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Abstract001

Query expansion (QE) enhances information002
retrieval (IR) by addressing vocabulary gaps003
between queries and documents. While large004
language models (LLMs) enable generative QE005
through in-context learning with few exam-006
ples, existing methods rely on manual prompts007
or static datasets, limiting domain adaptabil-008
ity and systematic evaluation of few-shot se-009
lection strategies. We propose an automated010
framework to construct domain-adaptive QE011
candidate datasets1 without human annotation.012
Leveraging an unlabeled target-domain corpus013
and a BM25-then-MonoT5 retrieval pipeline,014
our method extracts pseudo-relevant passages015
from seed queries, transforming them into016
few-shot exemplar candidates. We evaluate017
four selection strategies for LLM demonstra-018
tions: static, random, clustering-based diver-019
sity, and embedding-based similarity. Experi-020
ments across web search (TREC 2019, 2020021
DL Track), financial (FiQA), and open-domain022
entity queries (DBPedia) using Qwen-2.5-7B-023
Instruct show that LLM-generated expansions024
largely improve BM25 retrieval performance.025
Our framework provides a scalable, domain-026
adaptive solution for in-context query expan-027
sion with LLMs—serving as both a repro-028
ducible benchmark for evaluation and a prac-029
tical tool for real-world deployment, while en-030
abling further research on in-context learning031
few-shot selection from large candidate pools.032

1 Introduction033

Information retrieval (IR) systems often suffer034

when user queries use vocabulary or phrasing that035

differs from relevant documents. Query expansion036

(QE) techniques (Wang et al., 2023) have long been037

used to address this by adding alternate terms or re-038

formulating queries to better match the language of039

relevant documents . Traditional QE methods, such040

1We make the generated candidate datasets public available
at https://huggingface.co/XXXXX
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Figure 1: Overview of our automated pipeline for con-
structing domain-adaptive few-shot query expansion
datasets and evaluating in-context learning strategies.

as Pseudo-Relevance Feedback (PRF) (Cao et al., 041

2008) like Rocchio (Miao et al., 2012; Liu, 2022) 042

or RM3 (Abdul-Jaleel et al., 2004), assume an ini- 043

tial retrieval and then expand the query with terms 044

from top-ranked documents . While often effective, 045

these methods are tightly coupled to the quality of 046

the first-stage retrieval. That is, they require an 047

initial search to be run before expansion can be 048

performed, making them less suitable for scenarios 049

where immediate query enhancement is needed or 050

when the initial retrieval is poor. Moreover, they 051

do not leverage external linguistic knowledge be- 052

yond the corpus, limiting their ability to introduce 053

semantically rich variations. 054

Large Language Models (LLMs) (Kalyan, 2024) 055

provide a new paradigm for QE by generating se- 056

mantically related queries or text using their vast 057

knowledge. Recent studies have shown that LLMs 058

can produce expansions that improve recall and 059

downstream retrieval performance. In particular, in- 060

context learning with LLMs allows us to prompt an 061

LLM with a few example query expansions (with- 062

out any fine-tuning) (Dong et al., 2024) and have it 063
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generate an expanded query for a new user query.064

This few-shot prompting approach is attractive for065

IR tasks since it avoids the need for retraining mod-066

els for each new domain or query type. However,067

a key challenge is determining which examples to068

include in the prompt. Brown et al. (2020) showed069

that performance can vary widely depending on070

which examples are chosen and in what order, even071

for GPT-3. Recent research has attempted to make072

example selection more systematic. Wang et al.073

(2024) learn a dense retriever to pick in-context074

examples by training on feedback from the LLM,075

demonstrating improved performance on multiple076

tasks by retrieving examples with similar “patterns”077

to the query. In the IR community, however, there078

is little work in find optimal prompt examples for079

query expansion. In our benchmark, we experi-080

ment with heuristic selection strategies: (a) seman-081

tic similarity (which is an unsupervised proxy for082

relevance), and (b) diversity via clustering (to cover083

different query patterns). These represent intuitive084

baselines for automated example retrieval, brack-085

eting the space between always using the same086

examples (static) and picking randomly. To our087

knowledge, our work is among the first to explicitly088

benchmark different few-shot selection strategies089

in the context of query expansion for IR. Besides,090

we simulate an common scenario when we not091

have labels of query-relevant passage pairs for new092

datasets. By providing a concrete dataset and eval-093

uation, we enable future research to plug in learned094

retrievers or more sophisticated selection criteria095

and measure their impact on retrieval performance.096

Our contributions include:097

• We propose a fully automated and scal-098

able pipeline for constructing pseudo-labeled099

query expansion datasets from unlabeled cor-100

pora using BM25 and MonoT5, without re-101

quiring manual annotation.102

• We release a benchmark covering three do-103

mains (TREC DL19/20, FiQA, DBPedia), en-104

abling systematic study of in-context query105

expansion with large exemplar pools.106

• We compare four exemplar selection strate-107

gies—static, random, nearest-neighbor, and108

clustering—and find that the proposed in-109

context learning strategies without manual ex-110

amples can still improve QE performances.111

2 Related Work 112

Query Expansion in Information Retrieval. 113

Query expansion has been studied for decades as a 114

method to improve search recall. Early approaches 115

include manual expansion using thesauri and se- 116

mantic resources, as well as automatic expansion 117

using pseudo-relevance feedback (PRF) (Clinchant 118

and Gaussier, 2013). In PRF, an initial search is per- 119

formed and the top-ranked documents are assumed 120

to be relevant; terms from these documents are 121

then added to the query (often with weighting) to 122

perform a second, expanded search . Classic meth- 123

ods like Rocchio’s algorithm (Miao et al., 2012; 124

Liu, 2022) and the probabilistic Relevance Model 125

(RM3) demonstrated the effectiveness of PRF for 126

both keyword-based and probabilistic IR models 127

. However, PRF can drift the query topic if the 128

initially retrieved documents are not truly relevant, 129

and it typically only adds individual terms without 130

understanding context. Neural approaches to ex- 131

pansion have emerged in recent years. One line 132

of work is to use sequence-to-sequence models to 133

generate expansions or related queries. For exam- 134

ple, the doc2query method proposed by Nogueira 135

et al. (2019) uses a neural model to generate prob- 136

able queries that a given document could answer 137

. In practice, doc2query (and its T5-based variant 138

doc2query-T5) was used to expand each document 139

in the corpus with several pseudo-queries, which 140

are then indexed to improve recall for original user 141

queries . This is an offline expansion of the docu- 142

ment collection, complementary to expanding the 143

query itself. Our approach, in contrast, focuses on 144

online query expansion: we expand the user’s query 145

at query time. We similarly leverage a sequence- 146

to-sequence model (an LLM) to produce the ex- 147

pansion, but condition it on retrieved content for 148

grounding, akin to pseudo-relevance feedback but 149

with generative re-writing. Another line of neural 150

expansion research directly uses generative models 151

to expand queries at runtime. Recent work on Gen- 152

erative Relevance Feedback (GRF) by Mackie et al. 153

(2023) proposes to generate long-form text (e.g., 154

an imagined relevant document or essay) from the 155

query using an LLM, and then derive expansion 156

terms from that text. This approach does not rely on 157

actual retrieved documents, instead leveraging the 158

language model’s inherent knowledge to predict rel- 159

evant content. Experiments have shown GRF can 160

outperform traditional PRF (RM3) on diverse re- 161

trieval tasks, improving nDCG@10 by a substantial 162
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margin . Similarly, Jagerman et al. (2023) explored163

prompting GPT-3 style LLMs for query expansion164

and found that certain prompt styles, especially165

chain-of-thought prompting, yielded more effective166

expansions. Wang et al. (2023) propose few-shot167

learning with LLMs for query expansion. These168

works illustrate the promise of LLMs in generating169

useful expansion text beyond simple term addition.170

On the other hand, a challenge noted in subsequent171

studies is that unconstrained LLM generation can172

introduce irrelevant or hallucinated content that173

might hurt retrieval . For instance, an LLM might174

introduce facts or entities not present in the corpus175

or deviate from the query intent if not guided prop-176

erly. To mitigate this, researchers have proposed177

hybrid approaches that steer LLM expansions us-178

ing the corpus itself. One such approach is Corpus-179

Steered Query Expansion (CSQE) , which uses an180

initial BM25 retrieval (Robertson et al., 2009) to181

get some documents, then asks an LLM to extract182

or emphasize information from those documents183

when generating the expansion. This grounds the184

expansion in actual content known to exist in the185

corpus, reducing hallucination and making the ex-186

pansion more effective for retrieval . Our method187

is closely aligned with this idea: we explicitly use188

top-retrieved passages (via BM25 + reranker) as189

the basis for expansions. In our case, we even in-190

corporate the passage text directly as the expanded191

query example (optionally processed by an LLM192

for brevity), ensuring that the expansion consists193

of real-world terms and phrases from the target194

domain.195

In-Context Learning and Example Selection.196

The ability of LLMs to perform tasks via in-context197

learning (ICL) has drawn parallels to information198

retrieval itself . In ICL, a few input-output exam-199

ples are provided in the prompt, and the model is200

expected to produce the output for a new input with-201

out parameter updates . This mechanism can be202

seen as the model “retrieving” patterns from the ex-203

amples to apply to the new query, analogous to how204

a nearest-neighbor classifier might use similar past205

cases . Therefore, selecting good examples is cru-206

cial. Brown et al. (2020) showed that performance207

can vary widely depending on which examples are208

chosen and in what order, even for GPT-3. Recent209

research has attempted to make example selection210

more systematic. Wang et al. (2024) learn a dense211

retriever to pick in-context examples by training on212

feedback from the LLM, demonstrating improved213

performance on multiple tasks by retrieving exam- 214

ples with similar “patterns” to the query. In the 215

IR community, there is a growing interest in ap- 216

plying retrieval algorithms to find optimal prompt 217

examples. In our benchmark, we compare heuristic 218

selection strategies spanning from static and ran- 219

dom choices to semantic similarity-based retrieval 220

and cluster-based diversity. By evaluating these 221

strategies, we highlight the importance of intelli- 222

gent example selection for in-context learning in 223

IR. 224

3 Methodology 225

Our goal is to construct a dataset of query expan- 226

sion examples in an automated fashion for any 227

given domain, and then use that dataset to evaluate 228

few-shot query expansion with LLMs. The overall 229

pipeline is shown in Fig. 1, which consists of two 230

stages: (1) Offline Candidate Dataset Generation 231

stage, and (2) Online search and query expansion 232

stage. Below, we describe each stage in detail, in 233

and Section 3.1 and Section 3.2 respectively. 234

3.1 Automatic Expansion Example 235

Generation 236

Given an unlabeled document corpus for the tar- 237

get domain, we first generate a pool of pseudo 238

query-expansion examples. Each example will con- 239

sist of a query and an expanded version of that 240

query (in the form of a passage or detailed text) 241

that is likely to be relevant to the query. We achieve 242

this by leveraging the document corpus itself as a 243

source of query expansions, in a manner inspired 244

by pseudo-relevance feedback and query genera- 245

tion techniques (Wang et al., 2022). The steps are 246

described below. 247

Seed Query Selection. We assume access to a 248

set of seed queries related to the domain. In many 249

cases, these can be obtained from existing data: for 250

example, the queries in the training set. However, 251

we do not require any relevance labels for these 252

queries – they are used only to retrieve content. In 253

our experiments, we use the training queries from 254

the respective datasets (e.g., MS MARCO training 255

queries, FiQA training questions) as seeds. 256

Initial Retrieval with BM25. For each seed 257

query, we perform first-stage retrieval on the do- 258

main’s corpus using BM25, a strong lexical rank- 259

ing baseline. BM25 efficiently returns a set of 260

top candidate documents or passages that con- 261

tain keywords overlapping with the query. We 262
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denote the top N retrieved texts for query q as263

D(q) = d1, d2, . . . , dN , sorted by BM25 score.264

In our implementation, we used the Anserini IR265

toolkit with its default BM25 parameters (k1 = 0.9,266

b= 0.4) to index each corpus and retrieve top267

N = 100 results for each query.268

Reranking with MonoT5. The initial BM25 re-269

sults may contain some irrelevant items. To im-270

prove precision, we rerank the top candidates using271

a neural reranker. We employ MonoT5 (Nogueira272

et al., 2020), a sequence-to-sequence reranking273

model. MonoT5 takes a query and a candidate274

passage as input and outputs a relevance score275

(often accomplished by having the model gener-276

ate a token like “true” or “false” to indicate rel-277

evance ). In practice, MonoT5 has shown excel-278

lent reranking performance and robust zero-shot279

transfer to other datasets. We use a MonoT5 3B280

model2 fine-tuned on the MSMARCO passage281

ranking task to score the top-100 BM25 list for282

each query. The highest-scoring (top-1) passage283

d∗q = argmaxd∈D(q) MonoT5Score(q, d) is taken284

to be a pseudo-relevant passage for the query q,285

where D(q) is the BM25 top list. This reranker can286

significantly improve the chances that d∗q is actually287

relevant to q, compared to using BM25’s top result288

alone.289

Dataset Assembly. After the above steps, we290

have, for each seed query q, a tuple (q, pq) where291

pq is the expanded passage (i.e. d∗q in this case).292

We add this as one example in our expansion can-293

didate dataset. Before finalizing, we apply some294

basic cleaning: removing any excessive whitespace295

or control characters. We also ensure that none of296

our seed queries coincide with the evaluation (test)297

queries, to avoid any trivial overlap. In practice, if298

a seed query set is the training set of a benchmark299

and the test queries are separate, this is naturally300

satisfied. The output of the generation stage is a301

Jsonl file containing lines. Each line contains the302

query id, original query and the expansion (pq).303

In total, our MS MARCO expansion dataset con-304

tains 100K examples (we used a random subset305

of MS MARCO training queries for seed, up to306

100,000 for manageability), and the FiQA expan-307

sion dataset is smaller (we used the 5500 finance308

questions available from FiQA training set), re-309

sulting 5500 examples. For the DBPedia-Entity310

2https://huggingface.co/castorini/
monot5-3b-msmarco

dataset, it only contains another dev set except 311

test set. So the dev set is used to generate candi- 312

dates, resulting 64 examples, which is smaller. The 313

methodology is scalable; the size can be adjusted as 314

needed or even include all available queries. This 315

automated construction fulfills our aim of creating 316

a domain-adaptive dataset: if the corpus is from a 317

new domain, the content of expansions will reflect 318

that domain’s jargon and contexts. No manual writ- 319

ing of expansions is required. These datasets can 320

also serve as the few-shot ICL sample pool, and 321

used for sampling strategy research for ICL. 322

3.2 Few-Shot Query Expansion with LLMs 323

Given the automatically constructed example pool, 324

our second stage generates an LLM-expanded query 325

for every incoming user query qtest. The core idea is 326

to supply exactly four query→ expansion demon- 327

strations to the Qwen-2.5-7B-Instruct model and 328

let it complete the next turn of the conversation. 329

3.2.1 Prompt template 330

We use a conversational prompt template with a sys- 331

tem message to guide the LLM’s generation style. 332

This format is compatible with many instruction- 333

following LLMs. 334

The prompt is composed of: 335

• A single system message to instruct the LLM 336

to write expansions in fluent, domain-relevant 337

language. 338

• Four User–Assistant message pairs (qi, pi) as 339

demonstrations. 340

• A final User message containing the test query 341

qtest. 342

In full, the dialogue structure reads: 343

<system> "You are an assistant that generates 344
detailed passages to answer search queries. 345
Your responses should be informative, directly 346
address the query, and provide comprehensive 347
explanations or solutions." 348
<user> q1 349
<assistant> p1 350
<user> q2 351
<assistant> p2 352
<user> q3 353
<assistant> p3 354
<user> q4 355
<assistant> p4 356
<user> Query: qtest 357
Please write a passage (60–100 words) that 358
answers it. 359

360
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This format is dynamically populated with example361

pairs selected by one of our strategies (see §3.2.2).362

The assistant is expected to output a concise and363

informative passage that reflects the structure and364

tone of prior examples. We use a YAML-based365

pipeline to construct this prompt automatically for366

each query at inference time.367

3.2.2 How to pick the four demonstrations?368

We explore four training-free policies, listed below369

with additional implementation details beyond the370

short description in § 3.1:371

1. Static: choose the very first four examples of372

the example candidate data produced by Stage373

1.374

2. Random: draw four distinct examples uni-375

formly from the candidate example dataset,376

using a fixed seed so experiments are repro-377

ducible.378

3. Embed (Similarity-based): We precom-379

pute embeddings for each candidate exam-380

ple by applying a Contriever-based encoder3,381

ported to the SentenceTransformers frame-382

work (Reimers and Gurevych, 2019), to the383

concatenated query and passage text. At test384

time, we encode the new query qtest and re-385

trieve the top-k most similar examples by co-386

sine similarity in embedding space. This un-387

supervised nearest-neighbor strategy enables388

semantic alignment between the test query389

and selected exemplars, without requiring any390

task-specific retriever training.391

4. Cluster (Diversity-based): We apply k-392

means clustering to the same query–passage393

embeddings used above, partitioning the can-394

didate pool into k semantic groups. From395

each cluster, we select the medoid—the real396

example closest to the centroid in Euclidean397

space—as a representative. This yields a fixed398

but diverse subset of k exemplars that encour-399

ages broader topic coverage in the prompt.400

The full procedures of Embed and Cluster are401

provided in Appendix A, Algorithms 1 and 2.402

3.2.3 Using the Expanded Query for Retrieval403

Once the expansion passage pexp is produced, we404

concatenate it to the original user query qtest to405

3nishimoto/contriever-sentencetransformer

build the retrieval string following (Wang et al., 406

2023): 407

qnew = qtest︸︷︷︸
repeat

×5 ∥ pexp 408

where ∥ denotes string concatenation and we repeat 409

qtest five times. The concatenated string is then fed 410

to the retrieval system. 411

4 Experimental Setup 412

4.1 Tasks and corpora 413

Benchmarks. We evaluate on four retrieval test 414

sets drawn from three public corpora: 415

• TREC DL19 (Craswell et al.): 43 topics with 416

graded relevance judgement. 417

• TREC DL20 (Craswell et al., 2021): 54 topics 418

with graded relevance judgement. We use 419

the official “passage” task; both DL19 and 420

DL20 share the same 8.8M msmarco passage 421

corpus. 422

• FiQA-2018 (Thakur et al.): 648 consumer- 423

finance queries (binary qrels) over 57 k docu- 424

ments. 425

• DBPedia-Entity (Thakur et al.): 400 entity- 426

centric queries over 4.9 M Wikipedia ab- 427

stracts. 428

Dataset #Test Queries Corpus size Pool size

DL19 43 8.8 M 100000DL20 54
FiQA 648 57 k 5500
DBPedia 400 4.9 M 64

Table 1: Evaluation sets and statistics. “Pool size” =
number of candidate query–passage pairs harvested by
MonoT5 and subsequently available for demonstrations
sampling. The number in bold represents the num-
ber of generated pseudo-labeling example candidates in
datasets.

4.2 Indexing and first-stage retrieval 429

All corpora are indexed with Anserini/Lucene 430

JAVA implementation (Yang et al., 2018). BM25 431

with default parameters (k1=0.9, b=0.4) retrieves 432

the top 1000 passages for every test query. TREC 433

DL19 and DL20 passage ranking tasks share the 434

same MS MARCO corpus and BM25 index. 435
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Pseudo-label harvesting. BM25 top-100 lists436

are reranked with MonoT5-3B; we keep the437

highest- scoring passage per query, yielding the438

demonstration pools summarized in Table 1: 100439

k pairs for MS MARCO (shared by DL19 and440

DL20), 5.5 k for FiQA (from training set), and441

64 for DBPedia-Entity (from the only available dev442

set). These pools serve both as training material443

and as the source from which few-shot exemplars444

are drawn in Stage 2.445

4.3 LLM expansion model446

All expansions are generated by Qwen-2.5-447

7B-Instruct4 (Bai et al., 2023) model with448

7B parameters without any fine-tuning. We449

prompt the model with a chat dialogue con-450

taining four (this means k=4 for few-shot sam-451

pling and k-means) (qi, pi) demonstrations (each452

passage truncated to 60 words) plus the test453

query. They are fit within a 1024-token con-454

text window. Decoding uses 4-beam search,455

max_new_tokens=64, repetition_penalty=1.1,456

and no_repeat_ngram_size=2. Experiments are457

down on a Nvidia A100 GPU. The generation re-458

quires only several minutes with 648 queries as an459

example.460

4.4 Evaluation metrics and baselines461

Metrics. Effectiveness is measured with462

nDCG@10, P@10, MRR@10, and Recall@1000463

computed by trec_eval.464

Baselines.465

• BM25: Original query without any expansion.466

Serves as the lexical retrieval baseline.467

• BM25+Rocchio: Classic pseudo-relevance468

feedback (Liu, 2022) using Anserini’s stan-469

dard Rocchio implementation. We use the top470

10 retrieved documents, with α = 1.0 and471

β = 0.75, and interpolate the original query472

with the top 10 feedback terms.473

• ChatExp-0: Zero-shot prompting using the474

same LLM prompt template but with no in-475

context demonstrations. This isolates the ef-476

fect of including examples.477

• ChatExp-Fixed: Few-shot prompting with478

the same four exemplars as used in Wang et al.479

(2023), held constant across all test queries.480

4https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

Our variants. All systems below share the same 481

candidate pool and Lucene index as the baselines, 482

isolating the impact of example selection. 483

• ChatExp-Static: first four examples in the 484

shuffled pool. 485

• ChatExp-Random: four examples drawn uni- 486

formly at random for each query (seed 42). 487

• ChatExp-NN: four nearest neighbours se- 488

lected by Contriever embedding similarity 489

(“Embed” in §3.2). 490

• ChatExp-Cluster: four cluster-medoid exem- 491

plars chosen by k-means (k=4) for maximum 492

topical diversity. 493

All LLM-based runs use the identical prompt 494

template and Qwen-2.5-7B-Instruct generation set- 495

tings. 496

5 Results and Analysis 497

5.1 How strong are the lexical baselines? 498

The first two rows of Table 2 and 3 establish a lex- 499

ical upper bound. Compared with vanilla BM25, 500

BM25+Rocchio improves recall ( R@1000) by 501

+5 – 6 points on the MS MARCO tracks but de- 502

grades nDCG@10 on FiQA ( –3.9) and DBPedia 503

( –1.0). This confirms classic observations: Roc- 504

chio tends to help when the corpus is large and rel- 505

evance density low (MS MARCO), but can inject 506

noise in niche domains with short queries (FiQA) 507

or when judged documents are sparse (DBPedia). 508

Any LLM-based method must therefore beat both 509

baselines to be considered broadly useful. 510

5.2 Effect of zero-shot prompting 511

ChatExp-0 (row 3) already delivers sizeable gains 512

over both lexical runs on all four datasets. The 513

effect is largest on DL’19 (+9.9 nDCG@10) and 514

smallest on FiQA (+1.4). We attribute this to the 515

long-form passages generated by Qwen injecting 516

rich synonymy, which is particularly helpful for 517

web queries with verbose relevance descriptions. 518

5.3 Value of fixed exemplars 519

ChatExp-Fixed mirrors the Query2Doc (Wang 520

et al., 2023) prompt. Using those four hand-curated 521

MS MARCO examples transfers reasonably well to 522

FiQA (+0.9 nDCG) and DBPedia (+0.1), suggest- 523

ing that domain mismatch hurts less than example 524

quality. However, the fixed set fails to outperform 525
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Method NDCG@10 P@10 MRR R@1000 NDCG@10 P@10 MRR R@1000

TREC DL 19 TREC DL 20

BM25 50.58 61.86 82.45 73.89 47.96 53.89 82.69 72.28
BM25+Rocchio 52.75 66.28 79.80 78.82 49.10 57.22 80.59 77.16

ChatExp-0 60.47 70.70 89.82 79.54 53.77 61.30 86.72 75.61
ChatExp-Fixed 60.69 73.02 88.53 80.14 53.63 60.93 84.78 77.06

ChatExp-Static 59.94 72.33 88.84 79.55 54.57 62.04 86.57 78.39
ChatExp-Random 60.14 72.09 89.03 80.49 52.12 59.44 83.32 76.98
ChatExp-Cluster 60.58 72.33 90.39 79.25 53.07 60.19 87.31 76.07
ChatExp-NN 61.73 73.72 89.06 79.00 54.88 63.70 85.21 77.85

Table 2: Retrieval performance (%) on TREC DL’19 and DL’20. “R@” stands for Recall@.

Method NDCG@10 P@10 MRR R@1000 NDCG@10 P@10 MRR R@1000

FiQA-2018 DBPedia-Entity

BM25 23.61 6.34 30.59 73.93 31.80 28.20 58.92 67.60
BM25+Rocchio 19.71 5.86 25.23 75.83 30.76 28.58 57.29 68.19

ChatExp-0 25.04 6.73 32.05 76.19 35.93 30.68 65.57 70.70
ChatExp-Fixed 24.61 6.74 32.04 76.10 36.00 30.70 64.61 71.02

ChatExp-Static 24.67 6.62 32.06 75.99 36.44 30.67 68.19 70.83
ChatExp-Random 25.12 6.77 32.21 76.45 36.64 30.82 66.59 70.68
ChatExp-Cluster 25.11 6.85 32.27 76.38 36.40 30.80 66.83 71.29
ChatExp-NN 25.32 6.94 31.89 76.24 36.33 30.60 66.59 71.16

Table 3: Retrieval performance (%) on FiQA-2018 and DBPedia-Entity. “R@” stands for Recall@.

our automatic variants on three out of four test sets,526

motivating adaptive example selection.527

5.4 Impact of pseudo-labelled pools528

All adaptive variants—Static, Random, NN, Clus-529

ter—draw demonstrations exclusively from the Top-530

1 pseudo pool. This pool contains no human judge-531

ment and only one passage per query, yet provides532

enough signal:533

• On DL’20, ChatExp-Static (first four pseudo534

examples) is already best in recall ( 78.4) and535

on par with NN in nDCG, indicating that high-536

precision top-1 passages are sufficient.537

• On FiQA, where the pool is an order of mag-538

nitude smaller (5.5 k), ChatExp-Random539

beats Static by sampling varied lexical cues,540

demonstrating that quantity can compensate541

for imperfect relevance. Random still trails542

NN/Cluster in ranking metrics.543

• On DBPedia, only 64 pseudo examples are544

available; Cluster and Static thus coincide,545

and both surpass NN in MRR—implying that546

diversity, not pure similarity, matters when 547

the candidate pool is small. Interestingly, both 548

Static and Random outperform NN across all 549

metrics. We hypothesize that with such a lim- 550

ited pool, nearest-neighbor selection suffers 551

from unreliable similarity estimates, highlight- 552

ing the importance of having a sufficiently 553

large and varied candidate set. 554

5.5 Nearest-neighbour vs. cluster sampling 555

The tie between ChatExp-NN and ChatExp- 556

Cluster follows a clear pattern: 557

1. NN wins on large pools (DL tracks) because it 558

can always find a topically matched exemplar, 559

reducing semantic drift. 560

2. Cluster excels on small pools or narrow do- 561

mains (FiQA MRR, DBPedia Recall@1000) 562

by covering complementary facets and pre- 563

venting the LLM from over-fitting to one sub- 564

topic. 565

5.6 Analysis by metric 566

Recall. All LLM variants increase Recall@1000 567

over BM25 on every dataset, with a peak gain of 568
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+6.6 points (NN on DL 19). This validates our569

central hypothesis that query-to-passage generation570

exposes hidden lexical evidence to the retriever.571

MRR and nDCG. Ranking metrics improve less572

dramatically, sometimes even declining (e.g. NN573

on FiQA in MRR). Inspection shows that some574

expansions prepend lengthy background sentences575

that match semi-relevant documents. A lightweight576

post-filter or length penalty may mitigate this.577

5.7 Comparing Hyper-parameters of ICL578

Tables 4 and 5 present a study over two key hyper-579

parameters in our in-context learning (ICL) prompt:580

(1) the maximum number of words retained from581

each demonstration passage, and (2) the number582

of few-shot examples k. We report Recall@1000583

as our primary metric, since the goal is to improve584

recall for downstream reranking.585

Effect of passage length. As shown in Table 4,586

shorter passages can be surprisingly effective. The587

Static configuration achieves the highest recall588

(80.07%) at just 40 words, even outperforming589

longer versions. For Random, which introduces590

lexical variability, longer passages help: recall591

peaks at 80.55% when using 80 words. Both Clus-592

ter and NN (nearest neighbor) strategies are rel-593

atively stable across lengths, showing < 1 point594

variation. This suggests that when examples are595

topically aligned, truncation does not substantially596

hurt, and may help reduce verbosity. Based on597

these results, we use 60-word passages as default,598

offering a good trade-off between recall and decod-599

ing latency.600

Effect of demonstration count. Table 5 explores601

the number of demonstrations k. We find that larger602

k does not always improve performance. For ex-603

ample, Cluster selection performs best at k = 2604

(80.61%) but slightly drops at k = 4. This may605

be due to diluted signal when sampling diverse606

but overly heterogeneous examples. In contrast,607

Static and Random benefit from higher k, peaking608

at 81.11% and 80.74% respectively when k = 6.609

These methods benefit from lexical accumulation610

across unrelated examples. Interestingly, NN per-611

forms best at k = 2, with diminishing returns as612

additional examples may introduce non-relevant613

examples.614

We set k = 4 and 60-word truncation as default615

for all main experiments in Section 5. This en-616

sures high recall (≥79.7%) with manageable input617

Table 4: Recall@1000 across few-shot selection strate-
gies and max passage length.

Strategy 40 60 80

Static 80.07 79.55 79.22
Random 79.88 80.49 80.55
Cluster 79.22 79.25 79.22
NN 79.73 79.00 78.08

Table 5: Recall@1000 across few-shot size k and selec-
tion strategy.

Strategy 2 4 6

Static 79.03 79.75 81.11
Random 78.83 80.49 80.74
Cluster 80.61 79.25 80.26
NN 80.04 79.00 77.95

length. These results also confirm that our auto- 618

matically constructed few-shot pools are robust to 619

such changes and provide consistent gains under 620

different configurations. 621

6 Conclusion and Future Work 622

We presented a fully automated pipeline for con- 623

structing domain-adaptive few-shot QE candidate 624

datasets and prompting LLMs to perform query-to- 625

passage expansion. Across four benchmarks, the 626

method consistently boosts first-stage retrieval re- 627

call, with the four proposed expansion with pseudo 628

examples perform overall the best, showing that 629

without manual effort, in-context learning for QE 630

can still perform well. 631

For next steps we plan to: (1) integrate learned 632

example retrievers to replace static embedding 633

search; (2) fine-tune lightweight LLM adapters on 634

our pseudo-labelled pairs to reduce inference cost; 635

and (3) couple expansions with re-ranking strategy. 636

We hope these findings encourage broader explo- 637

ration of in-context learning with LLM for classical 638

IR problems. 639

Limitations 640

Our study is confined to passage-level retrieval and 641

a single instruction-tuned model (Qwen-2.5-7B- 642

Instruct). Performance on document-level tasks 643

or with larger LLMs remains to be verified. The 644

pool sizes for DBPedia is relatively small. We also 645

did not explore re-ranking with expanded queries; 646

preliminary experiments suggest that naive con- 647
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catenation can hurt cross-encoder scores, calling648

for joint training of re-rankers on expanded text.649

Finally, how to better use the datasets to generate650

better query expansion can be further investigated.651
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A Algorithm Details761

This appendix provides the pseudocode for our762

two exemplar selection strategies used in few-shot763

prompting. These procedures operate over a pool764

of pseudo-labeled query–passage pairs constructed765

via our retrieval-based pipeline (see Section 3.2.2).766

Given a new test query, the selection algorithm767

determines which few-shot examples to include768

in the in-context prompt provided to the language769

model.770

We precompute embeddings for the candidate771

pool by applying a sentence-transformer model to772

the concatenated string “query + passage” for each773

example. For a new test query, we encode only the774

query text.775

Algorithm 1 describes the embedding-based776

nearest neighbor strategy, which selects the top-k777

examples most similar to the test query in embed-778

ding space. Algorithm 2 presents the clustering-779

based strategy, which partitions the candidate pool780

into k semantic clusters and selects the medoid781

(center-nearest) example from each cluster to en-782

sure topical diversity. These methods are compared783

empirically in Section 5.784

Algorithm 1: Embedding-based Example
Selection
Input: Query q; example pool

E = {(qi, pi)}; embedding model
f(·); number of shots k

Output: Selected example subset Ek
1 vq ← f(q) // Encode the test query

only
2 foreach (qi, pi) ∈ E do
3 vi ← f(qi + pi) // Precomputed

embedding for each example
si ← cos(vq,vi)

4 Ek ← top-k examples in E ranked by si;
5 return Ek

B Examples of the Generated Datasets785

Table 6 show examples of the generated query786

pseudo-relevant passage dataset, which can be787

used as in-context learning demonstration sampling788

pool.789

Algorithm 2: Cluster-based Selection of k
Representative Examples
Input: Example pool E = {(qi, pi)};
embedding model f(·);
number of clusters k
Output: Cluster-diverse subset Ek

1 foreach (qi, pi) ∈ E do
2 Encode vi ← f(qi + pi) ; // Joint

query-passage embedding

3 Normalize all vi to unit length;
4 Run k-means clustering on {vi}, yielding

centroids {c1, . . . , ck};
5 for j = 1 to k do
6 Let Cj be the set of examples in the j-th

cluster;
7 Select (q∗, p∗) ∈ Cj closest to cj in ℓ2

distance;
8 Add (q∗, p∗) to Ek
9 return Ek
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Query ID Query Pseudo-relevant Passage
879212 what movie did

leonardo dicaprio
first start out in

List of the best Leonardo DiCaprio produced movies, with trailers of the
films when available. All the top movies produced by Leonardo DiCaprio
are listed here by popularity, so only highly rated Leonardo DiCaprio films
are at the top of the list. If you think the greatest film that Leonardo DiCaprio
produced isn’t as high as it should be than upvote it so it has the chance to
become number one.

928214 what year was sun-
belt rentals founded

Sunbelt Rentals supplies the rental equipment and tools for construction
projects. Sunbelt Rentals was founded in 1983. Sunbelt Rentals’s Headquar-
ters are located at 2341 Deerfield Drive, Fort Mill, South Carolina, USA
29715. Some of Sunbelt Rentals’s latest acquisitions include Pride Equip-
ment Corporation, Rental Division, Tower Tech Inc., and Equipment Rental
Division, ECM Energy Services, Inc..

241700 how long can
chicken live without
head

RE: How long can a chicken live without its head? The following is from
Livescience.com concerning the myth about chickens living without a head:
&quot;True, and not just for a few minutes.A chicken can stagger around
without its noggin because the brain stem, often left partially intact after a
beheading, controls most of its reflexes.One robust fellow lived... show more
The following is from Livescience.com concerning the myth about chickens
living without a head: True, and not just for a few minutes. ch...

889816 what qualifications
do i need to become
a forensic investiga-
tor

Q: What qualifications do you need to become a forensic scientist? A: The
qualifications you need to become a forensic scientist involve you earning
a bachelor’s degree in biology, forensic science or chemistry. Some crime
scene investigators and forensic science technicians are trained as police
officers who have graduated from police academies.

1064278 why do cells respire
anaerobically

Best Answer: Anaerobic respiration occurs in muscle cells when they do not
have access to enough oxygen to complete aerobic respiration to generate all
the ATP they need. In human muscle cells, the end product is lactate/lactic
acid. Anaerobic respiration occurs when cells do not have enough Oxygen
to undergo the process of aerobic respiration. In animal cells (like humans)
anaerobic respiration happens mostly on muscle cells through a process
called Fermentation that happens outside the Mitochondria.

Table 6: Randomly sampled examples from the generated dataset. Passages shown here are truncated at 512
characters.
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