
A Benchmark Synthetic Dataset for C-SLAM in Service Environments

Harin Park, Inha Lee, Minje Kim, Hyungyu Park and Kyungdon Joo*

Artificial Intelligence Graduate School, UNIST
{harinp33,epsilon8854,minje617,hyungyu,kyungdon}@unist.ac.kr

: Human

Context-Aware MotionInteractionOcclusion Complex Illumination

Figure 1. Illustration of the proposed CSE dataset in Office environments. Our CSE dataset contains realistic service robot environments
with dynamic human objects, indicated by a red circle. In particular, our dataset includes challenging observations that are commonly
encountered in service environments, such as occlusion and complex illumination. In addition, our dataset provides realistic and challenging
scenarios, such as interaction between robots and context-aware human motions.

Abstract

In this work, we introduce a new multi-modal C-
SLAM dataset for multiple service robots in various
indoor service environments, called C-SLAM dataset
in Service Environments (CSE). We use the NVIDIA
Isaac Sim to build data in various indoor service
environments with the challenges that may occur in real-
world service environments. By using simulation, we
can provide accurate and precisely time-synchronized
sensor data, such as stereo RGB, stereo depth, IMU, and
GT poses. We configure three common indoor service
environments (Hospital, Office, and Warehouse), each
of which includes multiple dynamic objects that perform
motions suitable to each environment. In addition, we
navigates the robots to mimic the actions of real service
robots. Through these factors, we generate a more
realistic C-SLAM dataset for multiple service robots. We
demonstrate our dataset by evaluating diverse state-of-the-
art multi-robot SLAM methods.

*Corresponding author.

1. Introduction

Recently, intelligent agents, such as personal robots and
autonomous vehicles, have pervaded our lives and become
indispensable. In particular, service robots have started to
replace simple yet human resources-required tasks, such as
serving, path guidance, cleaning, delivery, etc. [16, 17, 26].
To this end, service robots are required to understand
unknown environments [17, 21], where simultaneous
localization and mapping (SLAM), which estimates the
pose of the robot itself and builds a map of an unknown
environment simultaneously, is one of the most fundamental
techniques for service robots [20]. Service robots are
capable of perceiving their surroundings and performing
their tasks using SLAM.

Specifically, service environments, where service robots
operate and may interact with people [15], have become
diverse (e.g., from static spaces to complex indoor or
outdoor environments) [4] and have begun to require
more complex tasks that are difficult for a single agent
to handle [18]. This change in service environments
naturally has led to an interest in multiple agents from
single agents. Furthermore, SLAM algorithms, the

Table 1. Comparison of existing C-SLAM datasets for multi-robot. Time synchronization columns are referenced by [8]

Dataset Sensors Static (S) / Platforms Environment Ground Truth Pose Time sync
RGB Depth IMU LiDAR Dynamic (D) Intra Inter

UTIAS [14] ✓† S UGV Indoor Motion capture Sw NTP
AirMuseum [7] ✓† ✓ S UGV, UAV Indoor SfM Sw NTP

Ford-AV [5] ✓ ✓ ✓ D Vehicle Outdoor GPS-IMU, SLAM corrected – GNSS
S3E [8] ✓ ✓ ✓ S UGV Outdoor, Indoor RTK, Motion capture Hw GNSS, PTPv2

GRACO [27] ✓ ✓ ✓ D UGV, UAV Outdoor GNSS / INS Hw GNSS
Tian et al. [23] ✓ ✓ ✓ ✓ D UGV, UAV Outdoor, Indoor Point-cloud by LiDAR, GPS – NTP

Ours ✓ ✓ ✓ ✓* S + D UGV Service Env. (Indoor) Simulator (NVIDIA Isaac Sim) Simulator Simulator

† Only monocular RGB modality.
* We provide a function that converts depth images to pseudo-LiDAR data.

basis of robot perception, have also begun promoting
performance improvement through collaboration between
multiple agents. Accordingly, a new SLAM task,
Collaborative SLAM (C-SLAM in short) for multiple agents,
has been developed in the robotics community [9, 10,
22, 24] and aims to improve the robustness, efficiency,
and accuracy of localization and mapping by leveraging
the interchange of spatial information across multiple
agents [16, 28].

Despite this progress, C-SLAM remains limited in terms
of benchmarking [13]. While standardized benchmarks for
single robot SLAM have emerged extensively, systematic
evaluation techniques and datasets for C-SLAM are still
lacking [13]. For example, the OpenLORIS-Scene
dataset [20], as a SLAM dataset for a single service robot,
encompasses various challenges encountered in service
environments, such as textureless scenes, dynamic objects,
and viewpoint changes. However, early datasets for C-
SLAM [7, 14] are acquired only in static and indoor
experimental environments, excluding dynamic objects.
To alleviate these limitations, a few datasets that include
dynamic objects, such as humans or vehicles, have recently
been proposed [5, 8, 23, 27], but they are mainly acquired
from urban outdoor scenes or limited indoor environments
(e.g., only a small corridor or a room-size laboratory).
In other words, there is still a lack of diversity in
service environments for multi-robot in terms of benchmark
datasets (see Table 1).

In the case of service robots, they operate for long
periods of time in various indoor environments, where they
have diverse interactions. Concretely, each service robot
can move through complex indoor spaces, collaborate with
others, or interact with people in service environments,
such as hospital, restaurant and office [11, 16, 17].
Notably, while multiple service robots are in operation,
challenging scenarios arise for performing C-SLAM. For
example, they may encounter homogeneous scenes or
severe occlusions/sudden large rotations caused by dynamic
objects. Motivated by this fact, in this work, we introduce
a new multi-modal C-SLAM dataset for multiple service
robots in indoor service environments, called CSE dataset;
especially, our CSE dataset includes various indoor service

environments, such as hospital, office and warehouse (see
Office in Fig. 1), and mimics diverse and challenging
scenarios for service robots.

In constructing our dataset, we consider several essential
factors that must be satisfied as a C-SLAM dataset
for service robots. 1) Each robot must provide time-
synchronized and abundant sensor modalities that can allow
us to demonstrate SLAM for different sensor combinations.
2) Multi-robot should explore diverse paths in various
service environments, and precise and time-synchronized
ground truth (GT) poses for each robot are essential for
evaluating C-SLAM. It should be noted that acquiring
accurate time-synchronized sensor data and GT poses
among multi-robot is non-trivial in the real world. 3) Multi-
robot must reproduce various scenarios that can occur
in real service environments, such as avoiding dynamic
objects during path planning and robot-human/robot-robot
interactions at close distances. To satisfy the above factors,
we propose a new synthetic C-SLAM dataset for multiple
service robots using a simulator, NVIDIA Isaac Sim [2],
which provides photo-realistic sensor data. Based on
NVIDIA Isaac Sim, we acquire time-synchronized sensor
data and accurate GT poses for multi-robot. We also
configure various service environments with the challenges
that arise in real-world service environments. Each
environment is separated into static and dynamic, based
on the on/off of dynamic objects. In particular, in the
case of dynamic objects like humans, anonymity can be
guaranteed by using simulation. In addition, we also build
a realistic dataset by simulating the actions that occur when
real service robots drive. The main characteristics of our
dataset are:
• We propose the first synthetic C-SLAM dataset for

multiple service robots, CSE dataset. Each robot includes
stereo RGB, stereo depth, inertial measurement unit
(IMU), and GT pose, and all data are precisely time-
synchronized.

• We acquire data in diverse service environments
(hospital, warehouse, office) where real service robots
could operate. For each environment, we place the
dynamic objects with suitable actions and include diverse
challenging cases, such as homogeneous walls/floors and

redundant objects.
• We construct the scenarios considering intra/inter-robot

loop closures to facilitate the appropriate evaluation of C-
SLAM. In addition, we separate each environment into
static and dynamic to acquire data in the same scenario.
This allows us to evaluate the efficiencies of SLAM
algorithms dealing with dynamic objects.

• We validate our dataset by evaluating diverse state-of-
the-art multi-robot SLAM. We also analyze the impact
and limitations of the various challenges in our dataset on
SLAM algorithms.

2. Related work
The goal of C-SLAM algorithms is to enhance the
efficiency and accuracy that surpass the capabilities of
single-robot SLAM by integrating data from individual
robots to form globally consistent maps and state
estimates [13]. Due to their advantages, such as
enabling mapping over large areas and facilitating efficient
exploration and task execution, C-SLAM has gained
significant attention in research. Nevertheless, there is
still a shortage of benchmark datasets for evaluating and
developing C-SLAM.

UTIAS [14] is the first dataset for multi-robot SLAM.
UTIAS presents a 2D multi-robot SLAM dataset based on
15 distinct landmarks in a 15m × 8m indoor environment,
using five robots equipped with a monocular camera.
However, it is limited to a constrained indoor experimental
space and offers only 2D GT poses. AirMuseum [7]
and GRACO [27] are multi-robot SLAM datasets utilizing
heterogeneous agent platforms. AirMuseum was acquired
in an indoor environment with multiple ground robots
and drones equipped with apriltag markers, providing GT
trajectories through Structure from Motion (SfM). But
it only assumes a static indoor environment. GRACO
involves the use of ground robots and drones in outdoor
urban scenes. However, they do not include challenging
cases, such as occlusions due to various dynamic objects,
that robots may face in the real world. Additionally, S3E [8]
proposes a long-term multi-modal dataset using multiple
ground robots in both indoor and outdoor environments
based on four well-designed trajectory paradigms. Tian et
al. [23] also acquired data using eight ground robots,
including dynamic objects (e.g., vehicles and pedestrians)
and different lighting conditions in environments, such as
urban outdoor scenes and indoor environments like tunnels
and corridors.

Unlike most C-SLAM datasets that are mainly acquired
in urban outdoor scenes or limited indoor environments, our
CSE dataset covers various indoor environments specialized
for service robots. Furthermore, existing C-SLAM datasets
do not reflect the characteristics that occur when real robots
move since humans control the robot manually. In contrast,

(a) (b)

Figure 2. Robot configuration and sensor data example. (a)
The NVIDIA Carter, our robot platform. (b) Examples of acquired
sensor data (stereo RGB, stereo depth, GT poses and IMU).

we leverage the ROS Navigation Stack1 for robot driving,
which enable more realistic scenarios, allowing the robots
to recognize their environment and avoid dynamic objects.

3. C-SLAM Dataset in Service Environments
In this section, we present a new benchmark synthetic
dataset for C-SLAM in service environments, CSE dataset.
The proposed CSE dataset is basically built upon NVIDIA
Isaac Sim [2] and NVIDIA Omniverse [3]. NVIDIA Isaac
Sim is a robotics simulator powered by the Omniverse
platform that provides photo-realistic and physically
accurate virtual environments. Thus, it allows us to collect
accurate GT poses and time-synchronized sensor data. The
proposed CSE dataset is acquired in three indoor service
environments with challenging cases, including serious
occlusions by dynamic objects, homogeneous floors, and
redundant objects, etc. We categorize each environment
into static and dynamic, thereby providing a total of 18
sequences for SLAM (6 sequences for C-SLAM).

This section is organized as follows: Sec. 3.1 describes
the robot platform and how to navigate the robot in the
simulation. Sec. 3.2 provides the details about the sensor
specifications, including types and properties of sensor
modalities and time-synchronization method. Sec. 3.3
introduces how we construct the service environments used
for data acquisition. Finally, Sec. 3.4 offers considerations
and details about the scenarios for the robots in each
environment.

3.1. Robot Configurations

As a robot platform, we utilize the NVIDIA Carter URDF2

provided by Isaac Sim (see Fig. 2(a)). Carter3 is a
differentiable drive robot with two wheels on each side
that is designed for verifying the capabilities of the Isaac
SDK4. Isaac SDK is intended to develop applications for

1https://wiki.ros.org/navigation
2URDF (Unified Robot Description Format) is a standard data format

for describing a robot’s structure in XML that defines its components, size,
shape, position, and joint information.

3https://docs.nvidia.com/isaac/archive/2020.2/
doc/tutorials/carter_hardware.html

4https://docs.nvidia.com/isaac/archive/2021.1/
doc/overview.html

https://wiki.ros.org/navigation
https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
https://docs.nvidia.com/isaac/archive/2021.1/doc/overview.html
https://docs.nvidia.com/isaac/archive/2021.1/doc/overview.html

Figure 3. Example of service environments in the proposed CSE dataset. Each row shows the service environments we built (Hospital,
Warehouse, and Office in order) from several viewpoints. Odd columns represent static environments, while even columns represent
dynamic environments. In particular, we can observe dynamic objects having suitable actions and clothes for each environment.

complicated use cases, such as delivery robots, and the
Carter is developed as a delivery robot. Accordingly, we
choose Carter as our robot platform for building the C-
SLAM dataset tailored for service robots. We deploy three
Carters as service robots in the target environments. We
operate this Carter using ROS Navigation Stack integrated
within Isaac Sim. ROS Navigation Stack is a 2D navigation
stack that generates a path to a target pose using odometry
and sensor data. It is utilized in the real world for robot
navigation, employing a global planner to plan the global
path, and a local planner detects and avoids surrounding
dynamic objects to navigate. By utilizing the ROS
Navigation Stack, we can simulate behaviors that occur
when real robots navigate. For example, robots may avoid
when they encounter each other or wait for a while when
their path is interrupted by dynamic objects.

It should be worth noticing that our approach reflects
realistic scenarios where robots are aware of their
surroundings and interact with dynamic objects. On the
other hand, existing datasets [7, 8, 23, 27] are generated
by humans controlling the robots manually. This approach
does not reflect the actions shown by real robots as
they perceive their surroundings and encounter unexpected
dynamic objects.

3.2. Sensor Configurations

For each robot, we attach several types of sensors for
perception in service environments, as shown in Fig. 2(b).
Specifically, the sensor system of each robot is equipped
with RGB and depth stereo cameras and an IMU sensor.
The resolution of both stereo RGB and depth cameras is
1280 x 720, and the baseline length is set to 12cm, following
the specification5 of the camera on board Carter. We also
provide camera parameters, such as intrinsic and extrinsic
between sensors, as the left RGB camera as the reference.

5https://docs.nvidia.com/isaac/archive/2020.2/
doc/tutorials/carter_hardware.html

For IMU, we provide empirically tuned IMU parameters.
Using this sensor system, we can acquire stereo RGB

images, stereo depth images, IMU measurements, and GT
poses for each robot through robot operating system (ROS),
as shown in Fig. 2(b). To follow sensor configurations in the
real world, we set Isaac Sim’s physics settings to 120 to set
the IMU to 120Hz. However, in this setting, all sensor data
are acquired at 120Hz. To handle this issue, we implement
a simple ROS node that filters image topics published at
120Hz to 30Hz and ensures sensor synchronization. In
addition, we provide a function that extracts 3D sparse point
clouds (i.e., pseudo-LiDAR measurements) from the depth
images. Details of sensor specifications and ROS topics are
available in the Appendix.

3.3. Service Environments

We select three common indoor service environments:
Hospital, Warehouse, and Office, where actual service
robots operate. Furthermore, we categorize each
environment into static and dynamic, building a total of six
environments. Figure 3 shows several examples of each
environment, including static and dynamic environment.
By categorizing each environment into static and dynamic,
we expect the following effects from our dataset. 1) It is
possible to build data that can cover challenging cases in the
service environment itself (static) and external challenges
that occur due to the addition of dynamic objects. 2)
These categorizations provide an opportunity to evaluate
the effectiveness of SLAM algorithms handling dynamic
objects. 3) Moreover, the robot navigates with the same
goal point in both static and dynamic environments, which
makes the evaluation more valid.

Service Scenes. We utilize basic scenes provided by
NVIDIA and modify them with additional construction
for our purposes. In the case of Hospital and Office,
we proceed with structural and textural modifications to
reflect the challenging cases. In addition, we build

https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html

(a) Hospital (b) Office (c) Warehouse

Figure 4. Challenging cases in the viewpoint of robots.
Each column shows the challenging cases that occur in each
environment. In particular, it indicates severe occlusions due to
dynamic objects.

realistic environments by manually placing various assets
suitable for each environment. For Warehouse, we use
the SceneBlox tool6 of NVIDIA Omniverse Replicator to
generate a basic scene. SceneBlox is a tool for creating
large and consistent simulation scenes. Based on this tool,
we generate the basic scene for Warehouse, and do the same
post-processing as Hospital and Office.

Hospital, with 76m × 45m, mainly consists of narrow
and long corridors. Specifically, the walls and floors
of Hospital are homogeneous, making it hard to extract
the visual information and re-localization difficult. For
example, there are a series of doors and objects with the
same design in the corridors. In other words, there are lots
of redundant objects placed, which can create ambiguity in
feature matching and significantly reduce pose estimation
accuracy. Office with 31m × 94m comprises two large
spaces connected by short corridors. It includes the various
challenging cases since it has homogeneous walls and floors
and ceilings with repetitive patterns. In addition, the floor
is made up of reflective materials; reflective properties,
especially, can cause another challenge by light reflections.
Warehouse is a cuboid shape with 56m x 74m, where large
grid structures are regularly arranged. Similar to Hospital, it
consists of homogeneous walls and floors, as well as a large
number of redundant doors and boxes, which can make
feature matching challenging.

Dynamic Objects. All dynamic environments are built by
placing dynamic objects based on each static environment.
As dynamic objects, we utilize human assets provided by
NVIDIA and purchased assets from ActorCore7 suitable for
each environment. Dynamic objects are evenly distributed
spatially and perform suitable actions to each environment.

6https://docs.omniverse.nvidia.com/isaacsim/
latest/replicator_tutorials/tutorial_replicator_
sceneblox.html

7https://actorcore.reallusion.com/

For example, in the Hospital environment, there are doctors
walking around the rooms or nurses talking at the reception
desk. For Office, the office workers are sitting in chairs,
conversing with each other, and answering phone calls.
In addition, dynamic objects move around specific areas
continuously. Through these movements, as illustrated
in Fig. 4, severe occlusions can occur, obstructing the
camera’s view. We show the human asset figures for each
environment used in our dataset in the Appendix.

3.4. Scenarios

C-SLAM involves multiple robots collaborating to explore
the environments and build a map. During this process,
each robot visits the same location repeatedly (i.e., intra-
robot loop closure) and frequently encounters each other
(i.e., inter-robot loop closure). Such inter- and intra-robot
loop closures are essential for the robots to estimate their
pose and build the map accurately. Based on this fact, we
design the scenarios considering inter- and intra-robot loop
closures. In particular, for inter-robot loop closures, we
categorize it into more detailed interaction types (Follow,
Intersection, Overlap). Follow describes a situation where
one robot follows behind another, and Intersect means
where the robots are across each other. These occur when
robots are in the same area at the same time. Finally,
Overlap refers to a situation where they pass through
the same region at different times in the same direction.
Illustration for each type is available in the Appendix.

For each environment, the static and dynamic scenarios
share the same goal points for operating each robot.
However, since we use ROS Navigation Stack to navigate
robots, the paths between goal points in static and dynamic
scenarios do not match perfectly, but they are almost
identical. The scenarios for each robot across the three
environments are as shown in Fig. 5, and Table 2 mentions
the characteristics and interaction types of the scenarios for
each environment. Additionally, our dataset can be utilized
by dividing each sequence into multiple sub-sequences. We
acquired data over a long period of time, and the robot
encounters a variety of challenges in different regions as
it drives. Therefore, each sequence can be separated and
utilized according to its intended purpose.

Hospital. The scenarios for Hospital are depicted in
Fig. 5(a). All robots navigate from different starting points
and return to them.

Static: All of the robot’s scenarios consist of driving
down long corridors and exploring small spaces. In
common, they perform large rotations when exploring small
spaces to avoid collision. These large rotations can quickly
change the camera’s view, making pose estimation difficult.
ROBOT 1 and ROBOT 3 include the intra-robot loop closure
when they arrive at the endpoints, but ROBOT 2 does not
include it. However, for ROBOT 2, the scenario consists of

https://docs.omniverse.nvidia.com/isaacsim/latest/replicator_tutorials/tutorial_replicator_sceneblox.html
https://docs.omniverse.nvidia.com/isaacsim/latest/replicator_tutorials/tutorial_replicator_sceneblox.html
https://docs.omniverse.nvidia.com/isaacsim/latest/replicator_tutorials/tutorial_replicator_sceneblox.html
https://actorcore.reallusion.com/

(a)

(b)

(c)

Robot 3Robot 2Robot 1

End pointStart point

Figure 5. Scenarios in the proposed CSE dataset. We visualize
scenarios for each dynamic environment on its 2D occupancy map
with the same scale. Note that scenarios in this illustration only
show dynamic environments.
exploring the overall area of the Hospital, which results in
a lot of Overlap with both robots. Therefore, in the case of
ROBOT 2, there are no intra-robot loop closures, but there
are many inter-robot loop closures with other robots. In
addition, there are scenarios where ROBOT 3 encounters the
other robots (Intersect), and ROBOT 3 follows ROBOT 1,
resulting in inter-robot loop closure.

Dynamic: In dynamic environments, humans avoid
obstacles (i.e., robots) only when they observe them at close
range. This leads to challenging cases where a large number
of dynamic objects obstruct the robot’s view. In particular,
for ROBOT 2 and ROBOT 3, the robots capture the motion
where dynamic objects avoid the robots at very close. This
causes extreme occlusions in the robot’s view, as shown in
Fig. 4(a). This can lead to challenges where the robot makes
wrong feature associations.

Office. Figure 5(b) is the scenarios for Office. Similar to
scenarios in the Hospital, every robot has different starting
points. ROBOT 2 and ROBOT 3 finish their navigation near
their starting points, whereas ROBOT 1 ends at the different
location from its starting point.

Static: ROBOT 2 and ROBOT 3 drive over a specific
region repeatedly, and ROBOT 1 drives in the overall area of
Office. In the case of ROBOT 2, it consists of complicated
scenarios that involve driving through both rooms and
corridors. This causes ROBOT 2 to make large rotations
when going through the narrow doors. The scenarios for
ROBOT 2 and ROBOT 3 have many intra-robot loop closures
due to repeatedly driving over the same areas. However, in
the case of ROBOT 1, there are no intra-robot loop closures,
but has lots of Overlap that causes the inter-robot loop
closures because it drives through the entire environment.

Dynamic: The dynamic Office environment has about
twice as many humans as Hospital. As a result, all robots
suffer from extreme occlusions, where their camera views
are blocked by many humans, as shown in Fig. 4(b).
Furthermore, due to dynamic objects moving around a
specific area, each robot captures the same person in a

different location. This can lead to challenges with incorrect
inter-robot loop closures between robots.

Warehouse. Figure 5(c) shows the scenarios for
Warehouse. All robots start from different starting points
and converge in the same space to finish their navigation.

Static: In this environment, the robots drive between
large, regularly aligned structures. The scenarios for
ROBOT 2 and ROBOT 3 involve intra-robot loop closures;
especially, ROBOT 2 contains many intra-robot loop
closures since it repeatedly drives over the same regions.
In contrast, ROBOT 1 contains no intra-robot loop closures.
However, for the warehouse scenarios, all robots contain
many inter-robot loop closures. For example, ROBOT 1
may drive back through the area that ROBOT 3 passed
through (Overlap), and ROBOT 2 may drive behind ROBOT
1 (Follow). In particular, ROBOT 1 and ROBOT 2 intersect
each other, which leads to the challenges of observing each
other at close range, resulting in extreme occlusion. In
addition, ROBOT 1 and ROBOT 2 overlap their driving
paths in narrow sections, causing ROBOT 2 to perform a
recovery behavior. Recovery behavior means that when
the robot encounters unexpected obstacles and dynamic
environment changes during the path planning process, the
robot recognizes and solves the problem by itself so that
it can drive again. This happens because we utilize the
ROS Navigation Stack. In this environment, ROBOT 2 sees
ROBOT 1 as a dynamic obstacle and stops, then resumes
driving once it is sure that it is no longer obstructing its
path. In this case, the robot can cause severe occlusions
as a dynamic object. These scenarios can be seen as well
reflecting the real-world situations.

Dynamic: Dynamic Warehouse environment also has
lots of humans, similar to dynamic Office environments. As
a result, all robots will encounter many humans at fairly
close range. Through this, extreme occlusions occur very
frequently in the robot’s camera view.

4. Experiments
In this section, we perform validation on our dataset by
evaluating diverse SLAM algorithms. We describe SLAM
algorithms utilized to evaluate our proposed dataset. We
also provide analysis of results on our dataset for each
algorithm. Experimental details related to single-robot
SLAM and visualization results of SLAM algorithms are
available in Appendix.

4.1. Baseline

C-SLAM for Multi-Robot. COVINS [19] is a centralized
visual-inertial SLAM system that utilizes data collected
from multiple robots. This system gathers data generated
by ORB-SLAM3 from numerous robots to perform
global optimization, and it enhances joint estimation by

Table 2. Dynamic scenario configurations.

Environment Robot Duration (s) Length (m)
Loop Closure

Characteristics / Challenges† Size
of

Intra
Inter dynamic

Follow Intersection Overlap objects*

Hospital
ROBOT 1 373.1 124.0 ✓ ✓ ✓

Long corridors / Homogeneous floor 76m × 45m 3 + 16ROBOT 2 563.1 200.6 ✓ ✓
ROBOT 3 509.1 182.8 ✓ ✓ ✓ ✓

Office
ROBOT 1 604.5 210.1 ✓ ✓ Complex space with rooms and corridors /

31m × 94m 3 + 37ROBOT 2 703.5 238.2 ✓ ✓ ✓ Repetitive pattern (floor, ceiling),
ROBOT 3 508.5 175.9 ✓ ✓ Reflective material floor

Warehouse
ROBOT 1 645.0 250.1 ✓ ✓ ✓

Large regular grid structures / Homogeneous floor 56m × 74m 3 + 38ROBOT 2 643.1 254.7 ✓ ✓ ✓
ROBOT 3 631.1 251.0 ✓ ✓ ✓ ✓

† In common, service environments in our dataset include visual redundancy, dynamic objects, and homogeneous walls.
* The number of objects that include robots and humans.

incorporating place recognition and eliminating redundant
data. Kimera-Multi [6] also is a SLAM system
designed for multi-robot environments, where each robot
communicates with others to understand the environment
in real-time. It improves local estimations through inter-
robot loop closures and constructs a globally consistent,
real-time metric-semantic 3D mesh model. Swarm-
SLAM [12] employs a decentralized approach, utilizing
novel techniques for efficient communication between
robots and rapid convergence. This framework is well-
suited for large-scale deployment, and its effectiveness in
terms of accuracy and resource utilization efficiency has
been demonstrated through empirical experiments.

Swarm-SLAM-D is an algorithm we developed to assess
the impact of dynamic objects on SLAM algorithms. This
algorithm is designed to maintain localization performance
in dynamic environments by incorporating the dynamic
feature removal module of DS-SLAM [25] into Swarm-
SLAM. The dynamic feature removal module of DS-SLAM
identifies and eliminates specific feature points based on
whether they are dynamic, using both previous and current
frames as references. The implementation details of
Swarm-SLAM-D is available in Appendix.

4.2. Experimental setup

To comprehensively evaluate various sensor modalities
offered by our dataset, we conduct evaluations using RGB-
D, stereo-inertial, and mono-inertial modalities provided
by each baseline algorithm. The trajectories estimated
from each baseline are measured for performance using
the absolute trajectory error (ATE). The whole evaluation
process is conducted with EVO [1] python library package.

For multi-robot SLAM algorithms, we adjust the play
rate to 0.5× speed and evaluate using three robots
concurrently for each scene. The adjustment of the play rate
is necessary to facilitate the smooth running of multi-robot
SLAM, given its characteristic requirement for substantial
computational resources.

Figure 6. Challenging case on SLAM. This figure represents the
failure case that occurred during evaluating SLAM algorithms on
our dataset. In this case, invalid feature matching occurred due to
the moving and dynamic object at different times.

4.3. Results and analysis

C-SLAM for Multi-Robot. Table 3 shows the evaluation
results of multi-robot SLAM on our dataset. In static
environments, Swarm-SLAM shows robust performance
compared to other multi-robot SLAM algorithms on RGB-
D and stereo setup. On the other hand, in dynamic
environments, there is a notable reduction in performance
for both setup, especially in Hospital. This performance
drop indicates that Swarm-SLAM encounters challenges
across both modalities in dynamic environments. However,
Swarm-SLAM-D shows higher accuracy compared to
Swarm-SLAM due to the dynamic feature removal module
as shown in Table 3. It indicates that the presence
of dynamic objects has a significant impact on the
performance of Swarm-SLAM. The result of dynamic
feature removal of Swarm-SLAM-D is available in
Appendix.

For COVINS, it shows inferior performance and
numerous failures throughout our dataset. This is because
centralized SLAM shares one global frame among the
robots; a failure case occurring in a single robot can
also affect another. Similarly, we also experimented with
Kimera-Multi, which failed in all sequences.

In addition, we observe that multi-robot SLAM can
fail even if the place recognition module performs well.
For example, although a robot recognizes the same place
by the place recognition module (see Fig. 6), dynamic
objects observed in the viewpoint can cause incorrect

Table 3. Baseline evaluation of C-SLAM for multi-robot (RMS ATE in meter).

COVINS [19] Swarm-SLAM [12] Swarm-SLAM-D (w/ Dynamic)

Sequences Monocular-Inertial RGB-D Stereo RGB-D Stereo

Static

Hospital
ROBOT 1 9.431 0.176 0.387 – –
ROBOT 2 2.010 0.149 0.405 – –
ROBOT 3 △ 0.130 0.318 – –

Office
ROBOT 1 9.232 1.281 0.104 – –
ROBOT 2 8.917 1.288 0.121 – –
ROBOT 3 8.774 0.739 0.067 – –

Warehouse
ROBOT 1 ✕ 0.827 0.189 – –
ROBOT 2 ✕ 0.697 0.165 – –
ROBOT 3 ✕ 0.588 0.120 – –

Dynamic

Hospital
ROBOT 1 ✕ 9.441 13.670 0.585 0.323
ROBOT 2 ✕ 1.797 0.426 1.586 0.440
ROBOT 3 ✕ 8.431 1.522 2.343 0.739

Office
ROBOT 1 ✕ 0.888 0.113 0.198 0.089
ROBOT 2 ✕ 0.721 0.111 0.376 0.072
ROBOT 3 ✕ 0.491 0.079 0.229 0.126

Warehouse
ROBOT 1 9.560 0.894 0.228 15.721 0.313
ROBOT 2 7.203 0.582 0.192 0.231 0.159
ROBOT 3 11.539 0.670 0.151 15.031 0.122

✕ Fail to estimate trajectory due to algorithm halt during operation.
– We do not evaluate static conditions for Swarm-SLAM-D.
△ Only run ROBOT 1 and ROBOT 2, excluding ROBOT 3 due to its influence on the algorithm’s shutdown.

feature matching. As a result, the existence of dynamic
objects can lead to inaccurate bundle adjustment. This rare
edge case in single-robot SLAM becomes more prevalent
in multi-robot SLAM, where robots exchange observations
in various encounter cases, such as Overlap, Follow, and
Intersect. The performance of multi-robot SLAM is
affected not only by dynamic characteristics but also by
various other characteristics in our dataset. We provide
additional analysis of these characteristics and influences in
the Appendix.

In summary, the proposed CSE dataset can help analyze
how the characteristics contained in the service environment
affect SLAM algorithms and have the potential to improve
SLAM performance in the service environments. We will
release our dataset for promoting C-SLAM in robotics
community.

5. Conclusion

In this work, we have proposed the CSE dataset, a
new synthetic C-SLAM benchmark dataset for multiple
service robots. Unlike previous C-SLAM datasets that are
mainly acquired in urban outdoor scenes or limited indoor
environments (e.g., corridors or room-size laboratories),
we focused on acquiring C-SLAM datasets with three
robots from three common indoor service environments
that reflect diverse, challenging cases that may occur in
real-world service environments. Each environment is
divided into static and dynamic, and each robot drives
through the same scenario in both static and dynamic
environments. This design strategy provides an opportunity

to evaluate the effectiveness of multi-robot SLAM in
dealing with a variety of dynamic objects. We also build
data that reflects the driving properties of real-world service
robots since the robots recognize their surroundings and
drive themselves in the simulation. Through all these
various characteristics, we expect our CSE dataset will
contribute to the advancement of C-SLAM research for
multiple service robots.

Acknowledgements. This work was supported by Institute
of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.2022-0-00907, Development of AI Bots
Collaboration Platform and Self-organizing, No.2020-0-
01336, Artificial Intelligence Graduate School Program
(UNIST)).

References
[1] https://github.com/michaelgrupp/evo. 7
[2] Nvidia isaac sim, https://developer.nvidia.com/isaac-sim. 2,

3
[3] Nvidia omniverse, https://www.nvidia.com/en-

us/omniverse/. 3
[4] https://www.market-prospects.com/articles/what-is-a-

service-robot. 1
[5] Siddharth Agarwal, Ankit Vora, Gaurav Pandey, Wayne

Williams, Helen Kourous, and James McBride. Ford multi-
av seasonal dataset. IJRR, 39(12):1367–1376, 2020. 2

[6] Yun Chang, Yulun Tian, Jonathan P How, and Luca Carlone.
Kimera-multi: a system for distributed multi-robot metric-

semantic simultaneous localization and mapping. In ICRA,
2021. 7

[7] Rodolphe Dubois, Alexandre Eudes, and Vincent Frémont.
Airmuseum: a heterogeneous multi-robot dataset for stereo-
visual and inertial simultaneous localization and mapping. In
MFI, 2020. 2, 3, 4

[8] Dapeng Feng, Yuhua Qi, Shipeng Zhong, Zhiqiang Chen,
Yudu Jiao, Qiming Chen, Tao Jiang, and Hongbo Chen. S3e:
A large-scale multimodal dataset for collaborative slam. In
arXiv, 2022. 2, 3, 4

[9] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and
Sebastian Thrun. A probabilistic approach to collaborative
multi-robot localization. Autonomous robots, 8:325–344,
2000. 2

[10] Cullen Jennings, Don Murray, and James J Little.
Cooperative robot localization with vision-based mapping.
In ICRA, 1999. 2

[11] A.A. Nippun Kumaar and Sreeja Kochuvila. Mobile service
robot path planning using deep reinforcement learning. IEEE
Access, 2023. 2

[12] Pierre-Yves Lajoie and Giovanni Beltrame. Swarm-slam:
Sparse decentralized collaborative simultaneous localization
and mapping framework for multi-robot systems. In arXiv,
2023. 7, 8

[13] Pierre-Yves Lajoie, Benjamin Ramtoula, Fang Wu, and
Giovanni Beltrame. Towards collaborative simultaneous
localization and mapping: a survey of the current research
landscape. In arXiv, 2021. 2, 3

[14] Keith YK Leung, Yoni Halpern, Timothy D Barfoot, and
Hugh HT Liu. The utias multi-robot cooperative localization
and mapping dataset. IJRR, 30(8):969–974, 2011. 2, 3

[15] Shih-Yun Lo, Benito Fernandez, and Peter Stone. Iterative
human-aware mobile robot navigation. In RSS, 2017. 1

[16] Ming Ouyang, Xuesong Shi, Yujie Wang, Yuxin Tian,
Yingzhe Shen, Dawei Wang, Peng Wang, and Zhiqiang Cao.
A collaborative visual slam framework for service robots. In
IROS, 2021. 1, 2

[17] Stefanie Paluch, Jochen Wirtz, and Werner H Kunz.
Service robots and the future of services. Marketing
Weiterdenken: Zukunftspfade für eine marktorientierte
Unternehmensführung, pages 423–435, 2020. 1, 2

[18] Laurel D Riek. The social co-robotics problem space: Six
key challenges. In RSS, 2013. 1

[19] Patrik Schmuck, Thomas Ziegler, Marco Karrer, Jonathan
Perraudin, and Margarita Chli. Covins: Visual-inertial slam
for centralized collaboration. In ISMAR-Adjunct, 2021. 6, 8

[20] Xuesong Shi, Dongjiang Li, Pengpeng Zhao, Qinbin Tian,
Yuxin Tian, Qiwei Long, Chunhao Zhu, Jingwei Song, Fei
Qiao, Le Song, et al. Are we ready for service robots? the
openloris-scene datasets for lifelong slam. In ICRA, 2020. 1,
2

[21] Jörg Stückler, Kathrin Gräve, Jochen Kläß, Sebastian
Muszynski, Michael Schreiber, Oliver Tischler, Ralf
Waldukat, and Sven Behnke. Dynamaid: Towards a personal
robot that helps with household chores. In RSS, 2009. 1

[22] Sebastian Thrun. A probabilistic on-line mapping algorithm
for teams of mobile robots. IJRR, 20(5):335–363, 2001. 2

[23] Yulun Tian, Yun Chang, Long Quang, Arthur Schang,
Carlos Nieto-Granda, Jonathan P How, and Luca Carlone.
Resilient and distributed multi-robot visual slam: Datasets,
experiments, and lessons learned. In arXiv, 2023. 2, 3, 4

[24] Stefan B Williams, Gamini Dissanayake, and Hugh Durrant-
Whyte. Towards multi-vehicle simultaneous localisation and
mapping. In ICRA, 2002. 2

[25] Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang, Qi
Wei, and Qiao Fei. Ds-slam: A semantic visual slam towards
dynamic environments. In IROS, 2018. 7

[26] Yali Zheng, Shinan Chen, and Hong Cheng. Real-time cloud
visual simultaneous localization and mapping for indoor
service robots. IEEE Access, 8:16816–16829, 2020. 1

[27] Yilin Zhu, Yang Kong, Yingrui Jie, Shiyou Xu, and Hui
Cheng. Graco: A multimodal dataset for ground and aerial
cooperative localization and mapping. RA-L, 8(2):966–973,
2023. 2, 3, 4

[28] Danping Zou, Ping Tan, and Wenxian Yu. Collaborative
visual slam for multiple agents: A brief survey. Virtual
Reality & Intelligent Hardware, 1(5):461–482, 2019. 2

A Benchmark Synthetic Dataset for C-SLAM in Service Environments

Appendix

Overview
In this Appendix, we provide additional information that
could not be handled in the main paper due to space
constraints, as follows:
• In Sec. 1, we describe the details involved in constructing

the dataset such as 1) the details of sensor modalities
for each robot (Sec. 1.1), 2) the human assets examples
we used to build the environments (Sec. 1.2), and 3) the
various interaction types we considered when configuring
the scenarios (Sec. 1.3).

• In Sec. 2, we describe additional details of experiments on
SLAM algorithms such as 1) experiments on single-robot
SLAM (Sec. 2.1), 2) implementation details of Swarm-
SLAM-D (Sec. 2.2), 3) additional analysis of failure cases
of SLAM in challenging scenarios (Sec. 2.3).

1. Additional details of the CSE dataset
In this section, we provide the additional information
involved in constructing our CSE dataset.

1.1. Sensor configurations

Table 1 shows the sensor specifications, ROS topics, and
topic message types provided for each robot. The topic
name starts with the namespace of each robot (e.g., carter1).
RGB images are compressed for efficient storage, and depth
images are scaled by a factor of 1000. It means that the units
of the depth images corresponds to millimeter (e.g., a pixel
of 1000 of depth images is the same with a distance of 1
meter from the camera).

1.2. Dynamic objects

Our dataset, CSE, is collected in three common indoor
service environments: Hospital, Office, and Warehouse,
where real service robots operate. For configuring the
more realistic environments in our dataset, we utilize the
dynamic objects having suitable actions and clothes for
each environment. For example, Hospital environment
is mainly composed of doctors and nurses, who perform
natural movements, such as walking around the rooms,
answering a phone, or having conversations at the reception
desk. Not only that, these dynamic objects can also
cause challenges for the robot, such as extreme occlusions,
since humans repeatedly walk around specific regions.
In addition, these dynamic objects can cause incorrect
feature matching. In the case of Office and Warehouse as
well, they are composed of office workers or construction
workers, all of whom perform movements appropriate to

(a) Hospital (b) Office (c) Warehouse

Figure 1. Dynamic objects for each environment. Each column
shows the examples of the human assets used in each service
environment. The first row represents the collections of some
human assets used in each environment. The second row shows the
example illustrations of human assets performing the appropriate
motions for each environment.

(c) Overlap(a) Follow (b) Intersection

Figure 2. Scenario Types. Each column shows the examples
of each scenario type. (a) The first column (Follow) describes a
situation where one robot follows behind another. (b) The second
column (Intersection) means where the robots are across each
other. (c) In the third column (Overlap) refers to a situation
where they pass through the same region at different times in the
same direction. The blurry-colored and the dark-colored robots are
different robots, and they pass through the same area at different
times.

the environment, which can be seen in Fig. 1. As dynamic
objects, we uilitze the human assets provided by NVIDIA
and purchased assets from ActorCore 1 suitable for each
environment.

1.3. Scenario types

We design the scenarios considering diverse interactions,
including inter- and intra-robot loop closures. In particular,
in the case of inter-robot loop closure, we divide it into three
types (Follow, Intersection, Overlap), as shown in Fig. 2.
We configure our scenarios by evenly distributing these
scenario types across the robot-specific scenarios.

2. Additional details of experiments on SLAM
In this section, we provide the additional details of
experiments on single-robot SLAM and multi-robot SLAM
algorithms. Visualization results for all SLAM algorithms
we used can be seen in Fig. 6

1https://actorcore.reallusion.com/

https://actorcore.reallusion.com/

Table 1. Sensor Configurations.

Data Resolution Rate Topic Name Message Type

Stereo left RGB 1280×720 30Hz /carter/rgb left/compressed sensor msgs/CompressedImage
Stereo right RGB 1280×720 30Hz /carter/rgb right/compressed sensor msgs/CompressedImage
Stereo left Depth 1280×720 30Hz /carter/depth left sensor msgs/Image

Stereo right Depth 1280×720 30Hz /carter/depth right sensor msgs/Image
IMU - 120Hz /carter/imu sensor msgs/Imu

Ground Truth Pose - 120Hz /carter/gt pose nav msgs/Odometry

2.1. Experiments on single-robot SLAM

Baseline SLAM for single-robot is a task where SLAM is
executed using a single robot, and notable instances of this
approach include ORB-SLAM3 [1] and VINS-Fusion [3].
ORB-SLAM3 facilitates a range of camera configurations
and demonstrates outstanding performance by leveraging
pre-constructed maps in scenarios with restricted visual
data. VINS-Fusion is an optimization-based odometry
framework that utilizes visual and inertial information,
integrating sensor data into pose graph optimization for
accurate position estimation.
Experimental setup To comprehensively evaluate various
sensor modalities offered by our dataset, we conduct
evaluations using RGB-D, mono-inertial, and stereo-inertial
provided by each baseline algorithm. For single-robot
SLAM algorithms, we set the play rate of our dataset to
1.0× speed and perform evaluations of the all sequences
for all robots in each environment.
Results and analysis In Table 2, we show the evaluation
results for single-robot SLAM algorithms on our dataset.
We observe that both ORB-SLAM3 and VINS-Fusion
achieve the highest accuracy with the stereo-inertial setup
on average. Notably, in the Hospital, various static
objects, such as chairs and desks, make feature matching
easier than in other environments, resulting in higher pose
estimation accuracy. However, due to the challenging
cases of each environment, specific sequences lead to bad
estimation results. For example, We observe that ROBOT 3
performs incorrect place recognition in ORB-SLAM3 due
to redundant objects in the Warehouse, resulting in low
accuracy (see Fig. 3). Moreover, in the Warehouse, ROBOT
1 and ROBOT 2 encounter each other at close distance (see
in Fig. 5(a)), which makes obstructions in the camera view
of the moving robots, which leads to inadequate feature
matching in the VINS-Fusion. We can see that these
challenging cases adversely affect the accuracy of SLAM
algorithms.

2.2. Implementation details of Swarm-SLAM-D

Swarm-SLAM with dynamic environment (Swarm-SLAM-
D in short) is an algorithm we have implemented by
incorporating a moving consistency check module into

Figure 3. Challenging case on single-robot SLAM. This figure
represents the failure case that occurred during evaluating SLAM
algorithms on our dataset. In this case, failure of place recognition
occurred due to the similar structure at different location.

Dynamic feature (removed)Static feature

(a) (b)

Figure 4. The process of detecting and removing dynamic
features. (a) The left image shows the previous frame image,
where red circles represent feature points before their status is
determined. (b) In the right image, red circles indicate static
feature points, while blue circles represent dynamic feature points
detected and removed by the moving consistency check module.

the existing Swarm-SLAM [2]. The module is based
on DS-SLAM [4]. It identifies feature points as either
static or dynamic and then removes dynamic feature points
accordingly. The procedure of this module is as follows:

This module takes the previous frame image, feature
points of the previous frame image, and the current frame
image as inputs. From these inputs, it calculates the optical
flow to extract feature points for the current frame image.
Based on these extracted feature points, it computes the
fundamental matrix and then uses it to calculate the epipolar
lines. When feature points exceed a specified threshold with
respect to the epipolar lines, they are identified as dynamic
and removed dynamic feature points accordingly. Figure 4
illustrates the process of removing dynamic features based
on the previous and current frames image.

Table 2. Baseline evaluation of single-robot SLAM (RMS ATE in meter).

ORB-SLAM3 [1] VINS-Fusion [3]

Sequences RGB-D Monocular-Inertial Stereo-Inertial Monocular-Inertial Stereo-Inertial

Static

Hospital
ROBOT 1 0.015 0.191 0.017 4.863 0.331
ROBOT 2 0.057 16.056 0.061 0.513 0.210
ROBOT 3 0.040 7.897 ✕ 2.555 0.387

Office
ROBOT 1 0.058 3.764 0.038 2.042 0.213
ROBOT 2 0.023 8.903 6.676 3.513 0.471
ROBOT 3 3.432 0.094 3.040 4.244 0.170

Warehouse
ROBOT 1 0.565 ✕ ✕ 17.027 1.809
ROBOT 2 0.030 0.198 0.030 10.726 0.328
ROBOT 3 16.490 0.373 4.707 5.832 1.957

Dynamic

Hospital
ROBOT 1 0.023 0.108 0.019 2.244 0.525
ROBOT 2 0.098 ✕ ✕ 1.999 0.346
ROBOT 3 0.030 10.340 0.033 3.376 0.348

Office
ROBOT 1 0.090 0.256 13.424 2.546 0.253
ROBOT 2 0.060 ✕ ✕ 6.740 0.442
ROBOT 3 0.067 0.072 0.022 3.450 0.263

Warehouse
ROBOT 1 0.054 0.552 0.068 4.322 1.322
ROBOT 2 0.021 0.259 0.035 4.268 0.496
ROBOT 3 16.682 0.399 0.076 5.385 0.364

✕ Fail to obtain trajectory due to algorithm halt during operation.

2.3. Analysis of failure cases in challenging
scenarios

We note further scenarios in which SLAM algorithm
faces difficulties due to the challenging characteristics we
introduced. There is a scenario where robots are interacting
with each other (see Fig. 5(a)). When ROBOT 1 and
ROBOT 3 are close, the moving robots block parts of the
camera’s view, making it hard to capture visual features.
Also, the movement of robots to avoid each other changes
their speed. This change can make it difficult for SLAM
algorithms to accurately calculate the distance the robot
moved. These problems cause the algorithm to make an
incorrect trajectory path.

In service environments, it is common for humans and
robots to closely interact. Our dataset replicates this
phenomenon. In Hospital environment, a robot traversing
the corridor encounters a walking nurse, resulting in the
robot’s camera being substantially obscured by the nurse
(see Fig. 5(b)). This interaction, where a dynamic object
(the nurse) extensively obscures the static environment,
interrupts the extraction of features of the static object.
Consequently, this leads to a degradation in the performance
of visual SLAM algorithms.

There is another challenging case in a Hospital
environment, where the algorithm incorrectly identifies
different spaces as the same (see Fig. 5(c)). This issue
is arises because the Hospital environment is mainly
composed of homogeneous floors and walls that are
almost identical, and even if robots are arrive at different
locations, these characteristics can lead to incorrect inter-
robot loop closing. During the feature-matching process,
distinguishing between features becomes challenging, and
the limited number of features further interrupts effective

(a) (b) (c)

Figure 5. Challenging case on SLAM. Each column presents
the moments when SLAM algorithms fail to estimate the accurate
trajectory. (a) The first column shows the robot-robot interaction,
(b) the second column shows the dynamic human object, and (c)
the third column shows the homogeneous region.

matching. This leads to computational bottlenecks in the
operation of SLAM algorithm.

References
[1] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,

José MM Montiel, and Juan D Tardós. Orb-slam3: An
accurate open-source library for visual, visual–inertial, and
multimap slam. T-RO, 37(6):1874–1890, 2021. 2, 3

[2] Pierre-Yves Lajoie and Giovanni Beltrame. Swarm-slam:
Sparse decentralized collaborative simultaneous localization
and mapping framework for multi-robot systems. In arXiv,
2023. 2

[3] Tong Qin, Shaozu Cao, Jie Pan, and Shaojie Shen. A general
optimization-based framework for global pose estimation with
multiple sensors. In arXiv, 2019. 2, 3

[4] Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang, Qi
Wei, and Qiao Fei. Ds-slam: A semantic visual slam towards
dynamic environments. In IROS, 2018. 2

Hospital (dynamic)Hospital (static)Warehouse (dynamic) Office (static)

G
round truth

Sw
arm

-SLA
M

-D
 (rgb-d)

Sw
arm

-SLA
M

-D
 (stereo)

O
RB-SLA

M
3 (m

ono-inertial)
O

RB-SLA
M

3 (rgb-d)
O

RB-SLA
M

3 (stereo-inertial)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

G
round truth

Sw
arm

-SLA
M

-D
 (rgb-d)

Sw
arm

-SLA
M

-D
 (stereo)

O
RB-SLA

M
3 (m

ono-inertial)
O

RB-SLA
M

3 (rgb-d)
O

RB-SLA
M

3 (stereo-inertial)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

G
round truth

Sw
arm

-SLA
M

-D
 (rgb-d)

Sw
arm

-SLA
M

-D
 (stereo)

O
RB-SLA

M
3 (rgb-d)

Sw
arm

-SLA
M

 (rgb-d)
Sw

arm
-SLA

M
 (stereo)

V
IN

S-M
ono (m

ono-inertial)
V

IN
S-M

ono (stereo-inertial)

G
round truth

CO
V

IN
S (m

ono-inertial)
O

RB-SLA
M

3 (m
ono-inertial)

O
RB-SLA

M
3 (rgb-d)

O
RB-SLA

M
3 (stereo-inertial)

Sw
arm

-SLA
M

 (rgb-d)
Sw

arm
-SLA

M
 (stereo)

V
IN

S-M
ono (m

ono-inertial)
V

IN
S-M

ono (stereo-inertial)

G
round truth

CO
V

IN
S (m

ono-inertial)
O

RB-SLA
M

3 (m
ono-inertial)

O
RB-SLA

M
3 (rgb-d)

O
RB-SLA

M
3 (stereo-inertial)

Sw
arm

-SLA
M

 (rgb-d)
Sw

arm
-SLA

M
 (stereo)

V
IN

S-M
ono (m

ono-inertial)
V

IN
S-M

ono (stereo-inertial)

G
round truth

O
RB-SLA

M
3 (m

ono-inertial)
O

RB-SLA
M

3 (rgb-d)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

G
round truth

CO
V

IN
S(m

ono-inertial)
D

-Sw
arm

-SLA
M

 (rgb-d)
D

-Sw
arm

-SLA
M

 (stereo)
O

RB-SLA
M

3 (m
ono-inertial)

O
RB-SLA

M
3 (rgb-d)

O
RB-SLA

M
3 (stereo)

Sw
arm

-SLA
M

 (rgb-d)
Sw

arm
-SLA

M
 (stereo)

V
IN

S-M
ono (m

ono-inertial)
V

IN
S-M

ono (stereo-inertial)

G
round truth

CO
V

IN
S(m

ono-inertial)
D

-Sw
arm

-SLA
M

 (rgb-d)
D

-Sw
arm

-SLA
M

 (stereo)
O

RB
-SLA

M
3 (m

ono-inertial)
O

RB
-SLA

M
3 (rgb-d)

O
RB

-SLA
M

3 (stereo)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

G
round truth

CO
V

IN
S(m

ono-inertial)
D

-Sw
arm

-SLA
M

 (rgb-d)
D

-Sw
arm

-SLA
M

 (stereo)
O

RB-SLA
M

3 (m
ono-inertial)

O
RB-SLA

M
3 (rgb-d)

O
RB-SLA

M
3 (stereo)

Sw
arm

-SLA
M

 (rgb-d)
Sw

arm
-SLA

M
 (stereo)

V
IN

S-M
ono (m

ono-inertial)
V

IN
S-M

ono (stereo-inertial)

G
round truth

CO
V

IN
S (m

ono-inertial)
O

RB
-SLA

M
3 (m

ono-inertial)
O

RB
-SLA

M
3 (rgb-d)

O
RB

-SLA
M

3 (stereo)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

G
round truth

CO
V

IN
S (m

ono-inertial)
O

RB
-SLA

M
3 (m

ono-inertial)
O

RB
-SLA

M
3 (rgb-d)

O
RB

-SLA
M

3 (stereo)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

G
round truth

CO
V

IN
S (m

ono-inertial)
O

RB
-SLA

M
3 (m

ono-inertial)
O

RB
-SLA

M
3 (rgb-d)

O
RB

-SLA
M

3 (stereo)
Sw

arm
-SLA

M
 (rgb-d)

Sw
arm

-SLA
M

 (stereo)
V

IN
S-M

ono (m
ono-inertial)

V
IN

S-M
ono (stereo-inertial)

R
obot 1

R
obot 2

R
obot 3

Figure 6. The visualization of the results of SLAM algorithms in our dataset. Note that we only visualize the experiments that success
in full sequence.

	. Introduction
	. Related work
	. C-SLAM Dataset in Service Environments
	. Robot Configurations
	. Sensor Configurations
	. Service Environments
	. Scenarios

	. Experiments
	. Baseline
	. Experimental setup
	. Results and analysis

	. Conclusion
	. Additional details of the CSE dataset
	. Sensor configurations
	. Dynamic objects
	. Scenario types

	. Additional details of experiments on SLAM
	. Experiments on single-robot SLAM
	. Implementation details of Swarm-SLAM-D
	. Analysis of failure cases in challenging scenarios

