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Abstract

Query expansion (QE) enhances information
retrieval (IR) by addressing vocabulary gaps
between queries and documents. While large
language models (LLMs) enable generative QE
through in-context learning with few exam-
ples, existing methods rely on manual prompts
or static datasets, limiting domain adaptabil-
ity and systematic evaluation of few-shot se-
lection strategies. We propose an automated
framework to construct domain-adaptive QE
candidate datasets' without human annotation.
Leveraging an unlabeled target-domain corpus
and a BM25-then-MonoTS5 retrieval pipeline,
our method extracts pseudo-relevant passages
from seed queries, transforming them into
few-shot exemplar candidates. We evaluate
four selection strategies for LLM demonstra-
tions: static, random, clustering-based diver-
sity, and embedding-based similarity. Experi-
ments across web search (TREC 2019, 2020
DL Track), financial (FiQA), and open-domain
entity queries (DBPedia) using Qwen-2.5-7B-
Instruct show that LLM-generated expansions
largely improve BM25 retrieval performance.
Our framework provides a scalable, domain-
adaptive solution for in-context query expan-
sion with LLMs—serving as both a repro-
ducible benchmark for evaluation and a prac-
tical tool for real-world deployment, while en-
abling further research on in-context learning
few-shot selection from large candidate pools.

1 Introduction

Information retrieval (IR) systems often suffer
when user queries use vocabulary or phrasing that
differs from relevant documents. Query expansion
(QE) techniques (Wang et al., 2023) have long been
used to address this by adding alternate terms or re-
formulating queries to better match the language of
relevant documents . Traditional QE methods, such

'We make the generated candidate datasets public available
at https://huggingface.co/XXXXX
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Figure 1: Overview of our automated pipeline for con-
structing domain-adaptive few-shot query expansion
datasets and evaluating in-context learning strategies.

as Pseudo-Relevance Feedback (PRF) (Cao et al.,
2008) like Rocchio (Miao et al., 2012; Liu, 2022)
or RM3 (Abdul-Jaleel et al., 2004), assume an ini-
tial retrieval and then expand the query with terms
from top-ranked documents . While often effective,
these methods are tightly coupled to the quality of
the first-stage retrieval. That is, they require an
initial search to be run before expansion can be
performed, making them less suitable for scenarios
where immediate query enhancement is needed or
when the initial retrieval is poor. Moreover, they
do not leverage external linguistic knowledge be-
yond the corpus, limiting their ability to introduce
semantically rich variations.

Large Language Models (LLMs) (Kalyan, 2024)
provide a new paradigm for QE by generating se-
mantically related queries or text using their vast
knowledge. Recent studies have shown that LLMs
can produce expansions that improve recall and
downstream retrieval performance. In particular, in-
context learning with LLMs allows us to prompt an
LLM with a few example query expansions (with-
out any fine-tuning) (Dong et al., 2024) and have it
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generate an expanded query for a new user query.
This few-shot prompting approach is attractive for
IR tasks since it avoids the need for retraining mod-
els for each new domain or query type. However,
a key challenge is determining which examples to
include in the prompt. Brown et al. (2020) showed
that performance can vary widely depending on
which examples are chosen and in what order, even
for GPT-3. Recent research has attempted to make
example selection more systematic. Wang et al.
(2024) learn a dense retriever to pick in-context
examples by training on feedback from the LLM,
demonstrating improved performance on multiple
tasks by retrieving examples with similar “patterns’
to the query. In the IR community, however, there
is little work in find optimal prompt examples for
query expansion. In our benchmark, we experi-
ment with heuristic selection strategies: (a) seman-
tic similarity (which is an unsupervised proxy for
relevance), and (b) diversity via clustering (to cover
different query patterns). These represent intuitive
baselines for automated example retrieval, brack-
eting the space between always using the same
examples (static) and picking randomly. To our
knowledge, our work is among the first to explicitly
benchmark different few-shot selection strategies
in the context of query expansion for IR. Besides,
we simulate an common scenario when we not
have labels of query-relevant passage pairs for new
datasets. By providing a concrete dataset and eval-
uation, we enable future research to plug in learned
retrievers or more sophisticated selection criteria
and measure their impact on retrieval performance.

bl

Our contributions include:

* We propose a fully automated and scal-
able pipeline for constructing pseudo-labeled
query expansion datasets from unlabeled cor-
pora using BM25 and MonoTS5, without re-
quiring manual annotation.

* We release a benchmark covering three do-
mains (TREC DL19/20, FiQA, DBPedia), en-
abling systematic study of in-context query
expansion with large exemplar pools.

* We compare four exemplar selection strate-
gies—static, random, nearest-neighbor, and
clustering—and find that the proposed in-
context learning strategies without manual ex-
amples can still improve QE performances.

2 Related Work

Query Expansion in Information Retrieval.
Query expansion has been studied for decades as a
method to improve search recall. Early approaches
include manual expansion using thesauri and se-
mantic resources, as well as automatic expansion
using pseudo-relevance feedback (PRF) (Clinchant
and Gaussier, 2013). In PREF, an initial search is per-
formed and the top-ranked documents are assumed
to be relevant; terms from these documents are
then added to the query (often with weighting) to
perform a second, expanded search . Classic meth-
ods like Rocchio’s algorithm (Miao et al., 2012;
Liu, 2022) and the probabilistic Relevance Model
(RM3) demonstrated the effectiveness of PRF for
both keyword-based and probabilistic IR models
. However, PRF can drift the query topic if the
initially retrieved documents are not truly relevant,
and it typically only adds individual terms without
understanding context. Neural approaches to ex-
pansion have emerged in recent years. One line
of work is to use sequence-to-sequence models to
generate expansions or related queries. For exam-
ple, the doc2query method proposed by Nogueira
et al. (2019) uses a neural model to generate prob-
able queries that a given document could answer
. In practice, doc2query (and its T5-based variant
doc2query-T5) was used to expand each document
in the corpus with several pseudo-queries, which
are then indexed to improve recall for original user
queries . This is an offline expansion of the docu-
ment collection, complementary to expanding the
query itself. Our approach, in contrast, focuses on
online query expansion: we expand the user’s query
at query time. We similarly leverage a sequence-
to-sequence model (an LLM) to produce the ex-
pansion, but condition it on retrieved content for
grounding, akin to pseudo-relevance feedback but
with generative re-writing. Another line of neural
expansion research directly uses generative models
to expand queries at runtime. Recent work on Gen-
erative Relevance Feedback (GRF) by Mackie et al.
(2023) proposes to generate long-form text (e.g.,
an imagined relevant document or essay) from the
query using an LLLM, and then derive expansion
terms from that text. This approach does not rely on
actual retrieved documents, instead leveraging the
language model’s inherent knowledge to predict rel-
evant content. Experiments have shown GRF can
outperform traditional PRF (RM3) on diverse re-
trieval tasks, improving nDCG@ 10 by a substantial



margin . Similarly, Jagerman et al. (2023) explored
prompting GPT-3 style LLMs for query expansion
and found that certain prompt styles, especially
chain-of-thought prompting, yielded more effective
expansions. Wang et al. (2023) propose few-shot
learning with LLMs for query expansion. These
works illustrate the promise of LLMs in generating
useful expansion text beyond simple term addition.
On the other hand, a challenge noted in subsequent
studies is that unconstrained LLM generation can
introduce irrelevant or hallucinated content that
might hurt retrieval . For instance, an LLM might
introduce facts or entities not present in the corpus
or deviate from the query intent if not guided prop-
erly. To mitigate this, researchers have proposed
hybrid approaches that steer LLM expansions us-
ing the corpus itself. One such approach is Corpus-
Steered Query Expansion (CSQE) , which uses an
initial BM25 retrieval (Robertson et al., 2009) to
get some documents, then asks an LLM to extract
or emphasize information from those documents
when generating the expansion. This grounds the
expansion in actual content known to exist in the
corpus, reducing hallucination and making the ex-
pansion more effective for retrieval . Our method
is closely aligned with this idea: we explicitly use
top-retrieved passages (via BM25 + reranker) as
the basis for expansions. In our case, we even in-
corporate the passage text directly as the expanded
query example (optionally processed by an LLM
for brevity), ensuring that the expansion consists
of real-world terms and phrases from the target
domain.

In-Context Learning and Example Selection.
The ability of LLMs to perform tasks via in-context
learning (ICL) has drawn parallels to information
retrieval itself . In ICL, a few input-output exam-
ples are provided in the prompt, and the model is
expected to produce the output for a new input with-
out parameter updates . This mechanism can be
seen as the model “retrieving” patterns from the ex-
amples to apply to the new query, analogous to how
a nearest-neighbor classifier might use similar past
cases . Therefore, selecting good examples is cru-
cial. Brown et al. (2020) showed that performance
can vary widely depending on which examples are
chosen and in what order, even for GPT-3. Recent
research has attempted to make example selection
more systematic. Wang et al. (2024) learn a dense
retriever to pick in-context examples by training on
feedback from the LLM, demonstrating improved

performance on multiple tasks by retrieving exam-
ples with similar “patterns” to the query. In the
IR community, there is a growing interest in ap-
plying retrieval algorithms to find optimal prompt
examples. In our benchmark, we compare heuristic
selection strategies spanning from static and ran-
dom choices to semantic similarity-based retrieval
and cluster-based diversity. By evaluating these
strategies, we highlight the importance of intelli-
gent example selection for in-context learning in
IR.

3 Methodology

Our goal is to construct a dataset of query expan-
sion examples in an automated fashion for any
given domain, and then use that dataset to evaluate
few-shot query expansion with LLMs. The overall
pipeline is shown in Fig. 1, which consists of two
stages: (1) Offline Candidate Dataset Generation
stage, and (2) Online search and query expansion
stage. Below, we describe each stage in detail, in
and Section 3.1 and Section 3.2 respectively.

3.1 Automatic Expansion Example
Generation

Given an unlabeled document corpus for the tar-
get domain, we first generate a pool of pseudo
query-expansion examples. Each example will con-
sist of a query and an expanded version of that
query (in the form of a passage or detailed text)
that is likely to be relevant to the query. We achieve
this by leveraging the document corpus itself as a
source of query expansions, in a manner inspired
by pseudo-relevance feedback and query genera-
tion techniques (Wang et al., 2022). The steps are
described below.

Seed Query Selection. We assume access to a
set of seed queries related to the domain. In many
cases, these can be obtained from existing data: for
example, the queries in the training set. However,
we do not require any relevance labels for these
queries — they are used only to retrieve content. In
our experiments, we use the training queries from
the respective datasets (e.g., MS MARCO training
queries, FiQA training questions) as seeds.

Initial Retrieval with BM25. For each seed
query, we perform first-stage retrieval on the do-
main’s corpus using BM25, a strong lexical rank-
ing baseline. BM25 efficiently returns a set of
top candidate documents or passages that con-
tain keywords overlapping with the query. We



denote the top N retrieved texts for query ¢ as
D(q) = dy,da,...,dy, sorted by BM25 score.
In our implementation, we used the Anserini IR
toolkit with its default BM25 parameters (k; = 0.9,
b= 0.4) to index each corpus and retrieve top
N = 100 results for each query.

Reranking with MonoT5. The initial BM25 re-
sults may contain some irrelevant items. To im-
prove precision, we rerank the top candidates using
a neural reranker. We employ MonoT5 (Nogueira
et al., 2020), a sequence-to-sequence reranking
model. MonoT?5 takes a query and a candidate
passage as input and outputs a relevance score
(often accomplished by having the model gener-
ate a token like “true” or “false” to indicate rel-
evance ). In practice, MonoT5 has shown excel-
lent reranking performance and robust zero-shot
transfer to other datasets. We use a MonoT5 3B
model® fine-tuned on the MSMARCO passage
ranking task to score the top-100 BM25 list for
each query. The highest-scoring (top-1) passage
d; = argmaxge p(q) MonoT5Score(q, d) is taken
to be a pseudo-relevant passage for the query g,
where D(q) is the BM2S5 top list. This reranker can
significantly improve the chances that dj is actually
relevant to ¢, compared to using BM25’s top result
alone.

Dataset Assembly. After the above steps, we
have, for each seed query ¢, a tuple (g, p;) where
pq is the expanded passage (i.e. dj in this case).
We add this as one example in our expansion can-
didate dataset. Before finalizing, we apply some
basic cleaning: removing any excessive whitespace
or control characters. We also ensure that none of
our seed queries coincide with the evaluation (test)
queries, to avoid any trivial overlap. In practice, if
a seed query set is the training set of a benchmark
and the test queries are separate, this is naturally
satisfied. The output of the generation stage is a
Jsonl file containing lines. Each line contains the
query id, original query and the expansion (pg).
In total, our MS MARCO expansion dataset con-
tains 100K examples (we used a random subset
of MS MARCO training queries for seed, up to
100,000 for manageability), and the FiQA expan-
sion dataset is smaller (we used the 5500 finance
questions available from FiQA training set), re-
sulting 5500 examples. For the DBPedia-Entity

2https://huggingface.co/castorini/
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dataset, it only contains another dev set except
test set. So the dev set is used to generate candi-
dates, resulting 64 examples, which is smaller. The
methodology is scalable; the size can be adjusted as
needed or even include all available queries. This
automated construction fulfills our aim of creating
a domain-adaptive dataset: if the corpus is from a
new domain, the content of expansions will reflect
that domain’s jargon and contexts. No manual writ-
ing of expansions is required. These datasets can
also serve as the few-shot ICL sample pool, and
used for sampling strategy research for ICL.

3.2 Few-Shot Query Expansion with LL.Ms

Given the automatically constructed example pool,
our second stage generates an LLM-expanded query
for every incoming user query ¢'**. The core idea is
to supply exactly four query — expansion demon-
strations to the Qwen-2.5-7B-Instruct model and
let it complete the next turn of the conversation.

3.2.1 Prompt template

We use a conversational prompt template with a sys-
tem message to guide the LLM’s generation style.
This format is compatible with many instruction-
following LLMs.

The prompt is composed of:

* A single system message to instruct the LLM
to write expansions in fluent, domain-relevant
language.

* Four User—Assistant message pairs (g;, p;) as
demonstrations.

* A final User message containing the test query
test
q .

In full, the dialogue structure reads:

<system> "You are an assistant that generates
detailed passages to answer search queries.

Your responses should be informative, directly
address the query, and provide comprehensive
explanations or solutions."

<user> q1
<assistant> p;
<user> g2
<assistant> ps
<user> g3
<assistant> p3
<user> gy
<assistant> p4
<user> Query: q
Please write a passage (60—100 words) that
answers it.

test
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This format is dynamically populated with example
pairs selected by one of our strategies (see §3.2.2).
The assistant is expected to output a concise and
informative passage that reflects the structure and
tone of prior examples. We use a YAML-based
pipeline to construct this prompt automatically for
each query at inference time.

3.2.2 How to pick the four demonstrations?

We explore four training-free policies, listed below
with additional implementation details beyond the
short description in § 3.1:

1. Static: choose the very first four examples of
the example candidate data produced by Stage
1.

2. Random: draw four distinct examples uni-
formly from the candidate example dataset,
using a fixed seed so experiments are repro-
ducible.

3. Embed (Similarity-based): We precom-
pute embeddings for each candidate exam-
ple by applying a Contriever-based encoder?,
ported to the SentenceTransformers frame-
work (Reimers and Gurevych, 2019), to the
concatenated query and passage text. At test
time, we encode the new query ¢*** and re-
trieve the top-k most similar examples by co-
sine similarity in embedding space. This un-
supervised nearest-neighbor strategy enables
semantic alignment between the test query
and selected exemplars, without requiring any
task-specific retriever training.

4. Cluster (Diversity-based): We apply k-
means clustering to the same query—passage
embeddings used above, partitioning the can-
didate pool into k£ semantic groups. From
each cluster, we select the medoid—the real
example closest to the centroid in Euclidean
space—as a representative. This yields a fixed
but diverse subset of k£ exemplars that encour-
ages broader topic coverage in the prompt.

The full procedures of Embed and Cluster are
provided in Appendix A, Algorithms 1 and 2.

3.2.3 Using the Expanded Query for Retrieval

Once the expansion passage p®*P is produced, we
concatenate it to the original user query ¢'*' to
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build the retrieval string following (Wang et al.,
2023):

qnew — qtest x5 ” pexp
~~

repeat

where || denotes string concatenation and we repeat
¢ five times. The concatenated string is then fed
to the retrieval system.

4 Experimental Setup

4.1 Tasks and corpora

Benchmarks. We evaluate on four retrieval test
sets drawn from three public corpora:

* TREC DL19 (Craswell et al.): 43 topics with
graded relevance judgement.

* TREC DL20 (Craswell et al., 2021): 54 topics
with graded relevance judgement. We use
the official “passage” task; both DL19 and
DL20 share the same 8.8M msmarco passage
corpus.

* FiQA-2018 (Thakur et al.): 648 consumer-
finance queries (binary qrels) over 57 k docu-
ments.

* DBPedia-Entity (Thakur et al.): 400 entity-
centric queries over 4.9 M Wikipedia ab-

stracts.
Dataset #Test Queries  Corpus size  Pool size
DL19 43
DL20 54 8.8 M 100000
FiQA 648 57k 5500
DBPedia 400 49M 64

Table 1: Evaluation sets and statistics. ‘“Pool size” =
number of candidate query—passage pairs harvested by
MonoT?5 and subsequently available for demonstrations
sampling. The number in bold represents the num-
ber of generated pseudo-labeling example candidates in
datasets.

4.2 Indexing and first-stage retrieval

All corpora are indexed with Anserini/Lucene
JAVA implementation (Yang et al., 2018). BM25
with default parameters (k1=0.9, b=0.4) retrieves
the top 1000 passages for every test query. TREC
DL19 and DL20 passage ranking tasks share the
same MS MARCO corpus and BM25 index.
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Pseudo-label harvesting. BM?25 top-100 lists
are reranked with MonoT5-3B; we keep the
highest- scoring passage per query, yielding the
demonstration pools summarized in Table 1: 100
k pairs for MS MARCO (shared by DL19 and
DL20), 5.5 k for FiQA (from training set), and
64 for DBPedia-Entity (from the only available dev
set). These pools serve both as training material
and as the source from which few-shot exemplars
are drawn in Stage 2.

4.3 LLM expansion model

All expansions are generated by Qwen-2.5-
7B-Instruct’ (Bai et al., 2023) model with
7B parameters without any fine-tuning. We
prompt the model with a chat dialogue con-
taining four (this means k=4 for few-shot sam-
pling and k-means) (¢;, p;) demonstrations (each
passage truncated to 60 words) plus the test
query. They are fit within a 1024-token con-
text window. Decoding uses 4-beam search,
max_new_tokens=64, repetition_penalty=1.1,
and no_repeat_ngram_size=2. Experiments are
down on a Nvidia A100 GPU. The generation re-
quires only several minutes with 648 queries as an
example.

4.4 Evaluation metrics and baselines

Metrics. Effectiveness is measured with
nDCG@10, P@10, MRR@10, and Recall@ 1000
computed by trec_eval.

Baselines.

e BM25: Original query without any expansion.
Serves as the lexical retrieval baseline.

* BM25+Rocchio: Classic pseudo-relevance
feedback (Liu, 2022) using Anserini’s stan-
dard Rocchio implementation. We use the top
10 retrieved documents, with = 1.0 and
B = 0.75, and interpolate the original query
with the top 10 feedback terms.

* ChatExp-0: Zero-shot prompting using the
same LLM prompt template but with no in-
context demonstrations. This isolates the ef-
fect of including examples.

* ChatExp-Fixed: Few-shot prompting with
the same four exemplars as used in Wang et al.
(2023), held constant across all test queries.

4https://huggingface.co/Qwen/QwenZ.
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Our variants. All systems below share the same
candidate pool and Lucene index as the baselines,
isolating the impact of example selection.

* ChatExp-Static: first four examples in the
shuffled pool.

* ChatExp-Random: four examples drawn uni-
formly at random for each query (seed 42).

* ChatExp-NN: four nearest neighbours se-
lected by Contriever embedding similarity
(“Embed” in §3.2).

* ChatExp-Cluster: four cluster-medoid exem-
plars chosen by k-means (k=4) for maximum
topical diversity.

All LLM-based runs use the identical prompt
template and Qwen-2.5-7B-Instruct generation set-
tings.

S5 Results and Analysis

5.1 How strong are the lexical baselines?

The first two rows of Table 2 and 3 establish a lex-
ical upper bound. Compared with vanilla BM2S5,
BM25+Rocchio improves recall (R@1000) by
+5—6points on the MS MARCO tracks but de-
grades nDCG @10 on FiQA (-3.9) and DBPedia
(-1.0). This confirms classic observations: Roc-
chio tends to help when the corpus is large and rel-
evance density low (MS MARCO), but can inject
noise in niche domains with short queries (FiQA)
or when judged documents are sparse (DBPedia).
Any LLM-based method must therefore beat both
baselines to be considered broadly useful.

5.2 Effect of zero-shot prompting

ChatExp-0 (row 3) already delivers sizeable gains
over both lexical runs on all four datasets. The
effect is largest on DL’19 (+9.9 nDCG@10) and
smallest on FiQA (+1.4). We attribute this to the
long-form passages generated by Qwen injecting
rich synonymy, which is particularly helpful for
web queries with verbose relevance descriptions.

5.3 Value of fixed exemplars

ChatExp-Fixed mirrors the Query2Doc (Wang
et al., 2023) prompt. Using those four hand-curated
MS MARCO examples transfers reasonably well to
FiQA (+0.9 nDCG) and DBPedia (+0.1), suggest-
ing that domain mismatch hurts less than example
quality. However, the fixed set fails to outperform
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Method NDCG@10 P@10 MRR R@1000 | NDCG@10 P@10 MRR R@1000
TREC DL 19 | TREC DL 20
BM25 50.58 61.86 8245  73.89 4796 5389 8269 7228
BM25+Rocchio 52.75 6628 79.80  78.82 49.10 5722 8059 7716
ChatExp-0 60.47 7070 89.82  79.54 53.77 6130 8672  75.61
ChatExp-Fixed 60.69 7302 8853  80.14 53.63 60.93 8478  77.06
ChatExp-Static 59.94 7233 8884 7955 54.57 62.04 8657  78.39
ChatExp-Random  60.14 7209 89.03  80.49 5212 5944 8332 7698
ChatExp-Cluster 60.58 7233 9039 79.25 53.07 60.19 8731  76.07
ChatExp-NN 6173 7372 89.06  79.00 5488 6370 8521 77.85

Table 2: Retrieval performance (%) on TREC DL’ 19 and DL20. “R@” stands for Recall@.

Method NDCG@10 P@10 MRR R@1000 ‘ NDCG@10 P@10 MRR R@1000
FiQA-2018 ‘ DBPedia-Entity
BM25 23.61 6.34  30.59 73.93 31.80 28.20 58.92 67.60
BM25+Rocchio 19.71 5.86 2523 75.83 30.76 28.58 57.29 68.19
ChatExp-0 25.04 6.73  32.05 76.19 35.93 30.68 65.57 70.70
ChatExp-Fixed 24.61 6.74  32.04 76.10 36.00 30.70 64.61 71.02
ChatExp-Static 24.67 6.62 32.06 75.99 36.44 30.67 68.19 70.83
ChatExp-Random 25.12 6.77 3221 76.45 36.64 30.82 66.59 70.68
ChatExp-Cluster 25.11 6.85  32.27 76.38 36.40 30.80 66.83 71.29
ChatExp-NN 25.32 6.94 31.89 76.24 36.33 30.60 66.59 71.16

Table 3: Retrieval performance (%) on FiQA-2018 and DBPedia-Entity. “R@” stands for Recall @.

our automatic variants on three out of four test sets,
motivating adaptive example selection.

5.4 Impact of pseudo-labelled pools

All adaptive variants—Static, Random, NN, Clus-
ter—draw demonstrations exclusively from the Top-
1 pseudo pool. This pool contains no human judge-
ment and only one passage per query, yet provides
enough signal:

* On DL’20, ChatExp-Static (first four pseudo
examples) is already best in recall ( 78.4) and
on par with NN in nDCG, indicating that high-
precision top-1 passages are sufficient.

* On FiQA, where the pool is an order of mag-
nitude smaller (5.5 k), ChatExp-Random
beats Static by sampling varied lexical cues,
demonstrating that quantity can compensate
for imperfect relevance. Random still trails
NN/Cluster in ranking metrics.

* On DBPedia, only 64 pseudo examples are
available; Cluster and Static thus coincide,
and both surpass NN in MRR—implying that

diversity, not pure similarity, matters when
the candidate pool is small. Interestingly, both
Static and Random outperform NN across all
metrics. We hypothesize that with such a lim-
ited pool, nearest-neighbor selection suffers
from unreliable similarity estimates, highlight-
ing the importance of having a sufficiently
large and varied candidate set.

5.5 Nearest-neighbour vs. cluster sampling

The tie between ChatExp-NN and ChatExp-
Cluster follows a clear pattern:

1. NN wins on large pools (DL tracks) because it

can always find a topically matched exemplar,
reducing semantic drift.

. Cluster excels on small pools or narrow do-

mains (FiIQA MRR, DBPedia Recall @1000)
by covering complementary facets and pre-
venting the LLM from over-fitting to one sub-
topic.

5.6 Analysis by metric

Recall. All LLM variants increase Recall@ 1000
over BM25 on every dataset, with a peak gain of



+6.6 points (NN on DL 19). This validates our
central hypothesis that query-to-passage generation
exposes hidden lexical evidence to the retriever.

MRR and nDCG. Ranking metrics improve less
dramatically, sometimes even declining (e.g. NN
on FiQA in MRR). Inspection shows that some
expansions prepend lengthy background sentences
that match semi-relevant documents. A lightweight
post-filter or length penalty may mitigate this.

5.7 Comparing Hyper-parameters of ICL

Tables 4 and 5 present a study over two key hyper-
parameters in our in-context learning (ICL) prompt:
(1) the maximum number of words retained from
each demonstration passage, and (2) the number
of few-shot examples k. We report Recall@ 1000
as our primary metric, since the goal is to improve
recall for downstream reranking.

Effect of passage length. As shown in Table 4,
shorter passages can be surprisingly effective. The
Static configuration achieves the highest recall
(80.07%) at just 40 words, even outperforming
longer versions. For Random, which introduces
lexical variability, longer passages help: recall
peaks at 80.55% when using 80 words. Both Clus-
ter and NN (nearest neighbor) strategies are rel-
atively stable across lengths, showing < 1 point
variation. This suggests that when examples are
topically aligned, truncation does not substantially
hurt, and may help reduce verbosity. Based on
these results, we use 60-word passages as default,
offering a good trade-off between recall and decod-
ing latency.

Effect of demonstration count. Table 5 explores
the number of demonstrations k. We find that larger
k does not always improve performance. For ex-
ample, Cluster selection performs best at k = 2
(80.61%) but slightly drops at & = 4. This may
be due to diluted signal when sampling diverse
but overly heterogeneous examples. In contrast,
Static and Random benefit from higher k, peaking
at 81.11% and 80.74% respectively when k£ = 6.
These methods benefit from lexical accumulation
across unrelated examples. Interestingly, NN per-
forms best at k = 2, with diminishing returns as
additional examples may introduce non-relevant
examples.

We set & = 4 and 60-word truncation as default
for all main experiments in Section 5. This en-
sures high recall (>79.7%) with manageable input

Table 4: Recall@1000 across few-shot selection strate-
gies and max passage length.

Strategy 40 60 80

Static 80.07 79.55 79.22
Random 79.88 80.49 80.55
Cluster  79.22 79.25 79.22
NN 79.73 79.00 78.08

Table 5: Recall@ 1000 across few-shot size k& and selec-
tion strategy.

Strategy 2 4 6

Static 79.03 79.75 81.11
Random 78.83 80.49 80.74
Cluster  80.61 79.25 80.26
NN 80.04 79.00 77.95

length. These results also confirm that our auto-
matically constructed few-shot pools are robust to
such changes and provide consistent gains under
different configurations.

6 Conclusion and Future Work

We presented a fully automated pipeline for con-
structing domain-adaptive few-shot QE candidate
datasets and prompting LLMs to perform query-to-
passage expansion. Across four benchmarks, the
method consistently boosts first-stage retrieval re-
call, with the four proposed expansion with pseudo
examples perform overall the best, showing that
without manual effort, in-context learning for QE
can still perform well.

For next steps we plan to: (1) integrate learned
example retrievers to replace static embedding
search; (2) fine-tune lightweight LLM adapters on
our pseudo-labelled pairs to reduce inference cost;
and (3) couple expansions with re-ranking strategy.
We hope these findings encourage broader explo-
ration of in-context learning with LLM for classical
IR problems.

Limitations

Our study is confined to passage-level retrieval and
a single instruction-tuned model (Qwen-2.5-7B-
Instruct). Performance on document-level tasks
or with larger LLMs remains to be verified. The
pool sizes for DBPedia is relatively small. We also
did not explore re-ranking with expanded queries;
preliminary experiments suggest that naive con-



catenation can hurt cross-encoder scores, calling
for joint training of re-rankers on expanded text.
Finally, how to better use the datasets to generate
better query expansion can be further investigated.
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A Algorithm Details

This appendix provides the pseudocode for our
two exemplar selection strategies used in few-shot
prompting. These procedures operate over a pool
of pseudo-labeled query—passage pairs constructed
via our retrieval-based pipeline (see Section 3.2.2).
Given a new test query, the selection algorithm
determines which few-shot examples to include
in the in-context prompt provided to the language
model.

We precompute embeddings for the candidate
pool by applying a sentence-transformer model to
the concatenated string “query + passage” for each
example. For a new test query, we encode only the
query text.

Algorithm 1 describes the embedding-based
nearest neighbor strategy, which selects the top-k
examples most similar to the test query in embed-
ding space. Algorithm 2 presents the clustering-
based strategy, which partitions the candidate pool
into k£ semantic clusters and selects the medoid
(center-nearest) example from each cluster to en-
sure topical diversity. These methods are compared
empirically in Section 5.

Algorithm 1: Embedding-based Example
Selection
Input: Query g; example pool
& = {(qi,p;)}; embedding model
f(+); number of shots k
Output: Selected example subset &
1 vg < f(q) // Encode the test query
only
2 foreach (g;,p;) € € do
3 vi < f(g +pi) // Precomputed
embedding for each example
s; < cos(vg, Vi)

4 & + top-k examples in £ ranked by s;;
5 return &

B Examples of the Generated Datasets

Table 6 show examples of the generated query
pseudo-relevant passage dataset, which can be
used as in-context learning demonstration sampling
pool.
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Algorithm 2: Cluster-based Selection of &
Representative Examples

Input: Example pool €& = {(¢;,p:)};
embedding model f(-);

number of clusters &k

Output: Cluster-diverse subset &,

foreach (¢;,p;) € € do

guery-passage embedding

2 L Encode v; < f(q; +p;); // Joint

3 Normalize all v; to unit length;
4 Run k-means clustering on {v;}, yielding

centroids {cy,...,ci};

s for j =1to kdo
6 Let C; be the set of examples in the j-th

cluster;

7 Select (¢*,p*) € C} closest to c; in {3

distance;

8 Add (¢*,p*) to &

9 return &




Query ID Query Pseudo-relevant Passage

879212 what movie did | List of the best Leonardo DiCaprio produced movies, with trailers of the
leonardo dicaprio | films when available. All the top movies produced by Leonardo DiCaprio
first start out in are listed here by popularity, so only highly rated Leonardo DiCaprio films

are at the top of the list. If you think the greatest film that Leonardo DiCaprio
produced isn’t as high as it should be than upvote it so it has the chance to
become number one.

928214 what year was sun- | Sunbelt Rentals supplies the rental equipment and tools for construction
belt rentals founded | projects. Sunbelt Rentals was founded in 1983. Sunbelt Rentals’s Headquar-

ters are located at 2341 Deerfield Drive, Fort Mill, South Carolina, USA
29715. Some of Sunbelt Rentals’s latest acquisitions include Pride Equip-
ment Corporation, Rental Division, Tower Tech Inc., and Equipment Rental
Division, ECM Energy Services, Inc..

241700 how  long can | RE: How long can a chicken live without its head? The following is from
chicken live without | Livescience.com concerning the myth about chickens living without a head:
head &quot;True, and not just for a few minutes.A chicken can stagger around

without its noggin because the brain stem, often left partially intact after a
beheading, controls most of its reflexes.One robust fellow lived... show more
The following is from Livescience.com concerning the myth about chickens
living without a head: True, and not just for a few minutes. ch...

889816 what qualifications | Q: What qualifications do you need to become a forensic scientist? A: The
do i need to become | qualifications you need to become a forensic scientist involve you earning
a forensic investiga- | a bachelor’s degree in biology, forensic science or chemistry. Some crime
tor scene investigators and forensic science technicians are trained as police

officers who have graduated from police academies.

1064278 why do cells respire | Best Answer: Anaerobic respiration occurs in muscle cells when they do not
anaerobically have access to enough oxygen to complete aerobic respiration to generate all

the ATP they need. In human muscle cells, the end product is lactate/lactic
acid. Anaerobic respiration occurs when cells do not have enough Oxygen
to undergo the process of aerobic respiration. In animal cells (like humans)
anaerobic respiration happens mostly on muscle cells through a process
called Fermentation that happens outside the Mitochondria.

Table 6: Randomly sampled examples from the generated dataset. Passages shown here are truncated at 512

characters.
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