊤
s x);

f(·; s) cvx & Lip & C2

α0

kβ

sq.dist O( 1
kβ )

{β ∈ ( 1
2
, 1)} or

{β = 1 & α0 l.e.}

Patrascu (2021) r = 0

∂f(·; s) bd on X ∗;
F wk.lin.reg

α0

kβ

sq.dist.set O( 1
kβ )

{β ∈ (0, 1)} or
{β = 1 & α0 l.e.}

∂f(·; s) bd on X ∗;
F wk.lin.reg (η = 0);
easy.opt

α0
linear convergence
(sq.dist.set)

New-sPPA Patrascu & Necoara (2018) r = 1X

f(·; s) cvx & Lip;
X = ∩s∈SXs ;
Xs cld.cvx & X lin.reg;

α0 =
O( 1√

k
)

func.gap O( 1√
k
)

(ergodic)

f(·; s) s.cvx & sm;
X = ∩s∈SXs ;
Xs cld.cvx & X lin.reg;

α0
linear convergence to
O(α0) (sq.dist)

f(·; s) s.cvx & Lip.sm;
X = ∩s∈SXs ;
Xs cld.cvx & X lin.reg;

α0

kβ

sq.dist O( 1
kβ )

{ β ∈ (0, 1)} or
{ β = 1 & α0 l.e.}

APROX Asi & Duchi (2019) r = 1X

f(·; s) cvx & e.sharp.grow;
easy.opt

α0

kβ

linear convergence
(sq.dist.set)
{ β ∈ (−∞, 1)}

f(·; s) cvx & e.qd.grow;
easy.opt

α0

kβ

linear convergence
(sq.dist.set)
{ β ∈ R}

continued on next page
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continued from previous page

Method Literature Model Assumptions Stepsize Rate

Model-based Davis & Drusvyatskiy (2019) -

F loc.Lip;
r cld;
fx(·; s) + r(·) wk.cvx;
fx(·; s) Lip;

α0 sq.norm.grad.ME O( 1√
k
)

F loc.Lip;
r cld;
f(·; s) + r(·) cvx;
f(·; s) Lip;

α0 =
O( 1√

k
)

func.gap O( 1√
k
)

(ergodic)

F loc.Lip;
r cld;
f(·; s) + r(·) s.cvx;
f(·; s) Lip;

α0 =
O( 1

k
)

func.gap O( 1
k
)

(ergodic)

M-SPP Yuan & Li (2023) r = r + 1X

f(·; s) cvx & Lip.sm;
r cvx;
X cld.cvx;
ϕ qd.grow

α0
k

func.gap O( 1
k2 + 1

mk
)

(ergodic)
{m l.e}
{ α0 l.e}

f(·; s) cvx & Lip.sm;
r cvx;
X cld.cvx

α0 =
O( 1√

k
)

func.gap O( 1√
mk

+ 1
mk

)

(ergodic)
{ α0 = const(m, k,Lipf )}

Inexact M-SPP Yuan & Li (2023) r = r + 1X

f(·; s) cvx & Lip.sm;
r cvx & Lip;
X cld.cvx;
ϕ qd.grow

α0
k

func.gap O( 1
k2 + 1

mk
)

(ergodic)
{m l.e}
{ α0 l.e & ϵk = O( 1

mk4 )}
f(·; s) cvx & Lip.sm;
r cvx & Lip;
X cld.cvx

α0 =
O( 1√

k
)

func.gap O( 1√
mk

+ 1
mk

)

(ergodic)
{ α0 = const(m, k,Lipf )}
{ ϵk = O( 1

m2k5 )}

isPPA

Theorem 2.3

-

F loc.Lip;
r cld;
f(·; s) + r(·) cvx;
f(·; s) Lip;
ϕ qd.grow

α0
linear convergence to
O(α0) (sq.dist.set)

{ ϵk = γα
3
2
0 }

Theorem 2.4

α0

kβ

sq.dist.set O( 1
kβ )

{ ϵk = γα
3
2
k }

{ β ∈ (0, 1)} or
{ β = 1 & α0 l.e.}

Here 1X denotes the indicator function of a set X ⊂ Rd, which is defined by

1X (x) ≜

{
0 if x ∈ X ,
∞ otherwise.

The symbol “(ergodic)” appearing in the table indicates the ergodic convergence rate. Otherwise,
the rate shown refers to the last-iterate convergence rate by default.

B PROOFS FOR THE RESULTS IN SECTION 2.1

In this section, we provide the detailed proof for Theorem 2.1 and 2.2 presented in Section 2.1.
Recall that the notation x̃k+1 is defined as the proximal point proxαkφ(·;S1:m

k
(xk), and the symbols

ηf,U and ρf,m,U given in (2.4) are defined by

ηf,U ≜ 1− Var (Lf,U (s))

Es∼P [Lf,U (s)2]
and ρf,m,U ≜

(√
1 + (m− 1)ηf,U

m
+ 1

)2

.

The following three technical lemmas are needed in our proof argument.

Lemma B.1. The following assertions hold:

(i) Let Assumption 1 hold. Then the function ϕ is proper and closed convex.
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(ii) Let Assumption 3 hold. Then the function F is LF (U)-Lipschitz over any bounded open
subset U ⊂ dom(r), i.e.,

|F (x)− F (y)| ≤ LF (U)∥x− y∥2 for all x, y ∈ U.

Lemma B.2. Let Assumption 1 hold and let {xk} be generated by isPPA (Algorithm 1) with stepsizes
{αk}. Then for all x ∈ Rd and k ∈ Z+, we have

∥x̃k+1 − x∥22 ≤ ∥xk − x∥22 − 2αk

[
φ
(
x̃k+1;S

1:m
k

)
− φ

(
x;S1:m

k

)]
− ∥x̃k+1 − xk∥22 . (B.1)

Lemma B.3. Let Assumption 1 and 3 hold, and let {xk} be generated by isPPA (Algorithm 1) with
stepsizes {αk}. Suppose that the sequences {xk} and {x̃k} are contained in some bounded open set
U ⊂ dom(r). Then for all x ∈ Rd and k ∈ Z+, we have

Ek

[
∥x̃k+1 − x∥22

]
≤ ∥xk − x∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)] + ρf,m,ULF (U)2 · α2

k, (B.2)

which implies

Ek

[
∥xk+1 − x∥22

]
≤
(
1 +

1

t

)(
∥xk − x∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)]

)
+

(
1 +

1

t

)
ρf,m,ULF (U)2 · α2

k + (1 + t)ϵ2k

(B.3)

for any t ∈ R++.

The proof of the previous three lemmas are deferred to Appendix B.3.

B.1 PROOF OF THEOREM 2.1

Proof of assertion (i). Fix any x ∈ X ∗ and k ∈ Z+. Note that ϕ is convex by Lemma B.1(i). It
follows that 0 ∈ ∂ϕ(x) and thus, by the second condition in Assumption 2, we can take φ′(x;Si

k) ∈
∂φ(x;Si

k) such that
Ek

[
φ′(x;Si

k)
]
= 0 for i = 1, · · · ,m. (B.4)

Set φ′(x;S1:m
k ) ≜ 1

m

∑m
i=1 φ

′(x;Si
k). Then φ′(x;S1:m

k ) ∈ ∂φ(x;S1:m
k ) and Ek

[
φ′(x;S1:m

k )
]
=

0. Based on the convexity of φ(·;S1:m
k ) implied by Assumption 1, we have

φ
(
x;S1:m

k

)
− φ

(
x̃k+1;S

1:m
k

)
≤
〈
φ′ (x;S1:m

k

)
, x− x̃k+1

〉
=
〈
φ′ (x;S1:m

k

)
, x− xk

〉
+
〈
φ′ (x;S1:m

k

)
, xk − x̃k+1

〉
≤
〈
φ′ (x;S1:m

k

)
, x− xk

〉
+
αk

2

∥∥φ′ (x;S1:m
k

)∥∥2
2
+

1

2αk
∥x̃k+1 − xk∥22 ,

(B.5)

where the last inequality uses the Cauchy-Schwarz inequality. By setting x = x in inequality (B.1)
of Lemma B.2 and combining it with (B.5), we can conclude that

∥x̃k+1 − x∥22
≤ ∥xk − x∥22 + 2αk

[〈
φ′ (x;S1:m

k

)
, x− xk

〉
+
αk

2

∥∥φ′ (x;S1:m
k

)∥∥2
2

+
1

2αk
∥x̃k+1 − xk∥22

]
− ∥x̃k+1 − xk∥22

= ∥xk − x∥22 + 2αk

〈
φ′ (x;S1:m

k

)
, x− xk

〉
+ α2

k

∥∥φ′ (x;S1:m
k

)∥∥2
2
.

(B.6)

Fix any t ∈ R++. It follows directly from the Cauchy-Schwarz inequality and criterion (SCA) that

∥xk+1 − x∥22 = ∥xk+1 − x̃k+1∥22 + ∥x̃k+1 − x∥22 + 2⟨xk+1 − x̃k+1, x̃k+1 − x⟩

≤ ∥xk+1 − x̃k+1∥22 + ∥x̃k+1 − x∥22 + t ∥xk+1 − x̃k+1∥22 +
1

t
∥x̃k+1 − x∥22

≤
(
1 +

1

t

)
∥x̃k+1 − x∥22 + (1 + t) ϵ2k for all x ∈ Rd.

(B.7)
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It follows from the definition of φ′ (x;S1:m
k

)
that

Ek

[∥∥φ′ (x;S1:m
k

)∥∥2
2

]
= Ek

∥∥∥∥∥ 1

m

k∑
i=1

φ′ (x;Si
k

)∥∥∥∥∥
2

2


= Ek

∥∥∥∥∥ 1

m

k∑
i=1

(
φ′ (x;Si

k

)
− Ek

[
φ′ (x;Si

k

)])∥∥∥∥∥
2

2


=

1

m2

m∑
i=1

Ek

[∥∥φ′ (x;Si
k

)
− Ek

[
φ′ (x;Si

k

)]∥∥2
2

]
=

1

m2

m∑
i=1

Ek

[∥∥φ′ (x;Si
k

)∥∥2
2

]
,

(B.8)

where the second equality uses condition (B.4), the third holds because of the independence of the
random variables and the last use again condition (B.4). By setting x = x, t = 1

α2
k

and ϵk = γα2
k in

inequality (B.7), we have

∥xk+1 − x∥22 ≤
(
1 + α2

k

)
∥x̃k+1 − x∥22 +

(
1 + α2

k

)
α2
kγ

2

≤
(
1 + α2

k

) [
∥xk − x∥22 + 2αk

〈
φ′ (x;S1:m

k

)
, x− xk

〉
+ α2

k

∥∥φ′ (x;S1:m
k

)∥∥2
2

]
+
(
1 + α2

k

)
α2
kγ

2,

where the second inequality follows from (B.6). Taking expectations on both sides of the previous
inequality with respect to Fk−1 yields that

Ek

[
∥xk+1 − x∥22

]
≤
(
1 + α2

k

)
∥xk − x∥22 +

(
1 + α2

k

)
α2
k

(
Ek

[∥∥φ′ (x;S1:m
k

)∥∥2
2

]
+ γ2

)
=
(
1 + α2

k

)
∥xk − x∥22 +

(
1 + α2

k

)
α2
k

(
1

m2

m∑
i=1

Ek

[∥∥φ′ (x;Si
k

)∥∥2
2

]
+ γ2

)

≤
(
1 + α2

k

)
∥xk − x∥22 +

(
1 + α2

k

)
α2
k

(
σ2
ϕ

m
+ γ2

)
,

where the first inequality comes from the condition that Ek

[
φ′(x;S1:m

k )
]
= 0 and the last is due to

Assumption 2, and the equality holds because of (B.8). This completes the proof of inequality (2.5)
in assertion (i).

Proof of assertion (ii). Now we assume that
∑∞

k=1 α
2
k <∞. To prove assertion (ii), we first recall

the so-called supermartingale convergence lemma, the proof of which can be found in (Robbins &
Siegmund, 1971, Theorem 1).

Lemma B.4. Let Zk, βk, ξk and ζk be nonnegative random variables adapted to the filtration Fk

and satisfying
E [Zk+1 | Fk] ≤ (1 + βk)Zk + ξk − ζk

for all k ∈ Z+. Then on the event that
∑∞

k=1 βk < ∞ and
∑∞

k=1 ξk < ∞, with probability 1, we
have

∑∞
k=1 ζk <∞ and there exists a random variable Z∞ such that limk→∞ Zk = Z∞.

Fix any x ∈ X ∗. The assumption that
∑∞

k=1 α
2
k < ∞ implies αk ≤ 1 for k sufficiently large and

thus
∞∑
k=1

(
1 + α2

k

)
α2
k <∞.

By Lemma B.4, given the conditions that
∑∞

k=1 α
2
k < ∞ and

∑∞
k=1

(
1 + α2

k

)
α2
k < ∞, we can

deduce from the derived inequality (2.5) that the sequence {∥xk − x∥2} converges to some finite
value with probability 1. This implies (2.6), thus completing the proof of assertion (ii).
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B.2 PROOF OF THEOREM 2.2

By assumptions given in Theorem 2.2, we can deduce from Theorem 2.1 that with probability 1,

sup
k∈Z+

∥xk∥2 <∞ (B.9)

Then, to prove Theorem 2.2, it is sufficient to show that on the event (B.9) holds, with probability 1
both

(i) lim infk→∞ ϕ(x̃k) = ϕ∗ and

(ii) the sequence {xk} converges to some x∗ ∈ X ∗.

On the event that (B.9) holds, criterion (SCA) along with the conditions that ϵk = γα2
k and∑∞

k=1 α
2
k < ∞ implies supk∈Z+

∥x̃k∥2 < ∞. Thus, we denote by U a bounded open subset
of dom(r) satisfying

{xk}k∈Z+
∪ {x̃k}k∈Z+

⊂ U.

By setting t = 1
α2

k
and ϵk = γα2

k in inequality (B.3) of Lemma B.3, we have

Ek

[
∥xk+1 − x∥22

]
≤
(
1 + α2

k

) (
∥xk − x∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)]

)
+
(
ρf,m,ULF (U)2 + γ2

)
·
(
1 + α2

k

)
α2
k

(B.10)

for all k ∈ Z+ and x ∈ Rd. To prove the assertion (i) and (ii) above, we recall the following
elementary inequality:

1 + t ≤ exp(t) for all t ∈ R. (B.11)

Proof of assertion (i). Suppose on contrary that there exists ϵ > 0 such that

P
{
lim inf
k→∞

ϕ(x̃k) > ϕ∗ + 3ϵ

}
> 0. (B.12)

The definition of ϕ∗ implies the existence of x̂ ∈ Rd such that

ϕ∗ + ϵ ≥ ϕ(x̂). (B.13)

On the event that lim infk→∞ ϕ(x̃k) > ϕ∗ + 3ϵ, it follows from (B.13) that

lim inf
k→∞

ϕ(x̃k) ≥ ϕ(x̂) + 2ϵ. (B.14)

Note that we can pick some K ∈ Z+ such that

ϕ(x̃k) ≥ lim inf
k→∞

ϕ(x̃k)− ϵ and (B.15a)(
ρf,m,ULF (U)2 + γ2

)
· αk ≤ ϵ for all k ∈ Z+ and k ≥ K, (B.15b)

where the first inequality uses the definition of the limit inferior of {ϕ(x̃k)}, and the second follows
from the fact limk→∞ αk = 0 implied by the condition

∑∞
k=1 α

2
k < ∞. Without loss of generality,

we assume that K ≥ 2.

- Fix any k ∈ Z+ with k ≥ K. Then (B.14) together with (B.15a) yields ϕ(x̃k+1)−ϕ(x̂) ≥ ϵ
and thus

Ek [ϕ(x̃k+1)− ϕ(x̂)] ≥ ϵ.

It then follows from the previous inequality and (B.10) with x = x̂ that

Ek

[
∥xk+1 − x̂∥22

]
≤
(
1 + α2

k

) (
∥xk − x̂∥22 − 2αkϵ+

(
ρf,m,ULF (U)2 + γ2

)
· α2

k

)
.

By taking the expectation of both sides of the preceding inequality and applying the law of
total expectation, we can derive

E
[
∥xk+1 − x̂∥22

]
≤
(
1 + α2

k

) (
E
[
∥xk − x̂∥22

]
− 2αkϵ+

(
ρf,m,ULF (U)2 + γ2

)
· α2

k

)
≤
(
1 + α2

k

) (
E
[
∥xk − x̂∥22

]
− αkϵ

)
,
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where the second inequality comes from (B.15b). Thus,

0 ≤ E
[
∥xk+1 − x̂∥22

]
≤
(
1 + α2

k

) (
E
[
∥xk − x̂∥22

]
− αkϵ

)
≤
(
1 + α2

k

) ((
1 + α2

k−1

) (
E
[
∥xk−1 − x̂∥22

]
− αk−1ϵ

)
− αkϵ

)
≤
(
1 + α2

k

) ((
1 + α2

k−1

)
E
[
∥xk−1 − x̂∥22

]
− αk−1ϵ− αkϵ

)
≤ · · · ≤

(
1 + α2

k

)(k−1∏
i=K

(
1 + α2

i

)
E
[
∥xK − x̂∥22

]
− ϵ

k∑
i=K

αi

)

which combined with (B.11) and the assumption that
∑∞

k=1 α
2
k <∞ implies

k∑
i=K

αi ≤
1

ϵ

k−1∏
i=K

(
1 + α2

i

)
E
[
∥xK − x̂∥22

]
≤ 1

ϵ
exp

(
k−1∑
i=K

α2
i

)
E
[
∥xK − x̂∥22

]
≤ 1

ϵ
exp

( ∞∑
i=K

α2
i

)
E
[
∥xK − x̂∥22

]
for all k ∈ Z+ and k ≥ K.

Taking k to ∞ yields that

∞∑
k=K

αk ≤ 1

ϵ
exp

( ∞∑
i=K

α2
i

)
E
[
∥xK − x̂∥22

]
. (B.16)

- Additionally, for each k ∈ Z+, it holds that

Ek

[
∥xk+1 − x̂∥22

]
≤
(
1 + α2

k

) (
∥xk − x̂∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ∗ + ϕ∗ − ϕ(x̂)]

)
+
(
ρf,m,ULF (U)2 + γ2

)
·
(
1 + α2

k

)
α2
k

≤
(
1 + α2

k

) (
∥xk − x̂∥22 + 2αkϵ

)
+
(
ρf,m,ULF (U)2 + γ2

)
·
(
1 + α2

k

)
α2
k,

where the first inequality is due to (B.10) with x = x̂, and the second follows from (B.13)
and the fact that ϕ(x̃k+1) ≥ ϕ∗. Taking the expectation of both sides of the preceding
inequality and applying the law of total expectation gives

E
[
∥xk+1 − x̂∥22

]
≤
(
1 + α2

k

) (
E
[
∥xk − x̂∥22

]
+ 2αkϵ+

(
ρf,m,ULF (U)2 + γ2

)
· α2

k

)
.

Applying this recursively k times leads to

E
[
∥xk+1 − x̂∥22

]
≤

k∏
i=1

(
1 + α2

i

)
∥x1 − x̂∥22 + 2ϵ

k∑
i=1

αi

k∏
j=i

(
1 + α2

j

)
+
(
ρf,m,ULF (U)2 + γ2

) k∑
i=1

α2
i

k∏
j=i

(
1 + α2

j

)
≤

k∏
i=1

(
1 + α2

i

)(
∥x1 − x̂∥22 + 2ϵ

k∑
i=1

αi +
(
ρf,m,ULF (U)2 + γ2

) k∑
i=1

α2
i

)

≤ exp

(
k∑

i=1

α2
i

)(
∥x1 − x̂∥22 + 2ϵ

k∑
i=1

αi +
(
ρf,m,ULF (U)2 + γ2

) k∑
i=1

α2
i

)
,

and thus

E
[
∥xK − x̂∥22

]
≤ exp

(
K−1∑
i=1

α2
i

)(
∥x1 − x̂∥22 + 2ϵ

K−1∑
i=1

αi +
(
ρf,m,ULF (U)2 + γ2

)K−1∑
i=1

α2
i

)
.

(B.17)
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Combining (B.16) with (B.17) confirms that
∞∑
k=1

αk ≤
K−1∑
k=1

αk +
1

ϵ
exp

( ∞∑
i=K

α2
i

)
E
[
∥xK − x̂∥22

]
≤

K−1∑
k=1

αk +
1

ϵ
exp

( ∞∑
i=1

α2
i

)(
∥x1 − x̂∥22 + 2ϵ

K−1∑
i=1

αi +
(
ρf,m,ULF (U)2 + γ2

)K−1∑
i=1

α2
i

)
<∞

on the event that lim infk→∞ ϕ(x̃k) > ϕ∗ + 3ϵ. Then (B.12) implies that

P

{ ∞∑
k=1

αk <∞

}
≥ P

{
lim inf
k→∞

ϕ(x̃k) > ϕ∗ + 3ϵ

}
> 0,

which leads to a contradiction of the assumption that
∑∞

k=1 αk = ∞. Therefore, on the event that
(B.9) holds, lim infk→∞ ϕ(x̃k) = ϕ∗ holds with probability 1.

Proof of assertion (ii). Since X ∗ is nonempty by Assumption 2, assertion (i) derived above implies
lim infk→∞ ϕ(x̃k) = ϕ∗ ∈ R. Then by using the definition of the limit inferior of {ϕ(x̃k)}, one can
easily deduce that there exists a convergent subsequence {ϕ(x̃k)}k∈K of {ϕ(x̃k)} such that

lim
k→∞,k∈K

ϕ (x̃k) = lim inf
k→∞

ϕ (x̃k) = ϕ∗. (B.18)

Fix any x ∈ X ∗. It then follows from (B.10) with x = x that

Ek

[
∥xk+1 − x∥22

]
≤
(
1 + α2

k

) (
∥xk − x∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)] +

(
ρf,m,ULF (U)2 + γ2

)
· α2

k

)
≤
(
1 + α2

k

)
∥xk − x∥22 +

(
ρf,m,ULF (U)2 + γ2

)
· α2

k

(
1 + α2

k

)
for all k ∈ Z+,

which combined with Lemma B.4 and the condition
∑∞

k=1 α
2
k < ∞ confirms that the sequence

{∥xk − x∥2} converges to some finite value with probability 1. That is, for each x ∈ X ∗,

the sequence {∥xk − x∥2} converges with probability 1.

Combining the previous result with the fact that

lim
k→∞

αk = 0 and ∥xk+1 − x̃k+1∥2 ≤ ϵk = γα2
k for all k ∈ Z+ (B.19)

yields
the sequence {∥x̃k − x∥2} converges with probability 1. (B.20)

The proof of assertion (ii) is as follows:

- If X ∗ = {x∗} is a singleton, then by (B.20), we have {∥x̃k − x∗∥2} converges with prob-
ability 1. Note that {x̃k} is bounded and thus its subsequence {x̃k}k∈K is bounded. Then
there exists a subsequence {x̃k}k∈K′ of {x̃k}k∈K such that {x̃k}k∈K′ converges to some
x̃ ∈ Rd. Since ϕ is closed by Lemma B.1(i), it follows from (B.18) that

ϕ(x̃) ≤ lim inf
k→∞,k∈K′

ϕ (x̃k) = lim
k→∞,k∈K′

ϕ (x̃k) = lim
k→∞,k∈K

ϕ (x̃k) = ϕ∗,

which implies ϕ(x̃) = ϕ∗ and x̃ = x∗. Hence, on the event that {∥x̃k − x∗∥2} converges,
we have

lim
k→∞

∥x̃k − x∗∥2 = lim
k→∞,k∈K′

∥x̃k − x∗∥2 = ∥x̃− x∗∥2 = 0,

where the second equality comes from the fact that {x̃k}k∈K′ converges to x̃.
- Now we consider the case where X ∗ contains two or more points. Since ϕ is convex by

Lemma B.1(i), then X ∗ is convex and thus infinite. Thus, X ∗, being a infinite subset of the
seperable metric space (Rd, ∥·∥2), is seperable and we can choose a countable dense subset
V of X ∗. For each v ∈ V , by (B.20) we have {∥x̃k − v∥2} converges with probability 1,
which combined with the countability of V leads to the conclusion that with probability 1,

the sequence {∥x̃k − v∥2} converges for all v ∈ V. (B.21)
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By following an argument nearly identical to that in the discssion for the case where X ∗

is a singleton, we can obtain that there exists a subsequence {x̃k}k∈K′ converges to some
x̃ ∈ X ∗. Fix any ϵ > 0. The fact that V is dense in X ∗ implies that there exists vϵ ∈ V
such ∥x̃− vϵ∥2 < ϵ. Then, on the event that (B.21) holds, we have

lim
k→∞

∥x̃k − vϵ∥2 = lim
k→∞,k∈K′

∥x̃k − vϵ∥2 = ∥x̃− vϵ∥2 < ϵ,

where the second equality uses the fact that {x̃k}k∈K′ converges to x̃. By combining the
preceding inequality with the triangle inequality, one can easily derive

lim sup
k→∞

∥x̃k − x̃∥2 ≤ lim
k→∞

∥x̃k − vϵ∥2 + ∥vϵ − x̃∥2 < 2ϵ.

Taking ϵ to 0 yields that limk→∞ ∥x̃k − x̃∥2 = 0 with x̃ ∈ X ∗.

Therefore, on the event that (B.9) holds, there exists some x∗ ∈ X ∗ such that
{x̃k} converges to x∗ with probability 1,

which combined with (B.19) yields assertion (ii). This completes the proof of Theorem 2.2.
Remark B.1. It is worth noting that the proof technique adopted here differs from that of Proposition
3.8 in (Asi & Duchi, 2019). For the case where all the assumptions in Theorem 2.2 hold, even if
the accuracy parameter ϵk ≡ 0, i.e., subproblems are solved exactly, we cannot directly apply the
argument in the proof of (Asi & Duchi, 2019, Proposition 3.8) to deduce the almost sure convergence
of isPPA. The reason for this is that when using (B.2) in Lemma B.3 with x = x ∈ X ∗, we can only
obtain

Ek

[
∥xk+1 − x∥22

]
≤ ∥xk − x∥22 − 2αk · Ek [ϕ(xk+1)− ϕ∗] + ρf,m,ULF (U)2 · α2

k (B.22)
for all k ∈ Z+. However, observing that the term appearing in the right-hand side of (B.22) is
Ek [ϕ(xk+1)− ϕ∗] rather than ϕ(xk)−ϕ∗, we cannot apply the supermartingale convergence lemma
(see Lemma B.4) to conclude that

∞∑
k=1

αk · [ϕ(xk)− ϕ∗] <∞ with probability 1,

which is the key to deriving the desired convergence results via the proof technique of (Asi & Duchi,
2019, Proposition 3.8). Indeed, the proof technique provided in this paper is inspired by the proof
of (Bertsekas, 2011, Proposition 9), with appropriate modifications to deal with the case where
subproblems are solved inexactly.

B.3 PROOF OF AUXILIARY LEMMAS

B.3.1 PROOF OF LEMMA B.1

Note that Assumption 1 and 3 correspond to (Davis & Drusvyatskiy, 2019, (C3)-(C4)) with ρ = 0.
Lemma B.1 then follows by an argument almost identical to that used for (Davis & Drusvyatskiy,
2019, Lemma 4.1). The details are provided below:

(i) Suppose that Assumption 1 holds. Then by definition, function ϕ is proper and closed
with dom(ϕ) = dom(r). It only remains to show that ϕ is convex. Pick some s ∈ S
such that f(·; s) is proper, dom(r) ⊂ dom(f(·; s)) and φ(·; s) is convex. Then dom(r) =
dom(φ(·; s)) and thus dom(r) is convex, implying the convexity of dom(ϕ). Fix any
x, y ∈ dom(ϕ) = dom(r) and θ ∈ [0, 1]. Set z = θx + (1 − θ)y. We can easily deduce
that

ϕ(z) = F (z) + r(z) = Es∼P [f(z; s)] + r(z)

=

∫
S
f(z; s)dP (s) + r(z) =

∫
S
(f(z; s) + r(z)) dP (s)

≤
∫
S
[θ (f(x; s) + r(x)) + (1− θ) (f(y; s) + r(y))] dP (s)

= θ (F (x) + r(x)) + (1− θ) (F (y) + r(y))

= θϕ(x) + (1− θ)ϕ(y),

where the inequality uses Assumption 1. Then ϕ is convex, which completes the proof of
assertion (i).
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(ii) Now we assume that Assumption 3 holds. Let U be a bounded open subset of dom(r) and
fix any x, y ∈ U . It holds that

|F (x)− F (y)| =
∣∣∣∣∫

S
[f(x; s)− f(y; s)] dP (s)

∣∣∣∣
≤
∫
S
|f(x; s)− f(y; s)|dP (s)

≤
∫
S
Lf,U (s)∥x− y∥2dP (s) = Es∼P [Lf,U (s)] · ∥x− y∥2

≤
√
Es∼P [Lf,U (s)2] · ∥x− y∥2 ≤ LF (U)∥x− y∥2,

where the second last inequality uses Jensen’s inequality. This completes the proof of
assertion (ii).

B.3.2 PROOF OF LEMMA B.2

It follows from Assumption 1 that functions φ(x;S1:m
k ) and φ(x;S1:m

k )+ 1
2αk

∥x−xk∥22 are convex
and 1

αk
-strongly convex with respect to the variable x, respectively. Then the definition of x̃k+1

implies [
φ
(
x;S1:m

k

)
+

1

2αk
∥x− xk∥22

]
≥
[
φ
(
x̃k+1;S

1:m
k

)
+

1

2αk
∥x̃k+1 − xk∥22

]
+

1

2αk
∥x− x̃k+1∥22 for all x ∈ Rd,

which completes the proof of Lemma B.2.

B.3.3 PROOF OF LEMMA B.3

Inspired from the technique used in (Davis & Drusvyatskiy, 2019, Lemma 4.2), we provide the
following proof of Lemma B.3. Recall that the terms ηf,U and ρf,m,U are defined as follows:

ηf,U ≜ 1− Var (Lf,U (s))

Es∼P [Lf,U (s)2]
and ρf,m,U ≜

(√
1 + (m− 1)ηf,U

m
+ 1

)2

.

In the case where m = 1, (B.2) follows directly from (Davis & Drusvyatskiy, 2019, (4.12)) with
τ = η = 0. To extend this to the minibatch case, we employ the following result whose proof is
straightforward and provided at the end of this section.

Lemma B.5. Let X1, · · · , Xm be independent and identically distributed random variables with
mean E[Xi] = µ and variance Var(Xi) = σ2 for each i = 1, · · · ,m. If E[(X1)

2] > 0, then

E

( 1

m

m∑
i=1

Xi

)2
 =

1

m
σ2 + µ2 =

1 + (m− 1)η

m
E[(X1)

2
],

where η ≜ 1− Var(X1)
E[(X1)2]

.

Proof of Lemma B.3. By assumption, U is a bouned open subset of dom(r) which contains the
sequences {xk} and {x̃k}. Fix any x ∈ Rd and k ∈ Z+.

(i) Taking the conditional expectation with respect to Fk−1 on both sides of inequality (B.1)
in Lemma B.2 gives

Ek

[
∥x− x̃k+1∥22 + ∥x̃k+1 − xk∥22

]
− ∥x− xk∥22

≤ 2αk · Ek

[
f(x;S1:m

k ) + r(x)− f(x̃k+1;S
1:m
k )− r(x̃k+1)

]
.

(B.23)
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Let tk ≜
√
Ek[∥x̃k+1 − xk∥22]. Then we have

Ek

[
∥x− x̃k+1∥22

]
+ t2k − ∥x− xk∥22

≤ 2αk · Ek

[
f(x;S1:m

k ) + r(x)− f(xk;S
1:m
k )− r(x̃k+1)

]
+ 2αk · Ek

[
1

m

m∑
i=1

Lf,U (S
i
k) · ∥x̃k+1 − xk∥2

]
≤ 2αk · Ek [F (x) + r(x)− F (xk)− r(x̃k+1)]

+ 2αk

√√√√√Ek

( 1

m

m∑
i=1

Lf,U (Si
k)

)2
 ·
√
Ek [∥x̃k+1 − xk∥22]

≤ 2αk · Ek [F (x) + r(x)− F (xk)− r(x̃k+1)]

+ 2αk

√
1 + (m− 1)ηf,U

m
LF (U) · tk,

(B.24)

where the first inequality comes from Assumption 3 and the fact that xk, x̃k+1 ∈ U , the
second is due to the Cauchy-Schwarz inequality and the last follows from Assumption 3
and Lemma B.5. By Jensen’s inequality, the following assertion holds:

Ek [∥x̃k+1 − xk∥2] ≤ tk. (B.25)
Using inequality (B.24), we can deduce that

Ek

[
∥x− x̃k+1∥22

]
+ t2k − ∥x− xk∥22

≤ 2αk · Ek [F (x) + r(x)− (F (x̃k+1)− LF (U)∥x̃k+1 − xk∥2)− r(x̃k+1)]

+ 2αk

√
1 + (m− 1)ηf,U

m
LF (U)tk

≤ 2αk · Ek [F (x) + r(x)− F (x̃k+1)− r(x̃k+1)] + 2
√
ρf,m,ULF (U) · αktk,

where the first inequality uses Lemma B.1(ii) and the fact that xk, x̃k+1 ∈ U , the second
follows from (B.25) and the definition of ρf,m,U . Rearranging the previous result, one can
conclude that
Ek

[
∥x− x̃k+1∥22

]
≤ ∥x− xk∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)]

+ 2
√
ρf,m,ULF (U) · αktk − t2k

≤ ∥x− xk∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)]

+ max
t∈R+

{
2
√
ρf,m,ULF (U) · αkt− t2

}
= ∥x− xk∥22 − 2αk · Ek [ϕ(x̃k+1)− ϕ(x)] + ρf,m,ULF (U)2 · α2

k,

which completes the proof of (B.2).

(ii) Inequality (B.3) follows directly from the combination of (B.2) derived in (i) and (B.7)
mentioned before.

This completes the proof of Lemma B.3.

B.3.4 PROOF OF LEMMA B.5

The first equality is easily established as follows:

E

( 1

m

m∑
i=1

Xi

)2
 = Var

(
1

m

m∑
i=1

Xi

)
+

(
E

[
1

m

m∑
i=1

Xi

])2

=
1

m2
Var

(
m∑
i=1

Xi

)
+

(
1

m
E

m∑
i=1

[Xi]

)2

=
1

m2

m∑
i=1

Var (Xi) +

(
1

m
E

m∑
i=1

[Xi]

)2

=
1

m
σ2 + µ2,
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where the second last equality uses the fact that the random variables X1, · · · , Xm are independent.
Note that σ2 + µ2 = Var(X1) + (E[X1])

2 = E[(X1)
2] > 0. Then

η = 1− Var(X1)

E[(X1)2
= 1− σ2

E[(X1)2
=

µ2

E[(X1)2]

and
1

m
σ2 + µ2 =

1

m
(1− η)E[(X1)

2
] + ηE[(X1)

2
] =

1 + (m− 1)η

m
E[(X1)

2
],

which proves the second equality and completes the proof of Lemma B.5.

C PROOFS FOR THE RESULTS IN SECTION 2.2

In this section, we establish the convergence rate guarantees for isPPA in terms of the expected
squared distance to the optimal solution set. Recall that function ςβ is defined in (2.3) as follows:

ςβ(t) ≜

{
tβ−1
β if β ̸= 0,

ln(t) if β = 0,

for all t ∈ R++. To prove the convergence rate results presented in Section 2.2, we need the
following three technical lemmas, the proofs of which are deferred to Appendix C.4 for brevity.
Lemma C.1. Consider the scalar sequence {δk} satisfying the recursive relation:

δk+1 ≤ a1δk + a2 for all k ∈ Z+

for some constants a1 ∈ (0, 1) and a2 ∈ R+. Then it holds that:

δk ≤ ak−1
1 δ1 + a2 (1− a1)

−1 for all k ∈ Z+.

Lemma C.2. Consider the scalar sequence {δk} satisfying the recursive relation:

δk+1 ≤ exp(−a1αk)δk + a2α
2
k for all k ∈ Z+

with αk = α0k
−β for some constants β ∈ (0, 1), α0 ∈ R++, a1 ∈ R++ and a2 ∈ R+. Then it

holds that

δk ≤ exp (−a1α0ς1−β(k)) δ1

+
4βa2α

2
0

1− exp (−a1α0)
· 1

kβ
+ 4βa2α

2
0exp

(
−a1α0

2
k1−β

)
· ς1−2β

(
k

2

)
for all k ∈ Z+.

Lemma C.3. Consider the scalar sequence {δk} satisfying the recursive relation:

δk+1 ≤ 1

1 + a1αk
δk + a2

α2
k

1 + a1αk
for all k ∈ Z+

with αk = α0k
−1 for some constants α0 ∈ R++, a1 ∈ R++ and a2 ∈ R+. Then it holds that

δk ≤


[

4δ1
1+a1α0

+
4a2(2+a1α0)α

2
0

2−a1α0

]
·
(
1
k

) 2a1α0
2+a1α0 if a1α0 < 2,

4δ1
3 · 1

k + 4a2α
2
0 ·

ln(k)
k if a1α0 = 2,

4δ1
1+a1α0

·
(
1
k

) 2a1α0
2+a1α0 +

4a2(2+a1α0)α
2
0

a1α0−2 · 1
k if a1α0 > 2.

Let s ∈ (0, 2) be an arbitrary scalar. Recall that the term C̃f,m,U,c1,γ(α0) is defined as:

C̃f,m,U,c1,γ(α0) ≜ ρf,m,ULF (U)2 +
(1 + 2c1α0) (1 + sc1α0)

(2− s)c1
γ2 for α0 ∈ R++.

As mentioned in Section 2.2, if exists, U denotes a bounded open subset of dom(r) which contains
the sequences {xk} and {x̃k}.
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C.1 PROOF OF THEOREM 2.3

On the event that supk∈Z+
∥xk∥2 <∞, similar to the proof of Theorem 2.2, we utilize the Cauchy-

Schwarz inequality combined with criterion (SCA) and the condition ϵk = γα
3
2
0 to show that

supk∈Z+
∥x̃k∥2 < ∞. Consequently, there exists a bounded open subset of dom(r) containing

the sequences {xk} and {x̃k}. We denote this subset by U by default. Let δk ≜ E[dist(xk,X ∗)2]
for each k ∈ Z+. The proof of Theorem 2.3 proceeds by establishing the validity of the following
deterministic recursive relation:

Claim C.1. Let Assumption 1-4 hold, and let {xk} be generated by isPPA (Algorithm 1) with step-

sizes {αk} and accuracy parameters ϵk = γα
3
2

k for all k ∈ Z+ with γ ∈ R+. Suppose that the
sequences {xk} and {x̃k} are contained in some bounded open set U ⊂ dom(r). Then for all
k ∈ Z+, we have

δk+1 ≤ 1

1 + sc1αk
δk + C̃f,m,U,c1,γ (αk) ·

α2
k

1 + sc1αk
for all k ∈ Z+.

Assuming that the above assertion holds, we immediately have

δk+1 ≤ 1

1 + sc1α0
δk + C̃f,m,U,c1,γ (α0) ·

α2
0

1 + sc1α0
for all k ∈ Z+.

Taking a1 = (1 + sc1α0)
−1 and a2 = C̃f,m,U,c1,γ(α0) · α2

0

1+sc1α0
in Lemma C.1 leads to inequality

(2.8) in Theorem 2.3. The only remaining task is to prove Claim C.1. For brevity, its proof is
deferred to Appendix C.2.1.

C.2 PROOF OF THEOREM 2.4

Use the same notations as in the proof of Theorem 2.3 and set δk ≜ E[dist(xk,X ∗)2] for each
k ∈ Z+. Now we prove the results for isPPA with diminishing stepsizes αk = α0k

−β where
β ∈ (0, 1]. Then

0 < αk ≤ αk+1 ≤ α0 for all k ∈ Z+. (C.1)

On the event that supk∈Z+
∥xk∥2 < ∞, similar to the proof of Theorem 2.2, the combination of

criterion (SCA), the Cauchy-Schwarz inequality, and the condition ϵk = γα
3
2

k ≤ γα
3
2
0 leads to the

conclusion that supk∈Z+
∥x̃k∥2 < ∞. We can thus use U to denote a bounded open subset of

dom(r) containing the sequences {xk} and {x̃k}. This confirms that all the assumptions required
in Claim C.1 are satisfied. Fix any k ∈ Z+. Note that Cf,m,U,c1,γ(·) is nondecreasing on R+ and
thus by (C.1), we have

C̃f,m,U,c1,γ (αk) ≤ C̃f,m,U,c1,γ (α0) . (C.2)

Then, it follows from Claim C.1 that

δk+1 ≤ 1

1 + sc1αk
δk + C̃f,m,U,c1,γ (αk) ·

α2
k

1 + sc1αk

≤ 1

1 + sc1αk
δk + C̃f,m,U,c1,γ (α0) ·

α2
k

1 + sc1αk
(C.3a)

=

(
1− sc1αk

1 + sc1αk

)
δk + C̃f,m,U,c1,γ (α0) ·

α2
k

1 + sc1αk

≤ exp

(
− sc1αk

1 + sc1αk

)
δk + C̃f,m,U,c1,γ (α0) ·

α2
k

1 + sc1αk

≤ exp

(
− sc1αk

1 + sc1α0

)
δk + C̃f,m,U,c1,γ (α0) · α2

k, (C.3b)

where the second inequality uses the relation (C.2), the third follows from (B.11) and the last holds
because of inequality (C.1).
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Proof of assertion (i). If β ∈ (0, 1), by taking a1 = sc1(1+ sc1α0)
−1 and a2 = C̃f,m,U,c1,γ (α0)

in Lemma C.2, we can easily obtain the estimate (2.9) from inequality (C.3b), thus confirming
assertion (i) of Theorem 2.4.

Proof of assertion (ii). As for the case where β = 1, the estimate (2.10) follows from (C.3a) and
Lemma C.3 with a1 = sc1 and a2 = C̃f,m,U,c1,γ . This verifies assertion (ii) and thus completes the
proof of Theorem 2.4.

C.2.1 PROOF OF CLAIM C.1

It only remains to prove Claim C.1. We present the detailed proof as follows: Fix any k ∈ Z+.
Setting x = proj(x̃k+1,X ∗) in inequality (B.7) yields

dist (xk+1,X ∗)
2 ≤ ∥xk+1 − proj (x̃k+1,X ∗)∥22

≤
(
1 +

1

t

)
∥x̃k+1 − proj (x̃k+1,X ∗)∥22 + (1 + t) ϵ2k

=

(
1 +

1

t

)
dist (x̃k+1,X ∗)

2
+ (1 + t) ϵ2k,

and thus

Ek

[
dist (xk+1,X ∗)

2
]
≤
(
1 +

1

t

)
Ek

[
dist (x̃k+1,X ∗)

2
]
+ (1 + t) ϵ2k. (C.4)

Note that the sequences {xk} and {x̃k} are contained in U . By setting x = proj(xk,X ∗) in in-
equality (B.2) of Lemma B.3, one can conclude that

Ek

[
dist (x̃k+1,X ∗)

2
]
≤ Ek

[
∥x̃k+1 − proj(xk,X ∗)∥22

]
≤ ∥xk − proj(xk,X ∗)∥22 − 2αk · Ek [ϕ (x̃k+1)− ϕ∗] + ρf,m,ULF (U)2 · α2

k

≤ ∥xk − proj(xk,X ∗)∥22 − 2c1αk · Ek

[
dist(x̃k+1,X ∗)2

]
+ ρf,m,ULF (U)2 · α2

k

= dist (xk,X ∗)
2 − 2c1αk · Ek

[
dist(x̃k+1,X ∗)2

]
+ ρf,m,ULF (U)2 · α2

k,

where the last inequality comes from the quadratic growth condition in Assumption 4. Rearranging
the preceding inequality yields

Ek

[
dist (x̃k+1,X ∗)

2
]
≤ 1

1 + 2c1αk
dist (xk,X ∗)

2
+ ρf,m,ULF (U)2 · α2

k

1 + 2c1αk
. (C.5)

Applying (C.5) to inequality (C.4) with t = 1+sc1αk

(2−s)c1αk
and ϵk = γα

3
2

k , and using the fact that(
1 +

1

t

)
· 1

1 + 2c1αk
=

1 + 2c1αk

1 + sc1αk
· 1

1 + 2c1αk
=

1

1 + sc1αk
,

(1 + t) · α3
k =

1 + 2c1αk

(2− s)c1αk
· α3

k =
(1 + 2c1αk) (1 + sc1αk)

(2− s)c1
· α2

k

1 + sc1αk
,

we have

Ek

[
dist (xk+1,X ∗)

2
]

≤ 1

1 + sc1αk
· dist (xk,X ∗)

2
+

[
ρf,m,ULF (U)2 +

(1 + 2c1αk) (1 + sc1αk)

(2− s)c1
γ2
]
· α2

k

1 + sc1αk
.

Taking the expectation of both sides of the previous inequality, applying the law of total expectation
and using the definition of C̃f,m,U,c1,γ(·) defined in (2.7), we can immediately derive Claim C.1.

C.3 PROOF OF COROLLARY 2.5

For the case where β = 1, the dominant term of the bound (2.10) obtained in Theorem 2.4 can be
readily determined. Thus, we only need to check the case where β ∈ (0, 1). Note that the bound
(2.9) given in Theorem 2.4 can be written as

E
[
dist(xk,X ∗)2

]
≤ C1exp(−A1ς1−β(k)) +

C2

kβ
+ C3exp

(
−A2k

1−β
)
· ς1−2β

(
k

2

)
, (C.6)
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where Ci ∈ R+ and Aj ∈ R++ for i = 1, 2, 3 and j = 1, 2. Since β ∈ (0, 1), then

C1exp(−A1ς1−β(k)) ≤ O
(
bk

1−β

1

)
≤ O

(
k−β

)
for sufficiently large k, where b1 ∈ (0, 1).

(i) If β ∈ (0, 12 ), then ς1−2β(
k
2 ) ≤ O

(
k1−2β

)
by (C.7) (see Lemma C.4(i) below). Note that

(B.11) implies exp(−t) ≤ 1
1+t for all t ∈ R+. Thus we have

C3exp
(
−A2k

1−β
)
· ς1−2β

(
k

2

)
≤ O

(
k−(1−β) · k1−2β

)
= O

(
k−β

)
.

(ii) If β = 1
2 , then

C3exp
(
−A2k

1−β
)
· ς1−2β

(
k

2

)
= O

(
b
√
k

2 ln(k)
)
≤ O(k−

1
2 )

for sufficiently large k, where b2 ∈ (0, 1).

(iii) If β ∈ ( 12 , 1), then ς1−2β(
k
2 ) ≤

1
2β−1 by (C.7) and thus

C3exp
(
−A2k

1−β
)
· ς1−2β

(
k

2

)
≤ O(bk

1−β

3 ) ≤ O
(
k−β

)
for sufficiently large k, where b3 ∈ (0, 1).

Combining the previous results with (C.6) verifies the estimates for the case where β ∈ (0, 1),
thereby completing the proof of Corollary 2.5.
Remark C.1. The convergence rate results in Theorem 2.3 and Theorem 2.4 provide insights into
how the minibatch size m affects the performance of isPPA. In general, increasing the minibatch
size m improves the convergence rate of isPPA. Specifically, from equation (2.4), we have

ηf,U ∈ [0, 1] and ρf,m,U = (

√
1 +

1− ηf,U
m

+ 1)2,

indicating that ρf,m,U is a nonincreasing function of m. Then, from the definition of C̃f,m,U,c1,γ(·)
in (2.7), C̃f,m,U,c1,γ(α) decreases with m for a fixed α. This leads to the following observations:

• Neighborhood shrinks when using constant stepsizes. For isPPA with constant stepsizes,
when increasing the minibatch size m, the linear convergence of {xk} to a neighborhood
of the optimal solution set improves, as the neighborhood shrinks due to the noise term in
(2.8) from Theorem 2.3 being proportional to C̃f,m,U,c1,γ(α0).

• Coefficient decreases when using diminishing stepsizes. For isPPA with diminishing
stepsizes, when increasing the minibatch size m, the sublinear convergence of {xk} im-
proves in the sense that the coefficient of the dominant term decreases. For instance, as
shown in the proof of Corollary 2.5, the dominant term in (2.9) from Theorem 2.4 is the
second part O(k−β), whose coefficient is proportional to C̃f,m,U,c1,γ(α0).

While a larger minibatch size m improves the convergence rate of isPPA, it also increases the com-
putational cost of solving the subproblem. Therefore, a trade-off must be considered when selecting
m.

C.4 PROOF OF AUXILIARY LEMMAS

It only remains to prove the auxiliary lemmas presented before. Note that the proofs of Lemma
C.2 and Lemma C.3 leverage techniques similar to those employed in the proof of Theorem 1 in
(Moulines & Bach, 2011). We first present the following lemma summarizing several useful in-
equalities to be subsequently employed.
Lemma C.4. The following assertions hold:
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(i) Let β ∈ R. Then the function ςβ satisfies ςβ(1) = 0,

ςβ(t) ≤

{
1

−β if β < 0,
tβ

β if β > 0.
(C.7)

for all t ∈ R++, and is nondecreasing over R++.

(ii) The following inequality holds:

k + 1

k
≤ 2 for all k ∈ Z+. (C.8)

Let β ∈ R and j, k ∈ N with k ≥ j + 1. Then

1

2β
· [ςβ+1(k + 1)− ςβ+1(j + 1)] ≤

k∑
i=j+1

iβ ≤ ςβ+1(k + 1)− ςβ+1(j + 1)

if β ≥ 0, (C.9a)

ςβ+1(k + 1)− ςβ+1(j + 1) ≤
k∑

i=j+1

iβ ≤ 1

2β
· [ςβ+1(k + 1)− ςβ+1(j + 1)]

if β < 0. (C.9b)

Moreover, if j, k ∈ Z+ with k ≥ j + 1, then

ςβ+1(k)− ςβ+1(j) ≤
k∑

i=j+1

iβ ≤ (β + 2) · [ςβ+1(k)− ςβ+1(j)] if β > 0, (C.10a)

k∑
i=j+1

iβ ≤ ςβ+1(k)− ςβ+1(j) if β ≤ 0. (C.10b)

(iii) Let β ∈ (0, 1). Then the following assertions hold:

(1 + t)β ≤ 1 + βt for all t ∈ [−1,∞), (C.11a)
1

2
tβ ≤ ςβ(t)− ςβ

(
t

2

)
for all t ∈ R++. (C.11b)

(iv) Let a ∈ R++ and define h(t) ≜ t
1−exp(−at) for all t ∈ R++. Then the function h is

nondecreasing over R++.

An elementary proof of the previous lemma is deferred to Appendix C.4.4 for reference.

C.4.1 PROOF OF LEMMA C.1

Fix any k ∈ Z+. Applying the recursion k times yields that

δk+1 ≤ ak1δ1 + a2

k−1∑
i=0

ai1 = ak1δ1 + a2 ·
1− ak1
1− a1

≤ ak1δ1 + a2 (1− a1)
−1

where the equality is due to a1 ̸= 1, and the second inequality follows from the facts that a1 ∈ (0, 1)
and a2 ∈ R+. This completes the proof of Lemma C.1.

C.4.2 PROOF OF LEMMA C.2

Fix any k ∈ Z+. Applying the recursion k times yields that

δk+1 ≤ exp

(
−a1

k∑
i=1

αi

)
δ1 + a2

k∑
i=1

α2
i exp

−a1
k∑

j=i+1

αj

 . (rBound)
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Define

I1 ≜ exp

(
−a1

k∑
i=1

αi

)
and I2 ≜

k∑
i=1

α2
i exp

−a1
k∑

j=i+1

αj

 . (defTerm)

Note that αk = α0k
−β for all k ∈ Z+ with β ∈ (0, 1). Then it follows from (C.9b) with j = 0 that

I1 = exp

(
−a1α0

k∑
i=1

i−β

)
≤ exp (−a1α0 [ς1−β(k + 1)− ς1−β(1)])

= exp (−a1α0 · ς1−β(k + 1)) ,

(I1Bound)

where the last equality uses the fact that ς1−β(1) = 0 implied by Lemma C.4(i). It only remains to
obtain an upper bound on I2. Set m ≜ ⌊k−1

2 ⌋. We can easily verify that

k

2
≤ m+ 1 ≤ k + 1

2
. (C.12)

For simplicity, we denote by
∑k

i=j · ≜ 0 for j, k ∈ Z+ with j > k. Then by using the definition of
αk, the term I2 can be written by

I2 =

m∑
i=1

α2
i exp

−a1α0

k∑
j=i+1

j−β

+

k∑
i=m+1

α2
i exp

−a1
k∑

j=i+1

αj

 ≜ I
(1)
2 + I

(2)
2 .

By assumption, we have β ∈ (0, 1). Then the term I
(1)
2 can be bounded by

I
(1)
2 ≤

m∑
i=1

α2
i exp (−a1α0 (ς1−β(k + 1)− ς1−β(i+ 1)))

≤ exp (−a1α0 (ς1−β(k + 1)− ς1−β(m+ 1)))

m∑
i=1

α2
i

≤ exp

(
−a1α0

(
ς1−β(k + 1)− ς1−β

(
k + 1

2

))) m∑
i=1

α2
i

≤ exp
(
−a1α0

2
(k + 1)

1−β
) m∑

i=1

α2
i

≤ 4βα2
0exp

(
−a1α0

2
(k + 1)

1−β
)
· [ς1−2β(m+ 1)− ς1−2β(1)]

≤ 4βα2
0exp

(
−a1α0

2
(k + 1)

1−β
)
· ς1−2β

(
k + 1

2

)
,

where the first and second last inequalities follow from (C.9b), the second is due to Lemma C.4(i),
the third and last are due to Lemma C.4(i) and inequality (C.12), and the fourth comes from (C.11b).
For the term I

(2)
2 , we obtain the following bound:

I
(2)
2 =

k∑
i=m+1

α2
i exp

−a1
k∑

j=i+1

αj


=

k∑
i=m+1

α2
i

1− exp (−a1αi)
·

exp
−a1

k∑
j=i+1

αj

− exp

−a1
k∑

j=i

αj


≤ αm+1 ·

k∑
i=m+1

αi

1− exp (−a1αi)
·

exp
−a1

k∑
j=i+1

αj

− exp

−a1
k∑

j=i

αj


≤ αm+1

α0

1− exp (−a1α0)
·

k∑
i=m+1

exp
−a1

k∑
j=i+1

αj

− exp

−a1
k∑

j=i

αj


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= αm+1
α0

1− exp (−a1α0)
·

1− exp

−a1
k∑

j=m+1

αj


≤ αm+1

α0

1− exp (−a1α0)
=

α2
0

1− exp (−a1α0)
(m+ 1)−β

≤ α2
0

1− exp (−a1α0)

(
k

2

)−β

=
α2
0

1− exp (−a1α0)

(
k + 1

2

)−β

·
(

k

k + 1

)−β

≤ α2
0

1− exp (−a1α0)

(
k + 1

4

)−β

,

where the first inequality is due to (C.1), the second follows from Lemma C.4(iv) and (C.1), the
second last comes from (C.12), and the last holds by (C.8). Thus,

I2 ≤ 4βα2
0exp

(
−a1α0

2
(k + 1)

1−β
)
· ς1−2β

(
k + 1

2

)
+

4βα2
0

1− exp (−a1α0)
· (k + 1)

−β
.

(I2Bound-l1)

Combining (rBound) with (defTerm), (I1Bound) and (I2Bound-l1) proves Lemma C.2.

C.4.3 PROOF OF LEMMA C.3

The proof of Lemma C.3 differs from the proof of Lemma C.2 because now β = 1. Applying the
recursion k times yields that

δk+1 ≤

(
k∏

i=1

1

1 + a1αi

)
δ1 + a2

k∑
i=1

α2
i

1 + a1αi

 k∏
j=i+1

1

1 + a1αj

 . (rBound′)

Define

I1 ≜
k∏

i=1

1

1 + a1αi
and I2 ≜

k∑
i=1

α2
i

1 + a1αi

 k∏
j=i+1

1

1 + a1αj

 . (defTerm′)

Note that αk = α0k
−1 for all k ∈ Z+ and that

a1α0 ≤ 1

2
a1α0i for all i ∈ Z+ and i ≥ 2. (C.13)

With the previous observation, we can establish the following bound on I1:
1

1 + a1αi
=

1

1 + a1α0i−1
=

i

i+ a1α0
= 1− a1α0

i+ a1α0

≤ 1− 2a1α0

2i+ a1α0i
= 1− 2a1α0

2 + a1α0
i−1

≤ exp

(
− 2a1α0

2 + a1α0
i−1

)
for all i ∈ Z+ and i ≥ 2,

(C.14)

where the first inequality follows from (C.13) and the second is due to (B.11). Using (C.14) above,
we can derive that

I1 =
1

1 + a1α0

(
k∏

i=2

1

1 + a1αi

)
≤ 1

1 + a1α0
exp

(
− 2a1α0

2 + a1α0

k∑
i=2

i−1

)

≤ 1

1 + a1α0
exp

(
− 2a1α0

2 + a1α0
[ς0(k + 1)− ς0(2)]

)
=

1

1 + a1α0
exp

(
− 2a1α0

2 + a1α0
ln

(
k + 1

2

))
=

1

1 + a1α0

(
2

k + 1

) 2a1α0
2+a1α0

≤ 4

1 + 2a1α0

(
1

k + 1

) 2a1α0
2+a1α0

,

(I1Bound′)
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where the second inequality is due to (C.9b) with j = 1, and the last uses the fact that

2a1α0

2 + a1α0
≤ 2. (C.15)

It remains to obtain an upper bound on I2. By using (C.14) again, one can easily verify that

k∏
j=i+1

1

1 + a1αj
≤ exp

− 2a1α0

2 + a1α0

k∑
j=i+1

j−1


≤ exp

(
− 2a1α0

2 + a1α0
[ς0(k + 1)− ς0(i+ 1)]

)
= exp

(
− 2a1α0

2 + a1α0
ln

(
k + 1

i+ 1

))
=

(
i+ 1

k + 1

) 2a1α0
2+a1α0

for i = 1, · · · , k,

(C.16)

where the second inequality comes from (C.9b) with j = i. Then

I2 =

k∑
i=1

α2
i

1 + a1αi

 k∏
j=i+1

1

1 + a1αj

 ≤
k∑

i=1

α2
i

(
i+ 1

k + 1

) 2a1α0
2+a1α0

= α2
0 (k + 1)

− 2a1α0
2+a1α0

k∑
i=1

i−2 (i+ 1)
2a1α0

2+a1α0

= α2
0 (k + 1)

− 2a1α0
2+a1α0

k∑
i=1

(i+ 1)
2a1α0

2+a1α0
−2

(
i+ 1

i

)2

≤ 4α2
0 (k + 1)

− 2a1α0
2+a1α0

k∑
i=1

(i+ 1)
2a1α0

2+a1α0
−2

= 4α2
0 (k + 1)

− 2a1α0
2+a1α0

k+1∑
i=2

i
2a1α0

2+a1α0
−2

≤ 4α2
0 (k + 1)

− 2a1α0
2+a1α0

[
ς 2a1α0
2+a1α0

−1
(k + 1)− ς 2a1α0

2+a1α0
−1

(1)
]

= 4α2
0 (k + 1)

− 2a1α0
2+a1α0 ς 2a1α0

2+a1α0
−1

(k + 1)

(C.17)

where the first inequality follows from (C.16), the second last is due to (C.8), and the last comes
from (C.15) and (C.10b) with j = 1. Using the previous inequality and the fact that

2a1α0

2 + a1α0
< 1 ⇔ a1α0 < 2,

2a1α0

2 + a1α0
= 1 ⇔ a1α0 = 2,

2a1α0

2 + a1α0
> 1 ⇔ a1α0 > 2,

(C.18)

we can deduce from the relation (C.7) in Lemma C.4(i) and the definition of function ς 2a1α0
2+a1α0

(·)
given in (2.3) that the following assertion holds:

I2 ≤


4(2+a1α0)α

2
0

2−a1α0
·
(

1
k+1

) 2a1α0
2+a1α0 if a1α0 < 2,

4α2
0
ln(k+1)
k+1 if a1α0 = 2,

4(2+a1α0)α
2
0

a1α0−2 · 1
k+1 if a1α0 > 2.

(I2Bound-e1′)

Combining (rBound′) with (defTerm′), (I1Bound′) and (I2Bound-e1′) proves Lemma C.3.

C.4.4 PROOF OF LEMMA C.4

By using the definition of the function ςβ given in (2.3), Lemma C.4 can be derived from elementary
calculations, as shown below:
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Proof of assertion (i). Fix any β ∈ R and t ∈ R++. Using the definition of ςβ given in (2.3), we
can easily verify that ςβ(1) = 0 and that

ςβ(t) =

{
tβ−1
β = 1−tβ

−β ≤ 1
−β if β < 0,

tβ−1
β ≤ tβ

β if β > 0.

Note that the derivative ς ′β(t) = tβ−1 > 0 for all t ∈ R++. Thus, the function ςβ(·) is nondecreasing
over R++.

Proof of assertion (ii). Note that (C.8) holds since 1 + 1
k ≤ 2 for all k ∈ Z+. Let j, k ∈ N such

that k ≥ j + 1.

- Suppose that β ≥ 0. Then

k∑
i=j+1

iβ =

k∑
i=j+1

(i+ 1)
β ·
(

i

i+ 1

)β

≥ 1

2β

k∑
i=j+1

(i+ 1)
β

=
1

2β

k∑
i=j+1

∫ i+1

i

(i+ 1)βd t ≥ 1

2β

k∑
i=j+1

∫ i+1

i

tβd t =
1

2β

∫ k+1

j+1

tβd t

=
1

2β
[ςβ+1(k + 1)− ςβ+1(j + 1)] ,

where the first inequality follows from (C.8) and the fact that β ≥ 0. Similarly,

k∑
i=j+1

iβ =

k∑
i=j+1

∫ i+1

i

iβd t ≤
k∑

i=j+1

∫ i+1

i

tβd t

=

∫ k+1

j+1

tβd t = ςβ+1(k + 1)− ςβ+1(j + 1),

which combined with the previous inequality implies (C.9a).
- Now consider the case where β < 0. We can obtain

k∑
i=j+1

iβ =

k∑
i=j+1

∫ i+1

i

iβd t ≥
k∑

i=j+1

∫ i+1

i

tβd t = ςβ+1(k + 1)− ςβ+1(j + 1),

and
k∑

i=j+1

iβ =

k∑
i=j+1

(i+ 1)
β ·
(

i

i+ 1

)β

≤ 1

2β

k∑
i=j+1

(i+ 1)
β

=
1

2β

k∑
i=j+1

∫ i+1

i

(i+ 1)βd t ≤ 1

2β

k∑
i=j+1

∫ i+1

i

tβd t

=
1

2β
[ςβ+1(k + 1)− ςβ+1(j + 1)] ,

where the first inequality follows from (C.8) and the fact that β < 0. This completes the
proof of (C.9b).

Now we assume that j, k ∈ Z+ with k ≥ j + 1.

- If β ≤ 0, then we have

k∑
i=j+1

iβ =

k∑
i=j+1

∫ i

i−1

iβd t ≤
k∑

i=j+1

∫ i

i−1

tβd t =

∫ k

j

tβd t = ςβ+1(k)− ςβ+1(j),

that is, (C.10b) holds.
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- If β > 0, then

k∑
i=j+1

iβ =

k−1∑
i=j

iβ + kβ − jβ ≤ ςβ+1(k)− ςβ+1(j) + kβ − jβ , (C.19)

where the inequality follows from (C.9a). The fact that β > 0 and k ≥ j + 1 ≥ 2 implies

(β + 1) · [ςβ+1(k)− ςβ+1(j)]−
(
kβ − jβ

)
=
(
kβ+1 − kβ

)
−
(
jβ+1 − jβ

)
= kβ (k − 1) + jβ(1− j)

≥ kβ (k − 1) + jβ(1− k) =
(
kβ − jβ

)
(k − 1)

≥ 0,

that is,
kβ − jβ ≤ (β + 1) · [ςβ+1(k)− ςβ+1(j)] .

Combining the preceding inequality with (C.19) yields (C.10a) and completes the proof of
assertion (ii).

Proof of assertion (iii). Note that β ∈ (0, 1). We first show (C.11a) holds. If t = −1 then it
holds trivially. Thus we consider the case where t ∈ (−1,∞). Define g(t) ≜ (1 + t)β for any
t ∈ (−1,∞). Then g is twice continuously differentiable with

g′(t) = β(1 + t)β−1 and g′′(t) = β(β − 1)(1 + t)β−2 ≤ 0

for any t ∈ (−1,∞), which implies g is concave over (−1,∞). Thus, we have

(1 + t)β = g(t) ≤ g(0) + g′(0) · t = 1 + βt for all t ∈ (−1,∞),

which completes the proof of (C.11a). Then we prove (C.11b) by using this result. Fix any t ∈ R++.
It follows from the definition of ςβ given in (2.3) that

ςβ(t)− ςβ

(
t

2

)
=

1

β

[
tβ −

(
t

2

)β
]
=
tβ

β

[
1−

(
1− 1

2

)β
]
≥ tβ

β

[
1−

(
1− β

2

)]
=
tβ

2
,

where the inequality comes from (C.11a). This completes the proof of assertion (iii).

Proof of assertion (iv). This result follows immediately from the fact that h is differentiable over
R++ and

h′(t) =
1− exp(−at)− t · (aexp(−at))

(1− exp(−at))2
=

1− (1 + at) exp(−at)
(1− exp(−at))2

≥ 0

for all t ∈ R++, where the inequality uses (B.11) with t = at. This completes the proof of Lemma
C.4.

D PROOFS FOR THE RESULTS IN SECTION 2.3

In this section, we prove the main results on the convergence rate in terms of the KKT residual
outlined in Section 2.3.

D.1 PROOF OF LEMMA 2.6

Fix any x ∈ Rd. Recall that X ∗ = argminx∈Rd ϕ(x). By assumption, we have ϕ is proper and
closed convex. Then by using the characterization of the proximal mapping proxϕ(·) (Rockafellar,
1976b, (2.2)), one can derive the following relation:

x ∈ X ∗ ⇔ x− x ∈ ∂ϕ(x∗) ⇔ x = proxϕ(x) ⇔ x− proxϕ(x) = 0.
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Thus, combining the preceding equivalence relation with the triangle inequality and the nonexpan-
siveness of the proximal mapping proxϕ(·) (Rockafellar, 1976b, Proposition 1(c)) gives∥∥x− proxϕ(x)

∥∥
2
=
∥∥x− proxϕ(x)−

(
x− proxϕ(x)

)∥∥
2

≤ ∥x− x∥2 +
∥∥proxϕ(x)− proxϕ (x)

∥∥
2

≤ 2 ∥x− x∥2 for all x ∈ X ∗,

which implies ∥∥x− proxϕ(x)
∥∥
2
≤ 2 dist (x,X ∗)

and thus completes the proof of Lemma 2.6.

D.2 PROOF OF COROLLARY 2.7

Fix any k ∈ Z+. It follows directly from the Jensen’s inequality and Lemma 2.6 that

E
[∥∥xk − proxϕ (xk)

∥∥
2

]
≤
√

E
[∥∥xk − proxϕ (xk)

∥∥2
2

]
≤ 2
√

E [dist (xk,X ∗)].

Using this bound on the expected KKT residual, all results in Corollary 2.7 follows immediately
from Corollary 2.5 proved earlier.

E PROOFS FOR THE RESULTS IN SECTION 3

In this section, we present the proof of Proposition 3.1 shown in Section 3.

E.1 PROOF OF PROPOSITION 3.1

Proof of assertion (i). Denote the sample space S ≜ [n]. For each s ∈ S, define

f(x; s) ≜ ∥x− ps∥22 for all x ∈ Rd.

Then, the function F (x) can be expressed as the expectation Es∼P [f(x; s)], where P denotes the
discrete uniform distribution over S.

- For each s ∈ S, function f(·; s) is real-valued, locally Lipschitz and 2-strongly convex,
which implies F is locally Lipschitz and Assumption 3 holds.

- Note that function r(·) is real-valued and λ-strongly convex. Then φ(·; s) is real-valued
and (2 + λ)-strongly convex for each s ∈ S, leading to the (2 + λ)-strong convexity of ϕ
over Rd. Thus, Assumption 1 and 4 hold.

- The existence and uniqueness of x∗ follow from the strong convexity of ϕ. Additionally,
it can be readily inferred from the optimality condition for differentiable convex functions
that [

0 = ∇ϕ (x∗) = 2

n

n∑
i=1

(x∗ − pi) + λx∗

]
⇒

[
x∗ =

2

2 + λ
· 1
n

n∑
i=1

pi

]
.

Then, the optimial solution set X ∗ = {x∗} is nonempty, and

Es∼P

[
∥∇φ(x∗; s)∥22

]
=

4

n

n∑
i=1

∥x∗ − pi∥22 ≜ σϕ <∞,

which proves the first and second conditions in Assumption 2. By Remark 1.1, we have
(1.2) holds and thus the last condition in Assumption 2 holds.

This completes the proof of assertion (i).
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Proof of assertion (ii). Fix any k ∈ Z+. By the definition of xk+1 and the optimality condition of
differentiable convex functions, we can obtain

xk+1 = arg min
x∈Rd

{
1

m

m∑
i=1

∥∥∥x− pSi
k

∥∥∥2
2
+
λ

2
∥x∥22 +

1

2αk
∥x− xk∥22

}

=
2αk

(2 + λ)αk + 1
· 1

m

m∑
i=1

pSi
k
+

1

(2 + λ)αk + 1
xk.

(E.1)

Recall that Σ = maxi∈[n] ∥pi∥2. It follows from (E.1) and the triangle inequality that

∥xk+1∥2 ≤ 2αk

(2 + λ)αk + 1
· 1

m

m∑
i=1

∥∥∥pSi
k

∥∥∥
2
+

1

(2 + λ)αk + 1
· ∥xk∥2

≤ 2αk

(2 + λ)αk + 1
· Σ+

1

(2 + λ)αk + 1
· ∥xk∥2 .

Applying the recursion k times yields that

∥xk+1∥2 ≤

(
k∏

l=1

1

(2 + λ)αl + 1

)
· ∥x1∥2 +

(
k∑

l=1

2αl

k∏
m=l

1

(2 + λ)αm + 1

)
· Σ

≤ ∥x1∥2 +

(
k∑

l=1

2αl

k∏
m=l

1

(2 + λ)αm + 1

)
· Σ

= ∥x1∥2 +
2

2 + λ

(
1−

k∏
m=1

1

(2 + λ)αm + 1

)
· Σ

≤ ∥x1∥2 +
2Σ

2 + λ
≤ ∥x1∥2 +Σ,

(E.2)

where the equality comes from the following relation:

k∑
l=1

2αl

k∏
m=l

1

(2 + λ)αm + 1
=

k∑
l=1

2αl

(2 + λ)αl + 1

k∏
m=l+1

1

(2 + λ)αm + 1

=

k∑
l=1

2αl

(2 + λ)αl + 1
· 1

1− 1
(2+λ)αl+1

(
k∏

m=l+1

1

(2 + λ)αm + 1
−

k∏
m=l

1

(2 + λ)αm + 1

)

=
2

2 + λ
·

k∑
l=1

(
k∏

m=l+1

1

(2 + λ)αm + 1
−

k∏
m=l

1

(2 + λ)αm + 1

)

=
2

2 + λ
·

(
1−

k∏
m=1

1

(2 + λ)αm + 1

)
.

Assertion (ii) follows directly from (E.2) and the trivial observation that ∥x1∥2 ≤ ∥x1∥2 +Σ.

Proof of assertion (iii). Recall that σ2 = 1
n

∑n
j=1 ∥pj −

1
n

∑n
i=1 pi∥22. Then σ2 ≥ 0 and

σ2 = 0 ⇔ pj =
1

n

n∑
i=1

pi for all j ∈ [n] ⇔ pi = pj for all i, j ∈ [n],

from which we have σ2 > 0 according to the assumption that pi0 ̸= pj0 for some i0 ̸= j0 ∈ [n]. Fix
any k ∈ Z+. It follows from (E.1) that

xk+1 − x∗ =
2αk

(2 + λ)αk + 1
· 1

m

m∑
i=1

pSi
k
+

1

(2 + λ)αk + 1
xk − x∗,
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which implies

Ek

[
∥xk+1 − x∗∥22

]
= Ek [⟨xk+1 − x∗, xk+1 − x∗⟩]

=
4α2

k

[(2 + λ)αk + 1]
2Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k

∥∥∥∥∥
2

2

+
2αk

[(2 + λ)αk + 1]
2Ek

[〈
1

m

m∑
i=1

pSi
k
, xk

〉]

− 2αk

(2 + λ)αk + 1
Ek

[〈
1

m

m∑
i=1

pSi
k
, x∗

〉]

+
2αk

[(2 + λ)αk + 1]
2Ek

[〈
xk,

1

m

m∑
i=1

pSi
k

〉]
+

∥xk∥22
[(2 + λ)αk + 1]

2 − ⟨xk, x∗⟩
(2 + λ)αk + 1

− 2αk

(2 + λ)αk + 1
Ek

[〈
x∗,

1

m

m∑
i=1

pSi
k

〉]
− ⟨x∗, xk⟩

(2 + λ)αk + 1
+ ∥x∗∥22 .

(E.3)

Note that

Ek

[
pSi

k

]
=

1

n

n∑
j=1

pj for all i ∈ [m] and Ek

[
1

m

m∑
i=1

pSi
k

]
=

1

n

n∑
j=1

pj =
2 + λ

2
x∗. (E.4)

Then we can prove the following two assertions:

(a) It follows from (E.4) that

Ek

[〈
1

m

m∑
i=1

pSi
k
, xk

〉]
=

〈
1

n

n∑
j=1

pj , xk

〉
=

〈
2 + λ

2
x∗, xk

〉
=

2 + λ

2
⟨xk, x∗⟩ ,

Ek

[〈
1

m

m∑
i=1

pSi
k
, x∗

〉]
=

〈
1

n

n∑
j=1

pj , x
∗

〉
=

〈
2 + λ

2
x∗, x∗

〉
=

2 + λ

2
∥x∗∥22 ,

which combined with (E.3) yields that

Ek

[
∥xk+1 − x∗∥22

]
=

4α2
k

[(2 + λ)αk + 1]
2Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k

∥∥∥∥∥
2

2

+
2

(2 + λ)αk + 1

(
(2 + λ)αk

(2 + λ)αk + 1
− 1

)
⟨xk, x∗⟩

+
∥xk∥22

[(2 + λ)αk + 1]
2 +

(
1− 2(2 + λ)αk

(2 + λ)αk + 1

)
∥x∗∥22

=
∥xk∥22 − 2 ⟨xk, x∗⟩+ ∥x∗∥22

[(2 + λ)αk + 1]
2 +

4α2
k

[(2 + λ)αk + 1]
2Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k

∥∥∥∥∥
2

2


+

(
1− 2(2 + λ)αk

(2 + λ)αk + 1
− 1

[(2 + λ)αk + 1]
2

)
∥x∗∥22

=
∥xk − x∗∥22

[(2 + λ)αk + 1]
2 +

4α2
k

[(2 + λ)αk + 1]
2

Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k

∥∥∥∥∥
2

2

−
∥∥∥∥2 + λ

2
x∗
∥∥∥∥2
2

 .

(b) Using (E.4) again, one can derive that

Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k

∥∥∥∥∥
2

2

−
∥∥∥∥2 + λ

2
x∗
∥∥∥∥2
2

= Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k

∥∥∥∥∥
2

2

−

∥∥∥∥∥Ek

[
1

m

m∑
i=1

pSi
k

]∥∥∥∥∥
2

2
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= Ek

∥∥∥∥∥ 1

m

m∑
i=1

pSi
k
− Ek

[
1

m

m∑
i=1

pSi
k

]∥∥∥∥∥
2

2

 = Ek

∥∥∥∥∥ 1

m

m∑
i=1

(
pSi

k
− Ek

[
pSi

k

])∥∥∥∥∥
2

2


=

1

m2

m∑
i=1

Ek

[∥∥∥pSi
k
− Ek

[
pSi

k

]∥∥∥2
2

]
=

1

m2

m∑
i=1

Ek


∥∥∥∥∥∥pSi

k
− 1

n

n∑
j=1

pj

∥∥∥∥∥∥
2

2

 =
σ2

m
,

where the third last equality holds because the random variables S1
k, · · · , Sm

k are indepen-
dent and identically distributed, and the last comes from the definition of σ.

Assertion (a) together with assertion (b) above leads us to the result that

Ek

[
∥xk+1 − x∗∥22

]
=

∥xk − x∗∥22
[(2 + λ)αk + 1]

2 +
4α2

k

[(2 + λ)αk + 1]
2 · σ

2

m
.

Taking the expectation of both sides of the previous inequality and applying the law of total expec-
tation gives

E
[
∥xk+1 − x∗∥22

]
=

E
[
∥xk − x∗∥22

]
[(2 + λ)αk + 1]

2 +
4α2

k

[(2 + λ)αk + 1]
2 · σ

2

m
. (E.5)

Denote by δ1 ≜ ∥x1 − x∗∥22. Applying the recursion k times yields that

E
[
∥xk+1 − x∗∥22

]
=

(
k∏

l=1

1

[(2 + λ)αl + 1]
2

)
· δ1 +

4σ2

m

k∑
l=1

α2
l ·

(
k∏

m=l

1

[(2 + λ)αm + 1]
2

) (E.6)

holds for all k ∈ Z+.

- First consider the case in which αk ≥ α0 for some α0 ∈ R++. Define h(t) ≜ t
(2+λ)t+1

for all t ∈ R++. Then h is differentiable over R++ and

h′(t) =
(2 + λ) t+ 1− (2 + λ) t

[(2 + λ) t+ 1]
2 =

1

[(2 + λ) t+ 1]
2 > 0 for all t ∈ R++,

that is, h is nondecreasing over R++. We can thus obtain from (E.5) that

E
[
∥xk+1 − x∗∥22

]
≥ 4α2

k

[(2 + λ)αk + 1]
2 · σ

2

m
=

(
αk

(2 + λ)αk + 1

)2

· 4σ
2

m

≥
(

α0

(2 + λ)α0 + 1

)2

· 4σ
2

m
=

4σ2α2
0

m [(2 + λ)α0 + 1]
2

holds for all k ∈ Z+.

- Now we prove the assertion for the case where αk = α0k
−β for some α0 ∈ R++ and

β ∈ (0, 1]. Observe that

k∑
l=1

α2
l ·

(
k∏

m=l

1

[(2 + λ)αm + 1]
2

)

=

k∑
l=1

α2
l

[(2 + λ)αl + 1]
2 ·

(
k∏

m=l+1

1

[(2 + λ)αm + 1]
2

)

≥ 1

[(2 + λ)α0 + 1]
3

k∑
l=1

α2
l ·

(
k∏

m=l+1

1

(2 + λ)αm + 1

)
,
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where the inequality uses the fact that αk ≤ α0 for all k ∈ Z+. Moreover, the last term is
bounded below by

k∑
l=1

α2
l ·

(
k∏

m=l+1

1

(2 + λ)αm + 1

)

=

k∑
l=1

α2
l ·

1

1− 1
(2+λ)αl+1

(
k∏

m=l+1

1

(2 + λ)αm + 1
−

k∏
m=l

1

(2 + λ)αm + 1

)

=

k∑
l=1

(2 + λ)α2
l + αl

2 + λ

(
k∏

m=l+1

1

(2 + λ)αm + 1
−

k∏
m=l

1

(2 + λ)αm + 1

)

≥
k∑

l=1

αl

2 + λ

(
k∏

m=l+1

1

(2 + λ)αm + 1
−

k∏
m=l

1

(2 + λ)αm + 1

)

≥ αk

2 + λ

k∑
l=1

(
k∏

m=l+1

1

(2 + λ)αm + 1
−

k∏
m=l

1

(2 + λ)αm + 1

)

=
αk

2 + λ

(
1−

k∏
m=1

1

(2 + λ)αm + 1

)
≥ αk

2 + λ

(
1− 1

(2 + λ)α1 + 1

)
=

αk

2 + λ

(
1− 1

(2 + λ)α0 + 1

)
=

α2
0

(2 + λ)α0 + 1
· k−β ,

where the second inequality is due to the fact that αl ≥ αk for all l ∈ Z+ with l ≤ k, and
the second last equality comes from the fact that α1 = α0 implied by the definition of the
stepsizes. Combining (E.6) with the previous two relations leads us to the conclusion that

E
[
∥xk+1 − x∗∥22

]
≥ 4σ2

m

k∑
l=1

α2
l ·

(
k∏

m=l

1

[(2 + λ)αm + 1]
2

)

≥ 4σ2

m
· 1

[(2 + λ)α0 + 1]
3 · α2

0

(2 + λ)α0 + 1
· k−β

=
4σ2α2

0

m [(2 + λ)α0 + 1]
4 · k−β

holds for all k ∈ Z+.

This completes the proof of assertion (iii) and thus proves Proposition 3.1.

F DETAILS OF NUMERICAL EXPERIMENTS

In this section, we provide the essential details required to implement the numerical experiments
described in Section 4.

F.1 LASSO LINEAR REGRESSION MODEL

Recall the Lasso linear regression model defined as:

min
x∈Rd

ψLasso(x) ≜
1

2
∥Ax− b∥22 + λ1 ∥x∥1 .

Solve inner-loop subproblems. Denote the sample space S by the finite discrete domain [n].
Then, when using isPPA to solve Lasso linear regression model, the inner-loop subproblem (1.3) at
iteration k can be formulated as

min
x∈Rd

{
1

2m
∥AS1:m

k ,:x− bS1:m
k

∥22 +
λ1
n
∥x∥1 +

1

2αk
∥x− xk∥22

}
(F.1)
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where AS1:m
k ,: denotes the submatrix of A consisting of rows indexed by S1:m

k and bS1:m
k

denotes
the subvector generated by the elements of b indexed by S1:m

k . Set λ̃1 ≜ m
n λ1 and α̃k ≜ αk

m . Then
(F.1) can be written as

min
x∈Rd

{
H
(
AS1:m

k ,:x
)
+ p(x) +

1

2α̃k
∥x− xk∥22

}
where H(y) ≜

1

2

∥∥∥y − bS1:m
k

∥∥∥2
2

for all y ∈ Rm and p(x) ≜ λ̃1∥x∥1 for all x ∈ Rd.

(F.2)

In an effort to obtain the next iterate xk+1 satisfying the stopping criterion (SCA), we propose the
following claim and defer its proof to the end of this section for reference.
Claim F.1. Consider the subproblem (F.2) at iteration k of isPPA (Algorithm 1) with stepsizes {αk}
and accuracy parameters {ϵk}. Define

Ψ(ξ) ≜ H⋆(ξ) + p⋆
(
prox p⋆

α̃k

(
xk
α̃k

−A⊤
S1:m
k ,:ξ

))
+

α̃k

2

∥∥∥∥xkα̃k
−A⊤

S1:m
k ,:ξ − prox p⋆

α̃k

(
xk
α̃k

−A⊤
S1:m
k ,:ξ

)∥∥∥∥2
2

for all ξ ∈ Rm,

where H⋆ and p⋆ are the Fenchel conjugate functions of H and p, respectively. Fix any k ∈ Z+. If
xk+1 is obtained via the following update rule:

uk+1 = prox p⋆

α̃k

(
xk
α̃k

−A⊤
S1:m
k ,:ξk+1

)
with

ξk+1 ≈ arg min
ξ∈Rm

Ψ(ξ) where ∥∇Ψ(ξk+1)∥2 ≤ ϵk√
α̃k

,

xk+1 = xk − α̃k

(
A⊤

S1:m
k ,:ξk+1 + uk+1

)
= proxα̃kp

(
xk − α̃kA

⊤
S1:m
k ,:ξk+1

)
,

(F.3)

then xk+1 satisfies the stopping criterion (SCA), i.e.,
∥∥∥xk+1 − proxαkφ(·;S1:m

k )(xk)
∥∥∥
2
≤ ϵk.

Note that

H⋆ (ξ) = sup
y∈Rm

{⟨y, ξ⟩ −H (y)} =
1

2
∥ξ∥22 +

〈
bS1:m

k
, ξ
〉

for all ξ ∈ Rm. (F.4)

Then the function Ψ defined in Claim F.1 is 1-strongly convex and continuously differentiable on
Rm with

∇Ψ(ξ) = ∇H⋆(ξ)− α̃kAS1:m
k ,:

(
xk
α̃k

−A⊤
S1:m
k ,:ξ − prox p⋆

α̃k

(
xk
α̃k

−A⊤
S1:m
k ,:ξ

))
= ξ + bS1:m

k
−AS1:m

k ,:proxα̃kp

(
xk − α̃kA

⊤
S1:m
k ,:ξ

)
for all ξ ∈ Rm.

Therefore, utilizing Claim F.1, we can obtain ξk+1 by applying the semismooth Newton (SSN)
method (Li et al., 2018, Algorithm SSN) to solve the minimization subproblem in (F.3).

Obtain an approximate optimal solution. For each data set, we first apply the semismooth New-
ton augmented Lagrangian (SSNAL) method (Li et al., 2018) to solve problem (4.1) and obtain an
approximate solution x̃∗ satisfying the relative KKT residual ηrel,Lasso < 10−8, where

ηrel,Lasso ≜

∥∥∥x̃∗ − proxλ1∥·∥1

(
x̃∗ −A⊤ (Ax̃∗ − b)

)∥∥∥
2

1 + ∥x̃∗∥2 + ∥A⊤ (Ax̃∗ − b)∥2
.

Then ψLasso(x̃
∗) can be taken as an approximation of the optimal function value. For each trial, we

run isPPA to solve (4.1) and obtain an approximate solution x̂∗ such that the relative gap δrel,Lasso <
10−5, where

δrel,Lasso ≜
|ψLasso(x̂

∗)− ψLasso(x̃
∗)|

1 + |ψLasso(x̃∗)|
.

Then x̂∗ is the desired approximation of the optimal solution, to which {xk} converges almost surely.
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Numerical results on real data sets. The real data sets are taken from the UCI data repository
(Chang & Lin, 2011) and the original features of the obtained data are expeneded by following the
settings in (Li et al., 2018). We test on real data sets abalone7 with (n, d) = (4177, 6435) and
space ga9 with (n, d) = (3107, 5005), and set the regurlarization parameter λ1 = λc

∥∥A⊤b
∥∥
∞

with λc = 10−2. The KKT residual with respect to the Lasso model is defined by

ηLasso(x) ≜
∥∥∥x− proxλ1∥·∥1

(
x−A⊤ (Ax− b)

)∥∥∥
2

for all x ∈ Rd. (F.5)

Given that x ∈ X ∗ if and only if x = proxλ1∥·∥1
(x − A⊤(Ax − b)), it follows that ηLasso(x) ≤

(2 + ∥A∥22)dist(x,X ∗), ensuring the applicability of all results from Corollary 2.7 to ηLasso. As
illustrated in the top row of Figure 3, the convergence curves are analogous to those for the synthetic
data, where the asymptotic convergence rates for the squared distance to the optimal solution set and
the KKT residual are O(k−β) and O(k−β/2), respectively.

F.2 ELASTIC NET LINEAR REGRESSION MODEL

The elastic net linear regression model is presented as follows:

min
x∈Rd

ψelastic(x) ≜
1

2
∥Ax− b∥22 + λ1 ∥x∥1 +

λ2
2

∥x∥22 .

Solve inner-loop subproblems. Use the same notations as in Appendix F.1 and set

λ̃2 ≜
m

n
λ2, x̂k ≜

1

1 + λ̃2α̃k

xk and α̂k ≜
α̃k

1 + λ̃2α̃k

.

Then we can formulate the inner-loop subproblem (1.3) at iteration k as follows:

min
x∈Rd

{
H
(
AS1:m

k ,:x
)
+ p(x) +

λ̃2
2

∥x∥22 +
1

2α̃k
∥x− xk∥22

}

⇔ min
x∈Rd

{
H
(
AS1:m

k ,:x
)
+ p(x) +

1 + λ̃2α̃k

2α̃k

∥∥∥∥x− 1

1 + λ̃2α̃k

xk

∥∥∥∥2
2

}

⇔ min
x∈Rd

{
H
(
AS1:m

k ,:x
)
+ p(x) +

1

2α̂k
∥x− x̂k∥22

}
where H(y) ≜

1

2

∥∥∥y − bS1:m
k

∥∥∥2
2

for all y ∈ Rm and p(x) ≜ λ̃1∥x∥1 for all x ∈ Rd.

(F.6)

By using the equivalent formulation (F.6) described above and following the proof argument of
Claim F.1 for the Lasso model, one can easily check the validity of the claim below:
Claim F.2. Consider the subproblem (F.6) at iteration k of isPPA (Algorithm 1) with stepsizes {αk}
and accuracy parameters {ϵk}. Define

Ψ(ξ) ≜ H⋆(ξ) + p⋆
(
prox p⋆

α̂k

(
x̂k
α̂k

−A⊤
S1:m
k ,:ξ

))
+

α̂k

2

∥∥∥∥ x̂kα̂k
−A⊤

S1:m
k ,:ξ − prox p⋆

α̂k

(
x̂k
α̂k

−A⊤
S1:m
k ,:ξ

)∥∥∥∥2
2

for all ξ ∈ Rm,

where H⋆ and p⋆ are the Fenchel conjugate functions of H and p, respectively. Fix any k ∈ Z+. If
xk+1 is obtained via the following update rule:

uk+1 = prox p⋆

α̂k

(
x̂k
α̂k

−A⊤
S1:m
k ,:ξk+1

)
with

ξk+1 ≈ arg min
ξ∈Rm

Ψ(ξ) where ∥∇Ψ(ξk+1)∥2 ≤ ϵk√
α̂k

,

xk+1 = x̂k − α̂k

(
A⊤

S1:m
k ,:ξk+1 + uk+1

)
= proxα̂kp

(
x̂k − α̂kA

⊤
S1:m
k ,:ξk+1

)
,

(F.7)

then xk+1 satisfies the stopping criterion (SCA), i.e.,
∥∥∥xk+1 − proxαkφ(·;S1:m

k )(xk)
∥∥∥
2
≤ ϵk.

Similar to the Lasso model, the iterates {xk} generated by isPPA are computed by employing the
SSN method to solve the minimization subproblem specified in (F.7).
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Obtain an approximate optimal solution. For each data set, we employ the SSNAL method
to solve problem (4.2) and obtain an approximate solution x̃∗ satisfying the relative KKT residual
ηrel,elastic < 10−8, where

ηrel,elastic ≜

∥∥∥x̃∗ − proxλ1∥·∥1

(
x̃∗ −A⊤ (Ax̃∗ − b)− λ2x̃

∗)∥∥∥
2

1 + ∥x̃∗∥2 + ∥A⊤ (Ax̃∗ − b) + λ2x̃∗∥2
.

Then x̃∗ is the desired approximation of the optimal solution to (4.2).

Test setup for synthetic and real data and numerical results for real data sets. For numerical
experiments on synthetic data, we use n = 10000 and d = 1000, setting σ to zero for noiseless
conditions and to 10−2 otherwise. The regularization parameters, λ1 and λ2, are set to λc1

∥∥A⊤b
∥∥
∞

and λc2
∥∥A⊤b

∥∥
∞, respectively, with λc1 = 5 × 10−2 and λc2 = 5 × 10−2. For test on real data

sets, specifically the data sets abalone7 and space ga9, we set the regularization parameters
to (λ1, λ2) = (λc1

∥∥A⊤b
∥∥
∞ , λc2

∥∥A⊤b
∥∥
∞), with (λc1 , λc2) = (10−1, 10−1) for abalone7 and

(λc1 , λc2) = (10−2, 10−2) for space ga9, respectively. The accuracy parameter ϵk is defined as
γα2

k with γ = 10−2, and the minibatch size m is fixed at 32. The KKT residual for the elastic net
Lasso model is defined as:

ηelastic(x) ≜
∥∥∥x− proxλ1∥·∥1

(
x−A⊤ (Ax− b)− λ2x

)∥∥∥
2
, (F.8)

which is upper bounded by (2+λ2+∥A∥22)dist(x,X ∗), affirming that all the results from Corollary
2.7 apply to ηelastic. The performance of isPPA with diminishing stepsizes αk = α0k

−β for various
stepsize exponents β ∈ {0.55, 0.75, 0.9, 1}, starting with an initial stepsize α0 = 50, is displayed in
the bottom row of Figure 3. The observed convergence results align with those tested on synthetic
data, thus validating Corollary 2.5 and 2.7.
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Figure 3: Performance of isPPA in solving the linear regression models (Lasso - top and elastic net -
bottom) for four values of stepsize exponents β = 0.55, 0.75, 0.9 and 1. The legend “isPPA-beta-β”
denotes isPPA with diminishing stepsizes αk = α0k

−β . (a) The test on data set abalone7. (b)
The test on data set space ga9.

F.3 PROOF OF CLAIM F.1

The proof of Claim F.1 are based on the following result. Here we still use H⋆ and p⋆ to denote the
Fenchel conjugate functions of H and p, respectively.

Claim F.3. Consider the following composite optimization problem

min
x∈Rd

Φ(x) ≜ H(Ax) + p(x), (F.9)
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where A ∈ Rm×d, H : Rm → (−∞,+∞] and p : Rd → (−∞,+∞] are proper and closed convex
functions. Fix any x ∈ Rd, α ∈ R++ and ϵ ∈ R+. Define

Ψ(ξ) ≜ H⋆(ξ) + p⋆
(
prox p⋆

α

(
x

α
−A⊤ξ

))
+

α

2

∥∥∥∥xα −A⊤ξ − prox p⋆

α

(
x

α
−A⊤ξ

)∥∥∥∥2
2

for all ξ ∈ Rm.

Suppose that H⋆ is ηH -strongly convex for some ηH ∈ R++. If

ũ ≜ prox p⋆

α

(
x

α
−A⊤ξ̃

)
with

ξ̃ ≈ arg min
ξ∈Rm

Ψ(ξ) where
∥∥∥∇Ψ

(
ξ̃
)∥∥∥

2
≤
√
ηH
α
ϵ,

(F.10)

then x̃ ≜ x− α(A⊤ξ̃ + ũ) satisfies

x̃ ≈ arg min
x∈Rd

{
H(Ax) + p(x) +

1

2α
∥x− x∥22

}
where ∥x̃− proxαΦ(x)∥2 ≤ ϵ.

By using Claim F.3 with A = AS1:m
k ,: and functions H and p defined in (F.2), we can deduce from

the 1-strong convexity of H⋆ (see (F.4)) that∥∥∥xk+1 − proxαkφ(·;S1:m
k )(xk)

∥∥∥
2
=
∥∥xk+1 − proxα̃kΦ

(xk)
∥∥
2
≤ ϵk,

where Φ(x) ≜ H(AS1:m
k ,:x) + p(x) for all x ∈ Rd. It only remains to prove Claim F.3.

Proof of Claim F.3. Let x̂ ≜ proxαΦ(x). We assume that (ξ̃, ũ) ∈ Rm × Rd satisfy (F.10) and
set x̃ ≜ x − α

(
A⊤ξ̃ + ũ

)
. By following an argument nearly identical to that in the proof of

(Rockafellar, 1976a, Proposition 6), we can obtain

∥x̂− x̃∥22 ≤ 2α ·
(
Ψ
(
ξ̃
)
− inf

ξ∈Rm
Ψ(ξ)

)
. (F.11)

Given that H⋆ is ηH -strongly convex, Ψ is also ηH -strongly convex. Thus,

inf
ξ∈Rm

Ψ(ξ) ≥ inf
ξ∈Rm

{
Ψ
(
ξ̃
)
+
〈
∇Ψ

(
ξ̃
)
, ξ − ξ̃

〉
+
ηH
2

∥∥∥ξ − ξ̃
∥∥∥2
2

}
= Ψ

(
ξ̃
)
− 1

2ηH

∥∥∥∇Ψ
(
ξ̃
)∥∥∥2

2
.

This property together with (F.11) implies

∥x̂− x̃∥2 ≤

√
2α

(
Ψ
(
ξ̃
)
− inf

ξ∈Rm
Ψ(ξ)

)
≤

√
2α · 1

2ηH

∥∥∥∇Ψ
(
ξ̃
)∥∥∥2

2
≤ ϵ,

where the last inequality follows from the definition of ξ̃ in (F.10). This completes the proof of Claim
F.3. For completeness, we provide a detailed proof of (F.11) below. Let Lα denote the augmented
Lagrangian function:

Lα(ξ, u, x) ≜ H⋆(ξ) + p⋆(u)− ⟨A⊤ξ + u, x⟩+ α

2

∥∥A⊤ξ + u
∥∥2
2

for all (ξ, u, x) ∈ Rm × Rd × Rd.

Note that
∇xLα(ξ̃, ũ, x) = −

(
A⊤ξ̃ + ũ

)
=
x̃− x

α
.

Then, the concavity of Lα(ξ̃, ũ, ·) leads us to

Lα

(
ξ̃, ũ, x

)
+ α−1 ⟨x̃− x, x− x⟩ ≥ Lα

(
ξ̃, ũ, x

)
≥ inf

(ξ,u)∈Rm×Rd
Lα (ξ, u, x) . (F.12)
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Fix any x ∈ Rd. It is easily verified that the maximization problem

max
y∈Rd

−H∗∗(Ay)− p∗∗(y)− 1

2α
∥y − x∥22

is the dual of the following minimization problem:

min
(ξ,u)∈Rm×Rd

H⋆(ξ) + p⋆(u)− ⟨A⊤ξ + u, x⟩+ α

2

∥∥A⊤ξ + u
∥∥2
2

⇔ min
(ξ,u,w)∈Rm×Rd×Rd

H⋆(ξ) + p⋆(u)− ⟨w, x⟩+ α

2
∥w∥22

s.t. A⊤ξ + u− w = 0

(F.13)

Note that the objective function of problem (F.13) is proper, closed and strongly convex. Then, it is
bounded below over a nonempty feasible set, ensuring that the optimal value of problem (F.13) is
finite. By combining this property with the fact that problem (F.13) is convex and satisfies Slater’s
condition, we conclude that strong duality holds, i.e.,

inf
(ξ,u)∈Rm×Rd

Lα (ξ, u, x) = sup
y∈Rd

{
−H∗∗(Ay)− p∗∗(y)− 1

2α
∥y − x∥22

}
.

Based on this result, and given that both H and p are proper and closed convex, we deduce that

inf
(ξ,u)∈Rm×Rd

Lα (ξ, u, x) = sup
y∈Rd

{
−H(Ay)− p(y)− 1

2α
∥y − x∥22

}
= sup

y∈Rd

{
−Φ(y)− 1

2α
∥y − x∥22

}
for all x ∈ Rd.

(F.14)

Combining (F.12) with (F.14) yields

Lα

(
ξ̃, ũ, x

)
≥ −Φ(x̂)− 1

2α
∥x̂− x∥22 − α−1 ⟨x̃− x, x− x⟩ for all x ∈ Rd. (F.15)

Similarly, we can obtain

inf
(ξ,u)∈Rm×Rd

Lα (ξ, u, x) = sup
y∈Rd

{
−Φ(y)− 1

2α
∥y − x∥22

}
= − inf

y∈Rd

{
Φ(y) +

1

2α
∥y − x∥22

}
= − Φ(x̂)− 1

2α
∥x̂− x∥22 ,

(F.16)

where the first equality comes from (F.14) with x = x, and the last follows from the definition of x̂.
On the other hand, it follows from the definition of Ψ and ũ that

inf
(ξ,u)∈Rm×Rd

Lα (ξ, u, x)

= inf
ξ∈Rm

inf
u∈Rd

{
H⋆(ξ) + p⋆(u)− ⟨A⊤ξ + u, x⟩+ α

2

∥∥A⊤ξ + u
∥∥2
2

}
= inf

ξ∈Rm
inf

u∈Rd

{
H⋆(ξ) + p⋆(u) +

α

2

∥∥∥∥A⊤ξ + u− x

α

∥∥∥∥2
2

− 1

2α
∥x∥22

}

= inf
ξ∈Rm

{
H⋆(ξ) + p⋆

(
prox p⋆

α

(
x

α
−A⊤ξ

))
+
α

2

∥∥∥∥A⊤ξ + prox p⋆

α

(
x

α
−A⊤ξ

)
− x

α

∥∥∥∥2
2

}

− 1

2α
∥x∥22

= inf
ξ∈Rm

Ψ(ξ)− 1

2α
∥x∥22

and

Lα

(
ξ̃, ũ, x

)
= H⋆(ξ̃) + p⋆(ũ) +

α

2

∥∥∥∥A⊤ξ̃ + ũ− x

α

∥∥∥∥2
2

− 1

2α
∥x∥22 = Ψ(ξ̃)− 1

2α
∥x∥22 .
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Then, we can deduce from the previous two equations that

Ψ
(
ξ̃
)
− inf

ξ∈Rm
Ψ(ξ) = Lα

(
ξ̃, ũ, x

)
− inf

(ξ,u)∈Rm×Rd
Lα (ξ, u, x) ,

which combined with (F.15) and (F.16) implies

Ψ
(
ξ̃
)
− inf

ξ∈Rm
Ψ(ξ)

≥
[
−Φ (x̂)− 1

2α
∥x̂− x∥22 − α−1 ⟨x̃− x, x− x⟩

]
−
[
−Φ(x̂)− 1

2α
∥x̂− x∥22

]
=

1

2α

(
∥x̂− x∥22 − ∥x̂− x∥22 − 2 ⟨x̃− x, x− x⟩

)
for all x ∈ Rd.

Hence, the inequality (F.11) can be derived from the aforementioned results as follows:

Ψ
(
ξ̃
)
− inf

ξ∈Rm
Ψ(ξ) ≥ sup

x∈Rd

{
1

2α

(
∥x̂− x∥22 − ∥x̂− x∥22 − 2 ⟨x̃− x, x− x⟩

)}
=

1

2α

(
∥x̂− x∥22 − ∥x̃− x∥22 − 2 ⟨x̃− x, x̂− x̃⟩

)
=

1

2α
∥x̂− x̃∥22 .
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