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ABSTRACT

Unconditional video generation models seemed to generate realistic videos. How-
ever, in this paper, we delve into what could be the meaning of ‘realness’ in the
video generation models. Similar to human observers, we expected Convolution
Neural Networks (CNNs) to struggle in classifying the temporal location of gen-
erated videos using a single frame due to the limited temporal information a single
frame alone provides. However, our preliminary experiments unveil that current
unconditional video generation models actually do inadvertently encode temporal
location into each frame, enabling CNNs to correctly classify the temporal lo-
cation of generated videos. To alleviate such a problem, we propose a method
by adding the Gradient Reversal Layer (GRL) with lightweight CNN to the prior
works to explicitly neglect this implicitly encoded temporal information. The
experimental results, indeed, show that the implicit encoding of temporal infor-
mation while training the unconditional video generator does negatively influence
the FVD score. Moreover, experiments on diverse prior video generation models
and datasets show that our method can be used in a plug-and-play manner. Also,
the results show the successful elimination of implicitly encoded temporal infor-
mation without compromising the FVD score, highlighting the need to consider
temporal classification accuracy as a supplementary metric in video generation
models.

1 INTRODUCTION

Image and video generation models have recently attracted significant attention, primarily due to
their remarkable success in generating realistic samples. However, how could we validate the “real-
ness” of generated samples? Numerous research in image generation tasks employ metrics such as
Fréchet Inception Distance (FID) (Heusel et al., 2017), Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018), Mean Absolute Error (MAE), Structural Similarity Index Measure
(SSIM), and more to quantitatively measure how closely the generated samples align with real-
world samples. Likewise, the quantitative evaluation of video generation tasks utilizes the Fréchet
Video Distance (FVD) (Unterthiner et al., 2018) to measure the fidelity of the generated samples. As
these evaluation metrics are meticulously designed, they offer a precise quantitative measurement
as generated samples with higher or lower values (depending on the metric) align well with hu-
man perceived quality, especially with FID and FVD (Skorokhodov et al., 2022). In addition to the
quantitative results, generative research utilizes qualitative results. More importantly, researchers
frequently leverage user studies (Tulyakov et al., 2018; Shen et al., 2023; Lezama et al., 2022; Kim
et al., 2022; Kwon et al., 2022) to provide additional justification for the realisticity of generated
samples. The additional qualitative results and user study exhibit factors beyond numerical met-
rics to assess what appears natural to human observers, a crucial aspect considering the intended
alignment of artificial intelligence with human perception.

One often overlooked characteristic of video is that each independent frame from the unseen gener-
ated videos cannot be temporally classified by humans. In essence, a single frame from a video does
not provide sufficient information on its temporal location within the video. Consequently, when
human observers are tasked with classifying temporal locations of frames from random videos, their
accuracy in classifying the correct temporal location is comparable to random guessing. For exam-
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Figure 1: Convolutional Neural Networks (CNNs) can classify the temporal location of frames in
videos generated by unconditional video generation methods. This behavior is even more intriguing
and can be viewed as a problem, given that the model struggles to accurately classify the temporal
location when presented with real-world videos. For example, we have four sets of videos: train/test
sets of real-world videos and videos generated by the unconditional video generator. We first present
the train sets of real-world videos to humans and neural networks to learn the temporal location of
videos. Then, if we ask them to localize the temporal location of randomly chosen frames from
the test sets of real-world videos, they are unable to temporally classify them correctly. However,
when the same process is applied to the generated videos, CNNs demonstrate remarkable temporal
localization accuracy while humans struggle, as observed in parallel with the results from the real-
world videos.

ple, in the case of generated videos consisting 16 frames, human observers’ accuracy of getting the
right temporal location would result in around 16/100 = 6.25%. Then how about CNNs? These net-
works exhibit similar behavior with the real-world videos, unable to classify the temporal location
correctly. However, it’s intriguing that CNNs exhibit different behaviors when classifying gener-
ated videos. In generated videos, they often demonstrate an impressive ability to precisely classify
and sometimes perfectly identify the temporal location as depicted in Figure 1. These unintended
capabilities of the temporal classification of the neural networks come from unconditional video
generation models implicitly encoding the temporal information during training and sampling. The
additional temporal information misguides the distribution of the generated video to deviate away
from the real-world video distribution. Then would CNNs generate more realistic videos in terms
of feature distance if this implicitly encoded temporal information is alleviated?

In this paper, we first present an experiment with real-world videos and generated videos with
lightweight CNN , ResNet-18, to highlight the model’s intriguing behavior in classifying the tem-
poral location of the generated videos. Through this experiment, we argue for the first time that
current unconditional video generation models inadvertently encode temporal information into each
frame when training the generator, enabling correct classification of temporal location with CNNs.
This highlights the need to consider the subtle characteristics (i.e., temporal information not present
in the frames) of real-world videos when training the video generation model. Furthermore, we
demonstrate through experiments that the encoded temporal information negatively influences the
FVD score. Thus, we explicitly neglect encoded temporal information in each frame with a sim-
ple method using the Gradient Reversal Layer (GRL) added to each unconditional video generation
model with a ResNet-18 in a plug-and-play manner. Experiment results demonstrate that our method
decreases temporal classification accuracy, implying successful neglect of the temporal information
while showing better or comparable FVD performance. Our contribution can be summarized as
follows:

• We demonstrate that current unconditional video generation models are generating videos
without considering the characteristics of real-world video through experiments.
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• To disregard the implicitly encoded temporal information within each frame, we propose a
simple method using GRL with lightweight CNN and experimentally show that temporal
information has been erased from the video through temporal classification accuracy.

• We argue that unconditional video generation models should consider temporal classifica-
tion accuracy as a supplementary metric.

• Experiment results with our method demonstrate that neglecting implicitly encoded tempo-
ral information does not adversely affect the generated video quality, as indicated by better
or comparable FVD score.

2 PRELIMINARY - PROBLEM STATEMENT

In this section, we outline our preliminary experiments on CNNs’ performance in localizing tempo-
ral frames within real-world and generated video samples. We anticipate CNNs to perform similarly
to random guessing. Through this experiment, we confirm that CNNs do struggle in classifying
temporal locations with real-world videos like humans but are able to easily classify with generated
video samples.

The experiments are conducted with three video generation benchmarks: FaceForensics (Rössler
et al., 2018), Sky–Timelapse (Xiong et al., 2018), and UCF-101 (Soomro et al., 2012). First, we
reconstruct each dataset for training/testing the temporal classifier. For each dataset, we randomly
select a single content category (e.g., v BasketballDunk g01 c01 in the case of UCF-101). This is a
more viable and understandable situation, as frames would be grouped by their respective categories
in the feature space when multiple categories are utilized rather than being grouped by their temporal
location. Within the chosen category, we fix the 0th frame as the first frame for all 2,048 videos.
Then we randomly sampled an additional 15 samples from the video to make a 16 frame video.
This process of selecting 16 frames within the same category was repeated 2,048 times to construct
a dataset. Finally, 2,048 videos are split into 80%/20% for training/testing. We utilized ResNet-
18, a widely recognized and proven architecture, for our temporal classifier. The only modification
done on the ResNet-18 is the number of outputs of the fully connected layer which was 16, the
number of frames. The experiments for the real-world videos and generated videos shared the same
hyperparameter setting of 150 epochs, 0.001 learning rate, and 64 batch size. The generated videos
utilized in this experiment were produced using a reproduced MoCoGAN (Tulyakov et al., 2018). In
contrast to the original MoCoGAN setting, which generates 64× 64 frames, we trained MoCoGAN
with 256 × 256 images. Consequently, the generated videos were also 256 × 256 in size, ensuring
a fair comparison with the real-world videos, which are 256× 256.

In Table 1, we present the train and test accuracy in real-world videos and generated videos. In
conventional classification tasks, high accuracy is desired, but for temporal classification, we aim
for low accuracy to mimic human prediction capabilities. Surprisingly, CNNs exhibited the ability
to correctly classify temporal locations of generated videos, contrary to our expectations given their
foundation in human visual neuroscience. Notably, CNNs achieved significantly higher test accuracy
when classifying generated videos compared to real-world videos. In addition to the test accuracy,
we observed the accuracy in the training phase. The training accuracies of generated videos are sub-
stantially higher than those of real-world videos. This suggests the existence of temporal features
in the generated samples which are only detectable by CNNs. Finally, one could argue that tuning
hyperparameters when training real-world videos may result in higher temporal accuracy. We have
tried multiple hyperparameter settings for the real-world videos but the train and test accuracy re-

Table 1: The temporal accuracy result of three benchmarks. The training and testing accuracies
with real-world videos highlight the difficulty in accurately classifying temporal locations when
randomly chosen frames are given.

Dataset
Temporal (%)

FaceForensics SkyTimelapse UCF-101
Train Test Train Test Train Test

Real-World Videos 24.61 4.19 26.62 9.47 29.05 15.72
Generated Videos 99.45 87.70 99.71 78.80 99.45 81.68
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Figure 2: The overall flow of our method to explicitly decode the temporal information when train-
ing. Within each unconditional video generation method, we integrate a Gradient Reversal Layer
(GRL) along with an ImageNet pre-trained ResNet-18 model, denoted as ftemp. All the losses em-
ployed in each method are maintained for all of our experiments with our method.

mained around the values presented in Table 1. This highlights the absence of temporal features in
the case of real-world videos.

3 METHOD

3.1 OVERVIEW

As previously highlighted, videos generated by unconditional video generation models possess a
distinct characteristic: they implicitly encode temporal information that can be recognized by CNNs.
To eliminate such a characteristic, we propose a straightforward baseline method to explicitly decode
the temporal information while training the unconditional video generator.

Generally, unconditional video generation methods (Tulyakov et al., 2018; Wang et al., 2020; Tian
et al., 2021; Skorokhodov et al., 2022; Yu et al., 2022) are given content latent vector zc and motion
latent vectors [z(0)m , ..., z

(t)
m ] as the input for the generator Gorig, and generate videos by

V = Gorig({zc, z(0)m }, ..., {zc, z(t)m }). (1)

The Gorig is conventionally adversarially trained by the discriminator Dorig and additional losses.
However, the architecture and components can vary across methods. Some methods incorporate
a pre-trained image generator, while other might modify the two discriminators (image and video
discriminators). Therefore, the loss function may vary as depicted in Figure 2.

In our method, we adopt an adversarial training technique using GRL with a simple network. More
specifically, we train a temporal classifier ftemp : I → [0, 1]T with a ResNet-18 architecture to esti-
mate a temporal location from each image in conjunction with the discriminator, where I represents
each frame of generated videos and T = {0, ..., t} represents the temporal length of the videos.
When training the generator, GRL adds a negative cross-entropy loss between the time positions
estimated by ftemp and the actual time positions to the existing generator training loss to prevent the
generator from encoding temporal information.

3.2 PREVENT IMPLICIT ENCODING OF TEMPORAL INFORMATION

To mitigate the inadvertent encoding of temporal information within unconditional video generation
methods, we propose a method consisting of GRL with the temporal classifier ftemp which classifies
each frame to the right temporal location. The GRL is commonly used in domain adaptation (Ganin
et al., 2016; Huang et al., 2020; Choi et al., 2022) to output a similar effect with adversarial training
but with the classifier. GRL achieves this by leaving the input unchanged during the forward propa-
gation but reversing the gradient by multiplying it by a negative scalar during the backpropagation.
Therefore, for GRL to work properly trainable inputs must be present for the direction of the gradi-
ent to be opposite from the correct labels. In the case of current video generation methods, temporal
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classification of frames from generated videos is easily performed, which allows GRL to reverse the
gradient and for the generator to produce videos that are not temporally classifiable.

For temporal classifier ftemp, an ImageNet pre-trained ResNet-18 is employed. The generated video
Vi = {I(0)i , ..., I

(t)
i } are labeled according to temporal class and utilized to train the ftemp, where i

represents the i-th generated video. The training of the temporal classifier takes place simultaneously
with the training of the discriminator, and it is trained to distinguish the temporal location of frames
within videos generated by the generator. The loss function for ftemp becomes:

Ltemp =
1

n · (t+ 1)

∑
i∈N,j∈T

LCE(ftemp(I
(j)
i ), j), (2)

where N = {1, ..., n} represents the number of generated videos and T = {0, ..., t} represents the
temporal length of generated videos. Note that we generated n number of videos with fixed content
noise vector for ftemp to be able to extract and learn the temporal information within the generated
videos.

To alleviate the implicitly encoded temporal information from the generator, negative cross-entropy
loss from GRL with the temporal classifier is added to the original generator loss to help the gen-
erator to be temporally confused. The generator loss function and other additional loss functions
utilized in each method are denoted as Lorig as we did not modify them. The loss function for the
generators becomes:

Lgen = Lorig − λ · Ltemp. (3)

The λ represents a scalar and the negative is placed due to the GRL. Through adversarial training
between the discriminator, temporal classifier, and generator, it is possible to train an unconditional
video generation model that prevents the encoding of temporal information during video generation.
The proposed method can be simply added to existing video generation methods in a plug-and-play
manner. The full framework of the proposed method is shown in Figure 2.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

4.1.1 DATASET

• FaceForensics (Rössler et al., 2018) consists of 704 news videos with various reporters.
We have cropped and extracted each frame following the procedure outlined in the
StyleGAN-V (Skorokhodov et al., 2022). The final resolution of the video is 256× 256.

• Sky-Timelapse (Xiong et al., 2018) consists of dynamic sky scenes such as sunset or mov-
ing clouds. For all of our experiments, we utilized 2,114 videos, each with a resolution of
256×256X . These videos were preprocessed according to the StyleGAN-V (Skorokhodov
et al., 2022)

• UCF101 (Soomro et al., 2012) is commonly used for video action recognition task. It
includes 13,220 videos of 101 different action categories of size 320× 240. Each frame is
cropped to 240 × 240 and resized to 256 × 256. In all of our experiments, both train and
test videos are employed.

4.1.2 METRICS

Following prior works, we report Fréchet Video Distance (FVD) (Unterthiner et al., 2018) and tem-
poral accuracy, first introduced in this paper. We utilize the FVD implementation provided by the
StyleGAN-V (Skorokhodov et al., 2022) which reduced the discrepancies in the evaluation proto-
cols used in the previous works. FVD is measured with 2,048 videos of 16 frames each from the
real and generated videos. Temporal accuracy measures the precision of locating random frames
within the generated videos in terms of their temporal position. For the temporal accuracy metric,
we utilize the same checkpoint used for computing the FVD to generate another set of 2,048 videos
of 16 frames. Note that videos generated for temporal accuracy are distinct from those used for
computing FVD as we generated them by fixing content latent vectors but varying motion latent
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Table 2: Quantitative results on FaceForenscis dataset. Lower values for temporal accuracy and
FVD score indicate better performance as denoted by the ↓. Bold indicates the better performance
between the original work and our method (+ Ours).

Method FaceForensics
Temporal (%) (↓) FVD16 (↓)

MoCoGAN 642 30.51 407.76
+ Ours 12.63 369.35

MoCoGAN 2562 87.70 1658.79
+ Ours 5.27 1522.24

MoCoGAN-HD 2562 90.63 178.52
+ Ours 7.91 177.12

StyleGAN-V 2562 11.36 103.38
+ Ours 8.25 90.90

Table 3: Quantitative results on Sky-Timelapse dataset. Lower values for temporal accuracy and
FVD score indicate better performance as denoted by the ↓. Bold indicates the better performance
between the original work and our method (+ Ours).

Method Sky-Timelapse
Temporal (%) (↓) FVD16 (↓)

MoCoGAN 642 28.15 434.28
+ Ours 15.61 409.69

MoCoGAN 2562 80.84 1551.87
+ Ours 70.18 1007.77

MoCoGAN-HD 2562 99.99 529.76
+ Ours 97.25 477.09

StyleGAN-V 2562 8.26 86.31
+ Ours 5.61 91.92

vectors. We have split the 2,048 videos into 80%/20% for train/test and utilized to train a pre-trained
ResNet-18, not the temporal classifier ftemp utilized for training the generator. All the experiments
for temporal accuracy share the same hyperparameter setting of 150 epochs, 0.001 learning rate,
and 64 batch size. The only hyperparameter for our method is λ which is scheduled by the current
training epochs divided by the total epochs for each video generation model.

4.1.3 BASELINE & IMPLEMENTATION DETAILS

We report three baselines, MoCoGAN (Tulyakov et al., 2018), MoCoGAN-HD (Tian et al., 2021),
and StyleGAN-V (Skorokhodov et al., 2022), to demonstrate the effectiveness of eliminating tempo-
ral information embedded in the frames. The three baselines are selected for their groundbreaking
contribution to the field of unconditional video generation. More specifically, MoCoGAN disen-
tangled the motion and content vector and successfully generated videos. MoCoGAN-HD enabled
the generated videos to be in a higher resolution and StyleGAN-V treated the motion vector as the
continuous signal and also modified the structure of the discriminator.

For all experiments, we used the open-source implementation provided by each author and we re-
trained each method to clearly demonstrate the effectiveness of our method. The MoCoGAN-HD
and StyleGAN-V are trained using 256×256 videos to generate videos of the same resolution. In the
case of MoCoGAN, we trained two models by varying the resolution of training videos, 64×64 and
256×256, as the original work was conducted using 64×64. This is done because MoCoGAN is not
designed to generate high-resolution videos and to better demonstrate that temporal information is
implicitly encoded regardless of the resolution. We trained MoCoGAN on a single RTX2080Ti GPU
and trained MoCoGAN-HD and Stylegan-V with 4 A6000 GPUs. The hyperparameter settings for
both the baseline and the GRL attached models have not been further tuned to achieve better results.
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Table 4: Quantitative results on UCF-101 dataset. Lower values for temporal accuracy and FVD
score indicate better performance as denoted by the ↓. Bold indicates the better performance be-
tween the original work and our method (+ Ours).

Method UCF-101
Temporal (%) (↓) FVD16 (↓)

MoCoGAN 642 32.91 2539.05
+ Ours 6.43 2360.25

MoCoGAN 2562 82.36 4890.48
+ Ours 11.42 4589.31

MoCoGAN-HD 2562 96.72 1729.43
+ Ours 28.22 1466.90

StyleGAN-V 2562 10.20 1684.94
+ Ours 7.19 1546.40
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Figure 3: Random generated video samples from the two existing methods, MoCoGAN-HD and
StyleGAN-V, and each with our method on FaceForensics and Sky-Timelapse dataset. These are the
generated 16-frame video clips. Zoom in for the best view.

4.2 RESULTS

4.2.1 QUANTITATIVE RESULTS

In Tables 2,3, and 4, we present the performance of temporal classification accuracy and FVD. The
FV D16 denotes the FVD score calculated with 16 frames. 642 and 2562 represent the resolution
of the videos utilized for training and generated video samples. Our method, employing ftemp and
GRL, is denoted as + Ours. In all of the experiments with diverse unconditional video methods and
dataset, we consistently achieved lower temporal accuracy while obtaining improved FVD scores
except for one experiment. This demonstrates the effectiveness of our method which can be inte-
grated into various unconditional video generation methods in a plug-and-play manner.

In Table 3, StyleGAN-V achieves a better FVD score than StyleGAN-V + Ours, however, it is
negligible as it only differs by 5. It is notable that in many cases the temporal accuracy drop is
substantial when original works are compared with the + Ours, especially in MoCoGAN-HD. This
may be caused by the MoCoGAN-HD mapping the trajectory of the motion rather than sampling.
As the motion is treated as the trajectory, the distance between the 0th frame and others may be the
cue for the temporal location. In the case of StyleGAN-V, we observed that the temporal accuracy
is around random guessing. This could be due to StyleGAN-V utilizing the holistic discriminator
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rather than two separate discriminators, image and video discriminators. As holistic discriminator is
conditioned on the time distances between frames, they were able to suppress the implicit temporal
encoding. However, as our method further reduces the effect of inadvertently encoded temporal
information from each frame the temporal accuracy of StyleGAN-V + Ours decreases and makes
the FVD score go down.

4.2.2 QUALITATIVE RESULTS

In Figure 3, we provide generated samples from the MoCoGAN-HD and StyleGAN-V, and each with
our method on two datasets, FaceForensics and Sky-Timelapse. As our method is building upon each
prior work, and because our method does not have any additional method that enhances the video
quality, the generated samples within the same method (i.e., MoCoGAN-HD and MoCoGAN-HD +
Ours) are not much different. However, as there are no vivid visual differences between each other,
we conclude that applying temporal classifier ftemp with the GRL layer does not harm the visual
quality of the video. Thereby, we contend that we have only eliminated the temporal information
embedded in each frame from the generated video samples through our quantitative and qualitative
results.

5 RELATED WORKS

In the early stage of the unconditional video generation task, many research focused on disentan-
gling the content and motion from the video. Likewise, VGAN (Peng et al., 2019) utilized GAN to
generate a foreground scene using 3D deconvolution and combined it with a 2D background mask to
create a video. Then, MoCoGAN (Tulyakov et al., 2018) and TGAN (Xu & Veeramachaneni, 2018)
disentangled the motion and content vector with 2D image generator and RNN structured network.
This was done by fixing the content vector while varying the motion vectors to produce content-
consistent videos. Then, G3AN (Wang et al., 2020) proposed a 3D spatio-temporal generator net-
work that gets content and motion noise vector at the same time to generate the video. MoCoGAN-
HD utilized pre-trained StyleGAN (Karras et al., 2019) and proposed to predict a sequence of latent
motion trajectory by training a motion generator for producing the content-consistent frames in the
video. StyleGAN-V (Skorokhodov et al., 2022) proposes the motion vector as a continuous signal
and utilizes modified discriminators for the generator to better understand the motion. DIGAN (Yu
et al., 2022) building upon INR-GAN (Skorokhodov et al., 2021) treated not only the motion vec-
tor but also the content vector as the continuous signal. As StyleGAN-V and DIGAN treated the
motion vector as the continuous signal, they were able to stably generate a longer video than the
MoCoGAN-HD. Recently, there have been attempts to utilize diffusion models for video genera-
tion (Luo et al., 2023; Yu et al., 2023a; Harvey et al., 2022) and they show comparable performance
with the Generative Adversarial Network (GAN) based approaches.

6 CONCLUSION AND DISCUSSION

In this paper, we highlight that current unconditional video generation methods are generating videos
that implicitly encode the temporal information within the video. This unexpected characteristic
allows the CNNs to classify the temporal location when presented with random frames from the
generated videos, a task in which CNNs struggle with real-world videos. To alleviate such a prob-
lem, we propose a simple yet effective method utilizing the Gradient Reversal Layer (GRL) with the
ImageNet pre-trained ResNet-18. Our method explicitly trains the generator to eliminate temporal
information in an adversarial manner. However, there is a limitation. As we are utilizing the classi-
fication models, it cannot be trained for long videos (i.e., videos lasting 1 hour) as there would be
too many frames to consider for classification. For future work, architectural advancements that do
not necessitate classification during training may be considered.

The experiment results demonstrate the success of eliminating temporal information, significantly
lowering the temporal classification accuracy of the generated videos while lowering the FVD score
at the same time. Moreover, the diverse experiment setting shows the potential of using our method
as a plug-and-play module with any unconditional video generation models. A notable result from
the experiment is the temporal accuracies of StyleGAN-V which are already significantly low when
compared with MoCoGAN and MoCoGAN-HD. This emphasizes the importance of considering
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motion as a continuous signal and additionally modifying the discriminator to account for relation-
ships between frames rather than solely relying on the image and video discriminators. We suggest
utilizing temporal classification accuracy as a supplementary metric in the unconditional video gen-
eration field.

Finally, we acknowledge a concern shared with image generation models, the possibility of mis-
using video generation models for unethical purposes such as generating fake news videos. Our
method inadvertently eliminates one potential cue for detecting fake videos and intensifying the
threat. However, the quality of generated videos solely with the unconditional video models still
exhibits noticeable disconnections when viewed as video. Nonetheless, the necessity of proactive
research on detecting fake videos remains important.
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Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
Nießner. Faceforensics: A large-scale video dataset for forgery detection in human faces. arXiv
preprint arXiv:1803.09179, 2018.

Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Mostgan-v: Video generation with temporal
motion styles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5652–5661, 2023.

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous
images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10753–10764, 2021.

Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video
generator with the price, image quality and perks of stylegan2. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3626–3636, 2022.

10



Under review as a conference paper at ICLR 2024

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, and Sergey
Tulyakov. A good image generator is what you need for high-resolution video synthesis. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=6puCSjH3hwA.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1526–1535, 2018.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. G3AN: Disentangling
appearance and motion for video generation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. Learning to generate time-lapse videos
using multi-stage dynamic generative adversarial networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2364–2373, 2018.

Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using generative adversarial net-
works. arXiv preprint arXiv:1811.11264, 2018.

Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, and Jinwoo Shin.
Generating videos with dynamics-aware implicit generative adversarial networks. In International
Conference on Learning Representations, 2022.

Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
projected latent space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18456–18466, 2023a.

Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
projected latent space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18456–18466, 2023b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

11

https://openreview.net/forum?id=6puCSjH3hwA
https://openreview.net/forum?id=6puCSjH3hwA


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ADDITIONAL IMAGES

We present additional sample images of UCF-101 generated from MoCoGAN-HD, MoCoGAN-HD
+ Ours, StyleGAN-V, and StyleGAN-V + Ours in Figure 4. We also present the samples utilized for
temporal classification in Figure 5.

A.2 DIFFUSION-BASED UNCONDITIONAL VIDEO GENERATION MODEL

There are two streams in unconditional video generation models: GAN-based and diffusion-based.
In this section, we demonstrate that implicit temporal encoding also exists in the diffusion-based
model. For the experiment, we have experimented with a recent diffusion-based unconditional video
generation model, PVDM (Yu et al., 2023b), in two benchmarks, Sky-Timelapse and UCF-101.
We utilized the author-provided checkpoints for generating the videos in each dataset. Similar to
the experiments with GAN-based models, we fix the content noise and vary the motion noise for
generating 2,048 videos. As shown in Table 5, diffusion-based models also seem to implicitly
encode the temporal information when generating the videos. Although the results of UCF-101
seem negligible, we argue that an improvement in the quality of the generated UCF-101 videos
could correspond to an increase in temporal accuracy. The qualitative results of PVDM can be seen
in Figure 6.

Table 5: The temporal accuracy result of two benchmarks, Sky-Timelpase and UCF-101.

Dataset Temporal (%)
Sky-Timelapse UCF-101

Real-World Videos 9.47 15.72
PVDM (Diffusion-based Generated Videos) 45.55 19.66

A.3 DEEPFAKE DETECTION

Deepfake videos have potential negative impacts in various aspects by disseminating false informa-
tion worldwide through the Internet. In response to this threat, numerous deepfake detection algo-
rithms have been recently researched. As the temporal classification metric showed a substantial
difference between the real and generated videos, we have further experimented with the deepfake
videos. We employed the Celeb-DF (Li et al., 2020) and Celeb-DF-v2 (Li et al., 2020) as they are
commonly utilized in deepfake detection. Both datasets consist of real and synthesized videos while
the synthesized datasets in each dataset are made by swapping the face from the real video with
another face identity from another video with an auto-encoder. For a fair comparison between real
and synthesized video, we first randomly select a video from real videos. Then, we select, the same
video with another face identity in the synthesized video. In line with our original experiments, we
fix the first frame as the 0th frame from each video and randomly sample the rest 15 frames from
the video. We note that the 15 frames are of the same index, meaning that they are from the same
temporal location.

The temporal classification accuracy of the synthesized video is around 1.07%p higher than real
video results. As the difference is not as notable as the experiments in the main tables, the tem-
poral classification metric cannot be directly used for detecting deepfake videos. We have also
experimented with the face-cropped version of each video, considering that synthesized videos are
generated solely by face swapping the original video. We obtained the face-cropped version utilizing
the Haar Cascade algorithm and sample images are illustrated in Figure 7. Temporal classification
accuracy with the face-cropped version also showed a similar trend of 0.92%p higher with the face-
cropped synthesized videos. We hypothesize that the small temporal accuracy difference comes
from not generating entire videos but rather only detecting and swapping faces, thereby leaving the
temporal characteristics of the real video unchanged.
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Figure 4: Sample images of UCF-101.
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FFS - Real FFS – StyleGAN-V + Ours
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Figure 5: Sample images of temporal classification.
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Figure 6: Generated videos of PVDM (Yu et al., 2023b) by fixing the content but varying the motion.
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Figure 7: Sample images of Celeb-DF (Li et al., 2020), Celeb-DF-v2 (Li et al., 2020), and each
corresponding face-cropped version.
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