
Under review as submission to TMLR

Accumulator-Aware Post-Training Quantization
for Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

When quantizing weights and activations to increasingly narrower representations, the cost
of additions begins to dominate that of multiplications in multiply-accumulate (MAC)
units. Recent studies show that reducing addition costs via low-precision accumulation
improves throughput, power, and area across inference platforms, albeit with an increased
risk of overflow. Accumulator-aware quantization research has so far only considered the
quantization-aware training (QAT) paradigm, in which models are fine-tuned or trained from
scratch with quantization in the loop. As models and datasets continue to grow in size, QAT
techniques become increasingly more expensive, which has motivated the recent surge in
post-training quantization (PTQ) research. To bridge this gap, we introduce AXE—the first
accumulator-aware quantization framework explicitly designed to endow overflow avoidance
guarantees to PTQ algorithms. We present theoretical motivation for AXE and demonstrate
its flexibility by implementing it on top of two existing algorithms: GPFQ and OPTQ.
We design AXE to support multi-stage accumulation, opening the door to full datapath
optimization for the first time. We evaluate AXE using recent language generation models;
when quantizing Llama3 8B for a 16-bit multi-stage accumulation datapath, AXE maintains
up to 98% of the FP16 perplexity, surpassing naïve bit width manipulation by up to 15%.

1 Introduction

Neural network quantization is reaching an inflection point. Existing techniques commonly reduce inference
costs by restricting the precision of weights and activations to exploit low-precision datapaths in hardware. Al-
though substituting the standard full-precision floating-point operands with low-precision integer counterparts
can drastically reduce the cost of multiplications, this only accounts for part of the core multiply-accumulate
(MAC) operation; the resulting products are often still accumulated at 32 bits.

Amdahl’s Law (Amdahl, 1967) suggests that focusing solely on weights and activations yields diminishing
returns. While narrower operand datatypes reduce multiplication costs substantially, they reduce addition
costs at a much slower rate. Indeed, recent studies have demonstrated that addition becomes the bottleneck as
datatypes shrink, reporting significant benefits when the accumulator precision is restricted during inference.
For example, Ni et al. 2020 show that, when constraining operands to 3-bit × 1-bit multipliers, the cost of
32-bit accumulation consumes nearly 75% of the total power of their MAC unit; they report up to 3× power
savings when reducing to 8-bit accumulation. As few-bit integers increase in popularity (Ma et al., 2024; Liu
et al., 2025; Zhang et al., 2025b), we expect neural network quantization techniques will need awareness of
the accumulator to intentionally address this emerging bottleneck.

Exploiting low-precision accumulation is non-trivial in practice due to three challenges: (1) the benefits
of reducing accumulator precision—like those of reducing weight and activation precisions—vary across
platforms and workloads, and often depend on specific hardware and software support; (2) even with careful
design, reducing accumulator precision exponentially increases the risk of overflow, potentially introducing
arithmetic errors that significantly degrade model accuracy (Ni et al., 2020; Colbert et al., 2023); and (3)
existing solutions do not scale to modern billion-parameter large language models (LLMs). We focus on the
latter two challenges and propose a scalable solution with theoretical justification.

1

Under review as submission to TMLR

16 18 20 22 24 26 28
Accumulator Bit Width

15

20

25

30

Pe
rp

le
xi

ty
40 50 60 70 80 90 100

Relative Bit Operations

GPFQ
GPFQ+EP-init
GPFQ+AXE
Float

Figure 1: We use GPFQ (Lybrand & Saab, 2021) to quantize SmolLM2-135M (Allal et al., 2024) using naïve
bit width manipulations (red stars) within the design space described in Section 5. We compare AXE (green
circles) to EP-init (blue triangles) (Colbert et al., 2024) when targeting reduced accumulator bit width.
We use Pareto frontiers to visualize the trade-off between WikiText2 (Merity et al., 2016) perplexity and
either (left) accumulator bit width or (right) bit operations relative to W8A8 with 32-bit accumulation. Note
that our bit operations cost model is highly correlated with relative power savings, as shown in Section 3.1.

To eliminate the risk of overflow, Colbert et al. 2023 proposed an accumulator-aware quantization paradigm
that infuses strict learning constraints informed by theoretical guarantees into quantization-aware training
(QAT). The resulting scope of research has since been limited to this QAT setting, where models are trained
from scratch or fine-tuned from checkpoints with quantization in the loop (Colbert et al., 2024; Zhang et al.,
2025a). With the high training costs of modern deep learning models, it is important to develop methods that
are equally as effective in the post-training quantization (PTQ) setting, where pre-trained models are directly
quantized and calibrated using relatively modest resources. However, controlling accumulation requirements
in such a scenario is non-trivial. To the best of our knowledge, there has been no formal study that explores
accumulator-aware quantization in the PTQ setting.

Contributions. We provide the first formalization of the accumulator-aware post-training quantization
(PTQ) setting and propose AXE as an approximate solution with theoretical justification. AXE infuses
overflow avoidance guarantees into layerwise PTQ algorithms that greedily correct quantization error, for
example, GPFQ (Lybrand & Saab, 2021) and OPTQ (Frantar et al., 2022). We present AXE as a composition
of functions designed to control the dot product ranges throughout error correction, and demonstrate its
flexibility by presenting accumulator-aware variants of both GPFQ and OPTQ. We evaluate our variants
across pre-trained language generation models and show significant improvements in the trade-off between
accumulator bit width and model quality when compared to alternative methods, thereby enabling lower
power consumption with better model quality as shown in Figure 1. Unlike prior accumulator-aware QAT
methods, which assume a monolithic accumulator, we design AXE to support multi-stage accumulation,
which opens the door to datapath optimization and enables large language models (LLMs) for the first time.
Indeed, our results show that AXE scales extremely well to billion-parameter language models when targeting
multi-stage accumulation. For example, when quantizing Llama3 8B for a 16-bit multi-stage accumulation
datapath, AXE maintains up to 98% of the baseline FP16 perplexity.

2 Preliminaries

We first introduce our notation. We denote the Kl-dimensional input activations to layer l as x(l) ∈ RKl ,
where X(l) ∈ RKl×D denotes a matrix of D such inputs. The weight matrix for layer l with Kl input neurons
and Cl output neurons is similarly denoted as W (l) ∈ RCl×Kl ; its quantized counterpart is Q(l) ∈ ACl×Kl

M ,
where we use Am×n

b to denote the space of all m × n matrices whose elements are part of a fixed b-bit
alphabet defined by the target quantization space. For example, the alphabet of signed b-bit integers is
Ab := {k : −2b−1 + 1 ≤ k ≤ 2b−1− 1, k ∈ Z}, assuming a sign-magnitude representation, where Z is the space
of all scalar integers. For layer l, our notation yields Cl independent dot products of depth Kl for each of
the D inputs. For clarity, and without loss of generality, we often assume Cl = 1 when focusing on a single

2

Under review as submission to TMLR

layer l so that we can use w(l) to denote the weight matrix for layer l. When dropping their superscript, x
and w denote generic inputs and weights in RK , and x̃ and q denote their quantized counterparts.

2.1 Post-Training Quantization

Standard quantization operators, referred to as quantizers, are commonly parameterized by zero-point z and
scaling factor s, as shown in Eq. 1 for weight tensor w. Our work focuses on uniform integer quantization,
where z is an integer value that ensures that zero is exactly represented in the quantized domain, and s is a
strictly positive scalar that corresponds to the resolution (or step size) of the quantizer. Scaled values are
commonly rounded to the nearest integer, denoted by ⌈·⌋, and elements that exceed the representation range
of the quantized domain Ab are clipped.

Q(w) := s ·
(

clip
(⌈w

s

⌋
+ z; minAb, maxAb

)
− z
)

(1)

Methods for tuning quantized models broadly fall into two paradigms: quantization-aware training (QAT)
and post-training quantization (PTQ). QAT methods train or fine-tune a neural network with quantization in
the loop, which often requires significant compute and sufficiently large datasets. Our work focuses on PTQ
methods, which directly calibrate pre-trained models and rely on minimal data without end-to-end training.
Many recent PTQ methods follow a common general structure, greedily casting and calibrating quantized
models layer-by-layer or block-by-block while seeking to approximate the minimizer of the reconstruction
error in Eq. 2, where q∗ is the optimal set of quantized weights and X̃ is the quantized counterpart of X.

q∗ = arg min
q,qi∈A

1
2∥X

T w − X̃T q∥2
2. (2)

Recent LLM PTQ methods often concentrate on weight-only quantization to solely minimize data storage and
transfer costs (Lybrand & Saab, 2021; Frantar et al., 2022). This focus has been justified—the ever-increasing
weight volume of state-of-the-art models has rendered many hyper-scale LLMs memory-bound (Zhang
et al., 2022a; Biderman et al., 2023). In this context, weight-only quantization algorithms can preserve
model quality and still improve end-to-end throughput just by reducing data transfer costs, even with
FP16 computations (Frantar et al., 2022; Tseng et al., 2024). However, with the progression of continuous
batching in cloud-based LLM serving (Yu et al., 2022) and the rise of resource-efficient sampling methods
like speculative decoding (Leviathan et al., 2023), which exploit available compute when memory is the
bottleneck, it is increasingly important to reduce the cost of arithmetic operations, even for hyper-scale LLMs.
In these cases, weight-activation quantization presents an opportunity to not only increase throughput from
reduced data traffic, but also to benefit from accelerated computation and decreased requirements for area
and power. However, as further discussed in Section 3, even weight-activation quantization may start to yield
diminishing returns as narrower datatypes are used.

2.2 Accumulator-Aware Quantization

Let P ∗ denote the minimum accumulator bit width required to guarantee overflow avoidance for a given
dot product. Aside from universally fixing the accumulator at 32 bits (or any other arbitrary maximum
width imposed by a processor), the most conservative method to calculate P ∗ considers the width of the
dot product operands. Given that inputs x̃ ∈ AK

N and weights q ∈ AK
M are quantized, P ∗ is given by Eq. 3,

where 1signed(x̃) is 1 if x̃ is signed and 0 otherwise.

P ∗ =
⌈
log2

(
2log2(K)+N+M−1−1signed(x̃) + 1

)
+ 1
⌉

(3)

Note that P ∗ increases linearly with the bit widths of the operands and logarithmically with the depth of
the dot product. Thus, for a fixed neural architecture, one could heuristically manipulate the weight and
activation bit widths according to Eq. 3 to reduce P ∗. However, the quantization design space ultimately
limits the minimum attainable accumulator bit width, as well as the maximum attainable accuracy for any
target accumulator bit width (Colbert et al., 2023; 2024).

3

Under review as submission to TMLR

3 4 5 6 7 8
Effective Operand Width

0

20

40

60

80

100
Re

la
tiv

e
Av

er
ag

e
Bi

t F
lip

s
(%

 o
f M

ax
 To

ta
l)

muls
adds

20 30 40 50 60 70 80 90 100
Relative Bit Operations (% of Max)

20

40

60

80

100

Re
la

tiv
e

Av
er

ag
e

Bi
t F

lip
s

(%
 o

f M
ax

 To
ta

l)

Ours
P=10
P=12
P=16
P=32

20 30 40 50 60 70 80 90 100
Relative Bit Operations (% of Max)

20

40

60

80

100

Re
la

tiv
e

Av
er

ag
e

Bi
t F

lip
s

(%
 o

f M
ax

 To
ta

l)

Base
P=10
P=12
P=16
P=32

Figure 2: Left: Using average bit flips as a power proxy, the cost of additions (adds) begins to dominate that
of multiplications (muls) as the effective operand width (

√
M ×N) is reduced below 4 bits in a 128-element

vector MAC with a fixed 32-bit accumulator. Center: When varying the vector size K, accumulator width
P , and operand widths M and N , our cost model (circles) shows a strong correlation (black trendline) with
average bit flips. Right: The baseline multiplication cost model (crosses) is unable to account for the benefits
of reduced accumulator precision (blue trendline).

Colbert et al. 2024 show that one can directly target the accumulator bit width as an independent dimension
of the quantization design space while still theoretically guaranteeing overflow avoidance. When accumulating
x̃T q into a signed P -bit accumulator, and assuming that

∑
i qi = 0, one need only constrain ∥q∥1 such that:

∥q∥1 ≤
2P − 2
2N − 1 . (4)

Motivated by this result, accumulator-aware QAT methods avoid overflow by constraining the ℓ1-norm of
weights during training to ultimately restrict the range of dot product outputs during inference. Although
these approaches have yielded promising results, their scope is limited to the QAT setting (Colbert et al.,
2023; 2024). To the best of our knowledge, ours marks the first formal study of accumulator-aware PTQ, and
the first solution to scale to modern LLMs.

3 Motivation

The quantization research landscape is slanted towards low-precision operands (i.e., weights and activations).
However, low-precision operands reduce multiplication costs significantly more than addition costs. Thus, we
hypothesize that, via Amdahl’s Law (Amdahl, 1967), this skewed focus will yield diminishing returns.

Indeed, recent works have already demonstrated that high-precision additions can bottleneck throughput,
power, and area. For example, multiple studies have reported a 2× throughput increase when reducing the
accumulator width from 32 to 16 bits on general-purpose platforms (Khudia et al., 2018b; de Bruin et al.,
2020; Xie et al., 2021). Furthermore, when constraining operands to 3-bit × 1-bit multipliers, Ni et al. 2020
show that the cost of 32-bit accumulation consumes nearly 75% of the total power of their scalar MAC unit,
reporting up to 3× power savings and 5× area reduction when reducing to 8-bit accumulation. Here, we
further substantiate our hypothesis that reducing operand width will yield diminishing returns.

3.1 Reducing Operand Width Yields Diminishing Returns

We substantiate our hypothesis using an accumulator-aware variant of the bit operations (BOps) cost
model (Van Baalen et al., 2020; Hawks et al., 2021), presented in Eq. 5, as a hardware-agnostic proxy for
power consumption. For a fixed dot product size K, our accumulator-aware cost model scales quadratically
with the product of the operand bit widths M and N but linearly with the accumulator width P , and
increased weight sparsity S only reduces the cost of additions.

BOps := K × (M ×N + (1− S)× P) (5)

To the best of our knowledge, van Baalen et al. (2022) made the first connection between BOps and
power by correlating multiplication costs (K ×M × N) with the power consumed when executing vision

4

Under review as submission to TMLR

models on an NPU. We extend their cost model and analysis to include the impact of accumulator-aware
quantization on power consumption. To support our accumulator-aware variant, we used Yosys (Wolf, 2016)
to synthesize several integer vector MAC designs while varying K ∈ {32, 64, 128}, M, N ∈ {3, 4, 5, 6, 7, 8},
and P ∈ {10, 12, 16, 32}. We then used the Arbolta simulator (Redding et al., 2025) to count bit flips1 while
passing discrete random Gaussian data through each synthesized design. For each P and N , we constrain the
random weights according to Eq. 4, which incidentally increases sparsity S (Colbert et al., 2023; 2024).

As shown in Figure 2, our cost model exhibits a strong 96% correlation with all observed data while the
baseline multiplication cost model is unable to account for the benefits of reducing accumulator width.
Interestingly, we observe that addition costs begin to dominate multiplication costs when the effective operand
width (

√
M ×N) falls below 4 bits. Moreover, our BOps cost model is consistent with the data presented

by Ni et al. 2020, whereby reducing the accumulator width from 32 to 8 bits in a scalar MAC unit with a
3× 1 multiplier resulted in 3× power savings—our model predicts 3× exactly when assuming 25% sparsity
(i.e., S = 0.25). Thus, as researchers continue to stabilize 4-bit weights and activations (Ashkboos et al.,
2024; Liu et al., 2024; Zhang et al., 2025b), we suspect that neural network quantization will reach this
inflection point in the near future, suggesting accumulator-aware quantization will be in the critical path for
optimization as the cost of additions begins to overtake that of multiplications.

3.2 Limiting the Risks of Low-Precision Accumulation

Reducing the cost of additions is commonly done by reducing the accumulator bit width, which exponentially
increases the risk of overflow, often introducing numerical errors that degrade model accuracy (Ni et al.,
2020; Colbert et al., 2023). Existing methods that prepare quantized models for low-precision accumulation
often aim to either reduce the risk of overflow (Xie et al., 2021; Li et al., 2022) or mitigate its impact on
model accuracy (Ni et al., 2020). These empirical approaches rely on assumptions that limit their real-world
applicability. First, empirical estimates of overflow rely on a priori knowledge of the input distribution,
which is often impractical to assume and can even introduce vulnerabilities (Baier et al., 2019). Second,
overflow behavior can vary across platforms and programs, so designing methods to mitigate the detrimental
impact of one particular behavior (e.g., wraparound two’s complement arithmetic) limits portability. Finally,
empirical approaches are unable to support applications that require guaranteed correctness, such as encrypted
inference (Lou & Jiang, 2019), and are known to break down when overflows occur too frequently (Ni et al.,
2020; Colbert et al., 2023). Thus, avoiding overflow improves reliability, portability, and model quality.

From the family of existing accumulator-aware QAT methods that avoid overflow, one can only apply EP-
init (Colbert et al., 2024) to the PTQ setting without modification. However, EP-init has two shortcomings:
(1) it relies on rounding-to-zero to ensure |Q(wi)| ≤ |wi| for all i, which is known to introduce catastrophic
errors in PTQ (Nagel et al., 2020); and (2) it is a channel-wise projection that is not amenable to error
correction, as discussed in Appendix D.2. In Section 5.1, we show that AXE better preserves model accuracy
as the accumulator width is reduced, and yields a new Pareto frontier for power-efficient PTQ methods.

4 AXE: A General Framework for Accumulator-Aware PTQ

In the standard PTQ setting, one often assumes the quantizer parameters are fixed (i.e., scaling factor s
and zero point z) and that the individual weights can move freely (Lybrand & Saab, 2021; Frantar et al.,
2022). Building from these assumptions, we formalize accumulator-aware PTQ with the objective function
in Eq. 6, where the optimal quantized weights q∗ minimize local quantization error while also satisfying an
accumulator-aware ℓ1-norm constraint, where Z is given, up to a scaling, by Eq. 4.

q∗ = arg min
q,qi∈A

1
2∥XT w − X̃T q∥2

2 s.t. ∥q∥1 ≤ Z (6)

In particular, the constraint ∥q∥1 ≤ Z ensures, via Hölder’s inequality (Hardy et al., 1952), that any
inner product |x̃T q| remains appropriately bounded, as long as ∥x̃∥∞ is bounded. To approximately solve

1Bit flips are known to be an effective proxy for power consumption in both compute (van Baalen et al., 2022) and
memory (Bittman et al., 2018).

5

Under review as submission to TMLR

this accumulator-constrained reconstruction problem, we introduce AXE—a flexible accumulator-aware
quantization framework that endows overflow avoidance guarantees to the family of layerwise PTQ algorithms
that greedily assign bits element-by-element (e.g., GPFQ and OPTQ).

We present AXE as the following composition of functions:

Φi := Q ◦Ψai−1,bi−1 ◦Πλ∗ , (7)

which acts on the (possibly error-corrected) weights, as shown in Algorithms 1 and 2. AXE provides
accumulator-awareness by first projecting its argument onto the ℓ1 ball of radius λ∗ via Πλ∗ , then greedily
clipping the result to the range [ai−1, bi−1] via Ψai−1,bi−1 , and finally quantizing it to the alphabet A, as
presented in Section 4.2. Here, Π is a per-channel, or per-tile, penalty that discourages the underlying
algorithm from opportunistically selecting quantized weights with high magnitudes, and Ψ is a strict per-
element constraint that greedily limits the range of each selected quantized weight while error is iteratively
corrected. The resulting set of quantized weights is then guaranteed to avoid overflow when accumulating its
inner product with any X̃ ∈ AK×D

N into P -bit signed registers.

In its coarsest form, AXE applies these constraints per-channel so that each dot product in the network is
guaranteed to independently avoid overflow. Furthermore, without violating our constraints, we design AXE
to support multi-stage accumulation in the form of tiled dot products by applying our constraints in finer
granularities. Without loss of generality, we theoretically justify our solution using GPFQ, then provide
accumulator-aware variants of GPFQ and OPTQ in Algorithms 1 and 2, respectively. We highlight that, to
ensure ∥x̃∥∞ is bounded, our accumulator-aware variants of GPFQ and OPTQ require quantizing activations.

4.1 Accumulator Constraints without Zero-Centering

Our goal with AXE is to provide a theoretical guarantee of overflow avoidance when accumulating the dot
product of q by any x̃ ∈ AK

N into a signed P -bit register. To this end, if q is a zero-centered vector such
that

∑
i qi = 0, then it is sufficient to constrain ∥q∥1 to satisfy the upper bound given by Eq. 4. However,

enforcing such a zero-centering constraint on a vector of integers is non-trivial in practice.

For any x̃ ∈ AK
N , each element x̃i lies within the closed interval [µ, ν] for all i = {1, · · · , K}, and ν−µ = 2N−1.

It follows that the maximizing vector, u = arg maxx̃ x̃T q, and the minimizing vector, v = arg minx̃ x̃T q, are

ui =
{

ν, where qi ≥ 0
µ, where qi < 0

and vi =
{

µ, where qi ≥ 0
ν, where qi < 0

. (8)

Fundamentally, to avoid overflow when accumulating x̃T q into a P -bit register, the result needs to fall within
the register’s representation range for any x̃ ∈ AK

N . Without loss of generality, we derive our algorithm
assuming a sign-magnitude accumulator for clarity and conciseness. Thus, to safely use a signed P -bit
accumulator without overflow, both the following inequalities need to be satisfied:

uT q ≤ 2P −1 − 1, − vT q ≤ 2P −1 − 1 (9)

To avoid zero-centering, one could generalize the result derived by Colbert et al. 2024 such that the bound
relies on a variable center, e.g.,

∑
i qi = ϵ. However, this precludes the use of greedy sequential algorithms

where ϵ would be just as difficult to enforce as zero-centering, i.e., ϵ = 0. Thus, rather than constraining the
center, we greedily constrain the boundaries, as further discussed in Section 4.2.

4.2 Accumulator-Aware GPFQ

At the l-th layer, GPFQ greedily selects each element qi to minimize the squared distance between the running
sum

∑i
j=1 qjX̃j and its analog

∑i
j=1 wjXj such that

q
(l)
i = arg min

p∈AM

∥∥∥∥∥
i∑

j=1

w
(l)
j X

(l)
j −

i−1∑
j=1

q
(l)
j X̃

(l)
j − pX̃

(l)
i

∥∥∥∥∥
2

(10)

6

Under review as submission to TMLR

Algorithm 1 Accumulator-Aware GPFQ. Our accumulator-aware GPFQ variant quan-
tizes W to M bits given input activations X and their N -bit quantized counterparts X̃.
Note that Wi, Vi ∈ RC , Qi ∈ AC

M , Xi ∈ RD, and X̃i ∈ AD
N , all interpreted as row vectors.

Require: W ∈ RK×C , X ∈ RK×D, X̃ ∈ AK×D
N

1: Q← 0 ∈ AK×C
M Quantized output

2: U ← 0 ∈ RD×C Per-sample quantization error
3: a← A ∈ RC , b← B ∈ RC Initialize running sums
4: λ← deriveThreshold(W) Derive per-channel Lagrangian thresholds
5: for i = 1, ..., K do
6: Wi ←Wi

⟨X̃i,Xi⟩
∥X̃i∥2

2
+ X̃iU

∥X̃i∥2
2

Adjust for quantization error
7: Vi ← Ψa,b ◦Πλ(Wi) Accumulator-aware projection & clipping
8: Qi ← Q(Vi) Quantize weight
9: a← a−Qi ⊙ 1Qi≥0 Update positive range

10: b← b−Qi ⊙ 1Qi≤0 Update negative range
11: U ← U + XT

i Wi − X̃T
i Qi Update quantization error

12: end for
13: return Q

where X̃
(l)
i denotes samples for the i-th input neuron to the l-th layer assuming the first l − 1 layers are

quantized, and AM is an M -bit fixed alphabet defined by the target quantization space. This simplifies to
the following iteration rule, as derived by Lybrand & Saab 2021, where u

(l)
0 = 0.

q
(l)
i = Q

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥2

2

)
(11)

u
(l)
i = u

(l)
i−1 + w

(l)
i X

(l)
i − q

(l)
i X̃

(l)
i (12)

Soft ℓ1-norm regularization penalty. By design, greedy sequential quantization algorithms (e.g., GPFQ
and OPTQ) opportunistically alter weights to correct for as much error as possible in each step, often yielding
high-magnitude quantized weights. However, this is unfavorable in the accumulator-aware PTQ setting as
high-magnitude weights consume more of the allocated ℓ1-norm budget (see Eq. 4). To address this, we
penalize high-magnitude weights throughout error correction via the soft ℓ1 penalty proposed by Zhang et al.
2023, which yields the ℓ1 projection given by Eq. 13, where (·)+ denotes the rectified linear unit (ReLU), and
λ > 0 is an arbitrary tuneable regularization parameter.

Πλ(w) = sign(w)(|w| − λ)+ (13)

Noticeably, this formulation is amenable to leverage EP-init (Colbert et al., 2024), which takes the same
functional form. Thus, we determine λ as the Lagrange multiplier derived from the optimal Euclidean
projection of w onto the ℓ1 ball of radius Z, given by the following convex optimization problem, where v∗ is
the weight vector that minimizes the Euclidean projection of w onto the boundary of our constrained set
before quantization.

v∗ = min
v

1
2∥v −w∥2

2 subject to ∥v∥1 ≤ Z (14)

An efficient solution to this problem is derived by Duchi et al. (2008). Define ρ as the number of non-zero
elements in the optimal projection and µ as the result of sorting the magnitudes of w in descending order,
where µi = |wj | for i, j ∈ {1, · · · , K}. The optimal Lagrange multiplier λ∗ is

λ∗ = 1
ρ

(
ρ∑

i=1
µi − Z

)
. (15)

Thus, Πλ∗(x) yields the optimal Euclidean projection onto our ℓ1 ball before quantization. As such, it is
important to note that, because this projection is derived before applying error correction algorithms (i.e.,

7

Under review as submission to TMLR

GPFQ or OPTQ), it cannot guarantee overflow avoidance on its own. Thus, we need our subsequent strict
constraint; however, we observe our penalty consistently improves model quality (see Appendix D.2).

Greedy ℓ1-norm constraint. For clarity, and without loss of generality, we motivate our strict constraint
using the case where x̃ is represented with unsigned integers such that µ = 0 and ν = 2N − 1. Note that this
is common when following activation functions with non-negative dynamic ranges.

Let α denote the sum of all negative elements in q, and let β denote the sum of all positive elements in q. From
Eq. 9, we can similarly derive the upper bounds on β and −α in the case of sign-magnitude representations.
Indeed, uT q ≤ 2P −1 − 1 is guaranteed whenever βν + αµ ≤ 2P −1 − 1, which holds in the case of unsigned
activations if

β ≤ 2P −1 − 1
2N − 1 . (16)

To P -bit accumulation at layer l, we use a greedy clipping mechanism to control the dot product range

Ψ
a

(l)
i

,b
(l)
i

(x) = clip
(

x; a
(l)
i , b

(l)
i

)
(17)

a
(l)
i = A(l) − αi, b

(l)
i = B(l) − βi (18)

where αi denotes the sum of all negative elements in q whose index is less than i and βi is its positive
counterpart, and A(l) and B(l) (defined in Eq. 19) are respectively the upper limits of αi and βi. The range
greedily enforced on qi becomes the closed interval defined by Eq 18. By independently constraining these,
our accumulator-aware variant avoids overflow without explicit zero-centering. To ensure rounding errors do
not compromise Eq. 16, we use

−A(l) = B(l) = 2P −1 − 1
2N − 1 −max (∆) (19)

where max (∆) denotes the worst-case difference in magnitude caused by rounding. We note that, while our
derivation considers the sign-magnitude representation for its symmetry, the separate consideration of A(l)

and B(l) is useful for asymmetric representations (e.g., two’s complement).

At each step i, this yields the function composition Φi presented in Eq. 7, which can generally be extended
to the family of layerwise adaptive rounding algorithms that includes GPFQ, OPTQ, Qronos (Zhang et al.,
2025b), and others. Focusing on the former, we present the pseudo-code for our accumulator-aware variants
of GPFQ and OPTQ in Algorithms 1 and 2, respectively, where we define Ψa,b(v) to denote the clipping
function applied elementwise so that (Ψa,b(v))j = Ψaj ,bj

(vj). Note that Algorithm 2 is in Appendix A.

4.3 Multi-Stage Accumulator-Aware Quantization

Our accumulator-aware constraints can be generalized to target customized datapaths beyond user-specific
accumulator bit widths. To this end, we design AXE to support multi-staged accumulation as visualized in
Figure 3. In such a scenario, our constraints are enforced on the quantized weights in tiles of size T so that
each partial dot product can be concurrently computed by an atomic MAC unit. Let PI and PO denote the
inner and outer accumulator bit widths, respectively. If a K-dimensional dot product is executed in tiles of
size T , where each tile is constrained to a PI -bit accumulator, then the minimum PO required to guarantee
overflow avoidance is

PO = ⌈PI + log2(K)− log2(T)⌉ . (20)
The benefits of multi-stage accumulation are well-established. Khudia et al. 2018b report a 2× throughput
uplift on compute-bound workloads by accumulating at 16 bits in 64-element tiles instead of at 32 bits,
albeit without any theoretical guarantees of overflow avoidance. Currently, inference libraries such as
FBGEMM (Khudia et al., 2018a), XNNPACK (Dukahn & Barchard, 2021), and Ryzen AI (AMD, 2024)
typically disable this optimization if overflows are observed too often during testing. To our knowledge, AXE
provides the first mechanism to simultaneously quantize and constrain a pre-trained model for low-precision
multi-staged accumulation while guaranteeing overflow avoidance, safely enabling this optimization for the
first time. As shown in Section 5, this generalization is critical in maintaining the quality of billion-parameter
LLMs, which often have dot products containing more than ten thousand elements.

8

Under review as submission to TMLR

0

Acc

MAC Unit

(a)

MAC Unit MAC Unit MAC Unit

Adder

(b)

Figure 3: We visualize abstractions of (a) an atomic MAC unit and (b) parallelized multi-staged accumulation.

5 Experiments

The core contribution of this work is enabling a user to prepare a quantized model for low-precision
accumulation in the PTQ setting via AXE. Thus, our primary comparison metric is preserving model quality
in challenging accumulator-aware PTQ scenarios.

Models & Datasets. We conduct experiments on GPT2 (Radford et al., 2019), OPT (Zhang et al.,
2022a), SmolLM2 (Allal et al., 2024), Pythia (Biderman et al., 2023), and Llama3 (Dubey et al., 2024)
models using WikiText2 (Merity et al., 2016) for calibration. When analyzing zero-shot generalization, we
use LightEval (Fourrier et al., 2023) to evaluate 4 reasoning tasks: ARC-challenge (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2021).

Quantization Design Space. We constrain our design space to uniform-precision models such that every
hidden layer has the same weight, activation, and accumulator bit width, respectively denoted as M , N , and
P . We consider 3- to 8-bit integers for both weights and activations, unlike Frantar et al. (2022) and Zhang
et al. (2023), which focused on weight-only quantization. Rather than evaluating each combination of M
and N , we restrict ourselves to configurations where N ≥M to reduce the cost of experimentation as such
configurations tend to dominate the Pareto frontiers (Colbert et al., 2024). We implement our methods using
the Brevitas quantization library (Franco et al., 2025), and quantize all models using a single AMD MI210
GPU2 with 64 GB of memory. We include more implementation details in Appendix D.

5.1 Pareto Analysis

We first consider the scenario in which QNNs are optimized for accumulator-constrained processors in the
PTQ setting. As discussed in Section 2.2, one could heuristically manipulate M and N according Eq. 3. To
the best of our knowledge, EP-init serves as the only alternative for accumulator-aware quantization in the
PTQ setting. Therefore, we use EP-init and naïve bit width manipulation as our baselines.

In Figure 4, we use Pareto frontiers to visually characterize the trade-off between accumulator bit width P
and WikiText2 perplexity for both GPFQ and OPTQ, respectively, across a range of models. We assume a
monolithic accumulator in these experiments (i.e., P = PI = PO). For each model and each PTQ algorithm,
the Pareto frontier shows the best perplexity observed for a target accumulator bit width P when varying M
and N within our design space, with the full-precision floating-point model accuracy provided for reference.
Additionally, in Figure 1, we visually characterize the trade-off between accumulator bit width P and relative
bit operations when quantizing SmolLM2 with GPFQ. Again assuming a monolithic accumulator, the left
Pareto frontier shows the lowest observed perplexity for each overflow avoidance method as we reduce P
while varying M and N within our design space with the perplexity of the full-precision floating-point model
provided for reference. The right Pareto frontier similarly shows the lowest perplexity observed for a given
amount of bit operations relative to W8A8 with 32-bit accumulation, which we demonstrate is a strong proxy
for power consumption in Section 3. Thus, our results show that AXE establishes a Pareto-dominant frontier
for both accumulator bit width and power consumption.

2AMD, AMD Instinct, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

9

Under review as submission to TMLR

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

101

102

103

104

Pe
rp

le
xi

ty

OPT-125M
GPFQ+AXE
GPFQ+EP-init
GPFQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

GPT2-137M
GPFQ+AXE
GPFQ+EP-init
GPFQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

Pythia-160M
GPFQ+AXE
GPFQ+EP-init
GPFQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

101

102

103

104

Pe
rp

le
xi

ty

OPT-125M
OPTQ+AXE
OPTQ+EP-init
OPTQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

GPT2-137M
OPTQ+AXE
OPTQ+EP-init
OPTQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

Pythia-160M
OPTQ+AXE
OPTQ+EP-init
OPTQ
Float

Figure 4: We show that AXE (green circles) yields the best trade-off between accumulator bit width and
WikiText2 perplexity for several language models, namely OPT-125M, GPT2 (137M), and Pythia-160M.
Note that we also show this for SmolLM2-135M in Figure 1. We compare AXE with EP-init (blue triangles)
and naïve bit width manipulation (red stars) using either GPFQ (top) and OPTQ (bottom).

We provide a detailed breakdown of each Pareto frontier in Appendix E, where we report the perplexity
of each Pareto-dominant model, their weight and activation bit widths, and resulting unstructured weight
sparsity. Overall, we observe trends that are consistent with Colbert et al. (2024); the Pareto-optimal
activation bit width N decreases as P is reduced, and sparsity conversely increases. This suggests that our
accumulator-aware boundary constraints obey similar mechanics as the ℓ1-norm constraints of QAT methods,
as our theoretical justification predicts. Moreover, as in the QAT setting, the quantization design space
ultimately limits the minimum accumulator bit width attainable via naïve bit width manipulation.

Interestingly, Figure 1 shows that EP-init breaks down on SmolLM2 when weights are quantized below 5
bits, likely because EP-init relies on rounding-to-zero, which is known to introduce catastrophic quantization
errors in PTQ settings (Nagel et al., 2020). We highlight that this breaking point is before the inflection point
we observe in Section 3.1, where the cost of additions overtakes that of multiplications with 4-bit operands.
Thus, naïve bit width manipulation dominates EP-init in power efficiency, which is consistent with our theory.

5.2 Scaling Analysis

The ℓ1-norm of an unconstrained weight vector inherently grows as its dimensionality increases. This
suggests that accumulator-aware quantization scales well to strictly deeper neural architectures since the
constraints tighten with width rather than depth; experimental results on the ResNet family support this
hypothesis (Colbert et al., 2024). However, this also suggests that accumulator-aware quantization scales
poorly in neural network families that grow in width, as is the case in transformer architectures (Zhang et al.,
2022a; Biderman et al., 2023). Thus, to scale our accumulator-aware PTQ framework to billion-parameter
language models, we turn to our multi-stage accumulation variant of AXE, as introduced in Section 4.3. Here,
one assumes the partial sums of a dot product are concurrently computed in fixed-length tiles of size T . Our
goal in this setting is to minimize perplexity for a target inner accumulator bit width PI that is assumed to
be universal across all tiles. Hence, our accumulator width is constant even as models grow wider.

10

Under review as submission to TMLR

Table 1: We report the WikiText2 perplexity results when evaluating AXE on Pythia models quantized
to W4A8 for 32-bit or 16-bit accumulation in tiles of 128 elements using either GPFQ or OPTQ with
Hadamard-based incoherence processing. We use 128×16b to denote PI = 16 and T = 128, from Eq. 20.

70M 160M 410M 1.0B 1.4B 2.8B 6.9B 12B
Float16 41.1 23.7 14.1 11.7 10.5 9.2 8.3 7.7

GPFQ 128×32b 56.8 35.2 19.4 12.3 11.2 9.5 8.6 7.9
128×16b 76.4 55.5 23.2 12.7 11.8 9.8 8.7 8.0

OPTQ 128×32b 50.6 32.7 22.4 12.4 11.4 9.5 8.5 7.9
128×16b 85.6 75.5 34.5 13.1 12.4 9.9 8.6 8.0

Rather than exploring the full quantization design space, we focus on 4-bit weights and 8-bit activations
(W4A8) to maximize utility across platforms with a reasonable number of experiments as prior studies have
established this configuration is generally useful (Dettmers & Zettlemoyer, 2023; Li et al., 2024). We evaluate
AXE on top of both GPFQ and OPTQ using tiles of 128 elements under 16-bit accumulator constraints
(note that P ∗

I = 20 when T = 128 for W4A8 via Eq. 3). Prior work has also established 128 to be a generally
useful tiling size: AVX-512 ISA supports T = 32 elements (Khudia et al., 2018a), Ryzen AI NPUs support
T = 64 elements (AMD, 2024), and many works allocate scaling factors in groups of 128 elements (Lin et al.,
2023; Liu et al., 2024). For these experiments, we apply Hadamard-based incoherence processing (Ashkboos
et al., 2024; Tseng et al., 2024) to mitigate the impact of outliers when quantizing activations in LLMs.

We focus our scaling analysis on the Pythia model suite, which was specifically designed to facilitate such a
study (Biderman et al., 2023). From our results in Table 1, we observe that, as model size increases, the
quality of the 16-bit constrained models approaches that of the 32-bit baselines—AXE preserves 99% of the
relative perplexity for Pythia-12B for both GPFQ and OPTQ, compared to 74% and 59% for Pythia-70M,
respectively. We similarly observe that the gap is reduced between the 16-bit constrained models and their
FP16 counterparts as model size increases—when quantizing Pythia-12B, AXE preserves 96% of the FP16
performance for both GPFQ and OPTQ, compared to the respective 54% when quantizing Pythia-70M, an
impressive +42% increase in relative perplexity when scaling from 70M to 12B parameters. Under the scaling
hypothesis, this suggests the narrowing accuracy gap is in part because model capacity is growing without
tightening the constraints since T is held constant even as K increases (Pythia-12B is at most 10× wider
than Pythia-70M). In Appendix D.2, we provide an ablation study targeting a monolithic 16-bit accumulator
(i.e., PO = 16). There, we show the gap conversely increases as K increases, confirming that keeping PI

constant via tiled multi-stage accumulation is critical in LLM scaling.

5.3 Llama3 Results

We conclude our experiments by evaluating zero-shot reasoning on Llama3 instruction fine-tuned models,
again focusing on constraining W4A8 models for 16-bit multi-stage accumulation. As discussed in Section 5.2,
multi-stage accumulation is critical to scale accumulator-aware PTQ to increasingly large language models
(see Appendix D.2 for ablations). Therefore, as EP-init does not support multi-stage accumulation, the only
existing alternative for accumulator-aware PTQ is bit width manipulation. Note that, via Eq. 3, W4A4
guarantees overflow avoidance for 16-bit accumulation in tiles of 128 elements. Therefore, we compare AXE to
W4A4 as a baseline when constraining a W4A8 model to target 16-bit accumulation in tiles of 128 elements
(denoted as 128× 16b); note that this corresponds to T = 128 and PI = 16 in Eq. 20. We compare against
32-bit accumulation, which we similarly denote as 128× 32b.

Since our primary comparison metric is preserving model quality in challenging accumulator-aware PTQ
scenarios, we use established PTQ methods that solve orthogonal problems with the intention to create
high quality reference baselines. To this end, we demonstrate compatibility with equalization methods
such as SmoothQuant (Xiao et al., 2023) and rotation-based methods such as Hadamard-based incoherence
processing (Ashkboos et al., 2024; Tseng et al., 2024). We provide perplexity results in Table 2 along with
the FP16 reference perplexities.

11

Under review as submission to TMLR

Table 2: We report the WikiText2 perplexity when evaluating Llama3 models quantized to 16-bit accumulation
in tiles of 128 elements with either OPTQ or GPFQ. We also demonstrate that AXE is compatible with
pre-processing algorithms like SmoothQuant and Hadamard-based incoherence processing (HIP). We compare
AXE (in bold) with a bit width manipulation baseline (Base) and provide the reference FP16 results. We
use 128× 16b to denote PI = 16 and T = 128 from Eq. 20, similarly denoting PI = 32 as 128× 32b.

1B 3B 8B
Float16 11.8 9.1 6.5

128×32b W4A8 AXE W4A8 AXE W4A8 AXE
GPFQ 23.5 23.5 10.8 10.8 20.6 20.6
GPFQ+SmoothQuant 15.0 15.0 10.3 10.3 7.6 7.6
GPFQ+HIP 12.9 12.9 9.7 9.7 6.9 6.9
OPTQ 45.8 45.8 12.7 12.7 7.8 7.8
OPTQ+SmoothQuant 14.6 14.6 10.3 10.3 7.5 7.5
OPTQ+HIP 12.8 12.8 9.7 9.7 6.9 6.9

128×16b W4A4 AXE W4A4 AXE W4A4 AXE
GPFQ inf 22.1 inf 14.8 inf 37.9
GPFQ+SmoothQuant inf 15.4 inf 10.5 inf 7.7
GPFQ+HIP 16.1 13.8 10.8 10.0 8.0 7.1
OPTQ inf 33.3 inf 14.1 inf 8.3
OPTQ+SmoothQuant inf 15.0 inf 10.7 inf 7.6
OPTQ+HIP 15.6 14.0 10.6 10.0 7.8 7.1

AXE has the desired feature of being functionally equivalent to the base algorithm when the accumulator is
large enough. As such, one should expect benefits to manifest most when targeting low-precision accumulators.
Indeed, we observe that AXE improves performance in the challenging 128× 16b setting for all compositions
of PTQ algorithms, with Hadamard-based incoherence processing (HIP) establishing the strongest baseline.
Therefore, we use this composition of PTQ algorithms to evaluate zero-shot reasoning under accumulator
constraints. In Appendix B, we provide our results in Table 3 along with the FP16 reference accuracies.

Coupled with HIP, AXE enables low-precision accumulation for Llama3 with minimal degradation from the
32-bit baselines, preserving 98% of the relative 8B perplexity for both GPFQ and OPTQ. Furthermore, the
gap between the 16-bit constrained models and their FP16 counterparts decreases as the model size increases;
AXE preserves 92% of the relative perplexity for 8B compared to 86% and 84% for GPFQ and OTPQ,
respectively. This result is consistent with the scaling hypothesis in Section 5.2. Finally, AXE preserves up to
95% of the FP16 zero-shot performance and 99% of the 32-bit baselines, which is up to +3% better than bit
width manipulation, the only existing alternate solution that scales to billion-parameter LLMs.

6 Conclusions

The cost of additions overtakes that of multiplications as operand precision is reduced, as shown in Section 3.
As few-bit integer representations are increasing in popularity, one expects further reducing weight and
activation precision to yield diminishing returns. However, reducing the cost of additions is non-trivial due
to the complexities of system design and risk of numerical errors. While prior work on accumulator-aware
quantization has been limited to QAT, ours marks the first solution that extends accumulator-awareness to the
PTQ setting and scales to billion-parameter LLMs. We demonstrate the flexibility of AXE by presenting and
evaluating accumulator-aware variants of GPFQ and OPTQ. Furthermore, unlike prior accumulator-aware
quantization methods, which assume a monolithic accumulator, we design AXE to support multi-stage
accumulation for the first time. Our experiments demonstrate that AXE establishes a new state-of-the-art
for accumulator-aware PTQ, yielded a Pareto-dominant frontier in the trade-off between power and accuracy.

12

Under review as submission to TMLR

References
Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Lewis Tunstall, Agustín Piqueres,

Andres Marafioti, Cyril Zakka, Leandro von Werra, and Thomas Wolf. SmolLM2 - with great data, comes
great performance, 2024.

AMD. Ryzen AI column architecture and tiles. https://riallto.ai/3_2_Ryzenai_capabilities.html,
2024. [Accessed 06-30-2024].

Gene M Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In
Proceedings of the April 18-20, 1967, spring joint computer conference, pp. 483–485, 1967.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh, Torsten
Hoefler, and James Hensman. QuaRot: Outlier-free 4-bit inference in rotated llms. arXiv preprint
arXiv:2404.00456, 2024.

Lucas Baier, Fabian Jöhren, and Stefan Seebacher. Challenges in the deployment and operation of machine
learning in practice. In ECIS, volume 1, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite
for analyzing large language models across training and scaling. In International Conference on Machine
Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical commonsense
in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
7432–7439, 2020.

Daniel Bittman, Matthew Gray, Justin Raizes, Sinjoni Mukhopadhyay, Matt Bryson, Peter Alvaro, Darrell DE
Long, and Ethan L Miller. Designing data structures to minimize bit flips on NVM. In 2018 IEEE 7th
Non-Volatile Memory Systems and Applications Symposium (NVMSA), pp. 85–90. IEEE, 2018.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. QuIP: 2-bit quantization of large
language models with guarantees. Advances in Neural Information Processing Systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Ian Colbert, Alessandro Pappalardo, and Jakoba Petri-Koenig. A2Q: Accumulator-aware quantization with
guaranteed overflow avoidance. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16989–16998, 2023.

Ian Colbert, Alessandro Pappalardo, Jakoba Petri-Koenig, and Yaman Umuroglu. A2Q+: Improving
accumulator-aware weight quantization. In Forty-first International Conference on Machine Learning,
2024.

Barry de Bruin, Zoran Zivkovic, and Henk Corporaal. Quantization of deep neural networks for accumulator-
constrained processors. Microprocessors and microsystems, 72:102872, 2020.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In International
Conference on Machine Learning, pp. 7750–7774. PMLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the l 1-ball
for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning,
pp. 272–279, 2008.

13

https://riallto.ai/3_2_Ryzenai_capabilities.html

Under review as submission to TMLR

Marat Dukahn and Frank Barchard. Faster quantized inference with XNNPACK. https://blog.tensorflow.
org/2021/09/faster-quantized-inference-with-xnnpack.html, 2021. [Accessed 06-30-2024].

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. LightEval: A lightweight framework
for llm evaluation, 2023. URL https://github.com/huggingface/lighteval.

Giuseppe Franco, Alessandro Pappalardo, and Nicholas J Fraser. Xilinx/brevitas, 2025. URL https:
//doi.org/10.5281/zenodo.3333552.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In The Eleventh International Conference on Learning Representations,
2022.

Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. Inequalities. Cambridge university
press, 1952.

Benjamin Hawks, Javier Duarte, Nicholas J Fraser, Alessandro Pappalardo, Nhan Tran, and Yaman Umuroglu.
Ps and Qs: Quantization-aware pruning for efficient low latency neural network inference. Frontiers in
Artificial Intelligence, 4:676564, 2021.

IST-DASLab. gptq. https://github.com/ist-daslab/gptq, 2022.

Daya Khudia, Protonu Basu, and Summer Deng. Open-sourcing FBGEMM for state-of-the-art server-side
inference. https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/, 2018a. [Accessed 06-
30-2024].

Daya S Khudia, Prontonu Basu, and Summer Deng. Open-sourcing fbgemm for state-of-the-art server-side
inference, 2018b. URL https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A community library
for natural language processing. arXiv preprint arXiv:2109.02846, 2021.

Haokun Li, Jing Liu, Liancheng Jia, Yun Liang, Yaowei Wang, and Mingkui Tan. Downscaling and overflow-
aware model compression for efficient vision processors. In 2022 IEEE 42nd International Conference on
Distributed Computing Systems Workshops (ICDCSW), pp. 145–150. IEEE, 2022.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai, Huazhong
Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint arXiv:2402.18158, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ: Activation-aware
weight quantization for LLM compression and acceleration. arXiv preprint arXiv:2306.00978, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoorthi,
Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant–llm quantization with learned
rotations. arXiv preprint arXiv:2405.16406, 2024.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy, Lisa Jin,
Yunyang Xiong, Yangyang Shi, et al. ParetoQ: Scaling laws in extremely low-bit llm quantization. arXiv
preprint arXiv:2502.02631, 2025.

Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data. Advances in
neural information processing systems, 32, 2019.

Eric Lybrand and Rayan Saab. A greedy algorithm for quantizing neural networks. The Journal of Machine
Learning Research, 22(1):7007–7044, 2021.

14

https://blog.tensorflow.org/2021/09/faster-quantized-inference-with-xnnpack.html
https://blog.tensorflow.org/2021/09/faster-quantized-inference-with-xnnpack.html
https://github.com/huggingface/lighteval
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://github.com/ist-daslab/gptq
https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/
https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/

Under review as submission to TMLR

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. The era of 1-bit LLMs: All large language models are in 1.58 bits. arXiv
preprint arXiv:2402.17764, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843, 2016.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?
adaptive rounding for post-training quantization. In International Conference on Machine Learning, pp.
7197–7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tijmen
Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295, 2021.

Renkun Ni, Hong-min Chu, Oscar Castañeda, Ping-yeh Chiang, Christoph Studer, and Tom Goldstein.
Wrapnet: Neural net inference with ultra-low-resolution arithmetic. arXiv preprint arXiv:2007.13242, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alexander Redding, Ian Colbert, Yaman Umuroglu, and Jakoba Petri-Koenig. Arbolta: A framework for
efficient hardware-software co-design, 2025. URL https://github.com/Xilinx/arbolta.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#: Even better
llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint arXiv:2402.04396, 2024.

Mart Van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen Blankevoort, and
Max Welling. Bayesian bits: Unifying quantization and pruning. Advances in neural information processing
systems, 33:5741–5752, 2020.

Mart van Baalen, Brian Kahne, Eric Mahurin, Andrey Kuzmin, Andrii Skliar, Markus Nagel, and Tijmen
Blankevoort. Simulated quantization, real power savings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2757–2761, 2022.

Clifford Wolf. Yosys open synthesis suite. 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pp. 38–45, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pp. 38087–38099. PMLR, 2023.

Hongwei Xie, Yafei Song, Ling Cai, and Mingyang Li. Overflow aware quantization: Accelerating neural net-
work inference by low-bit multiply-accumulate operations. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pp. 868–875, 2021.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative models. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pp. 521–538, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

15

https://github.com/Xilinx/arbolta

Under review as submission to TMLR

Chi Zhang, Xu Yang, Shuangming Yu, Runjiang Dou, and Liyuan Liu. ISQ: Intermediate-value slip
quantization for accumulator-aware training. IEEE Signal Processing Letters, 2025a.

Jinjie Zhang, Yixuan Zhou, and Rayan Saab. Post-training quantization for neural networks with provable
guarantees. SIAM Journal on Mathematics of Data Science, 5(2):373–399, 2023.

Shihao Zhang, Haoyu Zhang, Ian Colbert, and Rayan Saab. Qronos: Correcting the past by shaping the
future... in post-training quantization. arXiv preprint arXiv:2505.11695, 2025b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022a.

Xinyu Zhang, Ian Colbert, and Srinjoy Das. Learning low-precision structured subnetworks using joint
layerwise channel pruning and uniform quantization. Applied Sciences, 12(15):7829, 2022b.

16

Under review as submission to TMLR

A Accumulator-Aware OPTQ

Algorithm 2 Accumulator-Aware OPTQ. Our accumulator-aware OPTQ variant quan-
tizes W to M bits given H−1 = Cholesky((2X̃X̃T + ηI)−1), where η is a small dampening
factor to avoid numerical issues. Following Frantar et al. 2022, we set η to be 1% of the
average diagonal value. Note that Wi, Vi ∈ RC and Qi ∈ AC

M , all interpreted as row vectors.

Require: W ∈ RK×C , H−1 ∈ RK×K

1: Q← 0 ∈ AK×C
M Quantized output

2: E ← 0 ∈ RC Per-channel quantization errors
3: a← A ∈ RC , b← B ∈ RC Initialize running sums
4: λ← deriveThreshold(W) Derive per-channel Lagrangian thresholds
5: for i = 1, ..., K do
6: Vi ← Ψa,b ◦Πλ(Wi) Accumulator-aware projection & clipping
7: Qi ← Q(Vi) Quantize processed weight
8: E ← (Wi −Qi)/H−1

i,i Calculate quantization error
9: Wi:K ←Wi:K −E ·H−1

i,i:K Update weights
10: a← a−Qi ⊙ 1Qi≥0 Update positive range
11: b← b−Qi ⊙ 1Qi≤0 Update negative range
12: end for
13: return Q

B Detailed Zero-Shot Results for Llama3

Table 3: We report the average accuracy on zero-shot reasoning tasks when evaluating Llama3 models
quantized to 16-bit accumulation in tiles of 128 elements with either OPTQ or GPFQ using Hadamard-based
incoherence processing (HIP). We report the bit width manipulation baselines alongside the AXE results (in
bold) and provide the reference FP16 results.

1B 3B 8B
Float16 46.5 53.8 62.4

128×32b W4A8 AXE W4A8 AXE W4A8 AXE
GPFQ+HIP 45.4 45.4 53.3 53.3 60.2 60.2
OPTQ+HIP 45.0 45.0 52.1 52.1 59.7 59.7

128×16b W4A4 AXE W4A4 AXE W4A4 AXE
GPFQ+HIP 41.4 45.1 50.1 51.2 57.3 58.6
OPTQ+HIP 42.1 44.5 49.9 51.1 56.1 59.3

C Memory-Efficient GPFQ

As discussed in Section 4.2, GPFQ approaches the standard quantization problem by traversing the neural
network graph to sequentially quantize each element in each layer while iteratively correcting for quantization
error. The derived iteration rule is formalized by Eqs. 11 and 12. In this standard formulation, the i-th
quantized weight qi depends on the inner product

⟨X̃(l)
i , u

(l)
i−1 + w

(l)
i X

(l)
i ⟩

where X
(l)
i , X̃

(l)
i ∈ RD are samples for the i-th neuron of the inputs to layer l, and u

(l)
i−1 ∈ RD is the running

error from quantizing the first i − 1 weights. Thus, at layer l, GPFQ requires collecting and storing 2D

17

Under review as submission to TMLR

samples for the Kl input neurons, and updating the running quantization error for each sample for the Cl

output neurons. This implies potential difficulty scaling to larger models and larger calibration sets as the
memory requirements are O(D × (2Kl + Cl)). Indeed, assuming 128 samples with a sequence length of 2048
at 32-bit precision, Pythia-6.9B (Biderman et al., 2023) requires a peak memory usage of roughly 30 GB at
the first FFN layer excluding pre-trained weights. We set out to reduce this overhead.

We start with the observation that OPTQ is far more memory efficient. OPTQ uses the Hessian proxy
2XXT , which can be efficiently computed one sample at a time and stored as a Kl ×Kl square matrix, an
O(Kl ×Kl) memory requirement that is 36× less than GPFQ for Pythia-6.9B. Thus, we reformulate GPFQ
to use square matrices via mathematical manipulation of singular value decompositions. We present the
following theorem.

Theorem C.1. Let H =
(
X̃X̃T

)1/2 and G = XX̃T . For pre-trained weights W ∈ RK×C , quantization
alphabet A, and GPFQ function of the form of Algorithm 1, it follows that:

GPFQ(W , X, X̃,A) = GPFQ(W , GH−1, H,A) (21)

Proof. According to the iteration steps in Algorithm 1, it suffices to show that the argument of quantizer Q
is unchanged after substituting Xi, X̃i with (GH−1)i and Hi respectively. Specifically, at the i-th iteration
of GPFQ(W , GH−1, H,A), we have

Vi ←Wi
⟨Hi, (GH−1)i⟩
∥Hi∥2

2
+ HiUi−1

∥Hi∥2
2

(22)

where the quantization error is given by

Ui−1 =
i−1∑
j=1

(GH−1)T
j Wj −HT

j Qj . (23)

Let ei ∈ RK denote the vector with a 1 in the i-th coordinate and 0’s elsewhere. It follows from H =(
X̃X̃T

)1/2 and G = XX̃T that

∥Hi∥2
2 = ∥eT

i H∥2
2 = eT

i H2ei = eT
i X̃X̃T ei = ∥X̃i∥2

2,

Hi(GH−1)T
j = eT

i H(eT
j GH−1)T = eT

i GT ej = eT
i X̃XT ej = X̃iX

T
j ,

and
HiH

T
j = eT

i H(eT
j H)T = eT

i H2ej = eT
i X̃X̃T ej = X̃iX̃

T
j .

Plugging above identities into equation 22 and equation 23, we obtain

Vi ←Wi
⟨X̃i, Xi⟩
∥X̃i∥2

2
+ X̃iÛi−1

∥X̃i∥2
2

(24)

with Ûi−1 =
∑i−1

j=1 XT
j Wj − X̃T

j Qj . Since Vi in equation 24 is identical with the i-th quantization argument
in GPFQ(W , X, X̃,A), both algorithms derive the same quantized weights Qi = Q(Vi).

At layer l, this memory-efficient GPFQ formulation requires collecting and storing G, H, and U , which
are each Kl × Kl matrices, reducing to an O(Kl × Kl) memory requirement that is 12× less than the
standard GPFQ formulation for Pythia-6.9B. We leverage this functionally equivalent formulation for our
LLM evaluations in Section 5.2.

18

Under review as submission to TMLR

D Experimental Details & Ablations

D.1 Hyperparameters & Quantization Schemes

Below, we provide a detailed description of the quantization schemes and the specific hyperparameters used
in our experiments. As discussed in Section 5, we consider pre-trained autoregressive language generation
models that are respectively made publicly available via the HuggingFace (Wolf et al., 2020) libraries. All
models are quantized via the Brevitas (Franco et al., 2025) quantization library using a single AMD MI210
GPU with 64 GB of memory.

We leverage the unmodified implementations of the various LLMs discussed in Section 5 as provided by
HuggingFace (Wolf et al., 2020), as well as their pre-trained floating-point checkpoints and datasets (Lhoest
et al., 2021). We use drop-in replacements for all linear layers in the networks except the embedding layer or
final prediction head, leaving them at full-precision floating-point. As is common practice (Frantar et al., 2022),
we build our calibration set using 128 samples randomly selected from the WikiText2 dataset (Merity et al.,
2016) without replacement using a fixed sequence length of 2048 tokens for all models except GPT2 (Radford
et al., 2019), which is restricted to a maximum sequence length of 1024 by the library.

Implementation Details. When quantizing weights with OPTQ or GPFQ, we do so in descending order
according to the diagonal value of the Hessian proxy (2XXT by our notation in Section 2) (IST-DASLab,
2022; Lin et al., 2023; Chee et al., 2024). For GPFQ, we find that the peak memory utilization of the
algorithm in its standard form ultimately limits its evaluation on billion-parameter LLMs. Thus, we introduce
a functionality equivalent memory-efficient reformulation to enable the algorithm to scale to larger models
(see Appendix C), which we use in our experiments. When inverting H in both OPTQ and GPFQ, we use
the standard dampening factor of 1% of the average of its diagonal. We use the AXE variants of GPFQ and
OPTQ introduced in Section 4. When evaluating EP-init, we do so after applying the baseline OPTQ or
GPFQ algorithms.

Quantization Scheme. We quantize activations asymmetrically, tuning z to the lowest 99-th percentile
based on the calibration data. While AXE is not reliant on symmetric weight quantization, we eliminate
zero-points in all weight quantizers such that z = 0, as is common practice so as to avoid computational
overhead of cross-terms (Nagel et al., 2021; Zhang et al., 2022b). Throughout our experiments, we adopt
full-precision floating-point scaling factors defined as s = max(w)/(2b−1 − 1), where max(w) is calculated
per-channel for the weights and per-token for the activations quantized for b-bit quantization.

To quantize our models, we first load the pre-trained checkpoint and merge normalization layers when possible.
When applying SmoothQuant (Xiao et al., 2023) or Hadamard-based incoherence processing (Ashkboos et al.,
2024), we do so before calibrating the scaling factors and zero-points. When applying SmoothQuant, we
perform a light grid search over its α parameter and find α = 0.4 to generally perform the best on average for
Llama3, so we use this for all models. We then apply either GPFQ or OPTQ (with or without AXE).

D.2 Ablation Studies

Impact of error correction and choice of rounding function. Previous reports had suspected EP-init
is limited by its reliance on the round-to-zero (RTZ) rounding function (Colbert et al., 2023; 2024), which
has been shown to be a poor choice (Nagel et al., 2020). AXE removes this reliance and also enables
greedy error correction. We design an ablation study to isolate the impact of RTZ and error correction.
We quantize OPT-125M (Zhang et al., 2022a) and Pythia-160M (Biderman et al., 2023) to 4-bit weights
and 8-bit activations while targeting 20-bit accumulation since our Pareto front shows this configuration
to be both reasonable and challenging. We evaluate AXE with round-to-zero (AXE-RTZ) and AXE with
round-to-nearest (AXE-RTN). We report the results in Table 4. We interpret the gap between EP-init and
AXE-RTZ as the benefit of error correction, and the gap between AXE-RTZ and AXE-RTN as the benefit
of the selected rounding function. We observe that error correction has a greater impact than rounding
function selection for GPFQ, but we observe the opposite for OPTQ. Finally, we evaluate AXE with our hard
constraint only (AXE-HCO), that is Ψai−1,bi−1 from Eq. 17, to isolate the impact of our soft constraint, which

19

Under review as submission to TMLR

is not necessary for guaranteeing overflow avoidance. We interpret the gap between AXE-RTN and AXE-HCO
as the impact of our soft constraint, which consistently provides improved or maintained performance.

Multi-stage vs. monolithic accumulation. In Section 5.2, we analyze how our accumulator constraints
scale to increasingly large language models within the Pythia model suite (Biderman et al., 2023). There,
we discuss our observation that, as model size increases, the quality of the accumulator-constrained models
approaches that of the unconstrained baselines for both GPFQ and OPTQ. This suggests the narrowing gap
in perplexity is in part because model capacity is growing without tightening the constraints. To verify this,
we perform an ablation study targeting a monolithic 16-bit accumulator (i.e., PI = PO = 16). We quantize
all Pythia models up to Pythia-1B using either OPTQ or GPFQ, and report the results in Table 5. Not only
do we observe significant instability, we also observe a 7.4× regression in perplexity between Pythia-70M and
Pythia-1B, confirming that fixing PI improves scaling as models grow wider.

Table 4: We evaluate round-to-nearest (RTN) and round-to-zero (RTZ) within our AXE framework to directly
compare against EP-init. We also evaluate AXE with our hard constraint only (HCO) to isolate the impact
of our soft constraint. All models are quantized to W4A8 while targeting a 20-bit monolitic accumulator (i.e.,
PO = 20).

Algorithm Model EP-init AXE-RTZ AXE-RTN AXE-HCO

GPFQ OPT-125M 8828.3 165.2 31.9 31.9
Pythia-160M 2500.2 211.0 43.0 49.2

OPTQ OPT-125M 998.6 539.3 37.1 70.0
Pythia-160M 4524.4 1798.7 84.9 194.8

Table 5: We evaluate AXE using Pythia models quantized to W4A8 when targeting a monolithic 16-bit
accumulator (i.e., PO = 16). Note that this is in direct contrast with Table 1, which targets multi-stage
accumulation (i.e., PI = 16).

Algorithm 70M 160M 410M 1B
GPFQ 4397 7135 10496 32601
OPTQ 2438 4439 9759 34387

E Pareto Frontier Details

We provide the detailed Pareto frontiers visualized in Figure 4 for GPFQ and OPTQ. For each model, we
report the perplexity, quantization configuration, and unstructured weight sparsity.

20

Under review as submission to TMLR

Table 6: GPFQ: We provide the test perplexity (PPL) and quantization configuration of the Pareto-optimal
models that form the frontiers visualized in Figure 4. Note that M and N respectively denote the weight and
activation bit widths.

Model P GPFQ GPFQ+EP-init GPFQ+AXE
PPL (M, N) Sparsity PPL (M, N) Sparsity PPL (M, N) Sparsity

SmolLM2-135M
(Float: 14.4)

16 - - - 13152.0 (3,4) 71.7 79.8 (4,5) 24.3
17 57568.0 (3,3) 65.9 10816.0 (3,4) 71.7 27.8 (4,6) 22.7
18 1075.0 (3,4) 48.8 283.7 (4,5) 38.5 22.5 (5,6) 13.2
19 171.5 (3,5) 40.3 137.8 (4,6) 35.5 19.0 (5,6) 10.1
20 61.9 (3,6) 38.0 126.4 (6,6) 13.0 16.0 (5,7) 9.9
21 23.4 (4,6) 19.9 19.8 (6,6) 9.9 14.8 (6,7) 5.0
22 19.0 (5,6) 10.1 16.3 (6,7) 9.7 14.2 (6,8) 4.9
23 16.0 (5,7) 9.9 15.1 (7,7) 4.9 14.0 (7,8) 2.6
24 14.8 (6,7) 5.0 14.4 (7,8) 4.9 13.9 (8,8) 1.2
32 14.0 (8,8) 1.2 14.1 (8,8) 2.4 13.9 (8,8) 1.2

OPT-125M
(Float: 27.7)

16 - - - 9148.8 (3,4) 76.5 249.8 (3,6) 55.6
17 - - - 7624.6 (3,4) 72.7 91.2 (4,6) 37.9
18 11007.2 (3,3) 58.3 7471.2 (3,5) 75.5 41.8 (4,6) 27.8
19 9567.6 (3,4) 54.5 1059.3 (5,6) 39.1 32.3 (4,7) 27.0
20 874.4 (3,5) 50.5 86.1 (5,6) 29.8 29.3 (5,7) 15.7
21 101.0 (3,6) 46.4 42.4 (5,7) 28.1 28.6 (5,8) 15.6
22 40.5 (4,6) 26.3 30.4 (6,7) 16.0 28.1 (6,8) 9.6
23 31.8 (4,7) 25.9 29.5 (6,8) 15.9 27.9 (6,8) 8.6
24 29.0 (5,7) 14.7 28.2 (7,8) 9.5 27.8 (7,8) 5.4
32 27.8 (8,8) 3.8 27.8 (8,8) 5.3 27.8 (8,8) 3.8

GPT2-137M
(Float: 29.9)

16 - - - 3345.8 (3,3) 93.2 552.4 (3,6) 55.4
17 - - - 2705.3 (3,6) 75.1 310.1 (3,7) 52.8
18 3760.3 (3,3) 82.3 1100.5 (4,5) 52.9 134.3 (4,7) 34.9
19 2782.2 (3,4) 43.9 402.9 (4,6) 47.3 67.5 (4,7) 25.6
20 742.4 (3,5) 55.3 213.2 (4,7) 44.3 40.4 (4,8) 24.5
21 356.2 (3,6) 48.8 85.2 (5,7) 24.9 33.2 (5,8) 13.2
22 189.9 (4,6) 26.4 46.3 (5,8) 23.8 32.1 (6,8) 7.3
23 65.8 (4,7) 24.7 34.2 (6,8) 13.0 31.8 (6,8) 6.3
24 39.8 (4,8) 23.8 32.1 (7,8) 7.1 31.5 (7,8) 3.2
32 31.5 (8,8) 1.6 31.6 (8,8) 3.2 31.5 (8,8) 1.6

Pythia-160M
(Float: 26.7)

16 - - - 4501.1 (3,4) 76.8 386.0 (3,6) 53.2
17 - - - 3095.1 (3,5) 72.5 198.6 (3,6) 46.3
18 9887.1 (3,3) 49.4 1070.2 (4,5) 46.7 74.5 (4,6) 25.1
19 1946.8 (3,4) 49.8 391.7 (4,6) 42.9 46.2 (4,7) 24.4
20 456.2 (3,5) 47.8 117.5 (5,6) 23.6 34.6 (5,7) 13.3
21 198.3 (3,6) 45.1 78.5 (5,7) 23.4 32.4 (5,8) 13.3
22 69.6 (4,6) 23.5 48.6 (5,7) 21.2 30.1 (6,8) 7.8
23 44.4 (4,7) 22.6 37.2 (6,8) 13.0 28.2 (6,8) 5.5
24 33.2 (5,7) 11.3 31.8 (7,8) 7.4 27.6 (7,8) 2.8
32 27.4 (8,8) 1.4 27.5 (8,8) 2.7 27.4 (8,8) 1.4

21

Under review as submission to TMLR

Table 7: OPTQ: We provide the test perplexity (PPL) and quantization configuration of the Pareto-optimal
models that form the frontiers visualized in Figure 4. Note that M and N respectively denote the weight and
activation bit widths.

Model P OPTQ OPTQ+EP-init OPTQ+AXE
PPL (M, N) Sparsity PPL (M, N) Sparsity PPL (M, N) Sparsity

OPT-125M
(Float: 27.7)

16 - - - 3333.8 (4,5) 62.2 225.0 (3,6) 52.8
17 - - - 1722.6 (4,5) 53.6 80.2 (3,6) 45.7
18 9942.5 (3,3) 54.5 409.8 (5,5) 36.1 41.3 (4,6) 26.6
19 8278.3 (3,4) 47.5 136.0 (5,6) 35,7 35.0 (5,6) 15.1
20 281.1 (3,5) 45.5 46.9 (5,6) 26.8 31.3 (5,6) 14.2
21 60.4 (3,6) 44.7 40.1 (5,7) 26.8 29.0 (5,7) 14.2
22 35.7 (4,6) 25.8 30.3 (6,7) 15.6 28.5 (5,8) 14.2
23 31.5 (5,6) 14.6 29.7 (6,8) 15.6 28.0 (6,8) 8.6
24 29.2 (5,7) 14.6 28.1 (7,8) 9.5 27.8 (7,8) 5.4
32 27.8 (8,8) 2.2 27.8 (8,8) 5.6 27.8 (8,8) 2.2

GPT2-137M
(Float: 29.9)

16 - - - 2765.6 (4,4) 52.6 1513.6 (4,5) 34.0
17 - - - 2465.0 (4,4) 49.0 496.4 (3,6) 43.4
18 4140.7 (3,3) 59.3 2465.0 (4,4) 49.0 117.9 (4,6) 24.2
19 2782.2 (3,4) 43.9 1108.4 (5,6) 34.5 59.9 (4,7) 24.2
20 2149.8 (4,4) 26.0 361.7 (4,7) 43.6 45.5 (5,7) 13.1
21 1153.8 (4,5) 24.7 73.1 (5,7) 24.7 37.3 (5,8) 13.2
22 176.9 (4,6) 24.0 42.7 (5,8) 24.5 33.1 (6,8) 12.2
23 50.1 (4,7) 23.2 33.5 (6,8) 13.4 32.1 (6,8) 6.2
24 37.4 (5,7) 12.2 32.0 (7,8) 7.3 31.8 (7,8) 3.1
32 31.8 (8,8) 1.6 31.7 (8,8) 3.3 31.7 (8,8) 1.6

Pythia-160M
(Float: 26.7)

16 - - - 6739.6 (4,6) 79.7 1521.2 (3,5) 41.7
17 - - - 5345.7 (4,5) 49.9 311.7 (4,5) 22.9
18 27098.1 (3,3) 40.5 1372.4 (4,5) 41.1 126.1 (4,6) 23.1
19 5644.0 (3,4) 40.3 641.2 (4,6) 41.0 61.4 (4,6) 21.3
20 948.4 (3,5) 40.1 132.9 (5,6) 23.4 43.5 (5,6) 10.9
21 151.3 (4,5) 21.4 108.5 (5,7) 23.5 32.8 (5,7) 10.9
22 61.4 (4,6) 21.3 74.1 (5,7) 22.0 30.0 (5,8) 10.9
23 43.3 (5,6) 10.9 40.4 (6,8) 13.0 28.0 (6,8) 5.5
24 32.8 (5,7) 10.9 32.1 (7,8) 7.5 27.4 (7,8) 2.7
32 27.2 (8,8) 1.4 27.6 (8,8) 2.9 27.2 (8,8) 1.4

22

	Introduction
	Preliminaries
	Post-Training Quantization
	Accumulator-Aware Quantization

	Motivation
	Reducing Operand Width Yields Diminishing Returns
	Limiting the Risks of Low-Precision Accumulation

	AXE: A General Framework for Accumulator-Aware PTQ
	Accumulator Constraints without Zero-Centering
	Accumulator-Aware GPFQ
	Multi-Stage Accumulator-Aware Quantization

	Experiments
	Pareto Analysis
	Scaling Analysis
	Llama3 Results

	Conclusions
	Accumulator-Aware OPTQ
	Detailed Zero-Shot Results for Llama3
	Memory-Efficient GPFQ
	Experimental Details & Ablations
	Hyperparameters & Quantization Schemes
	Ablation Studies

	Pareto Frontier Details

