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ABSTRACT

Designing novel proteins that bind to small molecules is a long-standing challenge
in computational biology, with applications in developing catalysts, biosensors, and
more. Current computational methods rely on the assumption that the binding pose
of the target molecule is known, which is not always feasible, as conformations of
novel targets are often unknown and tend to change upon binding. In this work, we
formulate proteins and molecules as unified biotokens, and present ATOMFLOW, a
novel deep generative model under the flow-matching framework for the design of
ligand-binding proteins from the 2D target molecular graph alone. Operating on
representative atoms of biotokens, ATOMFLOW captures the flexibility of ligands
and generates ligand conformations and protein backbone structures iteratively.
We consider the multi-scale nature of biotokens and demonstrate that ATOMFLOW
can be effectively trained on a subset of structures from the Protein Data Bank,
by matching flow vector field using an SE(3) equivariant structure prediction
network. Experimental results show that our method can generate high-fidelity
ligand-binding proteins and achieve performance comparable to the state-of-the-art
model RFDiffusionAA, while not requiring bound ligand structures. As a general
framework, ATOMFLOW holds the potential to be applied to various biomolecule
generation tasks in the future.

1 INTRODUCTION

Proteins are indispensable macromolecules that drive the essential processes of living organisms. A
crucial mechanism by which they accomplish this is through binding with small molecules (Schreier
et al., 2009). Continuous progress has been made to design ligand-binding proteins with various
biological functions, such as catalysts and biosensors (Bennett et al., 2023). However, the problem
remains challenging due to the complex interactions between proteins and molecules, as well as the
inherent flexibility of ligands. The most well-established approaches depend on shape complementar-
ity to dock molecules onto native protein scaffold structures (Bick et al., 2017; Polizzi & DeGrado,
2020), which are computationally expensive.

Recently, RFDiffusionAA (Krishna et al., 2024), a de novo protein design method based on the
all-atom structure prediction model RoseTTAFoldAA (Krishna et al., 2024), has shown remarkable
performance in designing novel ligand-binding proteins for small molecules. This method explicitly
captures the interactions between proteins and molecules, achieving superior performance compared
to its predecessor RFDiffusion (Watson et al., 2023), which can only model interactions between
amino acid residues. Despite their great potential for ligand-binding protein design, current ap-
proaches assume that the bound conformation of the target molecule is known and rigid. However, the
binding pose of the target molecule is not always available, especially for molecules that do not bind
to any known natural proteins (Bick et al., 2017). While it is possible to mitigate this limitation by
sampling a diverse set of conformers and subsequently filtering them using expert knowledge (Krishna
et al., 2024), this approach demands potentially prohibitive computational resources. Additionally, the
constraint of ligand rigidity is suboptimal, as ligands often undergo significant conformation changes
upon binding with proteins (Mobley & Dill, 2009). We illustrate this phenomenon in Figure.1. Some
pioneering efforts have been made to account for ligand flexibility (Zhang et al., 2024; Stark et al.,
2024), however, these methods can only design the portions of proteins that directly interact with the
ligands and require the rest part of the proteins as input.
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OQO (ideal) OQO (orange: 7v11, green: ideal)

Figure 1: The conformer of OQO deforms upon
binding to coagulation factor XIa. Green: ideal
conformer. Orange: bound conformer.

To address the aforementioned issues, we
present Atomic Flow-matching (ATOMFLOW),
a novel deep generative model grounded in the
flow-matching framework (Lipman et al., 2022)
for the design of ligand-binding proteins from
2D molecular graphs alone. We model different
types of biomolecules within a unified frame-
work that operates in a shared spatial represen-
tation, enabling seamless interaction between
them, with a flow matching model that directly
designs the interactions. Instead of relying on a
fixed ligand conformer, ATOMFLOW learns to
update the ligand structure along with the structure of the protein binder. Inspired by recent advances
in all-atom structure modeling (Krishna et al., 2024; Abramson et al., 2024), we conceptualize
proteins and molecules as biotokens with representative atoms, which are associated with various
type-specific attributes and can be modeled by a single, unified network. Following the rectified flow
approach (Liu et al., 2022) for generative modelling, we define a flow on the representative atoms as
a linear interpolation between the bound protein-ligand complex structures and noisy structures. This
unified atomic-level approach maximizes the information aggregation between different molecular
types (Bryant et al., 2024) and encourages the model to focus on the key interaction patterns. We
demonstrate that, with minor approximations, the vector field of the defined flow can be effectively
learned using an SE(3)-equivariant structure prediction module and a variant of Frame Aligned Point
Error (FAPE) loss (Jumper et al., 2021) that compensates for the multi-scale nature of their geometric
features1. After training, protein-ligand complex structures can be sampled from the approximated
vector field, which iteratively transforms and refines noisy structures based on 2D molecular graphs.
The idea of regressing the vector field using a structure prediction module is also explored in a
concurrent work (Jing et al., 2024), but their focus is on protein structure prediction. Notably, as a
general generative model operating on biotokens, ATOMFLOW is versatile for different molecular
types and has the potential to be applied to various biomolecule generation tasks.

We follow the in silico evaluation pipeline of the state-of-the-art method RFDiffusionAA, evaluating
ATOMFLOW on several key metrics including self-consistency, binding affinity, diversity, and novelty.
ATOMFLOW matches the overall performance of RFDiffusionAA and demonstrates advantages in
various situations. An ablation study further highlights that when the bound structure is unknown,
ATOMFLOW successfully designs protein binders with high binding affinity, whereas RFDiffusionAA
can be constrained by its dependence on a fixed, suboptimal ligand structure.

2 RELATED WORK

Ligand-binding Protein Design. Traditional approaches to ligand-binding protein design mainly rely
on docking molecules onto large sets of shape-complementary protein pockets (Polizzi & DeGrado,
2020; Lu et al., 2024). While the screening process can be accelerated with deep learning models (An
et al., 2023), conventional methods are computationally expensive and often depend on domain
experts (Bick et al., 2017). Recent advances in deep generative models have paved the way for
data-driven approaches, and a variety of models have been proposed to design proteins conditioned on
binding targets (Shi et al., 2022; Kong et al., 2023; Watson et al., 2023; Zhang et al., 2024). Focusing
on molecule binder design, RFDiffusion (Watson et al., 2023) generates novel proteins from scratch,
using a heuristic attractive-repulsive potential to measure shape complementarity. The follow-up
work RFDiffusionAA (Krishna et al., 2024) improves the performance by explicitly modeling the
interactions between proteins and molecules with an all-atom formulation. These approaches assume
binding poses of ligands are known and impose rigidity constraints on ligand structures. Another
line of research focuses on designing binding pockets for small molecules (Stark et al., 2024; Zhang
et al., 2024). While taking ligand flexibility into consideration, they can only design the portions of
proteins that interact with the ligands and require the rest part of the proteins as input. Our model
also accounts for the ligand flexibility, but is able to design full ligand-binding proteins from 2D
molecular graph alone.

1The size of a protein is often much larger than that of a molecule. The size disparity should be considered
when designing flow-matching models for stable training and inference.
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Protein Generative Model and Structure Prediction. Recently, various deep generative models
for protein generation have emerged (Ingraham et al., 2023; Lin & AlQuraishi, 2023; Yim et al.,
2023b;a; Wu et al., 2024; Watson et al., 2023; Krishna et al., 2024). For example, Genie (Lin &
AlQuraishi, 2023) introduces a diffusion process defined on Cα coordinates of proteins and allows
for the incorporation of motif structures as conditions. FrameDiff (Yim et al., 2023b) takes a step
further by generating novel protein backbone structures using an SE(3) diffusion process applied to
residue frames. Its successor, FrameFlow (Yim et al., 2023a), accelerates the generation process by
leveraging the flow-matching framework. However, these approaches are tailored for single-chain
protein generation and fall short in modeling multiple biomolecules. In contrast, we treat multiple
biomolecules, e.g., proteins and molecules, as biotokens and define a novel flow-matching model on
their representative atoms. This allows us to design ligand-binding proteins based solely on molecular
graphs, effectively capturing the flexibility of biomolecules and the intricate interactions between
them. Our work is also related to approaches that perform protein structure predictions within the
all-atom framework, such as RoseTTAFoldAA (Krishna et al., 2024) and AlphaFold 3 (Abramson
et al., 2024). These methods tokenize various types of biomolecules into unified tokens, aiming to
develop a universal structure prediction model for all molecular types presented in the Protein Data
Bank. Our ATOMFLOW adopts the same practice, and we believe this formulation can maximize the
information flow between proteins and molecules (Bryant et al., 2024), while our structural modeling
on the representative atoms encourages the model to focus on the key patterns of biointeractions.

3 PRELIMINARIES

3.1 NOTATIONS AND PROBLEM FORMULATION

Notations. In this work, a protein-ligand complex is represented as a series of N biotokens {ai |
ai = (si, xi), i = 1, 2, . . . , N}, where each token ai corresponds to either a protein residue or a
ligand atom, si denotes the token type, and xi ∈ R3 denotes the token position, i.e. the coordinate of
its representative atom. Let Sprotein and Satom be the set of amino acid types and chemical elements,
respectively. For protein residues, si ∈ Sprotein, with xi being the position of the C-α carbon. For
ligand atoms, si ∈ Satom, with xi being the atomic position. We define the protein token set as
P = {ai | si ∈ Sprotein}, with Np = |P| being the number of protein residues, and the ligand token
set asM = {ai | si ∈ Satom}, with Nm = |M| representing the number of ligand atoms. In our
settings, N = Np +Nm. The biotokens are attributed with token-level features f token ∈ RN×ct and
pair-level features f pair ∈ RN×N×cp , where ct and cp denote the feature dimensions.

Problem Formulation. Given a ligand molecule represented as a chemical graph G = (V, E) and a
residue count Np for the protein binder to be designed, we aim to generate a protein-ligand complex,
where a conformer of G is docked to a protein binder with Np residues. Specifically, by describing
the target protein-ligand complex as a series of biotokens, we generate the token positions {xi}, with
xm = {xi | ai ∈M} being a valid conformer for G, and xp = {xi | ai ∈ P} being a protein binder
with high binding affinity to xm. Following previous works (Krishna et al., 2024; Yim et al., 2023b),
we additionally generate the token frames {Ti = (ri, ti) | ai ∈ P} for protein tokens as described in
Appendix A.1, which can be used to recover full backbone coordinates of residues. The design of
residue types {si | ai ∈ P} is delegated to an existing reverse folding model (Dauparas et al., 2023).

3.2 FLOW MATCHING

Building upon the significant success of diffusion models in various generative tasks, flow matching
models (Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) allow for faster and more reliable
sampling from a distribution learned from data. The generative process of flow matching models
is usually defined by a probability path pt(x), t ∈ [0, 1] that gradually transforms from a known
noisy distribution p0(x) = q(x), such as N (x|0, I) for x ∈ R, to an approximate data distribution
p1 ≈ pdata(x). A vector field ut(x), which leads to an ODE dϕt(x)

dt = ut(ϕt(x)), is used to generate
the probability path via the push-forward equation,

pt = [ϕt]∗p0 = p0(ϕ
−1
t (x))det

[
∂ϕ−1

t

∂x
(x)

]
, (1)

which could be approximated with a trainable network v̂t(x; θ).
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Due to the complexity of defining an appropriate pt and ut, we could alternatively define a conditional
probability path pt(x|x1), which is usually derived through a conditional vector field ut(x|x1) for
each data point x1 (Lipman et al., 2022). The conditional vector field is then approximated with a
trainable network v̂t(x; θ). Lipman et al. (2022) has proved that the conditional flow matching loss,

LCFM(θ) = Et,pdata(x1),pt(x|x1)∥v̂t(x; θ)− ut(x|x1)∥, (2)

has identical gradients w.r.t. θ with LFM = Et,pdata(x)||v̂t(x; θ)− ut(x)||, which means the model
can generate a marginal vector field by simply learning from the x1-conditioned vector fields, without
access to pt(x) and ut(x). After training, a neural ODE is obtained, ready for sampling from p0 to pt
with an ODE solver (Jardine, 2011).

4 METHOD

ATOMFLOW adopts a unified biotoken representation to generate the protein binder and ligand
structure by learning the joint distribution of the token positions conditioned on a ligand chemical
graph G, p({xi}|G), from known structures of proteins and protein-ligand complexes. To achieve
this, we define a rectified flow on the space of all token positions x ∈ RN×3, and the corresponding
vector field is approximated with an SE(3)-equivariant structure prediction module. The structure
predicted at the last generation step is adopted as the final result. In this section, we introduce the
flow matching model in Section 4.1, the biotoken feature representation in Section 4.2, the structure
prediction module in Section 4.3, and the training and inference procedures in Section 4.4. The
overview of our method is illustrated in Figure 2.

N C O ...... UNKUNKC UNK ...... UNK

Ligand Bond Features Residue Distance Features

Distance Map

Structure Prediction
Network              

Flow Matching Trajectory

Result

Piror Distribution

Feature
Embedder

token feat.

pair feat.

seq repr.

pair repr.
Extract

Pair Features

Nm ligand atom tokens Np protein residue tokens

Token Features

A

B

Interpolate (eq.11)

Predicted
Positions

Previous
Input

Input
Positions

Next Iteration

Initialization

Figure 2: The inference process of ATOMFLOW. We represent the protein-ligand complex as a series
of biotokens and embed their token and pair-level features. Starting from a noisy sample, the flow
matching procedure gradually generates the designed structure x1 with a structure prediction network.

4.1 FLOW MATCHING FOR PROTEIN-LIGAND COMPLEX GENERATION

We jointly design the complex structure x = xm ∪ xp, which lies in the space of RN×3, with a flow
matching model. Considering that different structures obtained under arbitrary SE(3) transformations
correspond to the same complex, we treat each structure as an element in the quotient space Q :
RN×3/SE(3), where two structures are identical if they could be perfectly aligned with an SE(3)
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transformation (Jing et al., 2024). This quotient space is proved to be a Riemannian manifold when
defined with suitable care (Diepeveen et al., 2024).

Following Riemannian Flow Matching (Chen & Lipman, 2024), we define a rectified flow on this
manifold with a premetric d : Q × Q → R. We denote alignx(y) for x, y ∈ RN×3 as aligning
structure y to x to minimize RMSD, then the premetric d(x, y) could be defined as the minimum
point-wise root mean square deviation (RMSD) among all pairs of possible structures in the original
space RN×3 for two elements in the quotient space

d(x, y) = min
τ∈SE(3)

RMSD (τ(y), x) = RMSD (alignx(y)− x) (3)

Proposition 1. The premetric in equation 3 is a qualified premetric on Q.

With such premetric at hand, we could obtain a well-defined conditional vector field that decreases
the premetric linearly from the prior distribution to the data distribution

ut(x|x1) =
1

1− t
(alignx(x1)− x) . (4)

We leave the proof of Proposition 1 and the derivation of equation 4 to Appendix A.3. Since the
vector field is defined as a function of x1, we could learn the vector field with a structure prediction
model x̂1(x, t; θ). By substituting equations 4 into equation 2, we obtain the training loss

LCFM(θ) = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥ , (5)

This loss calculates the (1− t)-normalized distance between predicted x̂1 and x1 in the data distribu-
tion aligned to the noisy structure of current step, which is SE(3)-equivariant to both the predicted
and ground truth structure. The structure module is designed to predict the token frames (Section 3),
while the token positions are extracted from them during the generation process. The last prediction
output is adopted as the final result.

Defining a unified flow matching procedure on the joint distribution enables the model to directly
learn the structure characteristics that lead to a tightly bound complex, as well as the conformation
deformation of both the proteins and the ligands, which is essential to designing a satisfactory
ligand-binding protein.

4.2 REPRESENTATION OF CONDITIONAL FEATURES

The generation process of ATOMFLOW is conditioned on the ligand chemical graph G and a designated
protein length Np. We model such conditions as an additional condition to the vector field u. As a
result, the inputs of the prediction network x̂1 are augmented to accept conditional features. With the
biotoken representation, we embed all such features as f token and f pair as illustrated in Figure 2A.

For a ligand chemical graph G, we embed the chemical element, as well as other known chemical
properties as f token of ligand tokens. The chemical bonds E are embedded in f pair as a multi-
dimensional adjacency tensor, each dimension representing a bond type. For residue tokens, we
embed the relative residue position (Shaw et al., 2018) in f pair, while f token may represent other
known conditions. We concatenate the protein and ligand features to form a unified feature tensor,
eliminating the need to distinguish different types of tokens when processing the features.

4.3 STRUCTURE PREDICTION NETWORK

The structure prediction network x̂1(x, t; θ)
2 predicts the token frames {Ti}, which can be used

to extract token positions x1, given a series of noisy positions x at timestamp t. It encodes x,
along with f token and f pair, with an SE(3) invariant encoding module, processing the representation
with a transformer stack, and generates the predicted structure with a structure module based on
invariant-point attention (IPA) (Jumper et al., 2021), as illustrated in Figure 2B. The network jointly
processes two kinds of biotokens, protein residues and ligand atoms, with different spatial scales, and
handles such differences with special care.

2Though x̂1 is a function of x, t, f token, f feat, we omitted certain parameters to simplify the text.
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Distance Map. The input coordinates x are encoded by projecting the one-hot binned distance map
between input coordinates for each token pair to the feature space

ti,j = Linear(BinRepr(∥x(i) − x(j)∥)), (6)

where the bins are not divided equally considering the different precision requirements between
residues and atoms. This representation is SE(3) invariant, since the internal distance does not change
under rigid transformation. 3

Feature Embedder. The feature embedder generates a single representation s ∈ RN×cs and pair
representation z ∈ RN×N×cz from distance map h, noise level t, f token and f pair for the following
steps. The noise level is encoded with Gaussian Fourier embedding (Song et al., 2021). The
local features are concatenated and projected to single representation s and pair representation z,
si = Linear(f local

i ). The pair features and input encoding are projected and added to z

zi,j = Linear(f local
i ) + Linear(f local

j ) + f pair
i,j + ti,j . (7)

As described in Section 4.2, different token types can be treated the same and processed uniformly.

Structure Module. The structure module generates a predicted complex structure, represented as a
series of token frames TN . For ligand atoms, the rotation of the predicted frame is always identity
rotation, while the translation equals its position. It first processes z through a deep transformer stack
(Appendix A.4) to obtain a denoised pair representation z′, and converts s and z′ to TN through a
series of shared-weight IPA block

T1···N = IPAStack(s1···N ,TransformerStack(z1···N,1···N )). (8)

The IPA stack outputs a sequence of frames for each token, while the rotations for atom tokens are
dropped and replaced with the atom frame demonstrated in Section 4.2. The final output represents
the full complex structure x̂, while token positions x̂1 are calculated as previously described. The
Transformer stack on the unified token sequence allows us to smoothly model the interactions between
different types of biological entities in a joint feature space, while the IPA blocks are proved to be
efficient when the final structure is properly embedded in the transformer output (Jumper et al., 2021).

Auxiliary Head. We add an auxiliary head to predict the pairwise binned distance from the denoised
pair representation z′, hi = softmax(Linear(z′i)), which directly supervise the input of structure
module and has been proved to be helpful during training (Jumper et al., 2021). The bins are also
unevenly divided to accommodate the multi-scale characteristics of the predicted complex.

4.4 TRAINING AND INFERENCE

We train the network x̂1 by sampling data points and timestamps, calculating the noisy input, and
supervising the predicted results. At inference time, we transforms the token positions sampled from
the prior distribution through the predicted vector field with an ODE solver, and outputs the structure
we obtained at the final step.

Loss. We supervise the predicted complex structure T with a metric that measures the structural
difference between the observed structure and the predicted structure. Preliminary experiments show
that the LCFM in equation 5 leads to a fluctuating training trajectory since the aligning object x varies
upon training. With approximation (Appendix A.4), we replace the loss function with a variant of the
widely-adopted FAPE function (Jumper et al., 2021),

LCFM-FAPE(θ) = Et,pdata(x1),pt(x|x1)

[
1

1− t
FAPE(x̂1(x, t; θ),x1)

]
. (9)

We show that this substitution does not change the training objective in the appendix. Since the
normalization factor Z in the FAPE loss is related to the numerical range of distance, we divide the
FAPE loss into protein-protein interaction, protein-ligand interaction, and ligand-ligand interaction,
assigning different Zs for the three parts. For the auxiliary head, we adopt the cross-entropy loss
averaged over all token pairs for the predicted distance. The final training loss

L = α1LCFM-FAPE-pp + α2LCFM-FAPE-pl + α3LCFM-FAPE-ll + α4Laux. (10)

3To accommodate the precision differences between ligands and proteins, the bin intervals are dense between
1Å (approximate length of a chemical bond) and 3.25Å (approximate distance between adjacent amino acids)
and sparser beyond 3.25Å.
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Further details are elaborated in Appendix A.4.

Training. We sample the timestamp t from the logit normal distribution, assigning more weight on
intermediate steps, which helps the model to achieve better performance on hard timestamps (Esser
et al., 2024; Karras et al., 2022). The prior distribution q(x) is selected as N (0, σdata), where
σdata = 10. The input x is given by interpolating the data point and a sample from the prior
distribution. The training procedure is shown in Algorithm 1.

Algorithm 1 Training

Require: data distribution p(x), prior distribu-
tion q(x), trainable model parameters θ

1: while not converged do
2: sample complex structure x1 and its cor-

responding ligand chemical graph G from
p(x), t ∼ [0, 1),x0 ∼ q(x)

3: N, f token, f pair ← Embedder(G, Np)
4: xt ← t · x1 + (1− t) · alignx(x0)
5: θ ← Optimizer(θ, (xt, f

token, f pair, t),L)
6: end while
7: return θ

Algorithm 2 Inference

Require: Chemical graph G, residue count Np,
scheduler t0···m, prior distribution q(x),
model parameters θ

1: N, f token, f pair ← Embedder(G, Np)
2: sample token positions xt0 ∼ q(x)
3: for i = 0 to m− 1 do
4: T1···N ← x̂1(xti , f

token, f pair, ti; θ)
5: x̂1 ← Extract(T )
6: calculate xti+1

as Equation 11
7: end for
8: return T

Inference. A scheduler of noise levels {ti}mi=0, t0 = 0, tm = 1 is used to determine the noise level
ti of each sampling step xti . Starting from a noisy sample xti = x0 as the initial model input, the
structure prediction network predicts the vector field, which gives xti+1

with the Euler’s Method, i.e.

xti+1
= xti +

ti+1 − ti
1− ti

(
alignxti

(
Extract

(
x̂1(xti , ti; θ)

))
− xti

)
, (11)

where the Extract function extracts the token positions from the predicted token frames. The model
output at the last step is adopted as the final result. The inference procedure is shown in Algorithm 2.

5 EXPERIMENTS

Following previous protein design models (Yim et al., 2023a; Lin & AlQuraishi, 2023; Watson
et al., 2023) and binder design models (Krishna et al., 2024), we evaluate ATOMFLOW through in
silico experiments on key metrics of our generated binder including self-consistency, binding affinity,
diversity and novelty.

5.1 EXPERIMENT SETUP

Training Data. We train the denoising model on two datasets: PDBBind (Liu et al., 2017), a protein-
ligand conformer dataset derived from the Protein Data Bank (PDB) (Berman et al., 2000), and
SCOPe (Chandonia et al., 2022), a structure categorical dataset for protein. The model is first trained
on solely generating the protein structure for 400k steps, and then finetuned on co-generating both
the protein and ligand structure for 300k steps.

Baseline and Model Variant. We compare ATOMFLOW with the state-of-the-art binder generation
method RFDiffusionAA (Krishna et al., 2024), which is extensive trained on almost all known data.
Since RFDiffusionAA requires a fixed ligand structure at the binding state as input, we extend our
method to work under its setting. For ATOMFLOW, besides the original setting (ATOMFLOW-N),
we also train a version of our model with the pairwise distance matrix of the bound structure as
an auxiliary hint input (ATOMFLOW-H). This version still needs to generate the ligand structure
itself, rather than rely on a fixed structure, as other specifications is not modified. We exclude
PocketGen (Zhang et al., 2024) and FlowSite (Stark et al., 2024) since they can only refine the pocket
residues of a given binder. We discuss them with an additional experiment in the appendix.

Evaluation Set. We mainly evaluate all methods on a selected ligand set (evaluation set) from
RFDiffusionAA (FAD, SAM, IAI, OQO). The evaluation set comprises ligands from inside and
outside the training set, with both long and short lengths. We conduct evaluations on an extended
ligand set (extended set, see Appendix A.5) to further demonstrate the performance of ATOMFLOW.
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5.2 SELF-CONSISTENCY AND CONFORMER LEGITIMACY

In this section, we evaluate the legitimacy of the generated protein structure by self-consistency
RMSD and the predicted ligand structure at the binding state by detecting structural violence in the
conformer. Legitimacy is crucial in binder design, given that the model output is not guaranteed to be
valid, while a design with higher legitimacy is more likely to fold as expected.

SAM FAD

IAI

OQO

AtomFlow-H, 150 residues AtomFlow-N, 200 residues AtomFlow-H, 250 residues AtomFlow-N, 300 residues
scRMSD=0.774 scRMSD=0.552 scRMSD=1.173 scRMSD=1.032

Figure 3: Designed structures for different ligands at different lengths. We align the ESMFold
predicted structure to the designed structure, and report the scRMSD metric. Green: designed protein;
Orange: designed ligand conformer; Grey: ESMFold predicted protein.

Protein Structure. For protein structures, self-consistency RMSD is widely adopted as a metric
to evaluate their legitimacy (Lin & AlQuraishi, 2023; Watson et al., 2023), which compares the
generated structure and the folding of its sequence predicted by an accurate model. We adopt Lig-
andMPNN (Dauparas et al., 2023) to predict possible sequences from the generated structures. We
first generate 8 sequences for all designed structures with LigandMPNN, then predict the correspond-
ing protein structure with ESMFold (Lin et al., 2023), and the metric for each generated structure
is calculated as the minimum rooted mean squared distance between the designed structure and
predicted structure (scRMSD). For each ligand in the evaluation set, we generate 10 structures for
lengths in [100, 150, 200, 250, 300]. The results are shown in Table 1. We illustrate several generated
samples in Figure 3, and the cumulative distribution of scRMSD among them in Figure 4A and 4D.
The results on the extended set are shown in Appendix A.5.

Method Overall SAM FAD IAI OQO
ATOMFLOW-H 0.57 0.60 0.36 0.58 0.74
ATOMFLOW-N 0.50 0.50 0.38 0.58 0.54
RFDiffusionAA 0.52 0.60 0.58 0.48 0.42

RFDiffusion 0.33 0.04 0.50 0.44 0.32

Table 1: Proportion of samples with scRMSD < 2 on the evaluation set (higher is better).

ATOMFLOW and RFDiffusionAA outperform RFDiffusion on all ligands in the evaluation set, while
both ATOMFLOW-H and ATOMFLOW-N reach comparable results to RFDiffusionAA, and exhibit
advantages over RFDiffusionAA on several cases. The restricted performance of RFDiffusion is as
expected since its binding potential for guiding the protein-ligand interaction may lead to structural
destruction. Both ATOMFLOW and RFDiffusionAA model the interaction directly, thus not requiring
a strong potential to interfere with the generative process, and leading to better generation results.
Notably, without relying on structural guidance from the input ligand conformer, ATOMFLOW-N
achieves close performance to ATOMFLOW-H, thereby successfully augmenting the setting to flexible
design.

5.3 BINDING AFFINITY

In this section, we evaluate the binding affinity of the designed protein binder by calculating an
energy function for the atom-level interaction between the protein and the ligand. Binding affinity is
the key metric to reveal whether the designed binders are able to bind the target molecule. Though the
real binding affinity could only be determined through experiments in the wet lab, an energy function
is usually adopted as an in silico alternative (Zhang et al., 2024). We calculate the AutoDock Vina
Score (Eberhardt et al., 2021) for all 8 sequences packed by the Rosetta packer (Leaver-Fay et al.,
2011), and the reported energy for a structure is the minimum score among all packed proteins. We
calculate the energy for all generated structures for the selected ligand set in Section 5.2 and compare
ATOMFLOW with RFDiffusionAA and RFDiffusion. The result is illustrated in Figure 4C and 4D.
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A B C

D

Figure 4: A: Self-consistency RMSD distribution curve demonstrating the ratio among all designed
samples for the evaluation set with scRMSD ≤ x (higher is better). ATOMFLOW outperforms
RFDiffusion with a curve similar to RFDiffusionAA. ATOMFLOW-H generates achieves the best
result among the methods. The ratio of samples with scRMSD < 2 is highlighted. B: PoseBusters
score distribution of ATOMFLOW generated samples on the extended set. Most ligand conformers
generated by ATOMFLOW-N only fail ≤ 1 metric of its evaluations. C: Vina score distribution over
all designs on the evaluation set (lower is better). ATOMFLOW achieves comparable performance to
RFDiffusionAA, outperforming RFDiffusion. D: scRMSD curve and Vina energy distribution over
designs for each ligand in the evaluation set. ATOMFLOW outperforms RFDiffusion on all cases
and metrics. ATOMFLOW and RFDiffusionAA each exhibit advantages on different ligands, with
comparable overall results.

We find that the binding affinity of RFDiffusion is quite poor since it does not model the protein-
ligand interaction directly. ATOMFLOW has reached comparable binding affinity to RFDiffusionAA,
though marginally lower in several cases. We attribute this to the exhaustive training process of
RFDiffusionAA on all known data in PDB, while ATOMFLOW could be further trained and this will
be investigated further in our future work. The minimum binding energy generated by ATOMFLOW-H
is slightly higher than that of ATOMFLOW-N, possibly because the provided conformer hint hinders
the model from exploring additional binding states.

Figure 5: ATOMFLOW-N designs binders with lower vina energy distribution than RFDiffusionAA on
2GJ without the bound structure. Illustration of one sample for each method with PLIP demonstrates
that the ATOMFLOW-N designed binder has more chemical interaction with the ligand.

We further compare ATOMFLOW with RFDiffusionAA in a realistic setting where the bound con-
former is unknown. We set the target ligand as luminespib (PDB id: 2GJ), an Hsp90 inhibitor (Pi-
otrowska et al., 2018). A designed protein binder for luminespib may act as a protein drug carrier to
enhance drug efficacy. Luminespib is a molecule ligand with 33 heavy atoms, so that the conformer
is quite flexible when docked to different receptors. We design 10 binders for luminespib using
ATOMFLOW and RFDiffusionAA. The ideal conformer from PDB is provided to RFDiffusionAA,
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while no conformer is provided to ATOMFLOW. The binding energy of the designed structures and
one designed sample with PLIP (Adasme et al., 2021) to demonstrate the protein-ligand interaction
are illustrated in Figure 5. It is shown that ATOMFLOW generates more binders with higher binding
affinity than RFDiffusionAA, and significantly outperforms RFDiffusionAA on the lowest energy
among all generated structures. This demonstrates that a proper bound structure is crucial to the
performance of RFDiffusionAA, while ATOMFLOW does not rely on such structure and generates
proper conformers by co-modeling the structure space of proteins and ligands.

5.4 DIVERSITY AND NOVELTY

In this section, we report the diversity and novelty of ATOMFLOW, following common practice in
literature (Krishna et al., 2024; Yim et al., 2023b). Diversity refers to the structural divergence of the
designed binders for a certain ligand, while novelty refers to how close a designed protein is to the
known proteins. For diversity, we generate 100 structures with 200 residues for each ligand, and then
use MaxCluster (Herbert, 2008) to calculate the pairwise structural distance of the outputs and report
the number of clusters using different thresholds of maximum distance within a cluster. For novelty,
we generate 4 structures with residue count in [100, 101, · · · , 300] for each ligand, and then calculate
the highest TM-score (Zhang, 2005) between a designed structure and any similar structure searched
by FoldSeek (Kempen et al., 2024) (pdbTM), as well as the protein scRMSD. The search range of
pdbTM is all known protein structures in PDB.

A B

Figure 6: A: Cluster count based on different thresholds for the maximum difference within the
cluster for each ligand in the evaluation set. ATOMFLOW generates diverse binder folds for all ligands,
not restricted to the existing binder structure. B: Scatter plot of designability (scRMSD) vs. novelty
(pdbTM) for ligands in the evaluation set. ATOMFLOW successfully designs self-consistent structures
with high pdbTM, demonstrating high novelty.

Figure 6A shows that the structures generated by ATOMFLOW are quite diverse for all four ligands,
and the diversity varies among different ligands. Though existing protein-ligand complexes only
provide limited folds for possible binders, by adding protein-only data to the training set, our model
successfully learns from the protein structure distribution to generate more possible folds, instead of
replicating known patterns. The scatter plot of scRMSD vs. pdbTM shown in Figure 6B reveals that
ATOMFLOW has the ability to generate structures that are quite different from existing proteins with
acceptable designability. Note that most designable structures are still similar to known ones, which
is as expected since most protein folds are already discovered, while novel folds are quite sparse and
hard to derive.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed ATOMFLOW, a de novo protein binder design method for small molecule
ligands considering the flexibility of ligand structure. Unlike previous works, ATOMFLOW no longer
relies on a given bound ligand conformer as input. We represent the protein-ligand complex as
unified biotokens, learning the structure distribution of both the proteins and the ligands simulta-
neously from the data with an SE(3)-equivariant flow matching model on the representative atoms.
During the evaluation, ATOMFLOW shows comparable design quality to the state-of-the-art model
RFDiffusionAA, which requires the ligand conformer to be fixed before design. Further evaluation
exhibits the advantage of ATOMFLOW in the circumstance when the ligand conformer is not known.
A direct future work is to support more precise control of the generated structures, and we’re working
to migrate ATOMFLOW to all kinds of biomolecules, including DNA, RNA, and metal ions.
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REPRODUCIBILITY STATEMENT

We include the source code of the AtomFlow model and its corresponding checkpoint with a ready-
to-use Gradio (Abid et al., 2019) interface in the supplementary materials. Instructions for setting
up the environment and launching the web-based interface are provided as a README file. Further
details on the model implementation and training are available in Appendix A.4.

REFERENCES

Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Abdulrahman Alfozan, and James Zou.
Gradio: Hassle-free sharing and testing of ml models in the wild. arXiv preprint arXiv:1906.02569,
2019.

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Melissa F Adasme, Katja L Linnemann, Sarah Naomi Bolz, Florian Kaiser, Sebastian Salentin,
V Joachim Haupt, and Michael Schroeder. Plip 2021: Expanding the scope of the protein–ligand
interaction profiler to dna and rna. Nucleic acids research, 49(W1):W530–W534, 2021.

Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William Gerecke,
Timothy J O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, et al. Openfold: Retraining
alphafold2 yields new insights into its learning mechanisms and capacity for generalization. Nature
Methods, pp. 1–11, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Linna An, Meerit Y Said, Long Tran, Sagardip Majumder, Inna Goreshnik, Gyu Rie Lee, David
Juergens, Justas Dauparas, Ivan V. Anishchenko, Brian Coventry, Asim K. Bera, Alex Kang,
Paul M. Levine, Valentina Alvarez, Arvind Pillai, Christoffer H Norn, David Feldman, Dmitri
Zorine, Derrick R. Hicks, Xinting Li, Mariana Garcia Sanchez, Dionne K. Vafeados, Patrick J.
Salveson, Anastassia A. Vorobieva, and David Baker. De novo design of diverse small molecule
binders and sensors using shape complementary pseudocycles. bioRxiv, 2023. URL https:
//api.semanticscholar.org/CorpusID:266540105.

Nathaniel R. Bennett, Brian Coventry, Inna Goreshnik, Buwei Huang, Aza Allen, Dionne Vafeados,
Ying Po Peng, Justas Dauparas, Minkyung Baek, Lance Stewart, Frank DiMaio, Steven De Munck,
Savvas N. Savvides, and David Baker. Improving de novo protein binder design with deep
learning. Nature Communications, 14(1):2625, May 2023. ISSN 2041-1723. doi: 10.1038/
s41467-023-38328-5.

Helen M. Berman, John D. Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):
235–242, 2000.

Matthew J Bick, Per J Greisen, Kevin J Morey, Mauricio S Antunes, David La, Banumathi Sankaran,
Luc Reymond, Kai Johnsson, June I Medford, and David Baker. Computational design of
environmental sensors for the potent opioid fentanyl. Elife, 6:e28909, 2017.

Patrick Bryant, Atharva Kelkar, Andrea Guljas, Cecilia Clementi, and Frank Noé. Structure prediction
of protein-ligand complexes from sequence information with umol. Nature Communications, 15
(1):4536, 2024.

John-Marc Chandonia, Lindsey Guan, Shiangyi Lin, Changhua Yu, Naomi K Fox, and Steven E
Brenner. Scope: improvements to the structural classification of proteins – extended database to
facilitate variant interpretation and machine learning. Nucleic Acids Research, 50(D1):D553–D559,
2022.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

11

https://api.semanticscholar.org/CorpusID:266540105
https://api.semanticscholar.org/CorpusID:266540105


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Justas Dauparas, Gyu Rie Lee, Robert Pecoraro, Linna An, Ivan Anishchenko, Cameron Glasscock,
and David Baker. Atomic context-conditioned protein sequence design using ligandmpnn. Biorxiv,
pp. 2023–12, 2023.

Willem Diepeveen, Carlos Esteve-Yagüe, Jan Lellmann, Ozan Öktem, and Carola-Bibiane Schönlieb.
Riemannian geometry for efficient analysis of protein dynamics data. Proceedings of the National
Academy of Sciences, 121(33):e2318951121, 2024.

Jerome Eberhardt, Diogo Santos-Martins, Andreas F. Tillack, and Stefano Forli. Autodock Vina
1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical
Information and Modeling, 61(8):3891–3898, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis.
In Forty-first International Conference on Machine Learning, volume abs/2403.03206, 2024.

Alex Herbert. Maxcluster: A tool for protein structure comparison and clustering, 2008. URL
http://www.sbg.bio.ic.ac.uk/~maxcluster/.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
space with a programmable generative model. Nature, 623(7989):1070–1078, 2023.

Dick Jardine. Euler’s method in euler’s words. Mathematical Time Capsules: Historical Modules for
the Mathematics Classroom, (77):215, 2011.

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search
with Foldseek. Nature Biotechnology, 42(2):243–246, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Xiangzhe Kong, Wenbing Huang, and Yang Liu. End-to-end full-atom antibody design. arXiv
preprint arXiv:2302.00203, 2023.

Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet,
Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized
biomolecular modeling and design with rosettafold all-atom. Science, 384(6693):eadl2528, 2024.

Andrew Leaver-Fay, Michael Tyka, Steven M Lewis, Oliver F Lange, James Thompson, Ron Jacak,
Kristian W Kaufman, P Douglas Renfrew, Colin A Smith, Will Sheffler, et al. Rosetta3: an
object-oriented software suite for the simulation and design of macromolecules. In Methods in
enzymology, volume 487, pp. 545–574. Elsevier, 2011.

Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein structures
by equivariantly diffusing oriented residue clouds. arXiv preprint arXiv:2301.12485, 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

12

http://www.sbg.bio.ic.ac.uk/~maxcluster/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the Basis for
Developing Protein–Ligand Interaction Scoring Functions. Accounts of Chemical Research, 50(2):
302–309, 2017.

Lei Lu, Xuxu Gou, Sophia K Tan, Samuel I Mann, Hyunjun Yang, Xiaofang Zhong, Dimitrios
Gazgalis, Jesús Valdiviezo, Hyunil Jo, Yibing Wu, et al. De novo design of drug-binding proteins
with predictable binding energy and specificity. Science, 384(6691):106–112, 2024.

David L Mobley and Ken A Dill. Binding of small-molecule ligands to proteins:“what you see” is
not always “what you get”. Structure, 17(4):489–498, 2009.

Z Piotrowska, DB Costa, GR Oxnard, M Huberman, JF Gainor, IT Lennes, A Muzikansky, AT Shaw,
CG Azzoli, RS Heist, et al. Activity of the hsp90 inhibitor luminespib among non-small-cell lung
cancers harboring egfr exon 20 insertions. Annals of Oncology, 29(10):2092–2097, 2018.

Nicholas F Polizzi and William F DeGrado. A defined structural unit enables de novo design of
small-molecule–binding proteins. Science, 369(6508):1227–1233, 2020.

Nadine Schneider, Roger A Sayle, and Gregory A Landrum. Get your atoms in order—an open-source
implementation of a novel and robust molecular canonicalization algorithm. Journal of chemical
information and modeling, 55(10):2111–2120, 2015.

Bettina Schreier, Christian Stumpp, Silke Wiesner, and Birte Höcker. Computational design of ligand
binding is not a solved problem. Proceedings of the National Academy of Sciences, 106(44):
18491–18496, November 2009. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.0907950106.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative Position Representa-
tions. In North American Chapter of the Association for Computational Linguistics (NAACL), pp.
464–468, 2018.

Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, and Jian Tang. Protein sequence and structure
co-design with equivariant translation. arXiv preprint arXiv:2210.08761, 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations. International
Conference on Learning Representations (ICLR), 2021.

Hannes Stark, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Harmonic Self-Conditioned Flow
Matching for joint Multi-Ligand Docking and Binding Site Design. In Forty-first International
Conference on Machine Learning, volume abs/2310.05764, 2024.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
Baek, and David Baker. De novo design of protein structure and function with RFdiffusion. Nature,
620(7976):1089–1100, 2023.

Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu, and
Ava P Amini. Protein structure generation via folding diffusion. Nature communications, 15(1):
1059, 2024.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Y. Zhang. Tm-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids
Research, 33(7):2302–2309, 2005.

Zaixi Zhang, Wanxiang Shen, Qi Liu, and Marinka Zitnik. Pocketgen: Generating Full-Atom
Ligand-Binding Protein Pockets. bioRxiv, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROTEIN FRAMES

Proteins are composed of amino acid chains linked by peptide bonds, forming a backbone with
protruding side chains. Each amino acid’s position and orientation are described by a local coordinate
system, or protein frame, centered on three key backbone atoms: the alpha carbon (Cα), the carbonyl
carbon (C), and the amide nitrogen (N). These atoms act as reference points for establishing the frame.
The alpha carbon (Cα) typically acts as the origin. The vector from Cα to the amide nitrogen (N) is
normalized to define one axis of the frame. A second axis is defined by the normalized vector from
Cα to the carbonyl carbon (C). The third axis is formed by the cross product of these two vectors,
creating an orthogonal, right-handed coordinate system. The residue frame is typically represented
as an SE(3) transformation T = (R, t), which maps a vector from this local system to the global
coordinate system. In this transformation, t corresponds to the position of Cα in the global system,
and R represents the rotation needed to align the residue’s structure within the global context.

Cα
N C

x
y

z

Figure 7: A protein frame illustration. The Cα, C, N atoms form a panel, which is the xy panel. The
x-axis is defined as the orientation from Cα to N, while the y-axis is on the panel and perpendicular
to the x-axis. The z-axis is perpendicular to the xy panel.

A.2 DETAILS ON BIOTOKENS

Token Features For ligand atom tokens, the token-level feature set includes: chirality, degree,
formal charge, implicit valence, number of H atoms, number of radical electrons, orbital hybridization,
aromaticity, and ring size. The pair-level feature is provided as one-hot embedding of the bond type.
For residue tokens, no token-level feature is known, while the pair-level feature only contains the
binned distance of residue index between residues. All features are encoded as a one-hot vector and
concatenated.

Token Frames The final loss we adopted LCFM-FAPE requires aligning the predicted structure to the
local frame of every token. The frames of protein residues can be naturally defined as in Section 3.
However, the frames of ligand atoms could not be chosen directly. Since a frame could be calculated
from the coordinate of 3 atoms, we need to choose an atom triplet for every atom token.

We first obtain a canonical rank of every atom that does not depend on the input order (Schneider
et al., 2015). The atoms are then renamed to their rank. For atoms x with a degree greater than or
equal to 2, we select the lexicographically smallest triplet (u, x, v) to define the frame, where u and
v are neighbors of x. For atoms with a degree of 1, u is the only neighbor of x, and v is chosen as
one of u ’s neighbors. This method ensures that each atom’s frame is defined in a consistent manner,
irrespective of its position in the input sequence, thereby facilitating the model to learn a consistent
structural target.

Extending Token Types and Features Though ATOMFLOW only considers the interaction between
protein and molecule ligands, the unified biotoken has the potential to extend to all biological entities,
including DNA, RNA, etc, by defining the token position, token frame, local and pair features, and
the representation of the internal structure. For example, an RNA can be represented as a sequence of
nucleotides, with the token position defined as its mass center, and the token frame calculated from
an atom triplet, such as C2-N1-C6.
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The token features can also be extended to support more types of known information. For example,
the local features could also contain an embedding to indicate the preferred secondary structure, or
whether a ligand atom is required to be closer to the designed protein; the pair features could also
contain the motif information with a distance map.

A.3 DETAILS ON THE FLOW MATCHING PROCESS

For all types of tokens, we only consider their token positions to simplify the flow matching process.
Thus, the positions of all tokens lie in the Euclidean space RN×3. Since a complex could be arbitrarily
moved or rotated in the coordinate space without changing its structure, we need an algorithm that
treats different position series as the same if they could be aligned with an SE(3) translation. Thus,
every data point we consider now lies in the quotient space RN×3/SE(3). This quotient space is
proved to be a Riemannian manifold (Diepeveen et al., 2024).

For a Riemannian manifold, the flow matching process could be defined using a premetric (Chen &
Lipman, 2024). A premetric d :M×M→ R should satisfy: 1. d(x, y) ≥ 0 for all x, y ∈ M; 2.
d(x, y) = 0 iff x = y; 3. ∇d(x, y) ̸= 0 iff x ̸= y.

We define our premetric as the minimum point-wise rooted sum of squared distance (RMSD) among
all pairs of possible structures in the original space RN×3 for two elements in the quotient space
d(x, y) = ∥alignx(y)− x∥, which satisfies all three conditions (Proposition 1).

Proof. Since the premetric is defined as a norm, it satisfies condition 1 by nature. When x = y, the
best alignment that aligns y to x could derive the exact same position as x, yielding a zero norm.
When x ̸= y, when y is aligned to x, there’s still a structural difference between the structures, thus
the premetric is not zero. For condition 3, by defining y′ = alignx(y), we have

∇d(x, y) = ∇

√√√√ n∑
i=1

(y′i − xi)2 =
y′ − x

||y′ − x||
=

alignx(y)− x

||alignx(y)− x||
≥ 0. (12)

Thus d(x, y) satisfies all the conditions as a qualified premetric.

With such premetric, and a monotonically decreasing differentiable scheduler κ(t) = 1− t, we could
obtain a well-defined conditional vector field that linearly interpolates between the noisy and real
data (Chen & Lipman, 2024)

ut(x|x1) =
d log κ(t)

dt
d(x, x1)

∇d(x, x1)

∥∇d(x, x1)∥2
=

1

1− t
(alignx(x1)− x). (13)

The vector field in equation 13 is calculated by substituting equation 12 into the left side. This vector
field provides the direction for moving straight towards x1, and generates a probability flow that
interpolates linearly between noisy sample x0 and data sample x1.

Since the vector field is defined as a function of x1, we could learn the vector field with a structure
prediction model x̂1(x, t; θ). By substituting equation 4 into equation 2, we obtain the training loss

LCFM(θ) = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥ . (14)

A.4 DETAILS ON THE PREDICTION NETWORK

Structure Module Specifications The main components of the structure module are derived from
Alphafold 2 (Jumper et al., 2021), while our implementation builds on top of the widely acknowledged
reimplementation OpenFold (Ahdritz et al., 2024). The TransformerStack consists of 14 layers of
simplified Evoformer block, and the IPAStack consists of 4 layers of Invariant Point Attention (IPA)
blocks. The MSA operations in the Evoformer block are simplified by replacing the operations on
the MSA feature matrix with the single representation si. The weights of the IPA blocks are shared,
and the structural loss is calculated on the outputs of each block and averaged.
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Training Details During training, we equally sample data from the SCOPe dataset (v2.08) and the
PDBBind dataset (2020). We simply drop the data with more than 512 tokens, and we don’t crop
the filtered complexes since the cutoff is large enough and only filters out a relatively small portion
of the data. We train our model on 10 NIVIDA RTX 4090 acceleration cards, with a batch size set
to 10, which means the batch size on each device is set to 1. We use the Adam Optimizer (Kingma,
2014) with a weight-decaying learning rate scheduler, starting from 10−3 and decays the learning
rate by 0.95 every 50k steps. We separate the training process into two stages: 1) initial training,
α1 = 0.5, α4 = 0.3, α2 = α3 = 0; 2) finetuning, α1 = α2 = α3 = 0.5, α4 = 0.3.

Ligand tokens are not given during the first training stage. The first stage trains an unconditional
protein generation model, while the second stage turns it to a conditional protein binder and ligand
conformer generation model. The FAPE loss is defined as an average of all pairs of tokens in the
original paper, so the calculation process first yield a FAPE matrix and then produce the average
value of the matrix. The protein-protein, protein-ligand and ligand-ligand loss calculates the average
value of the sub-matrixs defined as (row: protein, col: protein), (row: protein, col: ligand), and (row:
ligand, col:ligand).

Since training a protein design model is significantly time-consuming, the design choices of our
training strategy is largely determined by grid searching possible design space and save the training
trajectory of the first 30∼50k steps. We compare the training trajectories and select the best configu-
ration that meets the following criteria: a) The final distogram loss should close the minimum we get
among the configurations (around 2.0). b) The LCFM-FAPE should not decline too fast at the first 10k
steps. The first 10k steps is for the transformer stack to learn a relatively steady output, indicated by
the decline of the distogram loss. A decline of LCFM-FAPE at this stage will resulted in an undesired
local minimum. Then LCFM-FAPE should decline fast right after the distogram loss turns to decline
much smoother. We select the configuration with the lowest LCFM-FAPE at the end of training.

We decide the end of each training stage when the training converges, with the following criteria: a)
the decline rate of every single loss is small. b) the structural violence of sampled structures (counts
of CA atom violation) converges.

An initial study on directly train the second stage shows unsatisfactory training trajectory. Since the
ligand conformer is way easier to generate compared to protein folds, the FAPE loss declines too
fast even before the distogram loss, resulted in unstable TransformerStack output, and leading to a
diverge of the model after 30k steps. The resulted model with minimum loss is able to predict the
ligand structure, with random protein residue position, which is unusable.

Loss Function LCFM calculates an aligned RMSD by aligning x1 and x̂1 to x, while the FAPE loss
calculates an averaged RMSD by aligning x̂1 to each residue frame of x1, which could be extended
to the token frame (Appendix A.2). Let alignx,i(y) denote aligning y to the i-th token frame of x, we
have

LCFM = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1
N

N∑
i=1

(
alignx,i(x̂1(x, t; θ))− alignx,i(x1))

)∥∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1
N

N∑
i=1

(
alignx1,i

(x̂1(x, t; θ))− alignx1,i
(x1)

)∥∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1
N

N∑
i=1

(
alignx1,i

(x̂1(x, t; θ))− x1

)∥∥∥∥∥
= LCFM-FAPE

Proposition 2. alignx1
(x̂1) = x1 ⇐⇒ LCFM = 0 ⇐⇒ LCFM-FAPE = 0.

Proof. When alignx1
(x̂1) = x1, we have ∀i, alignx1,i

(x̂1) = x1. As a result, LCFM = LCFM-FAPE =
0. This establishes that:

alignx1
(x̂1) = x1 ⇐⇒ LCFM = 0 and alignx1

(x̂1) = x1 ⇐⇒ LCFM-FAPE = 0. (15)
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Now, assume LCFM = 0. Suppose alignx1
(x̂1) ̸= x1. Then for all transformations R and t, we

have Rx̂1 + t ̸= x1, which implies: ∥alignx1
(x̂1) − x1∥ ̸= 0, leading to LCFM ̸= 0. This is a

contradiction. Therefore, alignx1
(x̂1) = x1. This proves that

LCFM = 0 ⇐⇒ alignx1
(x̂1) = x1. (16)

Similarly, assume LCFM-FAPE = 0. Suppose alignx1
(x̂1) ̸= x1. Then: ∥alignx1,i

(x̂1) − x1∥ ̸= 0,

which leads to LCFM-FAPE ̸= 0, again a contradiction. Therefore, alignx1
(x̂1) = x1. This proves that:

LCFM-FAPE = 0 ⇐⇒ alignx1
(x̂1) = x1. (17)

The proposition is proved by combining equation 15,16,17.

This means that both LCFM and LCFM-FAPE provide an optimization direction towards minimizing the
SE(3) invariant structural difference between the predicted structure and the ground truth structure.
Thus, we adopt LCFM-FAPE as a realistic approximation of LCFM and adopt it as the training objection
during evaluation.

A.5 EVALUATION DETAILS

Specifications Following RFDiffusionAA, we use FAD, SAM, IAI, and OQO as the selected
evaluation set. FAD and SAM are witnessed by both models as training data, while IAI and OQO are
not, demonstrating the generalization ability. To further investigate the performance of our method,
we conduct experiments on an extended set of 20 ligands (ligands from PDB id 6cjs, 6e4c, 6gj6, 5zk7,
6qto, 6i78, 6ggd, 6cjj, 6i67, 6iby, 6nw3, 6o5g, 6hlb, 6efk, 6gga, 6mhd, 6i8m, 6s56, 6tel, and 6ffe).
The extended dataset includes ligand sizes (including hydrogen) ranging from 21 to 104 in length.

Extended Set We illustrate the designability (scRMSD) and binding affinity (Vina energy) of
ATOMFLOW-N in Figure 8. The extended evaluation shows that the performance of ATOMFLOW
on the extended set is similar to the evaluation set shown in the main article, and demonstrates that
ATOMFLOW is able to tackle almost all kinds of ligands.

Additional Binding Affinity Metric We are aware that Vina might not be a perfect proxy for
binding affinity. We noticed that AlphaProteo adopts several metrics produced by AlphaFold 3 as in
silico filters. At the time we finished our draft, there’s no publicly available AlphaFold 3 for us to run
locally. Recently, several AlphaFold 3 replications and the original AlphaFold 3 are released. We
developed an alternative in silico metric based on Chai-1, calculating the minimum value across all
interchain terms in the PAE matrix (min_ipAE, lower is better). Note that this metric is proved to
be a good indicator for protein-protein binder design, but not validated on small molecule-protein
binders. The results in Figure 9 show that the AtomFlow-generated binders have lower min_ipAE
than the ones from RFDiffusion-AA, and both models have the ability to generate binders with
similar min_ipAE as natural ones. We’re working to develop better metrics as in silico proxy for
ligand-binding protein design based on wet lab verification.

Diversity and Novelty Results of the Baseline. We conducted the diversity and novelty experiment
on RFDiffusion-AA with the same configuration as our results reported in the main text. The results
are shown in Figure 10. The diversity of AtomFlow designs is better than RFDiffusion-AA, while the
AtomFlow generated results tends to be more conservative in terms of pdbTM novelty. We believe
this is because we didn’t train AtomFlow on a full training set including all PDB structures and the
distillation data. This is our future work and we’ll release an updated model once available.

Discussion on Pocket Design Models While the pocket design models address ligand-protein
interactions, their focus is limited to refining pocket residues within a predefined radius. They lack
the capacity to design full protein folds, making direct comparison with AtomFlow infeasible. We
conducted an unfair experiment with PocketGen by providing a template binder to it, as detailed in
Tabel 2. Despite this, the results demonstrate that AtomFlow consistently outperforms PocketGen in
terms of fold quality across all radii.
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Geometrical Distributions of Generated Structure We evaluated the common chemical bond
length generated by AtomFlow vs. the ground truth bond length in our training set. Results shown
in Figure 11 demonstrate that the AtomFlow generated ligands have similar geometric distribution
to ground truth. We further evaluated the generated structures by plotting the Ramachandran plots.
Results shown in Figure 12 suggests that the proteins generated by AtomFlow effectively capture the
key structural characteristics of natural proteins.

Chemical Validity We evaluated the generated ligands with several important chemical validity
metrics: QED, an index of drug-likeness, with a value between 0 (drug-unlike) and 1 (drug-like); SA,
the difficulty of chemical synthesis for molecules, with a value between 0 (easy to synthesize) and 10
(very difficult to synthesize); LogP, an important parameter to characterize the overall hydrophobicity
of organic compounds. Results are shown in Tabel 3.

A

B

Figure 8: A: scRMSD of designs for each ligand in the extended set; B: Vina energy of designs for
each ligand in the extended set.
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Figure 9: min_ipAE distribution of the generation results in the affinity experiment of the main text.
The result of the native binder is displayed as a grey line.

Ligand AtomFlow (r=inf) PG (r=3.5) PG (r=5) PG (r=6.5) PG (r=8) PG (r=9.5)
FAD 0.79/3.74 7.10/7.38 6.75/7.81 7.29/8.35 20.92/24.23 23.12/25.23
SAM 0.83/2.01 2.12/2.62 2.77/2.99 2.94/4.03 12.39/14.49 13.79/14.74
IAI 0.56/1.82 0.71/0.85 0.95/1.02 2.04/2.28 3.59/5.53 9.02/11.71
OQO 0.59/1.63 1.20/1.26 1.70/1.79 2.40/2.45 11.59/11.94 2.13/2.41

Table 2: For this experiment, we used the natural binders of four ligands—FAD (7bkc), SAM (7c7m),
IAI (5sdv), and OQO (7v11)—as input. To evaluate the design capability of PocketGen (PG) under
different constraints, we progressively increased the design radius (minimum distance to ligand)
from 3.5 to 9.5. The masked target area expanded with the radius, requiring the model to redesign
increasingly larger regions of the protein. When the radius exceeded the protein’s dimensions (radius
greater than the protein size), all residues were masked, simulating our full-design setting. The
table below presents the min/median scRMSD values for designs generated by PocketGen at each
radius. For reference, scRMSD < 2 is generally considered a successful design. Notably, PocketGen’s
performance deteriorated significantly as the radius increased, reflecting its reliance on template
residues. (At radius=8 for OQO, PocketGen generated designs with several residues misaligned with
the ligand, leading to abnormally high scRMSD values.) Additionally, PocketGen does not support
radius settings beyond 10, preventing direct simulation of ATOMFLOW ’s fully template-free design
scenario. The results of ATOMFLOW is derived from our main experiment.

QED SA LogP
AtomFlow 0.458±0.292 0.683±0.160 0.559±4.030
PDBBind 0.429±0.246 0.696±0.144 -0.311±3.240

Table 3: QED, SA, and LogP of AtomFlow generated structures and PDBBind structures.

BA

Figure 10: A: Cluster count based on different thresholds for the maximum difference within the
cluster for each ligand in the evaluation set. B: Scatter plot of designability (scRMSD) vs. novelty
(pdbTM) for ligands in the evaluation set.
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Dataset AtomFlow

Figure 11: Chemical bond distribution of AtomFlow generated ligands for the extended set and
ground truth ligands in the PDBBind dataset.

Figure 12: The Ramachandran plots for the generated protein (left) and the PDBBind protein (right),
which demonstrate comparable coverage in the primary secondary structure regions.
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