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ABSTRACT

The primary risk in the federated learning (FL) framework arises from the poten-
tial for manipulating local training data and updates, known as a poisoning attack.
Among various attack strategies, agnostic attacks have emerged as a significant
category that attempts to operate without explicit knowledge of the server’s aggre-
gation rules (AGRs). However, existing AGR-agnostic attacks still suffer from a
critical dependency: they rely heavily on staying inside the natural per-coordinate
variance of honest client updates. These attacks typically operate by analyzing
benign clients’ gradient patterns, statistical properties, and behavioral characteris-
tics to strategically position their malicious updates. Therefore, to overcome these
fundamental limitations of current AGR-agnostic attacks, this work presents the
Adaptive Sliding Agnostic Poisoning Attack (ASAP) on FL, which can adaptively,
robustly and precisely manipulate the degree of poisoning without the knowledge
of AGRs algorithm of the server.
Instead of relying on benign client patterns, ASAP incorporates Adaptive Sliding
Model Control (ASMC) theory — a sophisticated robust nonlinear control frame-
work that enables adaptive attack. We implement our attack through comprehen-
sive experiments on state-of-the-art (SOTA) Byzantine-robust federated learning
methods using real-world datasets. These evaluations reveal that ASAP signif-
icantly outperforms all existing agnostic attacks while maintaining complete in-
dependence from benign client information, representing a fundamental advance-
ment in FL attack strategies.

1 INTRODUCTION

The distributed diagram of Federated Learning (FL) ensures training models among clients devices
without sharing local data but only sending model updates to a central server (Li et al., 2021). The
central server initially sends the global model to selected clients, and each client then trains the
model locally using its own data. The locally updated models are then transmitted to the central
server, which applies a specified aggregation rule (AGR) to compute the next global model.

However, distributed systems are susceptible to poisoning attacks including both data poisoning
attacks (Fang et al., 2020) and model poisoning attacks (Panda et al., 2022) due to its natural mech-
anism. Most poisoning attacks are designed relying on knowledge of the server’s aggregation rules,
which is typically difficult to obtain in practical scenarios. Therefore, the development of AGR-
agnostic attacks enables attack deployment without aggregation rule awareness or specification.
Current AGR-agnostic attack methods, such as LIE (Baruch et al., 2019), depend on estimating
statistical properties of benign client updates, particularly coordinate-wise mean µ and standard de-
viation σ, to generate small noises in malicious gradient updates to prevent the optimal convergence.
Furthermore, Min-Max and Min-Sum (Shejwalkar & Houmansadr, 2021) attacks constrain the mali-
cious update to lie inside the benign cluster, using a max-distance or sum-of-distances bound, while
pushing in an adversarial direction. The fundamental constraint of those AGR-agnostic attacks is
their need to remain indistinguishable from benign updates. Moreover, these methods aim to maxi-
mize deviation of the global model from optimal convergence, resulting in dynamics that converge
to biased equilibrium. Consequently, the estimation of benign clients updates or their statistical
properties remains a mandatory requirement for local malicious devices, even though aggregation
rule knowledge is no longer required.
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To overcome these limitations, we propose Adaptive Sliding Poisoning Attack (ASAP) on FL, a
novel FL attack framework that operates without prior knowledge of server aggregation rules or
benign client information. The method leverages a combination of Adaptive Sliding Mode Control
(ASMC) theory and Fourier series approximation (Young et al., 1999; Ge et al., 1997; Huang &
Kuo, 2001). Moreover, ASAP provides precise attack control through adjustable convergence rates
and flexible attack objectives capabilities.

To achieve both AGR-agnosticism and precise attack control, we consider the entire FL process as
a dynamical system and introduce an adaptive law to estimate the unknown information from ma-
licious clients, along with a control law that guides the global model towards a specified poisoned
reference. In particular, we employ Adaptive Sliding Mode Control (ASMC)—an adaptive robust
control framework designed for nonlinear systems with uncertain dynamics—which exhibits strong
resilience to parameter variations and external disturbances. This eliminates the reliance on explicit
knowledge of the AGRs or benign client updates. By employing a Fourier series approximation, the
unknown AGR behaviors and benign update patterns are treated as system uncertainties and approx-
imated using a finite number of orthonormal basis functions. ASMC then ensures that the system
state converges to and remains on a predefined sliding manifold, thereby enforcing the alignment
of the global model with the attack objective. Rather than mimicking benign updates or exploiting
AGR structures, the proposed ASAP attack observes the uncertainty from local malicious clients
and directly manipulates the malicious gradients to achieve the desired poisoning effect without any
prior access to AGR algorithms or benign statistics. Furthermore, ASAP provides fine-grained con-
trol over the attack convergence rate, enabling persistent, adaptive, and target-driven manipulation
throughout the poisoning process.

Our key contribution can be concluded as below:

• We introduce ASAP, a novel adaptive AGR-agnostic controllable attack that dynamically
achieves attack objectives without requiring prior knowledge of aggregation mechanisms.

• ASAP operates without knowledge of server aggregation rules or benign client statistics
by leveraging Adaptive Sliding Mode Control (ASMC), distinguishing it from existing
agnostic attacks that rely on coordinate-wise estimations and distance constraints.

• We provide theoretical analysis proving that ASAP achieves precise control of attack ob-
jectives and converges to predefined targets within finite time at controlled speeds, re-
gardless of the underlying AGR algorithm. Extensive experiments on benchmark datasets
against multiple robust AGRs demonstrate consistent superiority over current state-of-the-
art (SOTA) methods.

2 RELATED WORK

2.1 FEDERATED LEARNING

McMahan et al. (2017) firstly demonstrated the algorithm of federated learning (FL). introduced the
federated learning (FL) paradigm. In a typical FL system, a central server coordinates N clients,
where client i (i ∈ [1, N ]) holds its local private dataset Di drawn from an underlying distribution D,
and the datasets can be independently and identically distributed (IID) or statistically heterogeneous
(Non-IID). Let gt ∈ Rr denote the global model at iteration t, and g{t,i} ∈ Rr he corresponding
local model on each client i. The objective of FL is to address the optimization problem:

g∗ = argmin
g{t,i}

1

N

∑
i∈[1,N ]

L(g{t,i}, Di), (1)

where L denotes the loss function, g∗ ∈ Rr is the optimal global model, and r represents dimen-
sionality of the parameter space encompassing all network weights and biases. At iteration t, the
central server broadcasts the current global parameters gt to a participating subset of clients. Each
participating client initializes its local model over gt and trains on its private dataset Di, producing a
local model g{t,i}. The client then returns the update∇{t,i} = g{t,i}−gt to the central server. After
that, the central server aggregates the collected client updates according to a predefined aggregation
rule FAGR(·), yielding the aggregated update ∇t = FAGR({∇{t,i}|i ∈ N}). A new global model
is subsequently updated as gt+1 = gt − η∇t, where η is the global learning rate. This iterative
procedure is repeated until the convergence criterion of global model is satisfied.
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2.2 POISONING ATTACKS ON FL

Poisoning attacks in FL can generally be divided into two main types: data poisoning attacks and
model poisoning attacks. Data poisoning attacks (Jagielski et al., 2018; Muñoz-González et al.,
2017) involve adversaries contaminating the training datasets on their devices, while model poison-
ing attacks (Bagdasaryan et al., 2020; Baruch et al., 2019; Fang et al., 2020; Mhamdi et al., 2018;
Xie et al., 2020) entail the direct manipulation of local model gradients by malicious participants,
who then transmit these altered gradients to the server during the learning process. A notable study
by Shejwalkar & Houmansadr (2021) mention two agnostic attacks in FL named Min-Max and
Min-Sum. Min-Max aims to minimize the distance between benign and malicious clients, while
Min-Sum looks for the minimized sum distances between benign and malicious clients. Without
knowing the knowledge of the aggregation rules of the server, the attacks can compare the distances
between themselves and benign clients instead, iteratively searching for an optimal parameter to
update the malicious model, thereby achieving the performance of the attack. However, this strategy
of looking for the minimum distances between benign and malicious is not realistic in the real-world
FL scenarios. Additionally, the lack of control over the speed of the attack and the requirement for
a significant proportion of malicious clients can lead to easy detection by robust AGRs, and low at-
tack efficiency. Furthermore, once initiated, the predetermined attack objective in traditional attacks
cannot be modified, which poses a limitation on the flexibility of the attack strategy.

2.3 EXISTING BYZANTINE-ROBUST DEFENSES

Current defenses against poisoning attacks in FL are categorized based on the detection and mitiga-
tion strategies servers employ to handle suspicious models. These strategies are generally grouped
into three types: statistics-based, distance-based, and performance-based approaches (Shen et al.,
2022). Statistics-based defenses, such as Median (Yin et al., 2021) and Trimmed Mean (Yin et al.,
2021), use statistical features like mean or median to aggregate input gradients on each dimen-
sion, mitigating outlier impacts. Distance-based defenses, including methods like Krum (Blanchard
et al., 2017), Mkrum (Blanchard et al., 2017), and Bulyan (Mhamdi et al., 2018), assess distances
such as Euclidean distance or Cosine similarity between local updates to pinpoint statistical outliers.
Performance-based defenses, exemplified by Fang (Fang et al., 2021), rely on a validation dataset
to evaluate the performance of uploaded models, removing those that diverge significantly from
expected outcomes. These varied approaches reflect the complexity of securing FL systems from
sophisticated attacks aimed at compromising the collaborative learning process.

2.4 ADAPTIVE SLIDING MODE CONTROL

Adaptive Sliding Mode Control (ASMC) (Huang & Kuo, 2001) is a robust control technique that
combines sliding mode control’s insensitivity to matched disturbances and parameter uncertainties
with adaptive mechanisms that can estimate unknown system parameters or disturbance bounds in
real-time. The proposed approach, Foriers approximation technique (), systematically aggregates all
uncertain parameters inherent in the controller synthesis process and represents these uncertainties
through finite linear combinations of orthonormal basis functions. Consider a first order nonlinear
system with the dynamic model ġt = ut + dt, where ġt is the derivative of gt with respect to time t,
and dt is the disturbance which is an unknown function of time. Conventionally, the sliding surface
can be specified as:

ṡt = ėt + λet, (2)
where et = g̃ − gt is the loss function of the system state gt and the desired state g̃ at iteration t,
and λ is a hyperparameter to govern the convergence rate of et. If the controller can ensure that
st = 0, i.e., ėt = −ket, solving this first order differential equation will result in et = e0e

−kt,
which converges exponentially to 0 as t increases.

The next step establishes the design of control law ut to ensure lim
t→T

st = 0 alongside real-time

estimation of time-varying uncertainties dt to achieve desired tracking performance. The controller
design follows a two-stage methodology: (i) formulation of control law ut to reach the sliding
surface, and (ii) estimation of dt by finite-term Fourier series approximation technique(Huang &
Kuo, 2001). The control law is chosen as:

ut = −λet − d̂t + α · sign(st), (3)
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where α is a positive constant selected to force the trajectory of the system to reach the sliding

mode surface, and sign (·) is defined as follows: sign(st) =


+1 if st > 0,

0 if st = 0,

−1 if st < 0.

. d̂t is the estimation

of the unknown disturbance dt, both of them can be approximated using finite-term Fourier series
approximation as:

dt = wT
d · zt, d̂ = ŵT

d · zt (4)
where

wd = [w0, w1, w2, ... , w2nd]
T (5)

ŵd = [ŵ0, ŵ1, ŵ2, ... , ŵ2nd]
T (6)

zd = [1, cosω1t, sinω1t, cosω2, t sinω2t, ... , cosωndt, sinωndt]
T (7)

and the error is w̃d = wd − ŵd. By defining the energy function

Vt =
1

2
s2t +

1

2
w̃2

d (8)

the convergence of the st can be ensured when V̇t ≤ 0 (i.e., Vt+1 < Vt for Vt ̸= 0). Substituting
Eq. equation 2 and Eq. equation 3 into Vt, we can get the time derivative of Vt as:

V̇t = st · ṡt + w̃d · ŵd = st · (w̃dzt − αsign(st)) (9)
Define the adaptive law ŵd as

ŵd = s · zt (10)
then the time derivative of Vt can be expressed as

V̇t = −α|st| = −
√
2αV

1/2
t . (11)

Therefore, the convergence of the system can be guaranteed.

3 ASAP OVERVIEW

In this section, the detailed workflow of ASAP will be demonstrated. According to the example
demonstrated in Sec. 2.4, the FL training process can be treated as a nonlinear system. Considering
the practical implementation, we consider the attacker can only control those compromised clients
for a limited number of communication rounds. In order to formulate the attack scenario, we firstly
introduce the threat model of the attack.

3.1 THREAT MODEL

Adversary’s Goal The goal of the adversary is to control the malicious clients updates therefore
when the malicious gradients are uploaded to the central server, the accuracy of the global model
can adaptively reduce to a target accuracy without the knowledge of AGRs.

Adversary’s Capability We assume the adversary controls m malicious clients of total n clients,
and (m/n) < 0.5. The agnostic adversary can access global parameters and directly manipulate the
malicious clients gradients to the server. Moreover, we assume that the adversary does not know
any knowledge of AGRs of central server or gradients of benign clients. In FL, malicious clients
naturally have access to the global model.

Comparing our attacks LIE attacks (Baruch et al., 2019) estimate coordinate-wise mean and
standard deviation of all client updates to generate statistically similar malicious perturbations. Min-
Max and Min-Sum attacks (Shejwalkar & Houmansadr, 2021) constrain malicious updates within
benign clusters using maximum distance or sum-of-distances bounds while pushing in adversarial
directions. In contrast, FMPA (Zhang et al., 2023) uses predictive reference models from histori-
cal data and subsequently fine-tunes them through gradient-based optimization to achieve desired
accuracy levels with precise control. However, as demonstrated in Fig. 1, our proposed attack funda-
mentally differs by seeking updates that are closest to the global optima rather than diverging from
it, thereby maintaining consistent effectiveness across different training phases and defensive mea-
sures without requiring statistical estimation, distance constraints, or iterative fine-tuning processes.

4
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𝑔௧ 𝑔௧ାଵ

𝑔∗
Benign Updates

𝑔෤

ASAP

FMPA Min-Sum
Min-Max

LIE

𝒈𝒕ା𝟏
(Baruch, Baruch,
and Goldberg 2019)

(Shejwalkar
and Houmansadr 
2021)(Zhang et al.2023)

ASAP
FMPA

Min-Sum
Min-Max

LIE

Figure 1: The comparison of existing attacks and our attack. ASAP can directly manipulate the
malicious model updates and then force the global model gt+1 to reach the desired attack objective
g̃, which is chosen as the closest point to the global optima g∗. The attack effect is illustrated via
loss contours—blue area indicates low loss and red area indicates high loss.

3.2 ASAP’S ALGORITHM

We treat the overall FL global model

gt = FAGR{g{t,1}, g{t,2}, ..., g{t,m}, ..., g{t,N}} (12)

as a nonlinear system, and in particular, the malicious local models are chosen as

ġ′{t,i∈m} = ut. (13)

The goal of ASAP is to design the control law ut, and design the adaptive law ŵΦ by applying
the function approximation technique using Fourier Series to transform the uncertainties into a finite
combination of orthonormal basis functions—thus to ensure that the global model gt will slide along
the surface st = 0 to achieve:

et(g̃, gt) = −C/k (14)
exponentially fast, where C ∈ R is a constant to adjust the convergence status of et, and k ∈ R
(k ̸= 0) is a parameter to adjust the convergence speed of et. To achieve the adversary’s goal, we
design the error function as

et = gt − g̃, (15)
To realize this new error, we design the sliding surface as

st =

∫
(ėt + ket +Φt + C)dt + C1, (16)

where C1 ∈ R is the initial value of the sliding surface st, which can be any constant, and Φt is the
unknown disturbance.

After selecting the sliding surface st, the control law ut is designed based on the FL system, the
dynamic model in Eq. (13), the error function in Eq. (15) and sliding surface st in Eq. (16), as
follows:

ut =

[
dgt

dg′{t,i}

]−1

[−ket + ηsign(st)− Φ̂t + C], (17)

where η > 0 is a positive constant selected to force the system trajectory to reach the sliding mode
surface. Here, dgt/dg′{t,i} is the derivative of gt with respective to g′{t,i} and Φ̂t is the estimation
function of Φt. Using the Fourier Series and approximation technique to estimate Φt, it can be
represented as:

Φt = wΦ
T zΦ + ϵΦ, Φ̂t = ŵT

ΦzΦ (18)
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where

wΦ = [w0, w1, w2, ... , w2nΦ]
T (19)

wΦ = [ŵ0, ŵ1, ŵ2, ... , ŵ2nΦ]
T (20)

zΦ = [1, cosω1t, sinω1t, cosω2t, sinω2t, ... , cosωnΦt, sinωnΦt]
T (21)

wΦ ∈ R is the weighting parameter, ŵΦ ∈ R is the estimated weighting parameter, zΦ ∈ Rr is the
vector of orthonormal basis function, and ϵΦ is the approximation error. Note that the number of nΦ

needs to be chosen bigger enough to ensure the performance of approximation of Φt. The adaptive
law of wΦ is defined as:

˙̂wΦ = −szT (22)
The workflow of ASAP to compromise a client is demonstrated in Algorithm 1 in Appendix A.2.

3.3 ASAP CONVERGENCE ANALYSIS

SMC
𝑔௧ାଵ

Desired Attack
Model 𝑔෤

-
𝑒௧

Control 
Law 𝑢௧
𝑔ᇱ

Benign 
Clients 

Sliding 
Surface

𝑠௧ AGR

Adaptive 
Law

Desired 
Attack 
Value

Sliding Surface 𝑠 ൌ 0

Reaching 
Phase

Sliding 
Phase

𝐶ଵ
𝑒௧

𝑒ሶ௧

ASAP

Φ෡௧

𝑡

Ideal Trajectory
Real Trajectory

Figure 2: The block diagram of ASAP. The func-
tion of adaptive law is to automatically adjust the
weight of the estimator in order to track the un-
known function. In the SMC block, the system
state is forced to slide along the sliding surface
which means global model is forced to the desired
attack objectives.

The convergence analysis is illustrated in The-
orem 3.1 as below.
Theorem 3.1. Consider a FL system charac-
terized by the dynamics in Eq. equation 13,
with error function specified in Eq. equation 15
and a sliding manifold defined by Eq. equa-
tion 16. Given the control law ut formulated
in Eq. equation 26 with parameters k > 0,
η > 0, C ∈ R, and the derivative of the aggre-
gation function FAGR with respect to the ma-
licious model g′{t,i} is continuous. Then the
ASMC framework guarantees: (i) Fourier se-
ries approximation of the unknown uncertainty
Φt; (ii) finite-time convergence of the sliding
surface st to zero with subsequent invariance;
(iii) exponential convergence of the error et =
w̃ − wt to −C/k.

Note that the theoretical proof provided ad-
dresses scalar dynamics rather than vector dy-
namics. Since a vector is composed of multi-
ple scalars, proving the property for each in-
dividual scalar inherently establishes the same

property for the entire vector. Thus, demonstrating the desired property at the scalar level is suffi-
cient to confirm the corresponding property for the vector as a whole.

Due to space limit, the proof of Theorem 3.1 is delayed to Appendix A.1. Below, we highlight
significant remarks on the new features of ASAP.

Remark 1: AGR-Agnostic Operation. Unlike existing AGR-agnostic attacks (LIE, Min-Max,
Min-Sum) that still require statistical estimation of benign client updates, ASAP achieves complete
independence from both aggregation rules and benign client information. The ASMC framework
treats unknown aggregation effects as system disturbances Φt, which are estimated in real-time
through Fourier series approximation without requiring any prior knowledge of FAGR or benign
gradient statistics.

Remark 2: Convergence Speed. The parameter k serves as a convergence rate controller, enabling
precise manipulation of et. On the sliding surface where st = ṡt = 0, solving the differential
equation ėt = −ket − C, produces et = 1/k · e−kt

0 − C/k. The analytical solution reveals that k
determines the exponential convergence characteristics: larger values of k correspond to faster expo-
nential convergence rates. This mathematical property enables ASAP to offer flexible convergence
speed modulation capabilities.

Remark 3: Adjustable Objectives. The adversary can dynamically modify attack objectives
throughout ASAP execution by appropriately selecting parameter C in et as evaluated in Eq. (16).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The comparison of the accuracy of the global model between different attacks on CIFAR10,
MNIST, and Tiny ImageNet against different AGRs. More experimental results against different
AGRs under various attack objectives are demonstrated in Appendix A.3.4.

Dataset
(Model)

AGRs No
Attack(%)

Test Acc. (Difference to the Targeted Acc. δ (%))
LIE Min-Max Min-Sum FMPA ASAP

Target Acc 60%

CIFAR10
(AlexNet)

FedAvg 66.42 53.28 (-11.20) 32.75 (-45.42) 51.06 (-14.90) 64.33 (7.22) 61.58 (2.63)
Median 64.28 33.40 (-44.33) 28.08 (-53.20) 33.73 (-43.78) 63.57 (5.95) 56.53 (-5.78)
Trmean 66.23 46.43 (-23.78) 30.95 (-48.42) 41.19 (-31.52) 55.44 (7.60) 61.87 (3.12)
NB 66.73 51.95 (-84.05) 45.64 (-24.07) 55.51 (-7.48) 64.29 (7.15) 61.33 (2.22)
Bulyan 66.07 36.91 (-38.48) 25.95 (-56.75) 23.52 (-60.80) 62.55 (4.25) 61.87 (3.12)
Mkrum 66.79 45.03 (-82.45) 52.29 (-12.85) 31.74 (-47.11) 63.26 (6.05) 60.65 (0.92)
Fltrust 66.59 31.53 (-47.42) 50.79 (-15.18) 52.56 (-12.4) 65.52 (9.20) 61.94 (3.23)
CC 66.62 63.53 (5.88) 10.53 (-82.45) 14.94 (-75.10) 67.22 (12.03) 62.13 (3.55)
DNC 66.55 62.92 (4.87) 63.94 (6.57) 58.26 (-2.90) 65.01 (8.35) 61.25 (2.08)

Target Acc 90%

MNIST
(MLP)

FedAvg 97.98 94.12 (4.58) 91.67 (1.85) 92.84 (3.16) 95.28 (5.80) 91.04 (1.16)
Median 97.81 90.99 (1.10) 91.15 (1.28) 92.84 (3.16) 43.79 (-50.88) 88.22 (-1.98)
Trmean 97.42 91.80 (2.00) 91.30 (1.44) 92.43 (2.70) 97.26 (8.10) 90.69 (0.77)
NB 97.96 92.82 (3.13) 91.88 (2.09) 93.02 (3.36) 60.20 (-33.56) 90.95 (1.06)
Bulyan 97.97 88.92 (-1.20) 91.96 (2.18) 92.29 (2.54) 45.28 (-50.84) 89.22 (-0.87)
Mkrum 97.94 92.33 (2.59) 96.14 (7.93) 95.39 (5.99) 93.41 (3.57) 92.19 (2.43)
Fltrust 97.96 87.89 (-2.34) 73.49 (-18.34) 93.12 (3.47) 95.01 (5.38) 92.46 (2.73)
CC 97.96 95.35 (5.94) 94.61 (5.12) 94.54 (5.04) 96.99 (7.86) 93.54 (3.93)
DNC 97.95 93.08 (3.42) 92.90 (3.22) 93.36 (3.73) 93.22 (3.58) 92.46 (2.73)

Target Acc 45%

Tiny
ImageNet

(ResNet50)

FedAvg 57.49 51.63 (14.73) 38.37 (-23.26) 53.20 (6.40) 54.64 (21.42) 48.07 (6.82)
Median 53.47 22.14 (-55.72) 54.08 (8.16) 34.24 (-31.52) 42.94 (-4.58) 46.93 (4.29)
Trmean 54.78 51.60 (14.67) 54.59 (9.18) 39.82 (-20.36) 55.90 (24.22) 44.94 (0.13)
NB 58.62 52.98 (17.73) 52.95 (5.90) 53.09 (6.18) 56.12 (24.71) 45.57 (1.27)
Bulyan 54.93 24.93 (-44.60) 48.01 (-3.98) 33.51 (-32.98) 5.15 (-88.56) 44.98 (0.01)
Mkrum 54.96 27.02 (-39.96) 49.68 (-10.08) 26.39 (-47.22) 36.06 (18.44) 45.46 (1.02)
Fltrust 54.35 33.57 (-25.40) 47.04 (4.53) 53.45 (6.90) 55.48 (23.29) 45.31 (0.69)
CC 54.31 29.13 (-35.27) 32.26 (-35.48) 30.99 (-31.13) 47.88 (6.40) 44.13 (-1.93)
DNC 55.97 68.12 (51.37) 69.66 (39.32) 54.29 (20.64) 46.98 (4.40) 44.36 (-1.42)

When the system reaches equilibrium on the sliding manifold where both ṡt = 0 and ėt = 0, the
constraint ṡt = ėt + ket + C results in the equilibrium relationship et = −C/k or gt = g̃ + C/k.

4 PERFORMANCE EVALUATION

4.1 EXPERIMENT SETTINGS

Datasets and Models Our experimental evaluation of ASAP encompasses diverse architectures
and benchmark datasets. We deploy AlexNet following Yang (Yang et al., 2017) for CIFAR10 ex-
periments, utilize a fully connected (FC) neural network architecture for MNIST (Deng, 2012), and
employ ResNet50 for Tiny ImageNet (Le & Yang, 2015) evaluation. The experimental framework
incorporates both Independent and Identically Distributed (IID) and Non-Independent and Identi-
cally Distributed (Non-IID) data partitioning schemes. For Non-IID configurations, we leverage the
Dirichlet distribution parameterized by concentration values {0.1, 0.3, 0.5, 0.7, 0.9} to systemati-
cally vary data heterogeneity levels. Smaller concentration parameters (e.g., 0.1) generate severely
imbalanced client datasets with pronounced class skewness, while larger values approach uniform
class distributions across participating clients. The experimental configurations are tailored to op-
timize performance across different architecture-dataset combinations. Comprehensive details of
each dataset are provided in Appendix A.3.2.

Attack Settings The experimental setup involves a federated network of 50 clients with a 10%
malicious participation rate, consistent with established benchmarks in adversarial federated learn-
ing research (Zhang et al., 2023; Shejwalkar & Houmansadr, 2021; Baruch et al., 2019). Under our
threat model, adversaries gain control over compromised client devices, enabling strategic manipula-
tion of local parameter updates to achieve precise global model accuracy targets. The attack targets
are stratified across datasets: CIFAR10 targets at 60% (reference), 55%, 50%, and 10% through
C parameter tuning. MNIST configurations target 90% (reference), 85%, 80%, and 10% accura-
cies via C adjustment. Tiny ImageNet targets of 45% (reference), 40%, 35%, and 0.5% through
C modulation. The lower bounds (10% for CIFAR10/MNIST, 0.5% for Tiny ImageNet) represent
random guess performance baselines. We compare our attack with existing methods including AGR-
agnostic approaches LIE (Baruch et al., 2019), Min-Max (Shejwalkar & Houmansadr, 2021), and
Min-Sum (Shejwalkar & Houmansadr, 2021), as well as FMPA (Zhang et al., 2023) which provides
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precise control capabilities but requires AGR knowledge. The details of each attack are introduced
in Appendix A.3.2.

Evaluation Defenses In the experiments, various defenses are considered such as FedAvg (McMa-
han et al., 2017), Median (Yin et al., 2021), Trmean (Yin et al., 2021), Norm-Bounding (NB) (Sun
et al., 2019) Bulyan (Mhamdi et al., 2018), Mkrum (Blanchard et al., 2017), Fltrust (Cao et al.,
2022), CC (Karimireddy et al., 2021), and DNC (Shejwalkar & Houmansadr, 2021). The details of
each defense are demonstrated in Appendix A.3.3.

Evaluation Metric Define IT and I0 as the target and achieved attack accuracies, respectively.
The normalized deviation ς = ((IT −I0)/I0)×100% measures the relative distance between attack
objectives and actual results. Attack method comparison employs the absolute metric |ς|, where
smaller values denote better objective fulfillment and higher attack quality.

4.2 EXPERIMENTS RESULTS

Experimental results presented in Table 1 and Figure 3 demonstrate the comparative performance
of attack methods against different AGRs using CIFAR10/AlexNet, MNIST/MLP, and Tiny Ima-
geNet/ResNet50 benchmarks. More experimental results under different scenarios are demonstrated
in Appendix A.3.4. Overall, ASAP achieves the minimal |δ| values and consistently outperforms all
baseline attacks.

As shown in Fig. 3, ASAP achieves robust convergence to attack objectives without triggering
AGR detection, requiring fewer communication rounds than competing methods. In contrast to
AGR-agnostic attacks including LIE, Min-Max and Min-Sum, which fail to achieve precise control

Table 2: Time Complexity and Effective Commu-
nication Rounds comparisons.

Comparison LIEMin-MaxMin-SumFMPAASAP

Time (hrs) 0.8 0.9 0.9 1.0 1.1

Rounds (epochs) 781 778 767 34 19

and demand increased communication re-
sources, and unlike FMPA, which encounters
detection by AGRs under various conditions,
causing the test accuracy to converge near the
optimal performance achieved without any at-
tack presence.

The comprehensive evaluation demonstrates
ASAP’s consistent performance compared to existing SOTA AGR-agnostic attack methods, coupled
with fine-grained controllability for precise attack execution. The subsequent discussion examines
the findings across three key dimensions.

Time Complexity The computational cost analysis, detailed in Table 2, reveals that ASAP demon-
strates the highest execution time among evaluated methods, primarily due to the computational de-
mands of its underlying mathematical framework. Nevertheless, the increased computational cost
compared to competing methods remains feasible for practical deployment.

Effective Communication Rounds To maintain evaluation consistency, we utilize Effective Com-
munication Rounds (ECR) as the standardized communication efficiency metric. Table 2 presents
the average convergence performance on CIFAR10 dataset, establishing that ASAP requires the
minimum number of communication rounds to achieve attack objectives compared to existing ap-
proaches.

Precise Control Table 3 in Appendix A.3.4 presents comprehensive evaluation results across mul-
tiple AGRs under diverse attack objectives. FedSA consistently exhibits the lowest |δ| scores while
surpassing all comparative attacks, validating its capability for accurate objective targeting with min-
imal loss variance. The CIFAR10 results show average |δ| values of 2.18%, 2.61%, and 1.62% for
attack objectives of 60%, 55%, and 50% respectively.

4.3 ABLATION STUDY

In this section, we conduct extensive sensitivity analysis to evaluate ASAP’s robustness under vary-
ing experimental conditions, including the impact of attack speed, the impact of percentage of at-
tackers, the impact of number of clients, the impact of clients sampling rate and the impact of
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Figure 3: Comparison of each attack against various AGRs with different attack objectives on CI-
FAR10 with AlexNet under different attack objectives and different attacks under the same target
accuracy. Comparison figures on MNIST and Tiny ImageNet are given in Appendix A.3.4.

Non-IID degrees. The outcomes of ablation study and additional ablation studies are provided are
demonstrated below and the detailed statements are illustrated in Appendix A.3.5.
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Figure 4: Ablation study results against Trmean on CIFAR10 with AlexNet to target accuracy at
55%.

5 CONCLUSION

In this paper, we introduced ASAP, a novel AGR-agnostic model poisoning attack on Federated
Learning, inspired by Adaptive Sliding Mode Control theory. Unlike prior agnostic attacks that rely
on heuristic distance-based strategies or require partial knowledge of benign updates, ASAP formu-
lates the poisoning process as a controllable nonlinear system. By leveraging a Fourier series-based
estimator, ASAP precisely tracks the global model trajectory and adaptively adjusts the direction and
magnitude of malicious updates toward a predefined target. This enables both fine-grained control
over convergence speed and resilience against diverse aggregation rules.

Our theoretical analysis guarantees convergence to the attack objective under finite time, without
requiring knowledge of the server’s aggregation strategy or benign client behavior. Extensive exper-
iments on CIFAR-10, MNIST, and Tiny ImageNet across various robust AGRs which demonstrate
that ASAP consistently outperforms SOTA AGR-agnostic attacks in both convergence efficiency
and target alignment.

ASAP opens a new attack surface in FL by enabling precise, stealthy, and adaptive poisoning. To
counteract this threat, future research should explore dynamic defense mechanisms. In particular, we
propose leveraging system identification techniques to model and detect abnormal update dynamics
introduced by adaptive attackers. By identifying deviations from expected system behavior, such
defenses could adaptively reject suspicious updates in real time.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. To design the update law for ŵΦ, defining w̃Φ = wΦ − ŵΦ and a Lyapunov function (or
energy function)

Vt =
1

2
s2t +

1

2
w̃2

Φ (23)

and differentiating Vt with respect to time, we have

V̇t = stṡt − w̃Φ
˙̂wΦ (24)

= st(−
dgt

dg{t,i}
[ġ{t,i} − Φ̂t + ket + C]). (25)

Using control law

ut =

[
dgt

dg′{t,i}

]−1

[ket + ηsign(st)− Φ̂t + C], (26)

we get

V̇t = st[−ket − ηsign(st)− C +Φt − Φ̂t + ket + C]

− w̃Φsz
T (27)

≤ st[−η1sign(st)] (28)

= −η1|st| = −
√
2η1V

1/2
t (29)

where η = η1+δ, δ > 0, ˙̂wΦ = −szT . By the finite time stability theorem proved in the study (Khoo
et al., 2009), Vt will converge to zero in a finite time, and hence results in st = ṡt = 0 in a finite
time.
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A.2 ALGORITHM

In this section, the algorithm of ASAP is demonstrated. We firstly initialize the value of gt, st as g0,
s0 respectively (line 2), and malicious clients need to initialize weight of the estimator ŵΦ. At the
t-th communication round, the client is selected by the server and receives the current global model
gt.

Algorithm 1 The workflow of ASAP to compromise a client

Require: Global model gt, desired poisoning model g̃.
Ensure: malicious model update g′t.

1: if t=0 then
2: gt ← g0, g̃
3: Initialize ŵΦ

4: else
5: for malicious client i = 1 to m do
6: Update the adaptive law in Eq. (22)
7: Calculate Φ̂t in Eq. (18)
8: Calculate et of gt and g∗t in Eq. (15)
9: Calculate st in Eq. (16)

10: end for
11: calculate g′t from Eq. (26) ▷ {control law}
12: Output g′t
13: end if
14: Update the malicious client model g′t on FL

A.3 DATASETS, ATTACKS AND DEFENSES

In this section, we give details of our experiments settings. For CIFAR10 experiments with AlexNet,
we establish a global learning rate of 0.02, a global batch size of 128, and conduct training over 100
global rounds, with local client updates using a batch size 10 across 5 local epochs. MNIST ex-
periments employing MLP utilize a global learning rate of 0.01, a global batch size of 128, and
100 training rounds, while local training proceeds with a batch size 5 over 3 epochs. The Tiny
ImageNet-ResNet50 configuration employs a global learning rate of 0.001, maintains a batch size
128, and executes 20 global rounds, with local updates using a batch size 10 for 3 epochs. These
hyperparameter selections reflect architecture-specific optimization requirements and dataset com-
plexity considerations.

A.3.1 DATASETS

• CIFAR10 (Krizhevsky, 2009). It is an image database with 60,000 colour images of 32 *
32 size in 10 classes equally, and it is divided into training dataset with 50,000 images and
test dataset with 10,000 images.

• MNIST (Deng, 2012). It is a dataset with 70,000 hand-written digital images in 28 * 28
size with 10 classes equally, and it is divided into training dataset with 60,000 images and
test dataset with 10,000 images.

• Tiny ImageNet (Le & Yang, 2015) It is a subset of ILSVRC (ImageNet challenge) (Deng
et al., 2009), which is one of the most famous benchmarks for image classification. As a
subset, Tiny ImageNet only has 200 different classes. In addition, each class contains 500
training images, 50 validation images, and 50 test images totally. Moreover, the size of the
images is revised to 64 * 64 pixels instead of 224 * 224 pixels in standard ImageNet.

A.3.2 ATTACKS

• LIE (Baruch et al., 2019). It inserts an appropriate amounts of noise which are large for the
adversary to impact the global model while small to avoid attention by Byzantine-robust
AGRs to each dimension of the average of the benign gradients.
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• Min-Max (Shejwalkar & Houmansadr, 2021). They minimize the distance of malicious
clients to benign clients, and then ensure the poisoned updates lie closely to the clique of
benign gradients.

• Min-Sum (Shejwalkar & Houmansadr, 2021). They minimize the the sum of the squared
distance of malicious clients to benign clients, and then ensure the poisoned updates lie
closely to the clique of benign gradients.

• FMPA (Zhang et al., 2023). It generates an estimator to predict the global model in the next
iteration as a benign reference model to fine-turn the global model to the desired poisoned
model by collecting the historical information.

A.3.3 DEFENSES

• FedAvg (McMahan et al., 2017). It is a basic algorithm on FL without defense. It collects
all the local updates from the clients and computes the average of them as the output of
aggregation.

• Median (Yin et al., 2021). It computes the median of the values from each dimension of
gradients as a new global gradient.

• Trmean (Trimmed-mean) (Yin et al., 2021). It drops the specific number of maximum
and minimum values from the local updates from the clients, and use the average value of
the remaining updates as the aggregation output.

• Norm-bounding (Sun et al., 2019). It will scale the local update of the clients if the l2
norm of it is bigger than the fixed threshold. Then it will average the scaled local updates
as it’s aggregation.

• Bulyan (Mhamdi et al., 2018). It uses Mkrum to select the updates as a selection set
and then use Trmean (Yin et al., 2021) to aggregate the gradients. Trmean averages the
gradients after removing the m largest and smallest values from the updates, m is usually
set as the number of malicious clients.

• Mkrum (Blanchard et al., 2017). It was modified by krum (Blanchard et al., 2017) to
aggregate the information provided from the clients effiectively. Krum selects the single
gradient which is closest to (N −m − 2) neighboring gradients, where N and m are the
number of all clients and malicious clients respectively. Mkrum select multi gradients using
krum to obtain a selection set and then average the gradients.

• Fltrust (Cao et al., 2022). It assigns a trust score to each clients based on the updates
from them to the global update direction, the lower trust score the client get, the more the
direction deviates. Then Fltrust normalizes the gradients of local model updates by the trust
cores, and then average the updates as a global model.

• CC (Centered Clipping) (Karimireddy et al., 2021). It clips all the gradients to the bad
vector ρ to ensure the error is less than a specific value. Then it averages the normalized
local updates with the weight of the trust score to generate a new global model.

• DNC (Shejwalkar & Houmansadr, 2021). Singular value decomposition (SVD) is em-
ployed for Divide-and-conquer (DnC) to extract the common features. The projection of
a subsampled gradients generated from a selection of a sorted set of indices is computed,
and then the gradients with highest scores of outlier vector will be removed. DnC averages
the gradients after repeating this process.

A.3.4 EXPERIMENTAL RESULTS

A.3.5 ABLATION STUDY

Impact of percentage of attackers The impact of malicious client proportion on FL is analyzed
by incrementally increasing the adversarial ratio from 5% to 20%. As illustrated in Figure 4a,
ASAP exhibits consistent performance advantages compared to competing attack strategies across
all evaluated ratios.
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Table 3: The comparison of the accuracy of the global model between different attacks on CIFAR10,
MNIST, and Tiny ImageNet against different AGRs.

Dataset
(Model)

AGRs No
Attack(%)

Test Acc. (Difference to the Targeted Acc. δ (%))
LIE Min-Max Min-Sum FMPA ASAP

Target Acc 55%

CIFAR10
(AlexNet)

FedAvg 66.42 53.28 (-11.20) 32.75 (-45.42) 51.06 (-14.90) 58.44 (6.40) 56.37 (2.49)
Median 64.28 (-82.82) 28.08 (-53.20) 33.73 (-43.78) 51.05 (-6.87) 51.47 (-6.42)
Trmean 66.23 46.43 (-23.78) 30.95 (-48.42) 41.19 (-31.52) 58.22 (-21.60) 52.50 (-4.55)
NB 66.73 (-84.05) 45.64 (-24.07) 55.51 (-7.48) 58.07 (5.98) 56.42 (2.58)
Bulyan 66.07 36.91 (-38.48) 25.95 (-56.75) 23.52 (-60.80) 48.71 (-11.29) 53.71 (-2.35)
Mkrum 66.79 (-82.45) 52.29 (-12.85) 31.74 (-47.11) 51.10 (-7.15) 54.92 (-0.15)
Fltrust 66.59 31.53 (-47.42) 50.79 (-15.18) 52.56 (-12.4) 53.62 (-37.27) 55.16 (0.29)
CC 66.62 (-72.65) 10.53 (-82.45) 14.94 (-75.10) 58.98 (7.95) 55.71 (1.29)
DNC 66.55 62.92 (4.87) 63.94 (6.57) 58.26 (-2.90) 51.43 (-6.51) 53.14 (-3.38)

Target Acc 50%

FedAvg 66.42 53.28 (-11.20) 32.75 (-45.42) 51.06 (-14.90) 57.84 (15.40) 50.87 (1.74)
Median 64.28 (-82.82) 28.08 (-53.20) 33.73 (-43.78) 48.98 (-2.70) 50.99 (1.98)
Trmean 66.23 46.43 (-23.78) 30.95 (-48.42) 41.19 (-31.52) 52.78 (6.34) 50.71 (1.42)
NB 66.73 (-84.05) 45.64 (-24.07) 55.51 (-7.48) 55.79 (12.04) 50.26 (0.52)
Bulyan 66.07 36.91 (-38.48) 25.95 (-56.75) 23.52 (-60.80) 58.94 (18.06) 49.83 (-0.34)
Mkrum 66.79 (-82.45) 52.29 (-12.85) 31.74 (-47.11) 62.56 (25.04) 50.53 (1.06)
Fltrust 66.59 31.53 (-47.42) 50.79 (-15.18) 52.56 (-12.4) 43.86 (4.52) 51.87 (3.74)
CC 66.62 (-72.65) 10.53 (-82.45) 14.94 (-75.10) 43.99 (12.02) 50.42 (0.84)
DNC 66.55 62.92 (4.87) 63.94 (6.57) 58.26 (-2.90) 51.36 (4.88) 51.46 (2.92)

Target Acc 85%

MNIST
(MLP)

FedAvg 97.98 94.12 (4.58) 91.67 (1.85) 92.84 (3.16) 83.21 (-2.11) 85.70 (0.82)
Median 97.81 90.99 (6.46) 91.15 (7.24) 92.84 (9.22) 51.74 (39.13) 88.37 (3.96)
Trmean 97.42 91.80 (7.99) 91.30 (7.41) 92.43 (2.70) 95.84 (12.75) 84.45 (-0.65)
NB 97.96 88.92 (4.61) 91.88 (8.09) 92.29 (2.54) 88.35 (3.94) 86.15 (1.35)
Bulyan 97.97 92.33 (8.62) 91.96 (8.19) 92.29 (2.54) 98.68 (16.09) 87.94 (3.46)
Mkrum 97.94 95.19 (11.88) 95.21 (12.01) 95.39 (12.22) 86.71 (2.01) 85.40 (0.47)
Fltrust 97.96 87.89 (3.40) 73.49 (-13.54) 93.12 (3.47) 93.00 (9.41) 87.94 (3.46)
CC 97.96 95.35 (12.18) 89.61 (5.42) 94.54 (5.04) 94.86 (11.60) 83.72 (-1.51)
DNC 97.95 93.08 (9.51) 92.90 (9.29) 93.36 (9.84) 99.47 (17.02) 86.38 (1.62)

Target Acc 80%

FedAvg 97.98 94.12 (4.58) 91.67 (1.85) 92.84 (3.16) 92.39 (15.49) 80.68 (0.85)
Median 97.81 90.99 (1.10) 91.15 (1.28) 92.84 (3.16) 35.52 (55.60) 69.70 (-12.88)
Trmean 97.42 91.80 (2.00) 91.30 (1.44) 92.43 (2.70) 97.44 (21.80) 78.75 (-1.56)
NB 97.96 88.92 (-1.20) 91.96 (2.18) 92.29 (2.54) 46.36 (-42.05) 79.87 (-0.16)
Bulyan 97.97 88.92 (-1.20) 91.96 (2.18) 92.29 (2.54) 68.69 (-14.14) 77.84 (-2.70)
Mkrum 97.94 95.19 (18.99) 95.21 (19.01) 95.39 (19.24) 25.52 (-68.10) 80.02 (0.03)
Fltrust 97.96 87.89 (-2.34) 73.49 (-18.34) 93.12 (3.47) 95.11 (18.89) 77.47 (-3.16)
CC 97.96 94.48 (18.10) 94.66 (18.32) 94.54 (18.18) 92.39 (15.49) 76.85 (-3.94)
DNC 97.95 93.08 (3.42) 92.90 (2.11) 93.36 (3.73) 92.62 (15.77) 82.54 (3.18)

Target Acc 40%

Tiny
ImageNet

(ResNet50)

FedAvg 56.46 51.60 (3.20) 38.37 (-23.26) 53.20 (6.40) 38.79 (-3.03) 40.42 (1.05)
Median 52.87 22.14 (-55.72) 54.08 (8.16) 34.24 (-31.52) 43.46 (8.65) 39.45 (-1.37)
Trmean 56.02 51.60 (3.20) 54.59 (9.18) 39.82 (-20.36) 46.95 (17.38) 40.12 (0.30)
NB 57.23 52.98 (17.73) 52.95 (5.90) 53.09 (6.18) 34.09 (-14.78) 38.74 (-3.15)
Bulyan 56.03 24.93 (-44.60) 48.01 (-3.98) 33.51 (-32.98) 38.9 (-2.75) 39.52 (-1.20)
Mkrum 54.98 27.02 (-39.96) 49.68 (-10.08) 26.39 (-47.22) 35.61 (-10.98) 40.82 (2.05)
Fltrust 55.63 33.57 (-25.40) 47.04 (4.53) 53.45 (6.90) 35.97 (-10.08) 37.86 (-5.35)
CC 53.23 29.13 (-35.27) 32.26 (-35.48) 30.99 (-31.13) 41.76 (4.40) 40.91 (2.27)
DNC 53.13 68.12 (51.37) 69.66 (39.32) 54.29 (20.64) 40.64 (1.60) 39.31 (-1.73)

Target Acc 35%

FedAvg 56.46 51.60 (3.20) 38.37 (-23.26) 53.20 (6.40) 48.06 (45.09) 33.73 (-0.03)
Median 52.87 22.14 (-55.72) 54.08 (8.16) 34.24 (-31.52) 33.88 (-6.86) 34.45 (-3.20)
Trmean 56.02 51.60 (3.20) 54.59 (9.18) 39.82 (-20.36) 48.47 (36.57) 34.35 (2.09)
NB 57.23 52.98 (17.73) 52.95 (5.90) 53.09 (6.18) 50.12 (39.37) 32.73 (1.46)
Bulyan 56.03 24.93 (-44.60) 48.01 (-3.98) 33.51 (-32.98) 4.27 (-91.20) 37.75 (0.86)
Mkrum 54.98 27.02 (-39.96) 49.68 (-10.08) 26.39 (-47.22) 37.30 (9.31) 34.51 (1.11)
Fltrust 55.63 33.57 (-25.40) 47.04 (4.53) 53.45 (6.90) 49.27 (30.40) 35.34 (2.40)
CC 53.23 29.13 (-35.27) 32.26 (-35.48) 30.99 (-31.13) 41.70 (24.00) 37.16 (4.09)
DNC 53.13 68.12 (51.37) 69.66 (39.32) 54.29 (20.64) 48.34 (37.49) 35.49 (0.40)
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Figure 5: Comparison of each attack against various AGRs with different attack objectives on CI-
FAR10 with AlexNet under different attack objectives and different attacks under the same target
accuracy.

Impact of Non-IID degrees The impact of data heterogeneity on attack efficacy is assessed using
CIFAR10 with Dirichlet concentration parameters spanning {0.1, 0.3, 0.5, 0.7, 0.9}, targeting 55%
accuracy under Trmean aggregation. As presented in Figure 4b, ASAP successfully accomplishes
the attack objectives while demonstrating robust outperform of existing attack strategies regardless
of statistical heterogeneity intensity.

Impact of number of clients While our baseline experiments employ 50 total clients, we extend
the evaluation to assess ASAP’s scalability under larger federation sizes of 100, 150, and 200 par-
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ticipants using CIFAR10 with a 55% target accuracy. Figure 4c demonstrates that ASAP maintains
consistent superiority over competing attack methods across all federation scales.

Impact of clients sampling rates The impact of client sampling rate variations on attack per-
formance is examined in Figure 4d. Experimental findings indicate that ASAP exhibits enhanced
consistency and reduced performance variance relative to competing attack approaches across all
sampling configurations.

A.4 THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) to aid and polish writing in this paper. Specifically, LLMs
were used to help improve the clarity, grammar, and flow of certain sections of the manuscript, and
to assist in refining the presentation of ideas and ensuring consistent writing style throughout the pa-
per. All core concepts, methodological contributions, experimental designs, results, and conclusions
represent our original work. The LLMs did not contribute to the research ideation, experimental
methodology, data analysis, or the generation of novel scientific insights. All content assisted by
LLMs was thoroughly reviewed, fact-checked, and edited by the human authors to ensure accuracy
and alignment with our intended contributions. The authors take full responsibility for all claims,
results, and content presented in this work.
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