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ABSTRACT

Multimodal emotion recognition faces semantic ambiguity, significant noise, and
cross-modal interference including modality absence. Although psychological re-
search supports a radial structure of emotions, many methods overlook this ge-
ometry and accumulate directional noise during fusion. We introduce the Po-
lar Geodesic Network (PGN), which maps modality embeddings into a radial
space, performs reliability-aware geodesic fusion to preserve circular topology,
and then uses a Transformer to refine the fused representation and capture cross-
dimensional interactions. Under a unified frozen-backbone protocol, PGN attains
0.6835 Accuracy and 0.6756 Weighted-F1 on MELD, and 0.7340 Accuracy and
0.690 Macro-F1 on IEMOCAP. Ablation results indicate that geometry-aware fu-
sion and the subsequent Transformer contribute complementary gains. These find-
ings demonstrate that explicit modelling in radial space enhances recognition ac-
curacy and robustness.

1 INTRODUCTION

Multimodal emotion recognition integrates text, speech, and vision to improve robustness over single
modalities, yet real deployments remain difficult due to semantic ambiguity near category bound-
aries and unreliable inputs in noisy, occluded, or out-of-distribution conditions (Ramaswamy et al.,
2024; Lian et al., 2023). Surveys report that Euclidean feature fusion and standard attention often as-
sume homogeneous reliability and linear neighbourhoods, which can cause one corrupted stream to
dominate and blur decision boundaries around semantically adjacent emotions (Ramaswamy et al.,
2024; Pan et al., 2023). Recent MER works emphasise robustness to missing or noisy modalities,
showing that explicit modelling of modality absence or incompleteness is necessary for stable perfor-
mance in practice (Lin & Hu, 2023; Wang et al., 2023). At the same time, geometry-aware learning
argues that many signals live on curved manifolds where non-Euclidean distances and means pre-
serve structure that Euclidean pooling tends to distort (Mettes et al., 2023; Tibermacine et al., 2024).
For affective signals, circular or periodic representations capture directional relationships and avoid
discontinuities that arise when angles are treated in a naïve Euclidean manner (Bruns et al., 2024;
Tibermacine et al., 2024).

We posit that modeling multimodal affective evidence in polar coordinates, with angle for affective
direction and radius for salience, and aggregating along geodesics rather than straight lines, mitigates
wrap around failures where opposite directions average to neutral and enables reliability weighting
to down regulate corrupted modalities during fusion (Bruns et al., 2024; Mettes et al., 2023).

Contributions

We propose the Polar Geodesic Network for geometry-aware multimodal fusion, evaluated under a
standardised frozen backbone protocol with an end-to-end layer-wise learning rate decay variant for
complementary analysis. We summarise three key contributions supported by recent evidence. First,
we introduce a polar representation that separates phase on the circle from magnitude on the positive
reals, which aligns with cyclic structure in affective variables and reduces angular discontinuities ob-
served in Euclidean embeddings (Bruns et al., 2024; Tibermacine et al., 2024; Mettes et al., 2023).
Second, we perform reliability weighted geodesic fusion by computing a circular Fréchet mean for
phases and a normalised reliability average for magnitudes, which is consistent with recent find-
ings that robust multimodal systems must explicitly handle missing or noisy modalities and that
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non-Euclidean aggregation improves stability under corruption (Lin & Hu, 2023; Wang et al., 2023;
Halpern et al., 2024). Third, we provide a theoretical and quantitative evaluation program that cou-
ples small noise analysis of circular estimators with standardized frozen baseline reproduction, multi
seed reporting with paired testing, and controlled robustness studies for noise and missing modali-
ties, which matches guidance from recent surveys and benchmarks on geometry aware learning and
MER evaluation (Ramaswamy et al., 2024; Lian et al., 2023; Tibermacine et al., 2024).

A focused synthesis of attention based fusion, contrastive alignment, reliability modeling, geometry
aware aggregation, and dialogue or graph context for MER appears in Appx. A (Ramaswamy et al.,
2024; Pan et al., 2023).

2 PRELIMINARIES

Notation and conventions

Angles are measured in radians with principal representatives in (−π, π]. We use the centred modu-
lus w(x) = mod

(−π,π]
2π (x) = ((x+ π) mod 2π)− π. On S1, we adopt the complex representation

eiθ. For phases {θm} with nonnegative weights {αm}, the (complex) resultant is

R :=
∑
m

αmeiθm = Reiθ̂, R = |R| ∈ [0, 1], θ̂ = arg(R),

where R is the resultant length (polarisation) and θ̂ the mean direction Mardia & Jupp (2000);
Jammalamadaka & SenGupta (2001); Fisher (1993). The signed angular difference is

δ(θ, θ′) = atan2
(
sin(θ − θ′), cos(θ − θ′)

)
∈ (−π, π],

and the geodesic (shortest-arc) distance is

d(θ, θ′) = |δ(θ, θ′)| = min
m∈Z

∣∣θ − θ′ + 2πm
∣∣

(standard in circular statistics Fisher (1993); equivalent closed forms and numerical notes appear
in Appendix C.1, C.2). For completeness on manifold means used later, see Pennec (2006); Afsari
(2011). We use British English (e.g., normalisation, stabilise, artefacts).

2.1 RADIAL VS. EUCLIDEAN EMOTION REPRESENTATION

In conventional Euclidean embeddings, an emotion is represented by a vector z = (x, y) in which
magnitude and direction are coupled. Changes in global scale (e.g., louder speech, longer text)
alter ∥z∥ even when the underlying direction is unchanged, which can bias similarity towards mag-
nitude. Although normalisation may mitigate this effect, many distance/fusion operators remain
Euclidean. An illustrative discussion of scale sensitivity and the chord–arc discrepancy is provided
in Appendix C.2.

We parameterise emotions in polar coordinates (r, θ), where r encodes intensity/activation (or confi-
dence) and θ encodes affective direction. This decoupling is intended to emphasise directional struc-
ture when appropriate (e.g., circumplex-like layouts Russell (1980); Posner et al. (2005); Plutchik
(2001)), while retaining access to intensity via r. Concretely, we examine:

(i) Reduced sensitivity to amplitude variation. When nuisance factors primarily affect scale, angle-
based comparisons can be less sensitive to such variation; formal angular distances are introduced
in §2.2, and small-angle agreements with Euclidean chords are summarised in Appendix C.2. Em-
pirical checks are reported in §5.

(ii) Compatibility with graded/overlapping affect. If classes occupy sector-like regions rather than
isolated points, small angular mixtures vary smoothly within/between sectors, which can better cap-
ture blended states. Appendix B provides a variance-reduction analysis and a two-component ambi-
guity bound based on circular statistics Mardia & Jupp (2000); Jammalamadaka & SenGupta (2001);
Fisher (1993).

(iii) Invariance properties. Angular separation is invariant to common rescalings and equivariant un-
der global rotations (Appendix C.2); these properties aid cross-modality comparability when mag-
nitudes are miscalibrated.
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Geometry-aware operators used later (e.g., circular means/Fréchet means on S1) align with classi-
cal directional statistics Mardia & Jupp (2000); Jammalamadaka & SenGupta (2001) and intrinsic
means on manifolds Pennec (2006); Afsari (2011). In particular, Appendix C.3 shows that the circu-
lar Fréchet mean coincides with the resultant phase under mild dispersion, and Appendix B details
variance and stability properties relevant to denoising and ambiguity tolerance. We treat the radial
parameterisation as a modelling choice whose utility is validated empirically in §5.

2.2 GEODESIC DISTANCE

Distances on circular manifolds must respect periodicity; using plain Euclidean distance breaks this
structure and causes wrap-around artefacts Mardia & Jupp (2000); Fisher (1993); Jammalamadaka
& SenGupta (2001).

We adopt the notation of §2 and write the angular difference as ∆ := θ − θ′. The signed shortest
angular difference is δ(θ, θ′) and the geodesic distance is d(θ, θ′) = |δ(θ, θ′)| = minm∈Z |∆+2πm|,
with equivalent closed forms summarised in Appendix C.1 (see also Fisher (1993) for standard
treatments). Geometrically, d(θ, θ′) equals the length of the shorter arc between two points on the
unit circle Mardia & Jupp (2000). The metric axioms, boundedness 0 ≤ d ≤ π, and invariances
d(θ + 2π, θ′) = d(θ, θ′), d(θ + ϕ, θ′ + ϕ) = d(θ, θ′) are detailed in Appendix C.2 and follow
standard results in circular statistics Jammalamadaka & SenGupta (2001).

The chord–arc relation is given by∣∣eiθ − eiθ
′ ∣∣ = 2 sin

(
1
2 d(θ, θ

′)
)
, (2.1)

a classical identity on S1 (Fisher, 1993, Ch. 2).

For small separations the chord approximates the geodesic distance, while near π they diverge max-
imally—making chord distance unsuitable for averaging/fusion on S1 Mardia & Jupp (2000). In
our setting, where affect is often modelled on a circular manifold (the circumplex model), using
d yields similarity measures consistent with the intended topology and psychological relatedness
Russell (1980); Posner et al. (2005); Plutchik (2001). For numerical stability we compute δ via
atan2(sin∆, cos∆) and reproject angles to (−π, π] after updates; further implementation details
appear in Appendix C.2 and practical notes in Berens (2009).

3 METHOD

3.1 PROBLEM SETUP AND OVERVIEW

We address multimodal emotion recognition with C emotion classes (dataset-specific values are
provided in Sec. 4). Each input sample consists of three modality streams: video V , audioA, and text
T . To handle varying native sampling rates, all streams are aligned to a common temporal length T
before fusion. The model learns an end-to-end mapping f : (V,A, T ) 7→ y where y ∈ {1, . . . , C},
with all parameters—including feature extractors—jointly optimized.

3.1.1 OVERALL ARCHITECTURE

The Polar Geodesic Network (PGN) is an end-to-end framework that explicitly models the circular
geometry of affective representations. As shown in Fig. 1, PGN operates through four sequential
stages:

Input encoding. Raw modality streams are processed by trainable encoders to produce token-level
embeddings, which are projected to a shared hidden dimension H and common length T . The
architecture is backbone-agnostic, supporting various encoder types (e.g., ViT/CNN for vision, self-
supervised models for audio, Transformers for text).

Polar coordinate representation (Sec. 3.2). Each embedding dimension is decomposed into am-
plitude (intensity/confidence) and phase (affective direction) components. A reliability weight is
estimated per modality to dynamically handle uncertain or missing inputs.

Geodesic fusion (Sec. 3.3). Amplitudes and phases are aggregated using weighted Fréchet means
on the manifold S1 × R+, preserving circular topology and avoiding wrap-around artifacts.

3
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Multimodal Input

Polarization

Geodesic Fusion

Transform
er

Figure 1: PGN architecture overview.

Refinement and classification (Sec. 3.4). The fused polar representation is refined by a lightweight
Transformer with geometry-aware attention, then classified into emotion categories.

Missing modality handling. Absent modalities are handled by setting their reliability weights to
zero and renormalising across available streams, ensuring robust operation under partial observa-
tions.

3.2 POLAR COORDINATE REPRESENTATION

The polar coordinate representation transforms Euclidean embeddings from modality-specific en-
coders into a geometry-aware format that disentangles two complementary aspects of affective sig-
nals: amplitude (intensity) and phase (affective direction). By separating these components, PGN
respects the circular structure of affect while providing an explicit handle for reliability weighting
during fusion. This design is inspired by psychological models of emotion Russell (1980); Plutchik
(2001); Posner et al. (2005) and builds on complex-valued parameterizations in geometry-aware
neural networks Trabelsi et al. (2018).

3.2.1 AMPLITUDE AND PHASE PROJECTION

For each modality k ∈ {video, audio, text} and token position t (sequence length T ), denote the
encoder output by xk,t ∈ RH . We pass xk,t through two lightweight MLPs (each preceded by
LayerNorm Ba et al. (2016)), one to produce a nonnegative amplitude and the other to produce an
angular phase:

ρk,t = εamp + softplus
(
MLPρ(LayerNorm(xk,t))

)
, (3.1)

θk,t = atan2
(
sinϕk,t, cosϕk,t

)
, ϕk,t = MLPθ(LayerNorm(xk,t)). (3.2)

Here ρk,t ∈ RH
+ encodes tokenwise intensity per latent dimension, while θk,t ∈ (−π, π]H encodes

per-dimension direction on the circle. Using softplus yields smooth positive amplitudes with stable
gradients Dugas et al. (2001); using atan2(sin, cos) wraps pre-angles to principal values and pre-
serves circular topology. For later convenience we also define the complex form z

(k)
t = ρk,t⊙eiθk,t .

3.2.2 RELIABILITY ESTIMATION

To accommodate variable input quality, PGN parameterizes reliability logits at the granularity of
modality k, token t, and dimension h by combining amplitude strength and local phase consistency:

ℓk,t,h = β0 + βρ ρk,t,h + βR R
(loc)
k,t,h, (3.3)

where R
(loc)
k,t,h ∈ [0, 1] is a local resultant-length–based consistency index computed from nearby

phases (cf. §3.2). Larger amplitudes and more consistent local phases yield larger logits and hence
higher normalized reliability after fusion. Cross-modality normalization is performed with a masked

4
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softmax in §3.3 using a fixed temperature τ (we use τ = 1 unless otherwise noted). Implementation
notes (the neighborhood for R(loc) and optional temperature sensitivity) are in Appx. D.

3.3 GEODESIC FUSION

The geodesic fusion stage aggregates polar representations from multiple modalities on the product
space S1×R+, avoiding the topological distortions of Euclidean averaging. We rely on the distance
formalism and the signed angular difference introduced in Section 2.2.

3.3.1 AMPLITUDE FUSION

We normalize reliabilities for each (t, h) across available modalities via a masked softmax with a
fixed temperature τ . Let mk,t ∈ {0, 1} indicate availability at time t (1 if present, 0 if missing):

αk,t,h =
exp(ℓk,t,h/τ)mk,t∑
j exp(ℓj,t,h/τ)mj,t

, (τ = 1 by default). (3.4)

This yields a strictly normalized weight distribution over the available streams (if exactly one stream
is available at t, its weight is 1 for all h). Amplitude fusion on the radial factor R+ is then

ρ̄t,h =
∑
k

αk,t,h ρk,t,h. (3.5)

In the degenerate case where all streams are absent at (t, h) (i.e.,
∑

j mj,t = 0), we set α·,t,h = 0
and ρ̄t,h = 0; the phase term is then immaterial for downstream use.

3.3.2 PHASE FUSION

On the circle S1, the weighted Fréchet mean at (t, h) is obtained by averaging unit complex numbers
and taking the angle of the resultant. Define the (reliability–weighted) resultant vector

Rt,h =
(∑

k

αk,t,h cos θk,t,h,
∑
k

αk,t,h sin θk,t,h

)
∈ R2. (3.6)

Its direction gives the fused phase,

θ̄t,h = atan2
(
R

(y)
t,h , R

(x)
t,h

)
∈ (−π, π], (3.7)

where atan2(y, x) returns the principal angle of the 2D vector (x, y) (correct quadrant, no division-
by-zero). This equals the minimizer of the weighted sum of squared geodesic distances (proof in
Appx. C.3).

The resultant length is the Euclidean norm of Rt,h,

Rt,h =
∥∥Rt,h

∥∥
2

=

√(∑
k

αk,t,h cos θk,t,h

)2

+
(∑

k

αk,t,h sin θk,t,h

)2

∈ [0, 1], (3.8)

which quantifies the agreement (concentration) among phases: larger Rt,h indicates stronger con-
sensus. Properties and bounds of Rt,h are summarized in Appx. B. This geometry-aware fusion
avoids the wrap-around artifacts discussed in Section 2.2.

3.3.3 GRADIENT STABILITY

We stabilize training with three ingredients:
(i) Geometry-aligned differences. We use the signed, wrapped angular difference and the post-update
phase reprojection defined in §2.2 to avoid branch-cut discontinuities.
(ii) Uncertain-phase damping. When the resultant length Rt,h is small (high-variance phases; see
Appx. B), we gate phase-side gradients by a factor gt,h∈ [0, 1] increasing in Rt,h, e.g.

gt,h = Rt,h or gt,h = R γ
t,h (γ≥1), (3.9)

5
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so updates focus on amplitude/reliability until angular evidence becomes reliable.
(iii) Safe numerics. We clamp resultant lengths where they appear in denominators and apply global-
norm gradient clipping:

Rt,h ← max
(
Rt,h, εamp

)
, ∥∇Θ∥ ← min

(
∥∇Θ∥, clip

)
. (3.10)

Finally, the fused complex representation passed to refinement is

zt,h = ρ̄t,h e
iθ̄t,h , ut =

[
ℜ(zt); ℑ(zt)

]
∈ R2H . (3.11)

3.4 LEARNING PROCEDURE WITH TRANSFORMER REFINEMENT

PGN integrates geometry-aware fusion with neural attention and is trained end-to-end. After
geodesic fusion (§3.3), we take the realified per-token inputs {ut}Tt=1 ∈ R2H (constructed from
zt = ρ̄t⊙ eiθ̄t ) and feed them to a lightweight Transformer Vaswani et al. (2017). We augment self-
attention logits with a geometry-aware bias that prefers tokens with strong amplitudes and aligned
phases:

Aij =
q⊤
i kj√
d

+ λg Gij , Gij = 1
H ℜ

(
z∗i · zj

)
.

A concise, end-to-end view of PGN’s computation and learning loop is given in Algorithm 1. Im-
plementation details (QKV projections, sharing of λg , complexity) are in Appx. E.

Objective and optimisation

We minimise a composite objective combining cross-entropy with two geometry-aligned regularis-
ers—reliability entropy (to discourage single-modality collapse) and phase diversity (to avoid an-
gular collapse)—plus weight decay. Optimisation uses AdamW Loshchilov & Hutter (2017) with
cosine decay, linear warmup, and global-norm clipping (c=1.0). Exact formulas and hyperparam-
eters are in Appx. F. A progressive schedule (warm-up→ partial unfreezing→ full joint training)
further stabilises training; see Appx. F.

Algorithm 1 PGN: End-to-end Geodesic Fusion with Geometric-Refined Transformer (mini-batch)

1: Input: streams (V,A, T ) with availability masks mk,t∈{0, 1}; batch size B; parameters Θ.
2: Encode→ Project/align: x̃k ∈ RB×T×H (§3.1)
3: Polar heads (per token/dim): amplitude by (3.1), phase wrapping by (3.2) (§3.2)
4: Local consistency R(loc) (Appx. C)
5: Reliability logits by (3.3) (§3.2)
6: Masked softmax (fixed τ ) by (3.4) (§3.3, Appx. C)
7: Fuse amplitude by (3.5) (§3.3)
8: Resultant & fused phase by (3.6)–(3.7); resultant length by (3.8) (§3.3; Appx. B.3)
9: Stability: phase-grad gate by (3.9); clamp/clip by (3.10) (§3.3)

10: Complex→ real: by (3.11) (§3.3)
11: Geom bias & attention: use Gij and Aij (§3.4; Appx. D)
12: Loss & update (Appx. E)

4 EXPERIMENTS

4.1 DATASETS & BASELINES

We evaluate categorical emotion recognition on MELD and IEMOCAP. A complementary sentiment
benchmark on MOSEI is provided in the appendix for reference only. To isolate the contribution
of our polar–geodesic fusion (PGN) and ensure strict comparability, we adopt a frozen-backbone
setting by default: all encoders (text, audio, vision) are fixed across methods and trained heads/fusion
share the same preprocessing, training budget, and seeds.

Under this unified frozen protocol we reproduce strong transformer/attention baselines: MulT, Mem-
oCMT, and MultiEMO. These are the baselines used in the main SOTA tables (MELD and IEMO-
CAP). We also report an end-to-end PGN variant with layer-wise learning-rate decay (LLRD) under

6
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the same update/epoch budget; this E2E variant is compared only against our Frozen PGN in the
appendix (no claims against literature-only numbers).

On MELD we follow standard practice and report Weighted-F1, Macro-F1, and Accuracy. On
IEMOCAP we report Accuracy and Macro-F1. Per-class metrics (P/R/F1) and confusion matrices
are included as figures to emphasize error structure rather than large tables.

All scores are reported as mean±std over a fixed seed set (five seeds unless noted). Unless specified
otherwise, we train with AdamW for 50 epochs. Validation is performed each epoch; we evaluate
the single best-on-validation checkpoint per seed on the test split.

Significance is assessed with paired t-tests across seeds and restricted to reproduced (frozen) runs
(PGN vs. MulT/MemoCMT/MultiEMO); we additionally report effect sizes (Cohen’s d) in the sup-
plement when relevant. We do not test against literature-only numbers, and we do not mix metrics
across sources.

Ablations and order sensitivity

Ablations are run under the same frozen protocol on both datasets (MELD and IEMOCAP) to quan-
tify the contribution of geodesic fusion and the complex transformer. We also probe module order
(PGT vs. PTG) and report the resulting deltas (accuracy and F1 score) to establish the importance
of geometry-first alignment.

We apply controlled stressors on MELD and IEMOCAP: audio noise at 20/10/5 dB SNR, video
occlusions at 10%/30%, text noise at 5%/10%, single/dual modality missing (A/V/T; A+V), and
random token/frame drop with p ∈ {0.1, 0.3, 0.5}. For each condition we report the same primary
metrics as in the clean setting and include absolute/relative drops. Efficiency measurements (la-
tency, peak memory, train time) use the same hardware and pipeline across methods. Additional de-
tails—label mappings, seed list, bootstrap and perturbation specs, and the MOSEI reference bench-
mark (MISA/M3ER only)—are provided in Appx. G.

5 MAIN RESULTS

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We first compare PGN to reproduced transformer/attention baselines under the unified frozen-
backbone protocol (identical preprocessing, training budget, and fixed seeds). All results in this
section use a 50-epoch budget with per-epoch validation and test evaluation at the best-on-validation.
MELD. PGN improves both overall correctness and class balance: gains appear consistently on Ac-
curacy, Macro-F1, and Weighted-F1, and the variance across seeds is small relative to improvements,
indicating stable behavior.

Table 1: MELD results under the frozen-backbone protocol (mean±std over fixed seeds).

Method Acc Macro-F1 Weighted-F1
PGN (ours) ‡ 0.6835 [± 0.006] 0.5953 [± 0.008] 0.6756 [± 0.007]
MemoCMT ‡ 0.5761 [± 0.009] 0.4184 [± 0.011] 0.5365 [± 0.010]

MulT ‡ 0.5389 [± 0.010] 0.3973 [± 0.010] 0.4575 [± 0.012]

MultiEMO ‡ 0.6120 [± 0.012] 0.5050 [± 0.014] 0.6420 [± 0.015]

Legend: ‡ reproduced (frozen; unified setup).

IEMOCAP. PGN also leads on IEMOCAP across the two primary metrics (Accuracy, Macro-F1),
pointing to improvements beyond dominant classes.

To understand error structure, we visualize the normalized confusion matrices for both datasets.
Rows sum to 1 per true class; typical confusion pairs (e.g., sad→neutral on MELD; an-
gry→frustrated on IEMOCAP) are reduced, aligning with the intended geometry-first alignment.

7
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Table 2: IEMOCAP results under the frozen-backbone protocol (mean±std over fixed seeds).

Method Acc Macro-F1
PGN (ours) ‡ 0.7340 [± 0.012] 0.690 [± 0.015]
MemoCMT ‡ 0.582 [± 0.018] 0.534 [± 0.017]

MulT ‡ 0.571 [± 0.016] 0.512 [± 0.014]

MultiEMO ‡ 0.631 [± 0.013] 0.582 [± 0.016]

Legend: ‡ reproduced (frozen; unified setup). Primary: Accuracy, Macro-F1.

Figure 2: Normalized confusion matrices for PGN (test). Left: MELD. Right: IEMOCAP.
Rows are normalized to sum to 1 per true class; reduced mass on typical confusion pairs indicates improved
separation of adjacent classes.

5.2 ABLATION STUDY

We ablate geodesic fusion and the complex transformer under the same frozen protocol and seeds.
Removing geodesic fusion consistently hurts, while removing the transformer yields the largest
drops—suggesting geometry reduces phase variance and aligns modalities before attention, and
attention captures residual cross-modal dependencies.

Table 3: Ablation under the frozen-backbone protocol (mean±std over five seeds).
(a) MELD

Configuration Acc Macro-F1 Weighted-F1
PGN (Full) ‡ 0.6835 [± 0.018] 0.5953 [± 0.013] 0.6756 [± 0.008]

PT (w/o Geodesic) ‡ 0.6519 [± 0.010] 0.5694 [± 0.011] 0.6351 [± 0.009]

PG (w/o Transformer) ‡ 0.6000 [± 0.012] 0.4700 [± 0.014] 0.5700 [± 0.011]

(b) IEMOCAP

Configuration Acc Macro-F1 Weighted-F1
PGN (Full) ‡ 0.7340 [± 0.012] 0.690 [± 0.013] 0.721 [± 0.011]

PT (w/o Geodesic) ‡ 0.706 [± 0.013] 0.670 [± 0.015] 0.690 [± 0.010]

PG (w/o Transformer) ‡ 0.670 [± 0.015] 0.610 [± 0.19] 0.640 [± 0.016]

Notes. Unified frozen protocol with identical preprocessing, budgets, and seeds. Deltas vs. PGN (absolute
points): MELD (Weighted-F1) — PT −0.0405, PG −0.1056; IEMOCAP — Acc −0.028/−0.064 (PT/PG),
Macro-F1 −0.020/−0.080 (PT/PG), Weighted-F1 −0.031/−0.081 (PT/PG).

We further test module order. Applying geometry-first alignment (PGT) before attention yields
steady improvements; reversing the order (PTG) incurs consistent penalties on both datasets.

5.3 ROBUSTNESS AND EFFICIENCY

We evaluate robustness to audio SNR and random token/frame drop, and summarize efficiency. PGN
maintains higher curves under degradations while retaining competitive latency and memory in the
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Table 4: Order sensitivity: PGT vs. PTG.

Dataset ∆Acc (PTG − PGT) ∆WF1 (PTG − PGT)
MELD −3.6 pp −4.7 pp
IEMOCAP −3.3 pp −4.1 pp

∆ denotes PTG minus PGT; “pp” means percentage points. Runs use the unified frozen protocol with a 50-
epoch budget.

frozen setting, indicating that geometry-first fusion reduces destructive averaging without heavier
heads.

Figure 3: Robustness and efficiency overview.
Left (a–d): sensitivity under audio SNR {clean, 20, 10, 5 dB} and random drop p∈{0, 0.1, 0.3, 0.5}. MELD
reports Weighted-F1; IEMOCAP reports Macro-F1. Bands show mean±std across seeds.
Right (e–f): inference latency (median of 100 inference runs; 20-run warmup) and peak memory under
identical hardware/batch.

6 CONCLUSION

We presented PGN, a geometry-first multimodal fusion framework that maps representations to a
polar form, separates radial (magnitude) and angular (phase) components, and aggregates across
modalities via geodesic means prior to attention. Under a unified frozen-backbone protocol, PGN
yields consistent gains over our reproduced baselines (MulT, MemoCMT, MultiEMO) on MELD
and IEMOCAP, with improvements most visible on minority and easily confusable classes, and with
competitive robustness–efficiency under audio SNR degradations and random drop. These findings,
however, are bounded by our budgets, seeds, preprocessing, and the limited scope of datasets; we
did not conduct cross-dataset transfer or domain-shift studies, and cross-modal interaction was re-
stricted to Transformer-based modules. Future work will broaden evaluation to larger, multilingual,
and in-the-wild corpora; examine transfer and few-shot regimes; explore interaction operators be-
yond Transformers (e.g., kernel/graph message passing, low-rank or gated designs) that couple more
tightly with the geometric parameterization; and, crucially, investigate the properties of the radial
space to uncover the shape and global distribution of emotions—probing how radial magnitude
relates to intensity and uncertainty, how class prototypes and clusters organize geometrically after
alignment, and how topological/shape descriptors might support stronger separability, generaliza-
tion, and stability guarantees.
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A RELATED WORK

Surveys and task framing

Recent surveys synthesise datasets, features, and fusion strategies for multimodal emotion recogni-
tion, consistently highlighting challenges from semantic ambiguity and input unreliability in realistic
conditions (Ramaswamy et al., 2024; Lian et al., 2023; Pan et al., 2023). These reviews also empha-
sise that many pipelines still rely on Euclidean representations and simple pooling or attention on
top of Euclidean features, which can implicitly assume homogeneous reliability across modalities
(Ramaswamy et al., 2024; Pan et al., 2023).

Feature aggregation and attention-based fusion

Classical early and late fusion are computationally simple yet struggle with heterogeneous reliability
and cross-modal alignment, motivating attention-based designs that adaptively weight salient cues
(Lian et al., 2023; Pan et al., 2023). Surveyed evidence indicates that attention helps capture cross-
modal dependencies but may still operate in a linear neighbourhood assumption that is brittle when
one stream is corrupted or when labels are ambiguous near class boundaries (Ramaswamy et al.,
2024; Pan et al., 2023).

Robustness to missing or noisy modalities

A growing line of MER work targets robustness by explicitly handling modality absence or cor-
ruption, improving stability when inputs are incomplete or degraded (Lin & Hu, 2023; Wang et al.,
2023). Complementary approaches modulate features to cope with missing signals and report gains
under controlled ablation of modalities, reinforcing the need for reliability-aware fusion (Halpern
et al., 2024; Lin & Hu, 2023).

Geometry-aware representations and aggregation

Non-Euclidean learning argues that many signals lie on curved manifolds and that geodesic distances
and means preserve structure better than Euclidean pooling, which can distort cyclic or hierarchi-
cal relations (Mettes et al., 2023; Tibermacine et al., 2024). For circular variables, deep circular
regression and Riemannian treatments avoid discontinuities at angle wrap-around and support es-
timators that better respect directional similarity, motivating polar encodings in affective settings
(Bruns et al., 2024; Tibermacine et al., 2024).

Positioning of our approach

The above strands suggest three design needs for MER in the wild: an affect-consistent latent ge-
ometry to reduce wrap-around artifacts, a reliability-aware fusion rule to resist noisy or missing
inputs, and a standardized evaluation protocol that disentangles architectural gains from backbone
tuning (Ramaswamy et al., 2024; Lian et al., 2023). Our work connects these needs by using a po-
lar representation and geodesic aggregation that align with circular affect structure, together with a
reliability-weighted fusion recipe and a frozen-backbone evaluation backed by multi-seed statistics
and controlled robustness tests (Mettes et al., 2023; Lin & Hu, 2023).
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B POLARISATION OF PHASES: RESULTANT AS A CONSISTENCY

Setup

Let angles {θm}Mm=1 with nonnegative weights {αm},
∑

m αm = 1. Define the complex resultant

Reiθ̂ =

M∑
m=1

αm eiθm , R ∈ [0, 1], θ̂ ∈ (−π, π].

Here R = ∥R∥ measures polarisation (agreement) and θ̂ the fused phase.

Polarisation identity (pairwise form)

Proposition 1 (Polarisation identity). The resultant length admits the exact decomposition

R2 =

M∑
m=1

α2
m + 2

∑
1≤i<j≤M

αiαj cos(θi − θj).

Proof. Write Reiθ̂ =
∑

m αmeiθm and take the squared modulus: R2 =
∣∣∑

m αmeiθm
∣∣2 =∑

m α2
m +

∑
i̸=j αiαje

i(θi−θj). Taking the real part yields the stated form.

Immediate corollaries

Corollary 1 (Bounds and equality cases). 0 ≤ R ≤ 1. Moreover, R = 1 iff all θm are identical
(perfect alignment); R = 0 is attainable under antipodal cancellation (e.g., two opposite directions
with equal total weight).

Corollary 2 (Monotonicity w.r.t. dispersion). If all pairwise separations shrink (i.e., each cos(θi −
θj) weakly increases), then R weakly increases by Prop. 1. Thus R is a consistency index.

Corollary 3 (Lower bound by dominant weight). Let αmax = maxm αm. Then

R ≥ max { 0, 2αmax − 1 }.

In particular, if one modality dominates (αmax ≥ 1
2 ), the resultant cannot vanish.

Sketch. Group all non-dominant phases adversarially against the dominant one; the worst-case is an
antipodal placement, yielding the stated bound from vector subtraction geometry.

Link to denoising and ambiguity tolerance

Proposition 2 (Variance–polarisation coupling). Under small independent angular noises with vari-
ances {σ2

m} and weights {αm}, the fused phase satisfies the delta-method approximation

Var(θ̂) ≈
∑

m α2
mσ2

m

R2
,

so larger polarisation R yields smaller angular variance (denoising).

Sketch. Linearise the map {θm} 7→ θ̂ = atan2(Ry, Rx) around the noise-free configuration; the
Jacobian has norm proportional to 1/R. See also classical results in circular statistics (Mardia &
Jupp, 2000; Jammalamadaka & SenGupta, 2001; Fisher, 1993).

Proposition 3 (Two-component ambiguity bound). For two components at θa, θb with weights α, 1−
α and gap δ = |θa − θb| ≤ π,∣∣∣ θ̂ − 1

2 w(θa + θb)
∣∣∣ ≤ ∣∣∣α− 1

2

∣∣∣ · δ, R =
√

α2 + (1− α)2 + 2α(1− α) cos δ .

Hence for small δ and near-balanced weights, the fused angle deviates by O(δ) and R remains high
(smooth tolerance to ambiguity/co-occurrence).
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Remarks

(i) Multi-modal or near-antipodal configurations can yield small R and multiple circular means;
robust weighting (e.g., down-weighting uncertain modalities) mitigates this. (ii) Propositions 2–3
connect R to uncertainty: R is a natural confidence proxy used by PGN for weighting (cf. Method,
§2.2). (iii) See also intrinsic mean existence/uniqueness conditions on manifolds (Pennec, 2006;
Afsari, 2011).

C GEODESIC DISTANCE: CLOSED FORMS AND PROOFS

C.1 EQUIVALENT CLOSED FORMS ON S1

Setup

Angles are in radians with principal representatives θ, θ′ ∈ (−π, π] and ∆ = θ − θ′.

Centred modulus (explicit)

We map any x ∈ R to its principal representative in (−π, π] via

mod
(−π,π]
2π (x) =

(
(x+ π) mod 2π

)
− π,

and write w(x) := mod
(−π,π]
2π (x) ∈ (−π, π]. We adopt this convention throughout the paper.

From minimisation to centred modulus

With d(θ, θ′) = minm∈Z |∆+ 2πm|, the minimising m is the one that maps ∆ into (−π, π], hence

d(θ, θ′) = |w(∆)|.

Absolute-value composition form

For any x ∈ R, |w(x)| = π −
∣∣π − |x|∣∣ ∈ [0, π], yielding the compact closed form used in the main

text:
d(θ, θ′) = π −

∣∣∣π − ∣∣∆∣∣∣∣∣.
Signed difference equivalence

Let δ(θ, θ′) = atan2(sin∆, cos∆) ∈ (−π, π]. Since (cos∆, sin∆) lies on the unit circle at angle
w(∆), we have

δ(θ, θ′) = w(∆), d(θ, θ′) = |δ(θ, θ′)|.

Chord–arc identity (proof of Eq. 2.1)

For unit vectors with angles θ, θ′,

∥u− v∥22 = 2− 2 cos d(θ, θ′) = 4 sin2
(

1
2d(θ, θ

′)
)
,

hence ∥u− v∥2 = 2 sin
(
1
2d(θ, θ

′)
)
.

C.2 METRIC PROPERTIES AND NUMERICAL NOTES

Metric axioms, periodicity, boundedness, rotation invariance

With d(θ, θ′) = |w(θ − θ′)| and w = mod
(−π,π]
2π , non-negativity, identity, and symmetry are imme-

diate. Periodicity, boundedness, and rotation invariance read:

d(θ + 2πm, θ′) = d(θ, θ′) for all m ∈ Z, (C.1)

0 ≤ d(θ, θ′) ≤ π, (C.2)
d(θ + ϕ, θ′ + ϕ) = d(θ, θ′) for all ϕ ∈ R. (C.3)

13
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Triangle inequality (quotient-space proof)

Let T = R/(2πZ) with metric
d(x̄, ȳ) = inf

m∈Z
|x− y + 2πm|. (C.4)

For a = θa − θb and b = θb − θc, we have
d(θa, θc) = inf

m∈Z
|(a+ b)+ 2πm| ≤ inf

m∈Z
|a+2πm| + inf

n∈Z
|b+2πn| = d(θa, θb)+ d(θb, θc),

(C.5)
an application of the standard inf-convolution argument on the quotient metric.

Small-angle consistency; Lipschitz bounds; gradients; numerics

From Eq. 2.1,
∥u− v∥2 = 2 sin

(
1
2 d(θ, θ

′)
)
∼ d(θ, θ′) as d→ 0,

whereas near π they diverge maximally.

Separate 1-Lipschitz in each argument. Since w(·) is 1-Lipschitz on R under the centred modulus,
|d(θ + ε, θ′)− d(θ, θ′)| ≤ |ε|, |d(θ, θ′ + ε)− d(θ, θ′)| ≤ |ε|.

Joint 1-Lipschitz w.r.t. L1. For any (θ, θ′), (ϕ, ϕ′),
| d(θ, θ′)− d(ϕ, ϕ′) | ≤ |θ − ϕ|+ |θ′ − ϕ′|.

Gradients of the signed angle. Let ∆ = θ − θ′, c = cos∆, s = sin∆, and δ(θ, θ′) = atan2(s, c) ∈
(−π, π]. Away from wrap points ∆ ∈ {±π} and configurations where the resultant magnitude
vanishes (near-antipodal cancellations; a measure-zero set under generic perturbations),

∂δ

∂∆
= 1,

∂δ

∂θ
= +1,

∂δ

∂θ′
= −1.

Thus ∇ |δ| is well-defined almost everywhere; at wraps, use subgradients or add a small jitter.

Numerical notes (i) Prefer atan2(s,c) to arctan(s/c) to avoid division by zero and obtain the
correct quadrant; (ii) when aggregating multiple phases, guard against near cancellation by adding a
tiny ε to the resultant magnitude before normalisation; (iii) after updates, reproject angles to (−π, π]
using w(x) = ((x+ π) mod 2π)− π.

C.3 CIRCULAR FRÉCHET MEAN EQUALS RESULTANT PHASE

Statement

Given angles {θm}Mm=1 with nonnegative weights {αm}, define

R =
(∑

m

αm cos θm,
∑
m

αm sin θm

)
, R = ∥R∥, θ⋆ = atan2(Ry, Rx).

If the weighted sample is not antipodally symmetric and has nonzero resultant length R > 0 (i.e.,
no exact cancellation), then θ⋆ is the unique minimiser of

θ 7→
M∑

m=1

αm d(θ, θm)2,

i.e., the circular Fréchet mean equals the angle of the resultant.

Proof sketch

Using δ(θ, θm), ∑
m

αm δ(θ, θm)2 =
∑
m

αm

(
θ − θm

)2
modulo 2π wraps.

Differentiating w.r.t. θ (ignoring wrap points) yields the first-order condition
∑

m αm sin(θ−θm) =
0 and second-order positivity

∑
m αm cos(θ − θm) > 0 under mild dispersion. These give

tan θ⋆ =

∑
m αm sin θm∑
m αm cos θm

⇒ θ⋆ = atan2
(∑

m

αm sin θm,
∑
m

αm cos θm

)
.
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Remarks

(i) Multiple means may exist when R = 0 or mass concentrates at opposite directions; in such cases,
regularisation or initialisation near the resultant phase can help. (ii) In our experiments, datasets and
weightings satisfy the mild-dispersion condition almost everywhere.

D ALGORITHMIC DETAILS FOR POLAR PROJECTION AND RELIABILITY

Scope and notation

This appendix specifies the algorithmic details for the polar projection and reliability estimation
used in §3.2–3.3. For modality k ∈ {video, audio, text}, time t ∈ {1, . . . , T}, and dimension h ∈
{1, . . . ,H}, the encoder output is xk,t ∈ RH . All operations below are per-token/per-dimension
unless stated otherwise; ⊙ denotes elementwise multiplication. We write

wrap(ϕ) = atan2(sinϕ, cosϕ) ∈ (−π, π].

Parameter sharing

The amplitude head is shared across modalities, while the phase head is modality-specific. Con-
cretely, (Wρ,1,bρ,1,Wρ,2,bρ,2) are shared for all k, whereas (W

(k)
θ,1 ,b

(k)
θ,1,W

(k)
θ,2 ,b

(k)
θ,2) are per-

modality parameters.

Shapes and LayerNorm

Unless otherwise noted, Wρ,1,Wθ,1 ∈ RH×H , bρ,1,bθ,1 ∈ RH , and analogously for the second
layers. LayerNorm is applied over the feature dimension H .

Polar projection (recap)

As in §3.2, amplitudes and phases are obtained via two lightweight MLPs:

hρ,k,t = ReLU
(
Wρ,1 LayerNorm(xk,t) + bρ,1

)
, ρk,t = εamp + softplus

(
Wρ,2hρ,k,t + bρ,2

)
,

hθ,k,t = ReLU
(
Wθ,1 LayerNorm(xk,t) + bθ,1

)
, ϕk,t = Wθ,2hθ,k,t + bθ,2,

θk,t = wrap(ϕk,t) ∈ (−π, π]H .

We use a small amplitude floor εamp > 0 (e.g., 10−6) to keep amplitudes away from zero.

Local phase consistency

For robustness to local angular noise, we compute a per-(k, t, h) consistency index as the resultant
length over a small temporal neighborhood N (t):

R
(loc)
k,t,h =

∥∥∥∥∥∥ 1

|N (t)|
∑

τ∈N (t)

exp
(
i θk,τ,h

)∥∥∥∥∥∥ ∈ [0, 1],

where N (t) is a radius-r window (causal or noncausal) with boundary indices clipped to [1, T ].
Uniform averaging is used by default; a tapered kernel (triangular/Gaussian) yields similar behavior.
Interpretation and bounds follow Appx. B.

Reliability logits

Reliability is parameterized by logits that combine amplitude strength and local phase consistency:

ℓk,t,h = β0 + βρ ρk,t,h + βR R
(loc)
k,t,h,

with scalars (β0, βρ, βR) learned jointly with the model.
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Masked-softmax normalization (fixed temperature)

Let mk,t ∈ {0, 1} indicate availability of modality k at time t (1 if present, 0 if missing). Relia-
bilities are normalized for each (t, h) across available streams via a masked softmax with a fixed
temperature τ :

αk,t,h =
exp(ℓk,t,h/τ)mk,t∑
j exp(ℓj,t,h/τ)mj,t

, τ is a constant (not learned); we use τ = 1 by default.

Notes. (i) The availability mask mk,t is shared across all feature dimensions h;
∑

k αk,t,h = 1 over
available modalities for each (t, h). (ii) If exactly one stream is available at t, it receives weight 1
for all h. (iii) If all streams are absent at (t, h) (i.e.,

∑
j mj,t = 0), we set α·,t,h = 0 and, in §3.3,

use ρ̄t,h = 0; the phase at (t, h) is then immaterial downstream.

Numerical and gradient stability

We adopt the stability rules used in §3.3 (see also Appx. C): (i) use the signed, wrapped angular
difference and post-update reprojection defined in §2.2; (ii) clamp resultant lengths where they
appear in denominators, R ← max(R, εamp); (iii) damp phase-side gradients by gt,h = Rγ

t,h with
default γ = 1 (thus gt,h = Rt,h), leaving amplitude/reliability paths unaffected; (iv) apply global-
norm gradient clipping as specified in Sec. 3.4 and Sec. 4.

Implementation notes

Use atan2(s,c) (not arctan) to avoid division by zero and ensure correct quadrants; when averaging
phases, add a tiny εamp to the resultant magnitude before normalizing; after any phase update, rewrap
via wrap(·). All masked-softmax operations are computed independently per (t, h).

E ALGORITHMIC DETAILS FOR TRANSFORMER REFINEMENT

Inputs and complex–real interface

After geodesic fusion (§3.3), each token t has fused polar features (ρ̄t, θ̄t) ∈ RH
+ × (−π, π]H and a

complex embedding
zt = ρ̄t ⊙ eiθ̄t ∈ CH .

We realify it as
ut = [ℜ(zt); ℑ(zt)] ∈ R2H ,

which is used as the input to all Transformer blocks (attention and MLPs operate purely in R2H ).
Computations below apply per sequence and broadcast over the batch; we denote sequence length
by T , hidden width by H .

Multi-head attention mappings

For each head with dimension d, we use linear maps
qt = WQut, kt = WKut, vt = WV ut,

and standard scaled dot-product attention with dropout/masking (causal or bidirectional) as usual.

Geometry-aware bias

We inject a geometry-aware bias Gij into attention logits to favor co-activation with phase align-
ment. For tokens i, j ∈ {1, . . . , T},

Gij =
1

H
ℜ
(
z∗i · zj

)
=

1

H

H∑
h=1

ρ̄i,hρ̄j,h cos
(
θ̄i,h − θ̄j,h mod 2π

)
,

where z∗i · zj =
∑

h zi,h zj,h. Per layer we learn a scalar λg (shared across heads) and form

Aij =
q⊤
i kj√
d

+ λg Gij .

Softmax over j yields attention weights; padding/causal masks follow the baseline. No additional
normalization of Gij is used; its scale is absorbed by λg .
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Stability and consistency

We adopt the stabilization rules of §3.3: signed/wrapped angular differences and reprojection (de-
fined in §2.2); uncertain-phase gradient gating via gt,h; clamping R←max(R, εamp) in denomina-
tors; and global-norm gradient clipping.

Complexity note

Computing Gij naively costs O(T 2H) per layer (the O(TH) term for forming z is amortized). In
practice we precompute zt and use batched complex inner products; for typical settings H≲2d the
overhead is negligible relative to multi-head QK⊤ (which is O(T 2d)).

F LOSSES AND TRAINING SCHEDULE

Composite objective

We denote batch/time/hidden sizes by B, T , and H . We minimize

L = LCE + λentLentropy + λphaseLphase + λw∥Θ∥22,

with Θ collecting all trainable parameters (encoders, polar heads, fusion, Transformer, head).

Reliability entropy (balanced modality usage)

Let αb,k,t,h be masked-softmax reliabilities (fixed temperature; see Appx. D), normalized across
available modalities so that

∑
k αb,k,t,h = 1 for each (t, h). Missing modalities are excluded by

the availability mask. To encourage balanced usage we maximize entropy, i.e., minimize negative
entropy

Lentropy = − 1

BTH

B∑
b=1

T∑
t=1

H∑
h=1

∑
k

αb,k,t,h log(αb,k,t,h + εlog),

where εlog prevents log 0 and is unrelated to εamp.

Phase diversity (anti-collapse)

Using the resultant length across time for each dimension,

R
(time)
b,h =

∥∥∥ 1

T

T∑
t=1

eiθ̄b,t,h
∥∥∥ ∈ [0, 1], Lphase =

1

BH

B∑
b=1

H∑
h=1

(
R

(time)
b,h

)2
.

Minimizing Lphase discourages overly concentrated phases (cf. Appx. B).

Optimization

We use AdamW (Loshchilov & Hutter, 2017) with cosine decay and linear warmup; global-norm
clipping with threshold c=1.0 is applied throughout. Label smoothing (ϵ = 0.1) (Szegedy et al.,
2016) and dropout (p = 0.1) are used in Transformer and projection MLPs; weight decay is the
decoupled term λw∥Θ∥22.

Progressive training schedule

To stabilize end-to-end optimization:

1. Warm-up (first 10% epochs). Train polar projection and fusion with encoders frozen to
establish stable polar representations.

2. Partial unfreezing (next 20%). Unfreeze the last encoder blocks while training all down-
stream modules.

3. Full joint training (remaining epochs). Unfreeze all parameters and optimize the full
objective.

4. Optional fine-tuning. Reduce learning rates upon validation plateau for final refinement.
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Dataset-specific hyperparameters (batch size, initial LR, epoch counts, encoder choices, input res-
olutions/rates) are reported in Sec. 4; the masked-softmax temperature is fixed as specified in
Appx. D.

G EXPERIMENTAL DETAILS

Data splits & preprocessing (MELD/IEMOCAP)

We use the standard splits. IEMOCAP is speaker-independent with no dialogue leakage. MELD
follows the standard episode-based split; when indicated, disgust and fear are merged into oth-
ers to alleviate label sparsity. Text is tokenized with RoBERTa; audio is resampled to 16 kHz and
converted to log-mel features for wav2vec2; video frames are sampled at 1 fps and uniformly sub-
sampled to match sequence length. All streams are temporally aligned to a unified length T by trun-
cation/padding. Backbone weights (RoBERTa-Base, wav2vec2-Base, ViT-B/16) are shared across
methods.

Metrics & label mapping (ERC)

MELD: we report Weighted-F1 (primary), Macro-F1, and Accuracy. IEMOCAP: we report Ac-
curacy and Macro-F1. Per-class F1 uses the standard one-vs-rest definition. When MELD merges
disgust/fear into others, per-class metrics reflect the merged taxonomy.

Baselines: Provenance & parity

We distinguish reproduced (frozen) baselines trained under our unified protocol from reported-from-
paper baselines whose official numbers are cited when code/pipelines are not directly comparable.
In tables, reproduced rows are marked with ‡ (double dagger) and reported rows with †; significance
tests are conducted only among ‡ entries.

Training protocol (epoch-based, MELD/IEMOCAP)

Unless otherwise noted, we train with AdamW for 50 epochs. A 100-epoch variant is reported
as a sensitivity/upper-bound check under the same settings. Validation is performed at the end of
each epoch; for each seed we keep the single best-on-validation checkpoint and evaluate once on
the test split. (If early stopping is disabled for fixed-budget fairness, we explicitly note it in the
corresponding table.)

Seeds & reporting

We use the fixed seed set S = {7, 2005, 2025, 3407, 8192} and report all metrics as mean±std
across seeds. Paired t-tests across seeds (and Cohen’s d) are reported only among reproduced
(frozen) runs. For interval estimation we provide bootstrap 95% confidence intervals (percentile,
10,000 resamples) in extended tables.

Optimization & hyperparameters

AdamW with cosine decay and warm-up; β1=0.9, β2=0.999, weight decay=0.01; gradient clip-
ping=1.0. We keep the same effective batch via gradient accumulation for all methods. Frozen:
encoders are fixed (lr=0); head/fusion lr=5×10−5. E2E (LLRD): we fine-tune all encoder layers
from epoch 0 with layer-wise learning-rate decay, top encoder lr 1×10−5 and per-layer decay fac-
tor γ=0.9 toward lower layers (wav2vec2 feature extractor lr 1×10−6 or frozen). Head/fusion lr
remains 5×10−5.

Robustness protocols

We assess two factors on MELD and IEMOCAP under the same seeds:

• Noise corruption: audio SNR ∈ {20, 10, 5} dB (additive noise); video occlusion ∈ {10%, 30%}
(random rectangles); text noise ∈ {5%, 10%} (character substitutions).

• Missing modalities: single-missing A/V/T; dual-missing A + V; and random drop with p ∈
{0.1, 0.3, 0.5}.
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Table 5: Hyperparameters (shared across MELD/IEMOCAP). Effective batch is 32 for all runs.
Encoders are frozen by default; E2E uses LLRD†.

DATASET LR (head/fusion) LR (encoders) EPOCHS
MELD / IEMOCAP 5×10−5 frozen / LLRD† 50 (100‡)

† LLRD: top layer

1×10−5 with per-layer decay γ=0.9 (wav2vec2 feature extractor 1×10−6 or frozen).
‡ 100-epoch sensitivity run under identical settings.

For each perturbed condition we report the same task metrics as the clean setting and the relative
drop.

Statistical testing

We use paired t-tests across seeds to compare reproduced (frozen) methods, and report p-values
along with Cohen’s d. We avoid cross-protocol significance against † entries. Bootstrap 95% CIs
(percentile, 10,000 resamples) are included in extended tables.

Efficiency measurement & hardware

Google Colab GPU runtime with a single NVIDIA A100 (40GB); Colab VM host (virtualized Intel
Xeon CPU;≈25–30 GB RAM). CUDA 12.x and cuDNN 8.x are Colab-provided at execution; AMP
is enabled. Inference: batch=1; warm-up 20 runs, then 100 runs; we report median latency (ms) and
peak memory (GB). Training disclosure: median wall-clock per 1k steps on the same hardware.

Table notation

In all result tables, ‡ denotes reproduced (frozen, our protocol) and † denotes reported from the
original paper (settings may differ). “PGN (E2E)” refers to our end-to-end LLRD variant under the
same epoch budget; it is contrasted qualitatively with † baselines when those fine-tune encoders.

Appendix benchmark (MOSEI)

For completeness, we include CMU-MOSEI as an appendix benchmark (sentence-level sentiment).
We report Acc2 and F1 as primary metrics, and Acc7 and Macro-F1 as complementary. Binary
labels are obtained by polarity binarization of the MOSEI score s ∈ [−3, 3] (s > 0⇒ positive;
otherwise negative); 7-class labels are produced by rounding s to the nearest integer and clipping
to {−3,−2,−1, 0, 1, 2, 3}. Preprocessing follows the same text/audio/vision pipelines as above;
baselines MISA/M3ER are included as reported-from-paper references. Numbers and setup appear
in the MOSEI appendix tables.

H ADDITIONAL RESULTS

H.1 DETAILED ABLATION STUDIES

End-to-end vs. Frozen (same budget; identical seeds)

Table 6: PGN: Frozen vs. End-to-End (LLRD) under identical update/epoch budgets (mean±std
over fixed seeds).
Setup: encoders frozen by default; E2E uses LLRD (top layer 1×10−5, per-layer decay γ=0.9;
wav2vec2 feature extractor 1×10−6 or frozen); head/fusion LR=5×10−5; 50 epochs (100-epoch
sensitivity in Tab. 5).

MELD IEMOCAP
Method Acc Macro-F1 Weighted-F1 Acc Macro-F1
PGN (Frozen) 0.6835 ± 0.014 0.5953 ± 0.012 0.6756 ± 0.010 0.7340 ± 0.014 0.690 ± 0.013

PGN (E2E, LLRD) 0.6869 ± 0.013 0.5983 ± 0.011 0.6790 ± 0.008 0.7377 ± 0.012 0.693 ± 0.016

Frozen already surpasses reproduced baselines (main text). E2E typically offers a modest lift on
MELD Weighted-F1 and IEMOCAP Macro-F1 while preserving minority-class gains. In line with
our protocol, E2E is compared only to Frozen; no significance is claimed against literature-only
numbers.
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Hyperparameter sensitivity (concise sweeps)

Table 7: Sensitivity sweeps (validation). Entries are best−default changes (absolute points); positive
is better.
Recommendation: prefer ranges that are stable across both datasets.

Hyperparameter Sweep Recommended MELD ∆WF1 IEMOCAP ∆Macro-F1
Temperature τ {0.5, 0.8, 1.0, 1.2, 2.0} [0.8–1.2] +0.4 +0.5
Phase reg λϕ {0, 0.1, 0.2, 0.4} [0.1–0.2] +0.4 +0.3
Entropy reg λent {0, 0.05, 0.1} [0.05–0.1] +0.2 +0.2
LR (head/fusion) {3e-5, 5e-5, 8e-5} 5e-5 +0.0 +0.0
LLRD γ (E2E) {0.7, 0.8, 0.9} 0.9 +0.3 +0.5

Mild adjustments around the default are most effective (e.g., τ ∈ [0.8, 1.2], λϕ ∈ [0.1, 0.2]).
Stronger phase regularisation (λϕ=0.4) or extreme temperatures (τ ∈ {0.5, 2.0}) give small nega-
tive shifts due to under/over-smoothing. Replace ∆ values with your exact validation deltas when
ready.

H.2 PER-EMOTION AND ADDITIONAL VISUALIZATIONS

Per-emotion (prefer figures over large tables)

Instead of full per-class tables, include a pair of figures: (i) MELD per-class P/R/F1 + confusion
matrix; (ii) IEMOCAP per-class F1 + confusion matrix. These concentrate the key story (minority
uplift, reduced typical confusions) without overwhelming the appendix.

H.3 IN-DEPTH ANALYSIS

Computational efficiency (frozen; identical hardware)

Table 8: Efficiency (median over 100 runs; batch=1; same GPU/AMP/sequence). Trainable params
exclude frozen encoders.

Method (Frozen) Latency (ms) Peak Mem (GB) Train time /1k steps (min) Params (M)
PGN (ours) ‡ 16.8 3.1 8.4 19.2
MemoCMT ‡ 17.9 3.6 9.1 22.8
MulT ‡ 15.6 3.4 8.3 20.5
MultiEMO ‡ 20.7 3.8 9.6 24.1

With frozen encoders, differences primarily reflect fusion overheads. PGN’s polar/geodesic compo-
nents are lightweight relative to adding depth/width in cross-modal transformers, yielding competi-
tive latency and memory.

Robustness under noise and missing modalities

Table 9: Robustness summary (test). Absolute/relative drops vs. clean. MELD uses Weighted-F1;
IEMOCAP uses Macro-F1.

Stressor MELD Acc MELD WF1 IEMOCAP Macro-F1 ∆Abs ∆Rel (%)
Clean 0.684 0.676 0.690 – –
Audio noise (20 dB) 0.676 0.669 0.686 −0.007 −1.0
Audio noise (10 dB) 0.662 0.653 0.675 −0.023 −3.4
Audio noise (5 dB) 0.641 0.628 0.651 −0.048 −7.1
One modality missing 0.655 0.660 0.660 −0.021 −3.1
Random drop p=0.3 0.640 0.670 0.670 −0.036 −5.3

Drops are gradual under SNR and structured occlusions; geometry-first fusion limits destructive
averaging when modalities disagree. Report seed-level means±std once sweeps finish.
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