

000 001 002 003 004 005 ASAP: ADAPTIVE SLIDING AGNOSTIC POISONING 006 ATTACK ON FEDERATED LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 The primary risk in the federated learning (FL) framework arises from the potential for manipulating local training data and updates, known as a poisoning
031 attack. Among various attack strategies, agnostic attacks have emerged as a significant category that attempts to operate without explicit knowledge of the server's
032 aggregation rules (AGR). However, existing AGR-agnostic attacks still suffer from a critical dependency: they rely heavily on staying inside the natural per-
033 coordinate variance of honest client updates. These attacks typically operate by
034 analyzing benign clients' gradient patterns, statistical properties, and behavioral
035 characteristics to strategically position their malicious updates. Therefore, to over-
036 come these fundamental limitations of current AGR-agnostic attacks, this work
037 presents the Adaptive Sliding Agnostic Poisoning Attack (ASAP) on FL, which
038 can adaptively, robustly and precisely manipulate the degree of poisoning with-
039 out the knowledge of AGRs algorithm of the server. Instead of relying on benign
040 client patterns, ASAP incorporates Adaptive Sliding Model Control (ASMC) the-
041 ory — a sophisticated robust nonlinear control framework that enables adaptive
042 attack. We implement our attack through comprehensive experiments on state-
043 of-the-art (SOTA) Byzantine-robust federated learning methods using real-world
044 datasets. These evaluations reveal that ASAP significantly outperforms all exist-
045 ing agnostic attacks while maintaining complete independence from benign client
046 information, representing a fundamental advancement in FL attack strategies.
047
048
049

1 INTRODUCTION

050 The distributed diagram of Federated Learning (FL) ensures training models among clients devices
051 without sharing local data but only sending model updates to a central server (Li et al., 2021). The
052 central server initially sends the global model to selected clients, and each client then trains the
053 model locally using its own data. The locally updated models are then transmitted to the central
054 server, which applies a specified aggregation rule (AGR) to compute the next global model.

055 However, distributed systems are susceptible to poisoning attacks including both data poisoning
056 attacks (Tolpegin et al., 2020) and model poisoning attacks (Panda et al., 2022) due to its natural
057 mechanism. Most poisoning attacks are designed relying on knowledge of the server's aggregation
058 rules, which is typically difficult to obtain in practical scenarios. Therefore, the development of
059 AGR-agnostic attacks enables attack deployment without aggregation rule awareness or specifica-
060 tion. Current AGR-agnostic attack methods, such as LIE (Baruch et al., 2019), depend on estimating
061 statistical properties of benign client updates, particularly coordinate-wise mean μ and standard de-
062 viation σ , to generate small noises in malicious gradient updates to prevent the optimal convergence.
063 Furthermore, Min-Max and Min-Sum (Shejwalkar & Houmansadr, 2021) attacks constrain the mali-
064 cious update to lie inside the benign cluster, using a max-distance or sum-of-distances bound, while
065 pushing in an adversarial direction. The fundamental constraint of those AGR-agnostic attacks is
066 their need to remain indistinguishable from benign updates. Moreover, these methods aim to maxi-
067 mize deviation of the global model from optimal convergence, resulting in dynamics that converge
068 to biased equilibrium. Consequently, the estimation of benign clients updates or their statistical
069 properties remains a mandatory requirement for local malicious devices, even though aggregation
070 rule knowledge is no longer required.

To overcome these limitations, we propose Adaptive Sliding Poisoning Attack (ASAP) on FL, a novel FL attack framework that operates without prior knowledge of server aggregation rules or benign client information. The method leverages a combination of Adaptive Sliding Mode Control (ASMC) theory and Fourier series approximation (Young et al., 1999; Ge et al., 1997; Huang & Kuo, 2001). Moreover, ASAP provides precise attack control through adjustable convergence rates and flexible attack objectives capabilities.

To achieve both AGR-agnosticism and precise attack control, we consider the entire FL process as a dynamical system and introduce an adaptive law to estimate the unknown information from malicious clients, along with a control law that guides the global model towards a specified poisoned reference. In particular, we employ Adaptive Sliding Mode Control (ASMC)—an adaptive robust control framework designed for nonlinear systems with uncertain dynamics—which exhibits strong resilience to parameter variations and external disturbances. This eliminates the reliance on explicit knowledge of the AGRs or benign client updates. By employing a Fourier series approximation, the unknown AGR behaviors and benign update patterns are treated as system uncertainties and approximated using a finite number of orthonormal basis functions. ASMC then ensures that the system state converges to and remains on a predefined sliding manifold, thereby enforcing the alignment of the global model with the attack objective. Rather than mimicking benign updates or exploiting AGR structures, the proposed ASAP attack observes the uncertainty from local malicious clients and directly manipulates the malicious gradients to achieve the desired poisoning effect without any prior access to AGR algorithms or benign statistics. Furthermore, ASAP provides fine-grained control over the attack convergence rate, enabling persistent, adaptive, and target-driven manipulation throughout the poisoning process.

Our key contribution can be concluded as below:

- We introduce ASAP, a novel adaptive AGR-agnostic controllable attack that dynamically achieves attack objectives without requiring prior knowledge of aggregation mechanisms.
- ASAP operates without knowledge of server aggregation rules or benign client statistics by leveraging Adaptive Sliding Mode Control (ASMC), distinguishing it from existing agnostic attacks that rely on coordinate-wise estimations and distance constraints.
- We provide theoretical analysis proving that ASAP achieves precise control of attack objectives and converges to predefined targets within finite time at controlled speeds, regardless of the underlying AGR algorithm. Extensive experiments on benchmark datasets against multiple robust AGRs demonstrate consistent superiority over current state-of-the-art (SOTA) methods.

2 RELATED WORK

2.1 FEDERATED LEARNING

McMahan et al. (2017) firstly demonstrated the algorithm of federated learning (FL) and introduced the FL paradigm. In a typical FL system, a central server coordinates N clients, where client i ($i \in [1, N]$) holds its local private dataset D_i drawn from an underlying distribution D , and the datasets can be independently and identically distributed (IID) or statistically heterogeneous (Non-IID). Let $g_t \in \mathbb{R}^r$ denote the global model at iteration t , and $g_{\{t,i\}} \in \mathbb{R}^r$ denote the corresponding local model on each client i . The objective of FL is to address the optimization problem:

$$g^* = \arg \min_{g_{\{t,i\}}} \frac{1}{N} \sum_{i \in [1, N]} L(g_{\{t,i\}}, D_i), \quad (1)$$

where L denotes the loss function, $g^* \in \mathbb{R}^r$ is the optimal global model, and r represents dimensionality of the parameter space encompassing all network weights and biases. At iteration t , the central server broadcasts the current global parameters g_t to a participating subset of clients. Each participating client initializes its local model over g_t and trains on its private dataset D_i , producing a local model $g_{\{t,i\}}$. The client then returns the update $\nabla_{\{t,i\}} = g_{\{t,i\}} - g_t$ to the central server. After that, the central server aggregates the collected client updates according to a predefined aggregation rule $F_{AGR}(\cdot)$, yielding the aggregated update $\nabla_t = F_{AGR}(\{\nabla_{\{t,i\}} | i \in N\})$. A new global model is subsequently updated as $g_{t+1} = g_t - \eta \nabla_t$, where η is the global learning rate. This iterative procedure is repeated until the convergence criterion of global model is satisfied.

108
109

2.2 POISONING ATTACKS ON FL

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Poisoning attacks in FL can generally be divided into two main types: data poisoning attacks and model poisoning attacks. Data poisoning attacks (Jagielski et al., 2018; Muñoz-González et al., 2017) involve adversaries contaminating the training datasets on their devices, while model poisoning attacks (Bagdasaryan et al., 2020; Baruch et al., 2019; Fang et al., 2020; Mhamdi et al., 2018; Xie et al., 2020) entail the direct manipulation of local model gradients by malicious participants, who then transmit these altered gradients to the server during the learning process. A notable study by Shejwalkar & Houmansadr (2021) mention two agnostic attacks in FL named Min-Max and Min-Sum. Min-Max aims to minimize the distance between benign and malicious clients, while Min-Sum looks for the minimized sum distances between benign and malicious clients. Without knowing the knowledge of the aggregation rules of the server, the attacks can compare the distances between themselves and benign clients instead, iteratively searching for an optimal parameter to update the malicious model, thereby achieving the performance of the attack. However, this strategy of looking for the minimum distances between benign and malicious is not realistic in the real-world FL scenarios. Additionally, the lack of control over the speed of the attack and the requirement for a significant proportion of malicious clients can lead to easy detection by robust AGRs, and low attack efficiency. Furthermore, once initiated, the predetermined attack objective in traditional attacks cannot be modified, which poses a limitation on the flexibility of the attack strategy.

126
127

2.3 EXISTING BYZANTINE-ROBUST DEFENSES

128
129
130
131
132
133
134
135
136
137
138
139

Current defenses against poisoning attacks in FL are categorized based on the detection and mitigation strategies servers employ to handle suspicious models. These strategies are generally grouped into three types: statistics-based, distance-based, and performance-based approaches (Shen et al., 2022). Statistics-based defenses, such as Median (Yin et al., 2021) and Trimmed Mean (Yin et al., 2021), use statistical features like mean or median to aggregate input gradients on each dimension, mitigating outlier impacts. Distance-based defenses, including methods like Krum (Blanchard et al., 2017), Mkrum (Blanchard et al., 2017), and Bulyan (Mhamdi et al., 2018), assess distances such as Euclidean distance or Cosine similarity between local updates to pinpoint statistical outliers. Performance-based defenses, exemplified by Fang (Fang et al., 2021), rely on a validation dataset to evaluate the performance of uploaded models, removing those that diverge significantly from expected outcomes. These varied approaches reflect the complexity of securing FL systems from sophisticated attacks aimed at compromising the collaborative learning process.

140
141

2.4 ADAPTIVE SLIDING MODE CONTROL

142
143
144
145
146
147
148
149
150

Adaptive Sliding Mode Control (ASMC) (Huang & Kuo, 2001) is a robust control technique that combines sliding mode control's insensitivity to matched disturbances and parameter uncertainties with adaptive mechanisms that can estimate unknown system parameters or disturbance bounds in real-time. The proposed approach, Foriers approximation technique (Huang & Kuo, 2001), systematically aggregates all uncertain parameters inherent in the controller synthesis process and represents these uncertainties through finite linear combinations of orthonormal basis functions. Consider a first order nonlinear system with the dynamic model $\dot{g}_t = u_t + d_t$, where \dot{g}_t is the derivative of g_t with respect to time t , and d_t is the disturbance which is an unknown function of time. Conventionally, the sliding surface can be specified as:

151
152
153
154
155
156
157
158
159
160
161

$$\dot{s}_t = \dot{e}_t + \lambda e_t, \quad (2)$$

where $e_t = g_t - \tilde{g}$ is the loss function of the system state g_t and the desired state \tilde{g} at iteration t , and λ is a hyperparameter to govern the convergence rate of e_t . If the controller can ensure that $s_t = 0$, i.e., $\dot{e}_t = -ke_t$, solving this first order differential equation will result in $e_t = e_0 e^{-kt}$, which converges exponentially to 0 as t increases.

The next step establishes the design of control law u_t to ensure $\lim_{t \rightarrow T} s_t = 0$ alongside real-time estimation of time-varying uncertainties d_t to achieve desired tracking performance. The controller design follows a two-stage methodology: (i) formulation of control law u_t to reach the sliding surface (Khoo et al., 2013; 2009; Alqumsan et al., 2019), and (ii) estimation of d_t by finite-term Fourier series approximation technique (Huang & Kuo, 2001). The control law is chosen as:

$$u_t = -\lambda e_t - \hat{d}_t - \alpha \cdot \text{sign}(s_t), \quad (3)$$

162 where α is a positive constant selected to force the trajectory of the system to reach the sliding
 163 mode surface, and $\text{sign}(\cdot)$ is defined as follows: $\text{sign}(s_t) = \begin{cases} +1 & \text{if } s_t > 0, \\ 0 & \text{if } s_t = 0, \\ -1 & \text{if } s_t < 0. \end{cases}$. \hat{d}_t is the estimation
 164
 165 of the unknown disturbance d_t , both of them can be approximated using finite-term Fourier series
 166 approximation as:
 167

$$d_t = w_d^T \cdot z_t, \quad \hat{d} = \hat{w}_d^T \cdot z_t \quad (4)$$

168 where
 169

$$w_d = [w_0, w_1, w_2, \dots, w_{2nd}]^T \quad (5)$$

$$\hat{w}_d = [\hat{w}_0, \hat{w}_1, \hat{w}_2, \dots, \hat{w}_{2nd}]^T \quad (6)$$

$$z_d = [1, \cos\omega_1 t, \sin\omega_1 t, \cos\omega_2 t, \sin\omega_2 t, \dots, \cos\omega_{nd} t, \sin\omega_{nd} t]^T \quad (7)$$

170 and the error is $\tilde{w}_d = w_d - \hat{w}_d$. By defining the energy function
 171

$$V_t = \frac{1}{2} s_t^2 + \frac{1}{2} \tilde{w}_d^T Q_d \tilde{w}_d \quad (8)$$

172 where $Q_d \in \mathbb{R}^{(2nd+1) \times (2nd+1)}$ is a symmetric positive definite matrix. the convergence of the s_t can
 173 be ensured when $\dot{V}_t \leq 0$ (i.e., $V_{t+1} < V_t$ for $V_t \neq 0$). Substituting Eq. 2 and Eq. 3 into V_t , we can
 174 get the time derivative of V_t as:
 175

$$\dot{V}_t = s_t[-\lambda e_t - \alpha \text{sign}(s_t) - \hat{d}_t + d_t + \lambda e_t] + \tilde{w}_d^T (z_d s - Q_d \dot{w}_d) \quad (9)$$

176 Define the adaptive law \hat{w}_d as
 177

$$\dot{\hat{w}}_d = -Q_d^{-1} z_d s \quad (10)$$

178 then the time derivative of V_t can be expressed as
 179

$$\dot{V}_t \leq s_t(-\alpha \cdot \text{sign}(s_t)) = -\alpha |s_t| = -\sqrt{2} \alpha V_t^{1/2}. \quad (11)$$

180 Therefore, the convergence of the system can be guaranteed in finite-time (Yin et al., 2011; Khoo
 181 et al., 2013).
 182

183 3 ASAP OVERVIEW

184 In this section, the detailed workflow of ASAP will be demonstrated. According to the example
 185 demonstrated in Sec. 2.4, the FL training process can be treated as a nonlinear system. Considering
 186 the practical implementation, we consider the attacker can only control those compromised clients
 187 for a limited number of communication rounds. In order to formulate the attack scenario, we firstly
 188 introduce the threat model of the attack.
 189

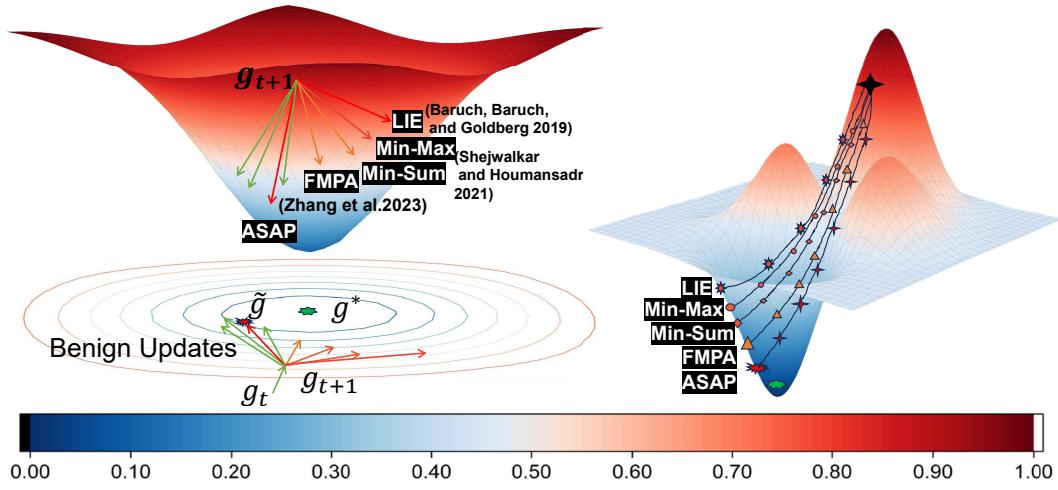
201 3.1 THREAT MODEL

202 **Adversary’s Goal** The goal of the adversary is to control the malicious clients updates therefore
 203 when the malicious gradients are uploaded to the central server, the accuracy of the global model
 204 can adaptively reduce to a target accuracy without the knowledge of AGRs.
 205

206 **Adversary’s Capability** We assume the adversary controls m malicious clients of total n clients,
 207 and $(m/n) < 0.5$. The agnostic adversary can access global parameters and directly manipulate the
 208 malicious clients gradients to the server. Moreover, we assume that the adversary does not know
 209 any knowledge of AGRs of central server or gradients of benign clients. In FL, malicious clients
 210 naturally have access to the global model.
 211

212 **Comparing our attacks** LIE attacks (Baruch et al., 2019) estimate coordinate-wise mean and
 213 standard deviation of all client updates to generate statistically similar malicious perturbations. Min-
 214 Max and Min-Sum attacks (Shejwalkar & Houmansadr, 2021) constrain malicious updates within
 215 benign clusters using maximum distance or sum-of-distances bounds while pushing in adversarial

216 directions. In contrast, FMPA (Zhang et al., 2023) uses predictive reference models from histori-
 217 cal data and subsequently fine-tunes them through gradient-based optimization to achieve desired
 218 accuracy levels with precise control. However, as demonstrated in Fig. 1, our proposed attack funda-
 219 mentally differs by seeking updates that are closest to the global optima rather than diverging from
 220 it, thereby maintaining consistent effectiveness across different training phases and defensive
 221 measures without requiring statistical estimation, distance constraints, or iterative fine-tuning processes.
 222



239 Figure 1: The comparison of existing attacks and our attack. ASAP can directly manipulate the
 240 malicious model updates and then force the global model g_{t+1} to reach the desired attack objective
 241 \tilde{g} , which is chosen as the closest point to the global optima g^* . The attack effect is illustrated via
 242 loss contours—blue area indicates low loss and red area indicates high loss.

3.2 ASAP’S ALGORITHM

246 We treat the overall FL global model

$$g_t = F_{\text{AGR}}\{g_{\{t,1\}}, g_{\{t,2\}}, \dots, g_{\{t,m\}}, \dots, g_{\{t,N\}}\} \quad (12)$$

249 as a nonlinear system, and in particular, the malicious local models are chosen as

$$\dot{g}'_{\{t,i \in m\}} = u_t. \quad (13)$$

252 The goal of ASAP is to design the control law u_t , and design the adaptive law \hat{w}_Φ by applying
 253 the function approximation technique using Fourier Series to transform the uncertainties into a finite
 254 combination of orthonormal basis functions—thus to ensure that the global model g_t will slide along
 255 the surface $s_t = 0$ to achieve:

$$e_t(\tilde{g}, g_t) = -C/k \quad (14)$$

256 exponentially fast, where $C \in \mathbb{R}$ is a constant to adjust the convergence status of e_t , and $k \in \mathbb{R}$
 257 ($k \neq 0$) is a parameter to adjust the convergence speed of e_t . To achieve the adversary’s goal, we
 258 design the error function as

$$e_t = g_t - \tilde{g}, \quad (15)$$

260 To realize this new error, we design the sliding surface as

$$s_t = \int (\dot{e}_t + ke_t + C) dt + C_1, \quad (16)$$

264 where $C_1 \in \mathbb{R}$ is the initial value of the sliding surface s_t , which can be any constant, and Φ_t is the
 265 unknown disturbance.

266 After selecting the sliding surface s_t , the control law u_t is designed based on the FL system, the
 267 dynamic model in Eq. 13, the error function in Eq. 15 and sliding surface s_t in Eq. 16, as follows:

$$u_t = \left[\frac{dg_t}{dg'_{\{t,i\}}} \right]^{-1} [-ke_t - \eta \text{sign}(s_t) - \hat{\Phi}_t - C], \quad (17)$$

270 where $\eta > 0$ is a positive constant selected to force the system trajectory to reach the sliding mode
 271 surface. Here, $dg_t/dg'_{\{t,i\}}$ is the derivative of g_t with respect to $g'_{\{t,i\}}$ and $\hat{\Phi}_t$ is the estimation
 272 function of Φ_t . Using the Fourier Series and approximation technique to estimate Φ_t , it can be
 273 represented as:
 274

$$\Phi_t = w_\Phi^T z_\Phi, \quad \hat{\Phi}_t = \hat{w}_\Phi^T z_\Phi \quad (18)$$

275 where
 276

$$w_\Phi = [w_0, w_1, w_2, \dots, w_{2n\Phi}]^T \quad (19)$$

$$\hat{w}_\Phi = [\hat{w}_0, \hat{w}_1, \hat{w}_2, \dots, \hat{w}_{2n\Phi}]^T \quad (20)$$

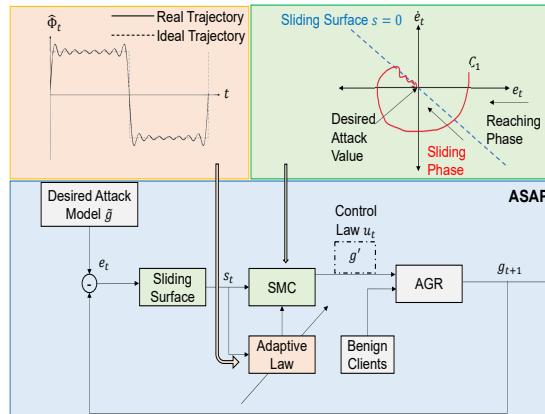
$$z_\Phi = [1, \cos\omega_1 t, \sin\omega_1 t, \cos\omega_2 t, \sin\omega_2 t, \dots, \cos\omega_{n\Phi} t, \sin\omega_{n\Phi} t]^T \quad (21)$$

280 $w_\Phi \in \mathbb{R}^{2n\Phi+1}$ is the weighting parameter, $\hat{w}_\Phi \in \mathbb{R}^{2n\Phi+1}$ is the estimated weighting parameter, and
 281 $z_\Phi \in \mathbb{R}^{2n\Phi+1}$ is the vector of orthonormal basis function. Note that the number of n_Φ needs to be
 282 chosen bigger enough to ensure the performance of approximation of Φ_t . The adaptive law of w_Φ is
 283 defined as:
 284

$$\dot{w}_\Phi = -Q_\Phi^{-1} z_\Phi s \quad (22)$$

285 where $Q_\Phi \in \mathbb{R}^{(2n\Phi+1) \times (2n\Phi+1)}$ is a symmetric positive definite matrix. The workflow of ASAP to
 286 compromise a client is demonstrated in Algorithm 1 in Appendix A.2.
 287

289 3.3 ASAP CONVERGENCE ANALYSIS



305 Figure 2: The block diagram of ASAP. The function of adaptive law is to automatically adjust the
 306 weight of the estimator in order to track the un-
 307 known function. In the SMC block, the system
 308 state is forced to slide along the sliding surface
 309 which means global model is forced to the desired
 310 attack objectives.
 311

312 *strating the desired property at the scalar level is sufficient to confirm the corresponding property
 313 for the vector as a whole.*

314 Due to space limit, the proof of Theorem 3.1 is delayed to Appendix A.1. Below, we highlight
 315 significant remarks on the new features of ASAP.
 316

317 **Remark 1: AGR-Agnostic Operation.** Unlike existing AGR-agnostic attacks (LIE, Min-Max,
 318 Min-Sum) that still require statistical estimation of benign client updates, ASAP achieves complete
 319 independence from both aggregation rules and benign client information. The ASMC framework
 320 treats unknown aggregation effects as system disturbances Φ_t , which are estimated in real-time
 321 through Fourier series approximation without requiring any prior knowledge of F_{AGR} or benign
 322 gradient statistics.
 323

Remark 2: Convergence Speed. The parameter k serves as a convergence rate controller, enabling
 precise manipulation of e_t . On the sliding surface where $s_t = \dot{s}_t = 0$, solving the differential

300 The convergence analysis is illustrated in Theorem 3.1 as below.
 301

Theorem 3.1. Consider a FL system characterized by the dynamics in Eq. 13, with error function specified in Eq. 15 and a sliding manifold defined by Eq. 16. Given the control law u_t formulated in Eq. 17 with parameters $k > 0$, $\eta > 0$, $C \in \mathbb{R}$, and the derivative of the aggregation function F_{AGR} with respect to the malicious model $g'_{\{t,i\}}$ is continuous. Then the ASMC framework guarantees: (i) Fourier series approximation of the unknown uncertainty Φ_t ; (ii) finite-time convergence of the sliding surface s_t to zero with subsequent invariance; (iii) exponential convergence of the error $e_t = g_t - \tilde{g}$ to $-C/k$.

Note that the theoretical proof provided addresses scalar dynamics rather than vector dynamics. Since a vector is composed of multiple scalars, proving the property for each individual scalar inherently establishes the same property for the entire vector. Thus, demonstrating the desired property at the scalar level is sufficient to confirm the corresponding property for the vector as a whole.

Table 1: The comparison of the accuracy of the global model between different attacks on CIFAR10, MNIST, and Tiny ImageNet against different AGRs. More experimental results against different AGRs under various attack objectives are demonstrated in Appendix A.3.4.

Dataset (Model)	AGRs	No Attack(%)	Test Acc. (Difference to the Targeted Acc. ς (%))				
			LIE	Min-Max	Min-Sum	FMPA	ASAP
Target Acc 60%							
CIFAR10 (AlexNet)	FedAvg	66.42	53.28 (-11.20)	32.75 (-45.42)	51.06 (-14.90)	64.33 (7.22)	61.58 (2.63)
	Median	64.28	33.40 (-44.33)	28.08 (-53.20)	33.73 (-43.78)	63.57 (5.95)	56.53 (-5.78)
	Trmean	66.23	46.43 (-23.78)	30.95 (48.42)	41.19 (-31.52)	55.44 (-7.60)	61.87 (3.12)
	NB	66.73	51.95 (-13.42)	45.64 (-24.07)	55.51 (-7.48)	64.29 (7.15)	61.33 (2.22)
	Bulyan	66.07	36.91 (-38.48)	25.95 (-56.75)	23.52 (-60.80)	62.55 (4.25)	61.87 (3.12)
	Mkrum	66.79	45.03 (-24.95)	52.29 (-12.85)	31.74 (-47.11)	63.26 (5.43)	60.65 (0.92)
	Filtrust	66.59	31.53 (-47.42)	50.79 (-15.18)	52.56 (-12.40)	65.52 (9.20)	61.94 (3.23)
	CC	66.62	63.53 (5.88)	10.53 (-82.45)	14.94 (-75.10)	67.22 (12.03)	62.13 (3.55)
	DNC	66.55	62.92 (4.87)	63.94 (6.57)	58.26 (-2.90)	65.01 (8.35)	61.25 (2.08)
	Target Acc 10%						
MNIST (MLP)	FedAvg	66.42	53.28 (432.80)	32.75 (227.50)	51.06 (410.60)	19.83 (98.30)	10.73 (7.30)
	Median	64.28	33.40 (234.00)	28.08 (180.80)	33.73 (237.30)	13.52 (35.20)	10.65 (6.50)
	Trmean	66.23	46.43 (364.30)	30.95 (209.50)	41.19 (311.90)	18.94 (89.40)	9.98 (-0.20)
	NB	66.73	51.95 (419.50)	45.64 (356.40)	55.51 (455.10)	20.35 (103.50)	10.08 (0.80)
	Bulyan	66.07	36.91 (269.10)	25.95 (159.50)	23.52 (135.20)	19.76 (97.60)	9.95 (-0.50)
	Mkrum	66.79	45.03 (350.30)	52.29 (422.90)	31.74 (217.40)	16.58 (65.80)	10.72 (7.20)
	Filtrust	66.59	31.53 (215.30)	50.79 (407.90)	52.56 (425.60)	25.89 (158.90)	10.94 (9.40)
	CC	66.62	63.53 (535.30)	10.53 (5.30)	14.94 (49.40)	26.17 (161.70)	10.48 (4.80)
	DNC	66.55	62.92 (529.20)	63.94 (539.40)	58.26 (482.60)	14.73 (47.30)	10.76 (7.60)
	Target Acc 10%						
Tiny ImageNet (ResNet50)	FedAvg	97.98	94.12 (4.58)	91.67 (1.85)	92.84 (3.16)	95.28 (5.87)	91.04 (1.16)
	Median	97.81	90.99 (1.10)	91.15 (1.28)	92.84 (3.16)	43.79 (-51.34)	88.22 (-1.98)
	Trmean	97.42	91.80 (2.00)	91.30 (1.44)	92.43 (2.70)	97.26 (8.07)	90.69 (0.77)
	NB	97.96	92.82 (3.13)	91.88 (2.09)	93.02 (3.36)	60.20 (-33.11)	90.95 (1.06)
	Bulyan	97.97	88.92 (-1.20)	91.96 (2.18)	92.29 (2.54)	45.28 (-49.69)	89.22 (-0.87)
	Mkrum	97.94	92.33 (2.59)	96.14 (6.82)	95.39 (5.99)	93.41 (3.79)	92.19 (2.43)
	Filtrust	97.96	87.89 (-2.34)	73.49 (-18.34)	93.12 (3.47)	95.01 (5.57)	92.46 (2.73)
	CC	97.96	95.35 (5.94)	94.61 (5.12)	94.54 (5.04)	96.99 (7.77)	93.54 (3.93)
	DNC	97.95	93.08 (3.42)	92.90 (3.22)	93.36 (3.73)	93.22 (3.58)	92.46 (2.73)
	Target Acc 45%						
Tiny ImageNet (ResNet50)	FedAvg	97.98	94.12 (841.20)	91.67 (816.70)	92.84 (828.40)	12.18 (21.80)	10.47 (4.70)
	Median	97.81	90.99 (809.90)	91.15 (811.50)	92.84 (828.40)	11.92 (19.20)	10.79 (7.90)
	Trmean	97.42	91.80 (818.00)	91.30 (813.00)	92.43 (824.30)	16.34 (63.40)	10.06 (0.60)
	NB	97.96	92.82 (828.20)	91.88 (818.80)	93.02 (830.20)	15.27 (52.70)	10.34 (3.40)
	Bulyan	97.97	88.92 (789.20)	91.96 (819.60)	92.29 (822.90)	12.06 (20.60)	10.25 (2.50)
	Mkrum	97.94	92.33 (823.30)	96.14 (861.40)	95.39 (853.90)	15.81 (58.10)	10.83 (8.30)
	Filtrust	97.96	87.89 (778.90)	73.49 (634.90)	93.12 (831.20)	35.47 (254.70)	10.12 (1.20)
	CC	97.96	95.35 (853.50)	94.61 (846.10)	94.54 (845.40)	44.28 (342.80)	10.86 (8.60)
	DNC	97.95	93.08 (830.80)	92.90 (829.00)	93.36 (833.60)	30.64 (206.40)	10.39 (3.90)
	Target Acc 0.5%						
Tiny ImageNet (ResNet50)	FedAvg	57.49	51.63 (14.73)	38.37 (-14.73)	53.20 (18.22)	54.64 (21.42)	48.07 (6.82)
	Median	53.47	22.14 (-50.80)	54.08 (20.18)	34.24 (-23.91)	42.94 (-4.58)	46.93 (4.29)
	Trmean	54.78	51.60 (14.67)	54.59 (21.31)	39.82 (-11.51)	55.90 (24.22)	44.94 (-0.13)
	NB	58.62	52.98 (17.73)	52.95 (17.67)	53.09 (18.20)	56.12 (24.71)	45.57 (1.27)
	Bulyan	54.93	24.93 (-44.60)	48.01 (6.69)	33.51 (-25.53)	5.15 (-88.56)	44.98 (-0.01)
	Mkrum	54.96	27.02 (-39.96)	49.68 (10.40)	26.39 (-41.36)	36.06 (-19.87)	45.46 (1.02)
	Filtrust	54.35	33.57 (-25.40)	47.04 (4.53)	53.45 (18.78)	55.48 (23.29)	45.31 (0.69)
	CC	54.31	29.13 (-35.27)	32.26 (-28.31)	30.99 (-31.13)	47.88 (6.40)	44.13 (-1.93)
	DNC	55.97	68.12 (51.38)	69.66 (54.80)	54.29 (20.64)	46.98 (4.40)	44.36 (-1.42)
	Target Acc 0.5%						

equation $\dot{e}_t = -ke_t - C$, produces $e_t = 1/k \cdot e_0^{-kt} - C/k$. The analytical solution reveals that k determines the exponential convergence characteristics: larger values of k correspond to faster exponential convergence rates. This mathematical property enables ASAP to offer flexible convergence speed modulation capabilities.

Remark 3: Adjustable Objectives. The adversary can dynamically modify attack objectives throughout ASAP execution by appropriately selecting parameter C in e_t as evaluated in Eq. 16. When the system reaches equilibrium on the sliding manifold where both $\dot{s}_t = 0$ and $\dot{e}_t = 0$, the constraint $\dot{s}_t = \dot{e}_t + ke_t + C$ results in the equilibrium relationship $e_t = -C/k$ or $g_t = \tilde{g} + C/k$.

Continuous-time formulation The fundamental reason for using continuous time analysis is because structured mathematical rules, especially differentiation, chain rules, and so on are all well established by mathematicians through measure theory. It is therefore valid to analyze the system in continuous time. Similar to the analysis of back-propagation and steepest descent algorithms for example, when describing back propagation training algorithm, continuous time analysis is used.

Regarding of Eq. 13, the dynamic model is used to analyze how the malicious clients update over time, not implement. Based on the definition of derivative, the derivative of malicious model at

378 t , $g'_{\{t,i\}}$ can be represented as $\dot{g}'_{\{t,i\}} = \lim_{\Delta t \rightarrow 0} \frac{g'_{\{t+\Delta t, i\}} - g'_{\{t, i\}}}{\Delta t}$. Therefore, in practical attack
 379 scenarios, the rate of change of the model, $\dot{g}'_{\{t,i\}}$, can be approximated by the difference in values
 380 divided by a small time interval, effectively capturing the derivative's behavior in discrete time.
 381

382 **Non-differentiable AGRs** ASAP does not require differentiability of the aggregation rule itself.
 383 In particular, we never differentiate through the AGR (e.g., Median, Krum), but only through the
 384 global model g_t and the malicious model $g'_{\{t,i\}}$, both instantiated as neural networks (AlexNet,
 385 MLP, ResNet50) in our experiments. In the federated learning pipeline, even if the AGR F_{AGR} is
 386 non-smooth, its output $g_t = F_{\text{AGR}}\{g_{\{t,i\}}\}$ is simply a collection of neural network parameters. All
 387 derivatives involved in the control law u_t in Eq. 17 and in the proof of Theorem 3.1 (Appendix A.1)
 388 are taken with respect to these model parameters, i.e., g_t and $g'_{t,i}$, rather than with respect to the
 389 AGR mapping or any coordinate-wise non-smooth statistics. Consequently, no differentiation in our
 390 analysis involves non-smooth functions of the parameters.
 391

393 4 PERFORMANCE EVALUATION

395 4.1 EXPERIMENT SETTINGS

397 **Datasets and Models** Our experimental evaluation of ASAP encompasses diverse architectures
 398 and benchmark datasets. We deploy AlexNet following Yang (Yang et al., 2017) for CIFAR10 ex-
 399 periments, utilize a fully connected (FC) neural network architecture for MNIST (Deng, 2012), and
 400 employ ResNet50 for Tiny ImageNet (Le & Yang, 2015) evaluation. The experimental framework
 401 incorporates both Independent and Identically Distributed (IID) and Non-Independent and Iden-
 402 tically Distributed (Non-IID) data partitioning schemes. For Non-IID configurations, we leverage the
 403 Dirichlet distribution parameterized by concentration values $\{0.1, 0.3, 0.5, 0.7, 0.9\}$ to systemati-
 404 cally vary data heterogeneity levels. Smaller concentration parameters (e.g., 0.1) generate severely
 405 imbalanced client datasets with pronounced class skewness, while larger values approach uniform
 406 class distributions across participating clients. The experimental configurations are tailored to op-
 407 timize performance across different architecture-dataset combinations. Comprehensive details of
 408 each dataset are provided in Appendix A.3.2.
 409

410 **Attack Settings** The experimental setup involves a federated network of 50 clients with a 10%
 411 malicious participation rate, consistent with established benchmarks in adversarial federated learn-
 412 ing research (Zhang et al., 2023; Shejwalkar & Houmansadr, 2021; Baruch et al., 2019). Under our
 413 threat model, adversaries gain control over compromised client devices, enabling strategic manipu-
 414 lation of local parameter updates to achieve precise global model accuracy targets. The attack targets
 415 are stratified across datasets: CIFAR10 targets at 60% (reference), 55%, 50%, and 10% through
 416 C parameter tuning. MNIST configurations target 90% (reference), 85%, 80%, and 10% accu-
 417 racy via C adjustment. Tiny ImageNet targets of 45% (reference), 40%, 35%, and 0.5% through
 418 C modulation. The lower bounds (10% for CIFAR10/MNIST, 0.5% for Tiny ImageNet) represent
 419 random guess performance baselines. We compare our attack with existing methods including AGR-
 420 agnostic approaches LIE (Baruch et al., 2019), Min-Max (Shejwalkar & Houmansadr, 2021), and
 421 Min-Sum (Shejwalkar & Houmansadr, 2021), as well as FMPA (Zhang et al., 2023) which provides
 422 precise control capabilities but requires AGR knowledge. The details of each attack are introduced
 423 in Appendix A.3.2.
 424

425 **Evaluation Defenses** In the experiments, various defenses are considered such as FedAvg (McMa-
 426 han et al., 2017), Median (Yin et al., 2021), Trmean (Yin et al., 2021), Norm-Bounding (NB) (Sun
 427 et al., 2019) Bulyan (Mhamdi et al., 2018), Mkrum (Blanchard et al., 2017), Fltrust (Cao et al.,
 428 2022), CC (Karimireddy et al., 2021), and DNC (Shejwalkar & Houmansadr, 2021). The details of
 429 each defense are demonstrated in Appendix A.3.3.
 430

431 **Evaluation Metric** Define I_T and I_0 as the target and achieved attack accuracies, respectively.
 432 The normalized deviation $\varsigma = ((I_T - I_0)/I_T) \times 100\%$ measures the relative distance between
 433 attack objectives and actual results. Attack method comparison employs the absolute metric $|\varsigma|$,
 434 where smaller values denote better objective fulfillment and higher attack quality.
 435

432 4.2 EXPERIMENTS RESULTS
433

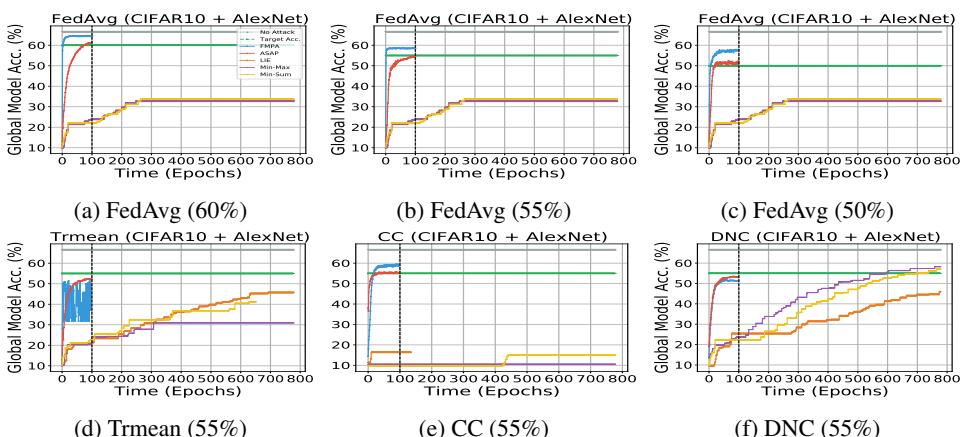
434 Experimental results presented in Table 1 and Figure 3 demonstrate the comparative performance
435 of attack methods against different AGRs using CIFAR10/AlexNet, MNIST/MLP, and Tiny ImageNet/ResNet50 benchmarks. More experimental results under different scenarios are demonstrated
436 in Appendix A.3.4. Overall, ASAP achieves the minimal $|\zeta|$ values and consistently outperforms all
437 baseline attacks.

438 As shown in Figure 3, ASAP achieves robust convergence to attack objectives without
439 triggering AGR detection, requiring fewer communication rounds than competing methods.
440 In contrast to AGR-agnostic attacks including LIE, Min-Max and Min-Sum, which fail
441 to achieve precise control and demand increased communication resources, and unlike
442 FMPA, which encounters detection by AGRs under various conditions, causing the test accu-
443 racy to converge near the optimal performance achieved without any attack presence.
444

445 The comprehensive evaluation demonstrates ASAP’s consistent performance compared to existing
446 SOTA AGR-agnostic attack methods, coupled with fine-grained controllability for precise attack
447 execution. The subsequent discussion examines the findings across three key dimensions.

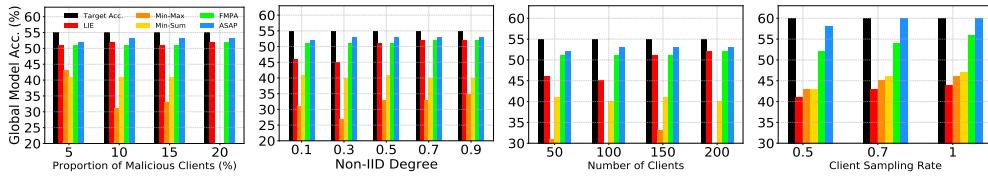
448 **Time Complexity** The computational cost analysis, detailed in Table 2, reveals that ASAP demon-
449 strates the highest execution time among evaluated methods, primarily due to the computational de-
450 demands of its underlying mathematical framework. Nevertheless, the increased computational cost
451 compared to competing methods remains feasible for practical deployment.

452 **Effective Communication Rounds** To maintain evaluation consistency, we utilize Effective Com-
453 munication Rounds (ECR) as the standardized communication efficiency metric. Table 2 presents
454 the average convergence performance on CIFAR10 dataset, establishing that ASAP requires the
455 minimum number of communication rounds to achieve attack objectives compared to existing ap-
456 proaches.



478 Figure 3: Comparison of each attack against various AGRs with different attack objectives on CI-
479 FAR10 with AlexNet under different attack objectives and different attacks under the same target
480 accuracy. Comparison figures on MNIST and Tiny ImageNet are given in Appendix A.3.4.

481 **Precise Control** Table 3 in Appendix A.3.4 presents comprehensive evaluation results across mul-
482 tiple AGRs under diverse attack objectives. ASAP consistently exhibits the lowest $|\zeta|$ scores while
483 surpassing all comparative attacks, validating its capability for accurate objective targeting with min-
484 imal loss variance. The CIFAR10 results show average $|\zeta|$ values of 2.18%, 2.61%, and 1.62% for
485 attack objectives of 60%, 55%, and 50% respectively.

486 4.2.1 ABLATION STUDY
487488 **Impact of percentage of attackers** The impact of malicious client proportion on FL is analyzed
489 by incrementally increasing the adversarial ratio from 5% to 20%. As illustrated in Figure 4a,
490 ASAP exhibits consistent performance advantages compared to competing attack strategies across
491 all evaluated ratios.
492493 **Impact of Non-IID degrees** The impact of data heterogeneity on attack efficacy is assessed using
494 CIFAR10 with Dirichlet concentration parameters spanning $\{0.1, 0.3, 0.5, 0.7, 0.9\}$, targeting 55%
495 accuracy under Trmean aggregation. As presented in Figure 4b, ASAP successfully accomplishes
496 the attack objectives while demonstrating robust outperform of existing attack strategies regardless
497 of statistical heterogeneity intensity.
498500 **Impact of number of clients** While our baseline experiments employ 50 total clients, we extend
501 the evaluation to assess ASAP’s scalability under larger federation sizes of 100, 150, and 200 par-
502 ticipants using CIFAR10 with a 55% target accuracy. Figure 4c demonstrates that ASAP maintains
503 consistent superiority over competing attack methods across all federation scales.
504505 **Impact of clients sampling rates** The impact of client sampling rate variations on attack per-
506 formance is examined in Figure 4d. Experimental findings indicate that ASAP exhibits enhanced
507 consistency and reduced performance variance relative to competing attack approaches across all
508 sampling configurations.
509515 (a) Different proportions (b) Different degrees of (c) Different number of (d) Different sampling
516 of malicious clients Non-IID clients clients rates of clients517 Figure 4: Ablation study results against Trmean on CIFAR10 with AlexNet to target accuracy at
518 55%.
519520 5 CONCLUSION
521522 In this paper, we introduced ASAP, a novel AGR-agnostic model poisoning attack on Federated
523 Learning, inspired by Adaptive Sliding Mode Control theory. Unlike prior agnostic attacks that rely
524 on heuristic distance-based strategies or require partial knowledge of benign updates, ASAP formu-
525 lates the poisoning process as a controllable nonlinear system. By leveraging a Fourier series-based
526 estimator, ASAP precisely tracks the global model trajectory and adaptively adjusts the direction and
527 magnitude of malicious updates toward a predefined target. This enables both fine-grained control
528 over convergence speed and resilience against diverse aggregation rules.
529530 Our theoretical analysis guarantees convergence to the attack objective under finite time, without
531 requiring knowledge of the server’s aggregation strategy or benign client behavior. Extensive exper-
532 iments on CIFAR-10, MNIST, and Tiny ImageNet across various robust AGRs which demonstrate
533 that ASAP consistently outperforms SOTA AGR-agnostic attacks in both convergence efficiency
534 and target alignment.
535536 ASAP opens a new attack surface in FL by enabling precise, stealthy, and adaptive poisoning. To
537 counteract this threat, future research should explore dynamic defense mechanisms. In particular, we
538 propose leveraging system identification techniques to model and detect abnormal update dynamics
539 introduced by adaptive attackers. By identifying deviations from expected system behavior, such
defenses could adaptively reject suspicious updates in real time.

540 ETHICS STATEMENT
541

542 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
543 perimentation was involved. All datasets used, including CIFAR10, MNIST and Tiny ImageNet,
544 were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We
545 have taken care to avoid any biases or discriminatory outcomes in our research process. No person-
546 ally identifiable information was used, and no experiments were conducted that could raise privacy
547 or security concerns. We are committed to maintaining transparency and integrity throughout the
548 research process.

550 REPRODUCIBILITY STATEMENT
551

552 We have made every effort to ensure that the results presented in this paper are reproducible. [All code and datasets have been made publicly available in an anonymous repository to facilitate replication and verification at <https://github.com/ICLR2026-ASAP/ASAP>](https://github.com/ICLR2026-ASAP/ASAP). The experimental setup, including training steps, model configurations, and experimental setting details, is described in detail in the paper.

553 Additionally, the public benchmark datasets used in this paper, such as CIFAR10, MNIST and Tiny
554 ImageNet, are publicly available, ensuring consistent and reproducible evaluation results.

555 We believe these measures will enable other researchers to reproduce our work and further advance
556 the field.

563 REFERENCES
564

565 Ahmad Abu Alqumsan, Suiyang Khoo, and Michael Norton. Robust control of continuum
566 robots using Cosserat rod theory. *Mechanism and Machine Theory*, 131:48–61, January
567 2019. ISSN 0094-114X. doi: 10.1016/j.mechmachtheory.2018.09.011. URL <https://www.sciencedirect.com/science/article/pii/S0094114X18311777>.

569 Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How To
570 Backdoor Federated Learning. In *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, pp. 2938–2948. PMLR, June 2020. URL <https://proceedings.mlr.press/v108/bagdasaryan20a.html>.

573 Gilad Baruch, Moran Baruch, and Yoav Goldberg. A Little Is Enough: Circumventing Defenses For
574 Distributed Learning. In *Advances in Neural Information Processing Systems*, volume 32. Cur-
575 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/hash/ec1c59141046cd1866bbbcd6ae31d4-Abstract.html.

578 Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Ma-
579 chine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In *Ad-
580 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
581 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.

583 Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. FLTrust: Byzantine-robust Feder-
584 ated Learning via Trust Bootstrapping, April 2022. URL <http://arxiv.org/abs/2012.13995>. arXiv:2012.13995.

587 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. IMAGENET: A large-
588 scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern
589 Recognition*, pp. 248–255. Ieee, 2009.

591 Li Deng. The MNIST Database of Handwritten Digit Images for Machine Learning Research
592 [Best of the Web]. *IEEE Signal Processing Magazine*, 29(6):141–142, November 2012. ISSN
593 1558-0792. doi: 10.1109/MSP.2012.2211477. URL <https://ieeexplore.ieee.org/abstract/document/6296535>. Conference Name: IEEE Signal Processing Magazine.

594 Liandi Fang, Shihong Ding, Ju H. Park, and Li Ma. Adaptive Fuzzy Control for Stochastic High-
 595 Order Nonlinear Systems With Output Constraints. *IEEE Transactions on Fuzzy Systems*, 29(9):
 596 2635–2646, September 2021. doi: 10.1109/tfuzz.2020.3005350.

597 Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local Model Poisoning At-
 598 tacks to Byzantine-Robust Federated Learning. pp. 1605–1622, 2020. ISBN 978-1-
 599 939133-17-5. URL <https://www.usenix.org/conference/usenixsecurity20/presentation/fang>.

600 Shuzhi S. Ge, C.C. Hang, and L.C. Woon. Adaptive neural network control of robot manipulators
 601 in task space. *IEEE Transactions on Industrial Electronics*, 44(6):746–752, 1997. doi: 10.1109/
 602 41.649934.

603 An-Chyau Huang and Yeu-Shun Kuo. Sliding control of non-linear systems containing time-varying
 604 uncertainties with unknown bounds. *International Journal of Control*, 74(3):252–264, 2001.

605 Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Ma-
 606 nipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learn-
 607 ing. In *2018 IEEE Symposium on Security and Privacy (SP)*, pp. 19–35, May 2018. doi: 10.
 608 1109/SP.2018.00057. URL <https://ieeexplore.ieee.org/abstract/document/8418594>. ISSN: 2375-1207.

609 Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from History for Byzan-
 610 tine Robust Optimization, June 2021. URL <http://arxiv.org/abs/2012.10333>.
 611 arXiv:2012.13995.

612 Suiyang Khoo, Lihua Xie, and Zhihong Man. Robust finite-time consensus tracking algorithm
 613 for multirobot systems. *IEEE/ASME Transactions on Mechatronics*, 14(2):219–228, April 2009.
 614 ISSN 1941-014X. doi: 10.1109/TMECH.2009.2014057.

615 Suiyang Khoo, Juliang Yin, Zhihong Man, and Xinghuo Yu. Finite-time stabilization of stochastic
 616 nonlinear systems in strict-feedback form. *Automatica*, 49(5):1403–1410, 2013.

617 A. Krizhevsky. Learning Multiple Layers of Features from Tiny Im-
 618 ages. 2009. URL <https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086>.

619 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

620 Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated Learning
 621 on Non-IID Features via Local Batch Normalization, May 2021. URL <http://arxiv.org/abs/2102.07623>. ArXiv:2102.07623 arXiv: 2102.07623.

622 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 623 Communication-Efficient Learning of Deep Networks from Decentralized Data. In *Proceedings
 624 of the 20th International Conference on Artificial Intelligence and Statistics*, pp. 1273–1282, April
 625 2017. URL <https://proceedings.mlr.press/v54/mcmahan17a.html>.

626 El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The Hidden Vulnerability of Dis-
 627 tributed Learning in Byzantium, July 2018. URL <http://arxiv.org/abs/1802.07927>.
 628 arXiv:1802.07927.

629 Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
 630 Emil C. Lupu, and Fabio Roli. Towards Poisoning of Deep Learning Algorithms with Back-
 631 gradient Optimization. In *Proceedings of the 10th ACM Workshop on Artificial Intelligence and
 632 Security*, pp. 27–38, 2017. ISBN 978-1-4503-5202-4. doi: 10.1145/3128572.3140451. URL
 633 <https://dl.acm.org/doi/10.1145/3128572.3140451>.

634 Ashwinee Panda, Saeed Mahloujifar, Arjun Nitin Bhagoji, Supriyo Chakraborty, and Prateek
 635 Mittal. Sparsefed: Mitigating model poisoning attacks in federated learning with sparsifi-
 636 cation. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings
 637 of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of
 638 *Proceedings of Machine Learning Research*, pp. 7587–7624. PMLR, 28–30 Mar 2022. URL
 639 <https://proceedings.mlr.press/v151/panda22a.html>.

648 Virat Shejwalkar and Amir Houmansadr. Manipulating the Byzantine: Optimizing Model Poi-
 649 soning Attacks and Defenses for Federated Learning. In *Proceedings 2021 Network and Dis-*
 650 *tributed System Security Symposium*, 2021. ISBN 978-1-891562-66-2. doi: 10.14722/ndss.
 651 2021.24498. URL https://www.ndss-symposium.org/wp-content/uploads/ndss2021_6C-3_24498_paper.pdf.

652

653 Liyue Shen, Yanjun Zhang, Jingwei Wang, and Guangdong Bai. Better Together: Attaining the
 654 Triad of Byzantine-robust Federated Learning via Local Update Amplification. In *Proceed-
 655 ings of the 38th Annual Computer Security Applications Conference*, pp. 201–213, Austin TX
 656 USA, December 2022. ACM. ISBN 978-1-4503-9759-9. doi: 10.1145/3564625.3564658. URL
 657 <https://dl.acm.org/doi/10.1145/3564625.3564658>.

658

659 Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan. Can You Really
 660 Backdoor Federated Learning?, December 2019. URL <http://arxiv.org/abs/1911.07963>. arXiv:1911.07963.

661

662 Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks against
 663 federated learning systems. In *European symposium on research in computer security*, pp. 480–
 664 501. Springer, 2020.

665

666 Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of Empires: Breaking Byzantine-tolerant
 667 SGD by Inner Product Manipulation. In *Proceedings of The 35th Uncertainty in Artificial Intelli-
 668 gence Conference*, pp. 261–270. PMLR, August 2020. URL <https://proceedings.mlr.press/v115/xie20a.html>.

669

670 Wei Yang, Shuang Li, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Learning feature pyra-
 671 mids for human pose estimation. In *2017 IEEE International Conference on Computer Vision
 672 (ICCV)*. IEEE, October 2017. doi: 10.1109/iccv.2017.144.

673

674 Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-Robust Distributed
 675 Learning: Towards Optimal Statistical Rates, February 2021. URL <http://arxiv.org/abs/1803.01498>. arXiv:1803.01498.

676

677 Juliang Yin, Suiyang Khoo, Zhihong Man, and Xinghuo Yu. Finite-time stability and instability of
 678 stochastic nonlinear systems. *Automatica*, 47(12):2671–2677, 2011.

679

680 K.D. Young, V.I. Utkin, and U. Ozguner. A control engineer’s guide to sliding mode control. *IEEE
 681 Transactions on Control Systems Technology*, 7(3):328–342, May 1999. doi: 10.1109/87.761053.
 682 URL <http://ieeexplore.ieee.org/document/761053/>.

683

684 Hangtao Zhang, Zeming Yao, Leo Zhang, Shengshan Hu, Chao Chen, Alan Liew, and Zhetao Li.
 685 Denial-of-service or fine-grained control: Towards flexible model poisoning attacks on federated
 686 learning. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intel-
 687 ligence (IJCAI-23)*, 2023.

688

689 **A APPENDIX**

690

691 **A.1 PROOF OF THEOREM 3.1**

692 *Proof.* To design the update law for \hat{w}_Φ , defining $\tilde{w}_\Phi = w_\Phi - \hat{w}_\Phi$ and a Lyapunov function (or
 693 energy function) as below:

694
$$V_t = \frac{1}{2} s_t^2 + \frac{1}{2} \tilde{w}_\Phi Q_\Phi \tilde{w}_\Phi \quad (23)$$

695 where $Q_\Phi \in \mathbb{R}^{(2n\Phi+1) \times (2n\Phi+1)}$ is a symmetric positive definite matrix. After differentiating V_t
 696 with respect to time, we have

697

698
$$\dot{V}_t = s_t \dot{s}_t + \tilde{w}_\Phi^T Q_\Phi \tilde{w}_\Phi \quad (24)$$

699

700
$$= s_t \left(\frac{dg_t}{dg'_{\{t,i\}}} \dot{g}_{\{t,i\}} + \Phi_t + k e_t + C \right) - \tilde{w}_\Phi^T Q_\Phi \dot{\hat{w}}_\Phi. \quad (25)$$

701

702 Using control law
 703

$$704 \quad u_t = \left[\frac{dg_t}{dg'_{\{t,i\}}} \right]^{-1} [-ke_t - \eta \text{sign}(s_t) - \hat{\Phi}_t - C], \quad (26)$$

$$705$$

$$706$$

707 and the adaptive law
 708

$$709 \quad \dot{w}_\Phi = -Q_\Phi^{-1} z_\Phi s \quad (27)$$

$$710$$

$$711$$

712 we get
 713

$$714 \quad \dot{V}_t = s_t[-ke_t - \eta \text{sign}(s_t) - C - \hat{\Phi}_t + \Phi_t + ke_t + C] \\ 715 \quad + \hat{w}_\Phi^T (z_\Phi s - Q_\Phi \dot{w}_\Phi) \quad (28)$$

$$716 \quad \leq s_t[-\eta_1 \text{sign}(s_t)] \quad (29)$$

$$717 \quad = -\eta_1 |s_t| = -\sqrt{2\eta_1} V_t^{1/2} \quad (30)$$

$$718$$

$$719$$

$$720$$

$$721$$

$$722$$

723 where $\eta = \eta_1 + \delta$, $\delta > 0$. By the finite time stability theorem proved in the study (Khoo et al.,
 724 2009), V_t will converge to zero in a finite time, and hence results in $s_t = \dot{s}_t = 0$ in a finite time. \square
 725

A.2 ALGORITHM

726 In this section, the algorithm of ASAP is demonstrated. We firstly initialize the value of g_t , s_t as g_0 ,
 727 s_0 respectively (line 2), and malicious clients need to initialize weight of the estimator \hat{w}_Φ . At the
 728 t -th communication round, the client is selected by the server and receives the current global model
 g_t .
 729

Algorithm 1 The workflow of ASAP to compromise a client

730 **Require:** Global model g_t , desired poisoning model \tilde{g} .

731 **Ensure:** malicious model update g'_t .

732 1: **if** $t=0$ **then**
 733 2: $g_t \leftarrow g_0, \tilde{g}$
 734 3: Initialize \hat{w}_Φ
 735 4: **else**
 736 5: **for** malicious client $i = 1$ to m **do**
 737 6: Update the adaptive law in Eq. 22
 738 7: Calculate $\hat{\Phi}_t$ in Eq. 18
 739 8: Calculate e_t of g_t and g_t^* in Eq. 15
 740 9: Calculate s_t in Eq. 16
 741 10: **end for**
 742 11: calculate g'_t from Eq. 17 $\triangleright \{\text{control law}\}$
 743 12: **Output** g'_t
 744 13: **end if**
 745 14: Update the malicious client model g'_t on FL

 746

A.3 DATASETS, ATTACKS AND DEFENSES

747 In this section, we give details of our experiments settings. For CIFAR10 experiments with AlexNet,
 748 we establish a global learning rate of 0.02, a global batch size of 128, and conduct training over 100
 749 global rounds, with local client updates using a batch size 10 across 5 local epochs. MNIST ex-
 750 periments employing MLP utilize a global learning rate of 0.01, a global batch size of 128, and
 751 100 training rounds, while local training proceeds with a batch size 5 over 3 epochs. The Tiny
 752 ImageNet-ResNet50 configuration employs a global learning rate of 0.001, maintains a batch size
 753 128, and executes 20 global rounds, with local updates using a batch size 10 for 3 epochs. These
 754 hyperparameter selections reflect architecture-specific optimization requirements and dataset com-
 755 plexity considerations.

756 A.3.1 DATASETS
757

758 • **CIFAR10** (Krizhevsky, 2009). It is an image database with 60,000 colour images of $32 * 32$ size in 10 classes equally, and it is divided into training dataset with 50,000 images and test dataset with 10,000 images.

761 • **MNIST** (Deng, 2012). It is a dataset with 70,000 hand-written digital images in $28 * 28$ size with 10 classes equally, and it is divided into training dataset with 60,000 images and test dataset with 10,000 images.

764 • **Tiny ImageNet** (Le & Yang, 2015) It is a subset of ILSVRC (ImageNet challenge) (Deng et al., 2009), which is one of the most famous benchmarks for image classification. As a subset, Tiny ImageNet only has 200 different classes. In addition, each class contains 500 training images, 50 validation images, and 50 test images totally. Moreover, the size of the images is revised to $64 * 64$ pixels instead of $224 * 224$ pixels in standard ImageNet.

769 A.3.2 ATTACKS
770

771 • **LIE** (Baruch et al., 2019). It inserts an appropriate amounts of noise which are large for the 772 adversary to impact the global model while small to avoid attention by Byzantine-robust 773 AGRs to each dimension of the average of the benign gradients.

774 • **Min-Max** (Shejwalkar & Houmansadr, 2021). They minimize the distance of malicious 775 clients to benign clients, and then ensure the poisoned updates lie closely to the clique of 776 benign gradients.

777 • **Min-Sum** (Shejwalkar & Houmansadr, 2021). They minimize the the sum of the squared 778 distance of malicious clients to benign clients, and then ensure the poisoned updates lie 779 closely to the clique of benign gradients.

780 • **FMPA** (Zhang et al., 2023). It generates an estimator to predict the global model in the next 781 iteration as a benign reference model to fine-turn the global model to the desired poisoned 782 model by collecting the historical information.

784 A.3.3 DEFENSES
785

786 • **FedAvg** (McMahan et al., 2017). It is a basic algorithm on FL without defense. It collects 787 all the local updates from the clients and computes the average of them as the output of 788 aggregation.

789 • **Median** (Yin et al., 2021). It computes the median of the values from each dimension of 790 gradients as a new global gradient.

791 • **Trmean (Trimmed-mean)** (Yin et al., 2021). It drops the specific number of maximum 792 and minimum values from the local updates from the clients, and use the average value of 793 the remaining updates as the aggregation output.

794 • **Norm-bounding** (Sun et al., 2019). It will scale the local update of the clients if the l_2 795 norm of it is bigger than the fixed threshold. Then it will average the scaled local updates 796 as it's aggregation.

797 • **Bulyan** (Mhamdi et al., 2018). It uses Mkrum to select the updates as a selection set 798 and then use Trmean (Yin et al., 2021) to aggregate the gradients. Trmean averages the 799 gradients after removing the m largest and smallest values from the updates, m is usually 800 set as the number of malicious clients.

801 • **Mkrum** (Blanchard et al., 2017). It was modified by krum (Blanchard et al., 2017) to 802 aggregate the information provided from the clients effectively. Krum selects the single 803 gradient which is closest to $(N - m - 2)$ neighboring gradients, where N and m are the 804 number of all clients and malicious clients respectively. Mkrum selects multi gradients 805 using krum to obtain a selection set and then average the gradients.

806 • **Fltrust** (Cao et al., 2022). It assigns a trust score to each clients based on the updates 807 from them to the global update direction, the lower trust score the client get, the more the 808 direction deviates. Then Fltrust normalizes the gradients of local model updates by the trust 809 cores, and then average the updates as a global model.

810

- **CC (Centered Clipping)** (Karimireddy et al., 2021). It clips all the gradients to the bad
811 vector ρ to ensure the error is less than a specific value. Then it averages the normalized
812 local updates with the weight of the trust score to generate a new global model.

813

- **DNC** (Shejwalkar & Houmansadr, 2021). Singular value decomposition (SVD) is em-
814 ployed for Divide-and-conquer (DnC) to extract the common features. The projection of
815 a subsampled gradients generated from a selection of a sorted set of indices is computed,
816 and then the gradients with highest scores of outlier vector will be removed. DnC averages
817 the gradients after repeating this process.

818

819 A.3.4 EXPERIMENTAL RESULTS

820 A.4 THE USE OF LARGE LANGUAGE MODELS

822 We used Large Language Models (LLMs) to aid and polish writing in this paper. Specifically, LLMs
823 were used to help improve the clarity, grammar, and flow of certain sections of the manuscript, and
824 to assist in refining the presentation of ideas and ensuring consistent writing style throughout the pa-
825 per. All core concepts, methodological contributions, experimental designs, results, and conclusions
826 represent our original work. The LLMs did not contribute to the research ideation, experimental
827 methodology, data analysis, or the generation of novel scientific insights. All content assisted by
828 LLMs was thoroughly reviewed, fact-checked, and edited by the human authors to ensure accuracy
829 and alignment with our intended contributions. The authors take full responsibility for all claims,
830 results, and content presented in this work.

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

866

867 Table 3: The comparison of the accuracy of the global model between different attacks on CIFAR10,
868 MNIST, and Tiny ImageNet against different AGRs.
869

870 Dataset (Model)	871 AGRs	872 No Attack(%)	873 Test Acc. (Difference to the Targeted Acc. ς (%))			
			874 LIE	875 Min-Max	876 Min-Sum	877 FMPA
878 Target Acc 55%						
879 CIFAR10 (AlexNet)	FedAvg	66.42	53.28 (-1.72)	32.75 (-22.25)	51.06 (-3.94)	58.44 (3.44)
	Median	64.28	33.40 (-21.60)	28.08 (-26.92)	33.73 (-21.27)	51.05 (-3.95)
	Trmean	66.23	46.43 (-8.57)	30.95 (-24.05)	41.19 (-13.81)	58.22 (3.22)
	NB	66.73	51.95 (-3.05)	45.64 (-9.36)	55.51 (0.51)	58.07 (3.07)
	Bulyan	66.07	36.91 (-18.09)	25.95 (-29.05)	23.52 (-31.48)	48.71 (-6.29)
	Mkrum	66.79	45.03 (-9.97)	52.29 (-2.71)	31.74 (-23.26)	51.10 (-3.90)
	Filtrust	66.59	31.53 (-23.47)	50.79 (4.21)	52.56 (-2.44)	53.62 (-1.38)
	CC	66.62	63.53 (8.53)	10.53 (-44.47)	14.94 (-40.06)	58.98 (3.98)
	DNC	66.55	62.92 (7.92)	63.94 (8.94)	58.26 (3.26)	51.43 (-3.57)
	880 Target Acc 50%					
881 Target Acc 30%	FedAvg	66.42	53.28 (6.56)	32.75 (-34.50)	51.06 (2.12)	57.84 (15.68)
	Median	64.28	33.40 (-33.20)	28.08 (-43.84)	33.73 (-32.54)	48.98 (-2.04)
	Trmean	66.23	46.43 (-7.14)	30.95 (-38.10)	41.19 (-17.62)	52.78 (5.56)
	NB	66.73	51.95 (3.90)	45.64 (-8.72)	55.51 (11.02)	55.79 (11.58)
	Bulyan	66.07	36.91 (-26.18)	25.95 (-48.10)	23.52 (-52.96)	58.94 (17.88)
	Mkrum	66.79	45.03 (-9.94)	52.29 (4.58)	31.74 (-36.52)	62.56 (25.12)
	Filtrust	66.59	31.53 (-36.94)	50.79 (1.58)	52.56 (5.12)	43.86 (-12.28)
	CC	66.62	63.53 (27.06)	10.53 (-78.94)	14.94 (-70.12)	50.42 (0.84)
	DNC	66.55	62.92 (25.84)	63.94 (27.88)	58.26 (16.52)	51.36 (2.72)
	882 Target Acc 30%					
883 Target Acc 25%	FedAvg	66.42	53.28 (77.60)	32.75 (9.17)	51.06 (70.20)	34.49 (14.97)
	Median	64.28	33.40 (11.33)	28.08 (-6.40)	33.73 (12.43)	27.05 (-9.83)
	Trmean	66.23	46.43 (54.77)	30.95 (3.17)	41.19 (37.30)	27.05 (-9.83)
	NB	66.73	51.95 (73.17)	45.64 (52.13)	55.51 (85.03)	17.20 (-42.67)
	Bulyan	66.07	36.91 (23.03)	25.95 (-13.50)	23.52 (-21.60)	13.14 (-56.20)
	Mkrum	66.79	45.03 (50.10)	52.29 (74.30)	31.74 (5.80)	27.05 (-9.83)
	Filtrust	66.59	31.53 (5.10)	50.79 (69.30)	52.56 (75.20)	35.09 (16.97)
	CC	66.62	63.53 (111.77)	10.53 (-64.90)	14.94 (-50.20)	36.30 (21.00)
	DNC	66.55	62.92 (109.73)	63.94 (113.13)	58.26 (94.20)	52.09 (73.63)
	884 Target Acc 20%					
885 Target Acc 15%	FedAvg	66.42	53.28 (77.60)	32.75 (9.17)	51.06 (70.20)	34.49 (14.97)
	Median	64.28	33.40 (11.33)	28.08 (-6.40)	33.73 (12.43)	27.05 (-9.83)
	Trmean	66.23	46.43 (54.77)	30.95 (3.17)	41.19 (37.30)	27.05 (-9.83)
	NB	66.73	51.95 (73.17)	45.64 (52.13)	55.51 (85.03)	17.20 (-42.67)
	Bulyan	66.07	36.91 (23.03)	25.95 (-13.50)	23.52 (-21.60)	13.14 (-56.20)
	Mkrum	66.79	45.03 (50.10)	52.29 (74.30)	31.74 (5.80)	27.05 (-9.83)
	Filtrust	66.59	31.53 (5.10)	50.79 (69.30)	52.56 (75.20)	35.09 (16.97)
	CC	66.62	63.53 (111.77)	10.53 (-64.90)	14.94 (-50.20)	36.30 (21.00)
	DNC	66.55	62.92 (109.73)	63.94 (113.13)	58.26 (94.20)	52.09 (73.63)
	886 Target Acc 10%					
887 Target Acc 5%	FedAvg	66.42	53.28 (77.60)	32.75 (9.17)	51.06 (70.20)	34.49 (14.97)
	Median	64.28	33.40 (11.33)	28.08 (-6.40)	33.73 (12.43)	27.05 (-9.83)
	Trmean	66.23	46.43 (54.77)	30.95 (3.17)	41.19 (37.30)	27.05 (-9.83)
	NB	66.73	51.95 (73.17)	45.64 (52.13)	55.51 (85.03)	17.20 (-42.67)
	Bulyan	66.07	36.91 (23.03)	25.95 (-13.50)	23.52 (-21.60)	13.14 (-56.20)
	Mkrum	66.79	45.03 (50.10)	52.29 (74.30)	31.74 (5.80)	27.05 (-9.83)
	Filtrust	66.59	31.53 (5.10)	50.79 (69.30)	52.56 (75.20)	35.09 (16.97)
	CC	66.62	63.53 (111.77)	10.53 (-64.90)	14.94 (-50.20)	36.30 (21.00)
	DNC	66.55	62.92 (109.73)	63.94 (113.13)	58.26 (94.20)	52.09 (73.63)
	888 Target Acc 0%					
889 MNIST (MLP)	FedAvg	97.98	94.12 (10.73)	91.67 (7.85)	92.84 (9.22)	83.21 (-2.11)
	Median	97.81	90.99 (7.05)	91.15 (7.24)	92.84 (9.22)	51.74 (-39.13)
	Trmean	97.42	91.80 (7.99)	91.30 (7.41)	92.43 (8.74)	95.84 (12.75)
	NB	97.96	88.92 (4.61)	91.88 (8.09)	92.29 (8.58)	88.35 (3.94)
	Bulyan	97.97	92.33 (8.62)	91.96 (8.19)	92.29 (8.58)	98.68 (16.09)
	Mkrum	97.94	95.19 (11.99)	95.21 (12.01)	95.39 (12.22)	86.71 (2.01)
	Filtrust	97.96	87.89 (3.40)	73.49 (-13.54)	93.12 (9.55)	93.00 (9.41)
	CC	97.96	95.35 (12.18)	89.61 (5.42)	94.54 (11.22)	94.86 (11.60)
	DNC	97.95	93.08 (9.51)	92.90 (9.29)	93.36 (9.84)	99.47 (17.02)
	890 Target Acc 80%					
891 Target Acc 50%	FedAvg	97.98	94.12 (17.65)	91.67 (14.59)	92.84 (16.05)	92.39 (15.49)
	Median	97.81	90.99 (13.74)	91.15 (13.94)	92.84 (16.05)	35.52 (-55.60)
	Trmean	97.42	91.80 (14.75)	91.30 (14.13)	92.43 (15.54)	97.44 (21.80)
	NB	97.96	88.92 (11.15)	91.96 (14.95)	92.29 (15.36)	46.36 (-42.05)
	Bulyan	97.97	88.92 (11.15)	91.96 (14.95)	92.29 (15.36)	68.69 (-14.14)
	Mkrum	97.94	95.19 (18.99)	95.21 (19.01)	95.39 (19.24)	25.52 (-68.10)
	Filtrust	97.96	87.89 (7.58)	73.49 (46.98)	93.12 (86.24)	95.11 (18.89)
	CC	97.96	94.48 (18.10)	94.66 (89.32)	94.54 (89.08)	92.39 (15.49)
	DNC	97.95	93.08 (16.35)	92.90 (16.12)	93.36 (16.70)	92.62 (15.77)
	892 Target Acc 20%					
893 Target Acc 10%	FedAvg	97.98	94.12 (88.24)	91.67 (83.34)	92.84 (85.68)	64.02 (28.04)
	Median	97.81	90.99 (81.98)	91.15 (82.30)	92.84 (85.68)	29.09 (-41.82)
	Trmean	97.42	91.80 (83.60)	91.30 (82.60)	92.43 (84.86)	70.34 (40.68)
	NB	97.96	88.92 (77.84)	91.88 (83.76)	92.29 (84.58)	59.80 (19.60)
	Bulyan	97.97	92.33 (84.66)	91.96 (83.92)	92.29 (84.58)	38.70 (-22.60)
	Mkrum	97.94	95.19 (90.38)	95.21 (90.42)	95.39 (90.78)	60.03 (20.06)
	Filtrust	97.96	87.89 (75.78)	73.49 (46.98)	93.12 (86.24)	92.60 (85.20)
	CC	97.96	94.48 (88.96)	94.66 (89.32)	94.54 (89.08)	92.39 (84.78)
	DNC	97.95	93.08 (86.16)	92.90 (85.80)	93.36 (86.72)	82.40 (64.80)
	894 Target Acc 5%					
895 Target Acc 0%	FedAvg	97.98	94.12 (88.24)	91.67 (83.34)	92.84 (85.68)	51.98 (3.96)
	Median	97.81	90.99 (81.98)	91.15 (82.30)	92.84 (85.68)	53.78 (7.56)
	Trmean	97.42	91.80 (83.60)	91.30 (82.60)	92.43 (84.86)	70.34 (40.68)
	NB	97.96	88.92 (77.84)	91.88 (83.76)	92.29 (84.58)	50.27 (0.54)
	Bulyan	97.97	92.33 (84.66)	91.96 (83.92)	92.29 (84.58)	38.70 (-22.60)
	Mkrum	97.94	95.19 (90.38)	95.21 (90.42)	95.39 (90.78)	60.03 (20.06)
	Filtrust	97.96	87.89 (75.78)	73.49 (46.98)	93.12 (86.24)	92.60 (85.20)
	CC	97.96	94.48 (88.96)	94.66 (89.32)	94.54 (89.08)	92.39 (84.78)
	DNC	97.95	93.08 (86.16)	92.90 (85.80)	93.36 (86.72)	82.40 (64.80)
	896 Target Acc 40%					
897 Target Acc 35%	FedAvg	56.46	51.60 (29.00)	38.37 (-4.07)	53.20 (33.00)	38.79 (-3.03)
	Median	52.87	22.14 (-44.65)	54.08 (35.20)	34.24 (-14.40)	43.46 (8.65)
	Trmean	56.02	51.60 (29.00)	54.59 (36.47)	39.82 (-0.45)	46.95 (17.38)
	NB	57.23	52.98 (32.45)	52.95 (32.37)	53.09 (32.73)	34.09 (-14.78)
	Bulyan	56.03	24.93 (-37.67)	48.01 (20.02)	33.51 (-16.23)	38.90 (-2.75)
	Mkrum	54.98	27.02 (-32.45)	49.68 (24.20)	26.39 (-34.03)	35.61 (-10.98)
	Filtrust	55.63	33.57 (-16.07)	47.04 (17.60)	53.45 (33.63)	35.97 (-10.08)
	CC	53.23	29.13 (-27.17)	32.26 (-19.35)	30.99 (-22.53)	41.76 (4.40)
	DNC	53.13	68.12 (70.30)	69.66 (74.15)	54.29 (35.73)	40.64 (1.60)
	898 Target Acc 30%					
899 Target Acc 25%	FedAvg	56.46	51.60 (47.43)	38.37 (9.63)	53.20 (52.00)	48.06 (37.31)
	Median	52.87	22.14 (-36.74)	54.08 (54.51)	34.24 (-2.17)	33.88 (-3.20)
	Trmean	56.02	51.60 (47.43)	54.59 (55.97)	39.82 (13.77)	48.47 (38.49)
	NB	57.23	52.98 (51.37)	52.95 (51.29)	53.09 (51.69)	50.12 (43.20)
	Bulyan	56.03	24.93 (-28.77)	48.01 (37.17)	33.51 (-4.26)	42.27 (-87.80)
	Mkrum	54.98	27.02 (-22.80)	49.68 (41.94)	26.39 (-24.60)	37.30 (6.57)
	Filtrust	55.63	33.57 (-4.09)	47.04 (34.40)	53.45 (52.71)	49.27 (40.77)
	CC	53.23	29.13 (-16.77)	32.26 (-7.83)	30.99 (-11.46)	41.70 (19.14)
	DNC	53.13	68.12 (94.63)	69.66 (99.03)	54.29 (55.11)	48.34 (38.11)
	900 Target Acc 20%					
901 Target Acc 15%	FedAvg	56.46	51.60 (47.43)	38.37 (9.63)	53.20 (52.00)	33.73 (-3.63)
	Median	52.87	22.14 (-36.74)	54.08 (54.51)	34.24 (-2.17)	34.45 (-1.57)
	Trmean	56.02</td				

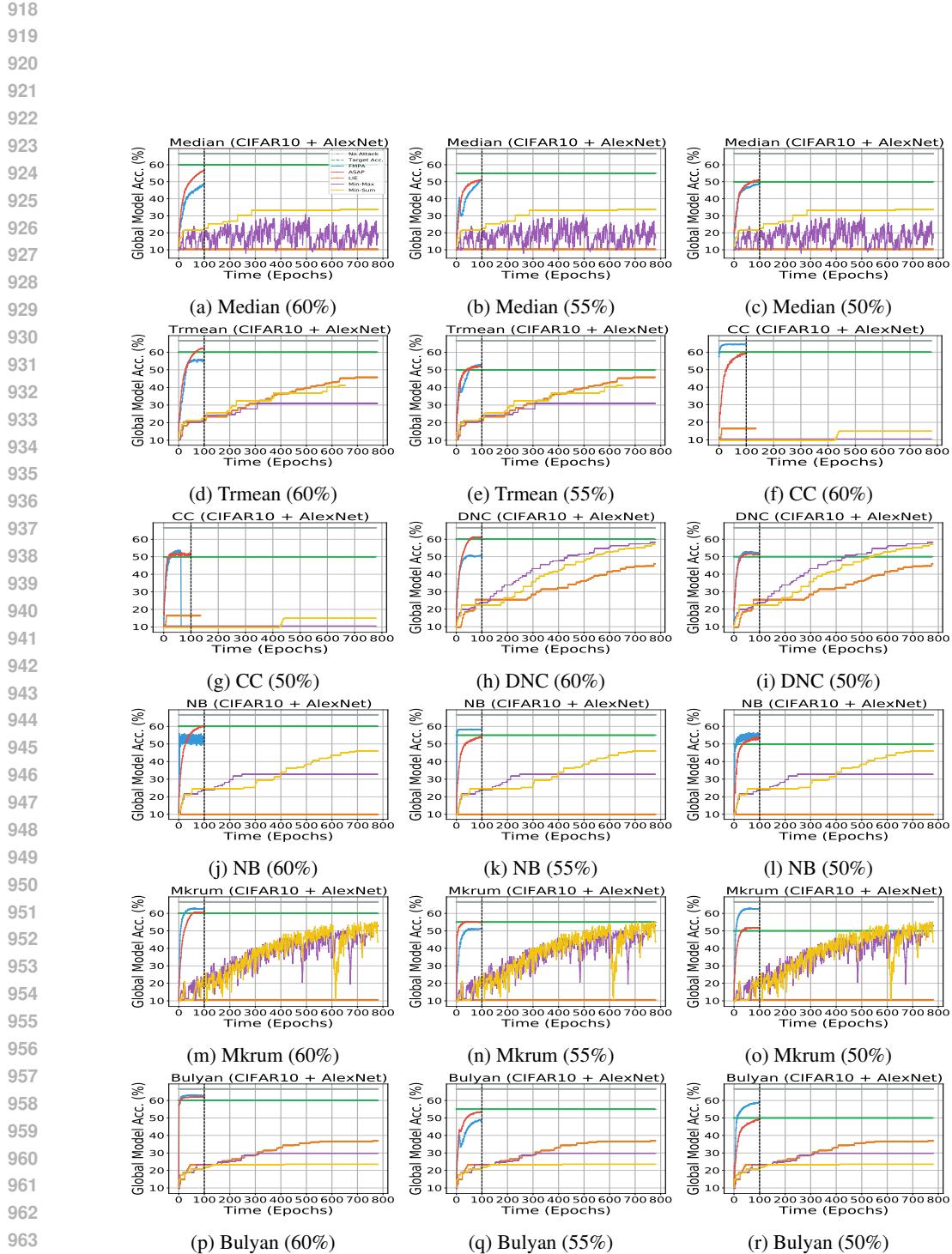


Figure 5: Comparison of each attack against various AGRs with different attack objectives on CIFAR10 with AlexNet under different attack objectives and different attacks under the same target accuracy.