
Under review as a conference paper at ICLR 2023

CRITICAL BATCH SIZE MINIMIZES STOCHASTIC
FIRST-ORDER ORACLE COMPLEXITY OF DEEP
LEARNING OPTIMIZER USING HYPERPARAMETERS
CLOSE TO ONE

Anonymous authors
Paper under double-blind review

ABSTRACT

Practical results have shown that deep learning optimizers using small constant
learning rates, hyperparameters close to one, and large batch sizes can find the
model parameters of deep neural networks that minimize the loss functions. We
first show theoretical evidence that the momentum method (Momentum) and
adaptive moment estimation (Adam) perform well in the sense that the upper
bound of the theoretical performance measure is small with a small constant learn-
ing rate, hyperparameters close to one, and a large batch size. Next, we show that
there exists a batch size called the critical batch size minimizing the stochastic
first-order oracle (SFO) complexity, which is the stochastic gradient computation
cost, and that SFO complexity increases once the batch size exceeds the critical
batch size. Finally, we provide numerical results that support our theoretical re-
sults. That is, the numerical results indicate that Adam using a small constant
learning rate, hyperparameters close to one, and the critical batch size minimizing
SFO complexity has faster convergence than Momentum and stochastic gradient
descent (SGD).

1 INTRODUCTION

1.1 BACKGROUND

Useful deep learning optimizers have been proposed to find the model parameters of the deep
neural networks that minimize loss functions called the expected risk and empirical risk, such as
stochastic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003; Nemirovski et al.,
2009; Ghadimi & Lan, 2012; 2013), momentum methods (Polyak, 1964; Nesterov, 1983), and adap-
tive methods. The various adaptive methods include Adaptive Gradient (AdaGrad) (Duchi et al.,
2011), Root Mean Square Propagation (RMSProp) (Tieleman & Hinton, 2012), Adaptive Mo-
ment Estimation (Adam) (Kingma & Ba, 2015), Adaptive Mean Square Gradient (AMSGrad)
(Reddi et al., 2018), Yogi (Zaheer et al., 2018), Adam with decoupled weight decay (AdamW)
(Loshchilov & Hutter, 2019), and AdaBelief (named for adapting stepsizes by the belief in observed
gradients) (Zhuang et al., 2020).

Theoretical analyses of adaptive methods for nonconvex optimization were presented in
(Zaheer et al., 2018; Zou et al., 2019; Chen et al., 2019; Zhou et al., 2020; Zhuang et al.,
2020; Chen et al., 2021) (see (Jain et al., 2018; Fehrman et al., 2020; Chen et al., 2020;
Scaman & Malherbe, 2020; Loizou et al., 2021) for convergence analyses of SGD). A particularly
interesting feature of adaptive methods is the use of hyperparameters, denoted by β1 and β2, that
can be set to influence the method performance P(K) := 1

K

∑K
k=1 E[∥∇f(θk)∥2], where∇f is the

gradient of a loss function f : Rd → R, (θk)Kk=1 is the sequence generated by an optimizer, and K is
the number of steps. The previous results are summarized in Table 1 indicating that using β1 and/or
β2 close to 0 makes the upper bound of P(K) small (see also Appendix A.1).

Meanwhile, practical results for adaptive methods were presented in (Kingma & Ba, 2015;
Reddi et al., 2018; Zaheer et al., 2018; Zou et al., 2019; Chen et al., 2019; Zhuang et al., 2020;

1

Under review as a conference paper at ICLR 2023

Chen et al., 2021). These studies have shown that using, for example, β1 ∈ {0.9, 0.99} and
β2 ∈ {0.99, 0.999} provides superior performance for training deep neural networks. The prac-
tically useful β1 and β2 are each close to 1, whereas in contrast, the theoretical results (Table 1)
show that using β1 and/or β2 close to 0 makes the upper bounds of the performance measures small.

Table 1: Upper bounds of performance measure of optimizers with learning rate αk and hyperparam-
eters β1 and β2 (G > 0, s ∈ (0, 1/2), L denotes the Lipschitz constant of the Lipschitz continuous
gradient of the loss function f , K denotes the number of steps, b is the batch size, αb,max depends
on b and the largest eigenvalue of the Hessian of f , h is a monotone decreasing function with respect
to β1, and C3 is defined as in Table 2. β ≈ a implies that, if β is close to a, then the upper bounds
are small.)

Optimizer Learning Rate αk Parameters β1, β2 Upper Bound

Tail-averaged SGD O(αb,max) β1 = 0 O
(

1

K2
+

1

Kb

)
(Jain et al., 2018) β2 = 0

Adam O
(
1

L

)
β1 = 0 O

(
1

K
+

1

b

)
(Zaheer et al., 2018) β2 ≥ 1−O

(
1

G2

)
Generic Adam O

(
1√
k

)
β1 ≈ 0, O

(
logK√

K

)
(Zou et al., 2019) β2 = 1− 1

k
≈ 1

AdaFom
1√
k

β1 ≈ 0 O
(
logK√

K

)
(Chen et al., 2019)

AMSGrad α 0 ≈ β1 <
√
β2 O

(
1

K
1
2−s

)
(Zhou et al., 2020)

AdaBelief O
(

1√
k

)
β1 ≈ 0, β2 ≈ 0 O

(
logK√

K

)
(Zhuang et al., 2020)

Padam α β1 ≈ 0, β2 ≈ 0 O
(

1

K
1
2−s

)
(Chen et al., 2021)

Adam, AMSGrad α β1 ≈ 1, β2 ≈ 1 O
(

1

K
+

1

b

)
+ C3

(this paper) varying αk β1 ≈ 1, β2 ≈ 1 O
(

1

K
+

1

Kb

)
+ h(β1)

The practical performance of a deep learning optimizer strongly depends on the batch size. In
(Smith et al., 2018), it was numerically shown that using an enormous batch size leads to a re-
duction in the number of parameter updates and model training time. The theoretical results in
(Zaheer et al., 2018) showed that using large batch sizes makes the upper bound of P(K) of an
adaptive method small (Table 1). Convergence analyses of SGD in (Cotter et al., 2011; Chen et al.,
2020; Arjevani et al., 2022) indicated that running SGD with a decaying learning rate and large
batch size for sufficiently many steps leads to convergence to a local minimizer of a loss function.
Accordingly, the practical results for large batch sizes match the theoretical ones.

In (Shallue et al., 2019; Zhang et al., 2019), it was studied how increasing the batch size affects the
performances of deep learning optimizers. In both studies, it was numerically shown that increas-
ing batch size tends to decrease the number of steps K needed for training deep neural networks,
but with diminishing returns. Moreover, it was shown that momentum methods can exploit larger

2

Under review as a conference paper at ICLR 2023

batches than SGD (Shallue et al., 2019), and that K-FAC and Adam can exploit larger batches than
momentum methods (Zhang et al., 2019).

1.2 MOTIVATION

1.2.1 HYPERPARAMETERS CLOSE TO ONE AND CONSTANT LEARNING RATE

As described in Section 1.1, the practically useful β1 and β2 are each close to 1, whereas in contrast,
the theoretical results show that using β1 and/or β2 close to 0 makes the upper bounds of the perfor-
mance measures small. Hence, there is a gap between theory (β1, β2 ≈ 0) and practice (β1, β2 ≈ 1)
for adaptive methods. As a consequence, the first motivation of this paper is to bridge this gap.

Since using small constant learning rates is robust for training deep neural networks (Kingma & Ba,
2015; Reddi et al., 2018; Zaheer et al., 2018; Zou et al., 2019; Chen et al., 2019; Zhuang et al., 2020;
Chen et al., 2021), we focus on using a small constant learning rate α. Here, we note that using a
learning rate depending on the Lipschitz constant L of the gradient ∇f would be unrealistic. This
is because computing the Lipschitz constant L is NP-hard (Virmaux & Scaman, 2018, Theorem 2).
The results (“(this paper)” row in Table 1) using varying learning rates are given in Appendix A.4.

1.2.2 CRITICAL BATCH SIZE

The second motivation of this paper is to clarify theoretically the relationship between the dimin-
ishing returns reported in (Shallue et al., 2019; Zhang et al., 2019) and batch size. Numerical eval-
uations in (Shallue et al., 2019; Zhang et al., 2019) have definitively shown that, for deep learning
optimizers, the number of steps K needed to train a deep neural network halves for each doubling
of the batch size b and that there is a region of diminishing returns beyond the critical batch size b⋆.
This implies that there is a positive number C such that

Kb ≈ 2C for b ≤ b⋆ and Kb ≥ 2C for b ≥ b⋆, (1)

where K and b are defined for i, j ∈ N by K = 2i and b = 2j (For example, Figure 1 in Section
4 shows C ≈ 20 and b⋆ ≈ 211 for Adam used to train ResNet-20 on the CIFAR-10 dataset). We
define the stochastic first-order oracle (SFO) complexity of a deep learning optimizer as N :=Kb
on the basis of the number of steps K needed for training the deep neural network and the batch size
b used in the optimizer. Let b⋆ be a critical batch size such that there are diminishing returns for all
batch sizes beyond b⋆, as asserted in (Shallue et al., 2019; Zhang et al., 2019). This fact, expressed
in (1), implies that, while SFO complexity N initially almost does not change (i.e., K halves for
each doubling of b), N is minimized at critical batch size b⋆, and there are diminishing returns once
the batch size exceeds b⋆.

1.3 CONTRIBUTION

Our results are summarized in Table 2 (see also the “(this paper)” row in Table 1). Our goal is
to find a local minimizer of a loss function f over Rd, i.e., a stationary point θ⋆ ∈ Rd satisfying
∇f(θ⋆) = 0, which is equivalent to the variational inequality (VI) defined for all θ ∈ Rd by
∇f(θ⋆)⊤(θ⋆ − θ) ≤ 0. Here, we show the relationship between (i) E[∇f(θk)⊤(θk − θ)] ≤ ϵ
(θ ∈ Rd, k ∈ N) and (ii) E[∥∇f(θk)∥2] ≤ ϵ (k ∈ N), where ϵ > 0 is the precision. Let us assume
that (θk)k∈N is bounded. Suppose that (i) holds. Then, there exists a subsequence (θki

)i∈N of
(θk)k∈N such that (θki

)i∈N converges to θ∗. The continuity of∇f thus implies that, for all θ ∈ Rd,
E[∇f(θ∗)⊤(θ∗−θ)] ≤ ϵ. Putting θ := θ∗−∇f(θ∗) ensures that E[∥∇f(θ∗)∥2] ≤ ϵ. Suppose that
(ii) holds. Then, the definition of the inner product and Jensen’s inequality imply that, for all θ ∈ Rd,
E[∇f(θk)⊤(θk−θ)] ≤ Dist(θ)

√
ϵ, where Dist(θ) := sup{∥θk−θ∥ : k ∈ N} < +∞. Therefore,

it is adequate to use (i) and ϵ-approximation VI(K,θ) := 1
K

∑K
k=1 E[∇f(θk)⊤(θk−θ)] ≤ ϵ (Table

2) as the performance measure of an optimizer.

1.3.1 ADVANTAGE OF SETTING A SMALL CONSTANT LEARNING RATE AND
HYPERPARAMETERS CLOSE TO ONE

We can show that the upper bound C1

K + C2

b + C3 of VI(K,θ) becomes small when α is small, β1

and β2 are close to 1, and K is large. This implies that Momentum and Adam perform well when α
is small and β1 and β2 are each set close to 1. Section 3.1 shows this result in detail.

3

Under review as a conference paper at ICLR 2023

Table 2: Relationship between batch size b and the number of steps K to achieve an ϵ-approximation
of an optimizer using a constant learning rate α and hyperparameters β1, β2. The critical batch size
b⋆ minimizes SFO complexity N (G, σ2, M , and v∗ are positive constants, D(θ) is a positive real
number depending on θ ∈ Rd, and h is monotone decreasing with respect to β1)

Optimizer SGD Momentum Adam

C1
E[∥θ1 − θ∥2]

2α

E[∥θ1 − θ∥2]
2αβ1

dD(θ)
√
M

2αβ1

√
1− β2

C2
σ2α

2

σ2α

2β1

σ2α

2
√
v∗β1(1− β1)

C3
G2α

2

G2α

2β1
+ h(β1)

G2α

2
√
v∗β1(1− β1)

+ h(β1)

Upper Bound of VI VI(K,θ) :=
1

K

K∑
k=1

E
[
∇f(θk)⊤(θk − θ)

]
≤ C1

K
+

C2

b
+ C3 = ϵ

Steps K and SFO N K =
C1b

(ϵ− C3)b− C2
N =

C1b
2

(ϵ− C3)b− C2

Critical Batch b⋆ b⋆ =
2C2

ϵ− C3

1.3.2 CRITICAL BATCH SIZE

As described in Section 1.2.2, the practical performance of a deep learning optimizer strongly de-
pends on the batch size (Shallue et al., 2019; Zhang et al., 2019). The advantage of this paper
is to clarify theoretically the relationship between batch size and the performance of deep learn-
ing optimizers and develop a theory demonstrating the existence of critical batch sizes, which
was shown numerically by (Shallue et al., 2019; Zhang et al., 2019). Motivated by the results in
(Shallue et al., 2019; Zhang et al., 2019) and Section 1.2.2, we use SFO complexity N :=Kb as the
performance measure of a deep learning optimizer. We first show that the number of steps K to sat-
isfy VI(K,θ) ≤ ϵ can be defined as in Table 2. As a function, K is convex and monotone decreasing
with respect to batch size b. Next, we show that SFO complexity N defined as in Table 2 is convex
with respect to batch size b. This result agrees with the fact of (1). Moreover, SFO complexity N
is minimized at b⋆ defined as in Table 2. This result guarantees the existence of the critical batch
size b⋆. Section 3.2 shows the above results in detail. However, the accurate setting of the critical
batch size b⋆ defined as in Table 2 would be difficult since b⋆ involves unknown parameters, such as
G and D(θ) (see Section 2.2.3). The advantage of our analysis is that we can estimate appropriate
batch sizes using the formula for b⋆ before implementing deep learning optimizers. Section 4 will
discuss estimation of appropriate batch sizes in detail.

2 NONCONVEX OPTIMIZATION AND DEEP LEARNING OPTIMIZERS

This section gives a nonconvex optimization problem in deep neural networks and optimizers for
solving the problem under standard assumptions.

2.1 NONCONVEX OPTIMIZATION IN DEEP LEARNING

Let Rd be a d-dimensional Euclidean space with inner product ⟨x,y⟩ := x⊤y inducing the norm
∥x∥ and N be the set of nonnegative integers. Define [n] := {1, 2, . . . , n} for n ≥ 1. Given a
parameter θ ∈ Rd and a data point z in a data domain Z, a machine learning model provides a
prediction whose quality is measured by a differentiable nonconvex loss function ℓ(θ; z). We aim
to minimize the expected loss defined for all θ ∈ Rd by f(θ) = Ez∼D[ℓ(θ; z)] = E[ℓξ(θ)], where
D is a probability distribution over Z, ξ denotes a random variable with distribution function P , and
E[·] denotes the expectation taken with respect to ξ. A particularly interesting example of f(θ) is
the empirical average loss defined for all θ ∈ Rd by f(θ;S) = 1

n

∑
i∈[n] ℓ(θ; zi) =

1
n

∑
i∈[n] ℓi(θ),

where S = (z1, z2, . . . , zn) denotes the training set and ℓi(·) := ℓ(·; zi) denotes the loss function
corresponding to the i-th training data zi.

4

Under review as a conference paper at ICLR 2023

2.2 DEEP LEARNING OPTIMIZERS

2.2.1 CONDITIONS

We assume that a stochastic first-order oracle (SFO) exists such that, for a given θ ∈ Rd, it returns a
stochastic gradient Gξ(θ) of the function f , where a random variable ξ is supported on Ξ indepen-
dently of θ. The following are standard conditions when considering a deep learning optimizer.

(C1) f : Rd → R is continuously differentiable.
(C2) Let (θk)k∈N ⊂ Rd be the sequence generated by a deep learning optimizer. For each

iteration k, Eξk [Gξk(θk)] = ∇f(θk), where ξ0, ξ1, . . . are independent samples and the
random variable ξk is independent of (θl)kl=0. There exists a nonnegative constant σ2 such
that Eξk [∥Gξk(θk)−∇f(θk)∥2] ≤ σ2.

(C3) For each iteration k, the optimizer samples a batch Bk of size b independently of k and
estimates the full gradient∇f as∇fBk

(θk) :=
1
b

∑
i∈[b] Gξk,i

(θk), where ξk,i is a random
variable generated by the i-th sampling in the k-th iteration.

2.2.2 ADAM

Algorithm 1 is the Adam optimizer (Kingma & Ba, 2015) under (C1)–(C3). The symbol ⊙ in step
6 is defined for all x = (xi)

d
i=1 ∈ Rd, x⊙ x := (x2

i)
d
i=1 ∈ Rd, and diag(xi) in step 8 is a diagonal

matrix with diagonal components x1, x2, . . . , xd.

Algorithm 1 Adam (Kingma & Ba, 2015)
Require: α ∈ (0,+∞), b ∈ (0,+∞), β1 ∈ (0, 1), β2 ∈ [0, 1)

1: k ← 0, θ0 ∈ Rd, m−1 := 0, v−1 := 0
2: loop
3: ∇fBk

(θk) :=
1
b

∑
i∈[b] Gξk,i

(θk)

4: mk := β1mk−1 + (1− β1)∇fBk
(θk)

5: m̂k := (1− βk+1
1)−1mk

6: vk := β2vk−1 + (1− β2)∇fBk
(θk)⊙∇fBk

(θk)

7: v̂k := (1− βk+1
2)−1vk

8: Hk := diag(
√
v̂k,i)

9: θk+1 := θk − αH−1
k m̂k

10: k ← k + 1
11: end loop

The SGD optimizer under (C1)–(C3) is Algorithm 1 when β1 = 0 and Hk is the identity matrix.
The Momentum optimizer under (C1)–(C3) is defined for all k ∈ N by θk+1 := θk − αmk.

2.2.3 ASSUMPTIONS

We assume the following conditions that were used in (Kingma & Ba, 2015, Theorem 4.1):

(A1) There exist positive numbers G and B such that, for all k ∈ N, ∥∇f(θk)∥ ≤ G and
∥∇fBk

(θk)∥ ≤ B (see also Appendix A.5).

(A2) For all θ ∈ Rd, there exists a positive number Dist(θ) such that, for all k ∈ N, ∥θk−θ∥ ≤
Dist(θ).

Let (g2k,i)
d
i=1 := ∇fBk

(θk) ⊙ ∇fBk
(θk) (k ∈ N). Assumption (A1) implies that M :=

sup{maxi∈[d] g
2
k,i : k ∈ N} < +∞. Assumption (A2) implies that D(θ) := sup{maxi∈[d](θk,i −

θi)
2 : k ∈ N} < +∞. We define v∗ := inf{mini∈[d] vk,i : k ∈ N}. Theorem 3 in (Reddi et al.,

2018) shows that there exists a stochastic convex optimization problem such that Adam using
β1 <

√
β2 (e.g., β1 = 0.9 and β2 = 0.999) does not converge to the optimal solution. If for

all k ∈ N and all i ∈ [d], v̂k,i in Adam satisfies

v̂k+1,i ≥ v̂k,i, (2)

5

Under review as a conference paper at ICLR 2023

then Adam with a decaying learning rate αk = O(1√
k
) and β1 and β2 satisfying β1 <

√
β2 can solve

the stochastic convex optimization problem (Reddi et al., 2018, (2), Theorem 4). We thus assume
condition (2) for Adam to guarantee the convergence of Adam.

3 OUR RESULTS

This section states our theoretical results (Theorem 3.1) in Table 2 and our contribution (Sections
3.1 and 3.2) in detail. The proof of Theorem 3.1 is given in Appendix A.3.
Theorem 3.1. The sequence (θk)k∈N generated by each of SGD, Momentum, and Adam with (2)
under (C1)–(C3) and (A1) and (A2) satisfies the following:

(i) [Upper bound of VI(K,θ)] For all K ≥ 1 and all θ ∈ Rd,

VI(K,θ) :=
1

K

K∑
k=1

E
[
∇f(θk)⊤(θk − θ)

]
≤ C1

K
+

C2

b
+ C3,

where Ci (i = 1, 2, 3) for SGD are

C1 :=
E[∥θ1 − θ∥2]

2α
, C2 :=

σ2α

2
, C3 :=

G2α

2
,

Ci (i = 1, 2, 3) for Momentum are

C1 :=
E[∥θ1 − θ∥2]

2αβ1
, C2 :=

σ2α

2β1
,

C3 :=
G2α

2β1
+Dist(θ)

{
G(1− β1)

β1
+ 2
√

σ2 +G2

(
1

β1
+ 2(1− β1)

)}
,

Ci (i = 1, 2, 3) for Adam with (2) are

C1 :=
dD(θ)

√
M

2αβ1

√
1− β2

, C2 :=
σ2α

2
√
v∗β1(1− β1)

,

C3 :=
G2α

2
√
v∗β1(1− β1)

+ Dist(θ)

{
G(1− β1)

β1
+ 2
√

σ2 +G2

(
1

β1
+ 2(1− β1)

)}
,

and the parameters are defined as in Section 2.2.

(ii) [Steps to satisfy VI(K,θ) ≤ ϵ] The number of steps K defined by

K(b) =
C1b

(ϵ− C3)b− C2
(3)

satisfies VI(K,θ) ≤ ϵ and the function K(b) defined by (3) is convex and monotone decreasing with
respect to batch size b (> C2

ϵ−C3
> 0) (see also Appendix A.6 for the condition ϵ− C3 > 0).

(iii) [Minimization of SFO complexity] The SFO complexity defined by

N = K(b)b =
C1b

2

(ϵ− C3)b− C2
(4)

is convex with respect to batch size b (> C2

ϵ−C3
> 0). The batch size

b⋆ :=
2C2

ϵ− C3
(5)

attains the minimum value N⋆ = K(b⋆)b⋆ = 4C1C2

(ϵ−C3)2
of N .

The proof of Theorem 3.1(i) ensures that Ci (i = 1, 2, 3) for AMSGrad (Algorithm 1 with m̂k =
mk, v̂k = vk, ṽk,i := max{ṽk−1,i, vk,i} (i.e., ṽk+1,i ≥ ṽk,i; see (2)), and Hk := diag(

√
ṽk,i)) are

C1 :=
dD(θ)

√
M

2αβ1
, C2 :=

σ2α

2
√
ṽ∗β1

,

C3 :=
G2α

2
√
ṽ∗β1

+Dist(θ)

{
G(1− β1)

β1
+ 2
√
σ2 +G2

(
1

β1
+ 2(1− β1)

)}
,

(6)

6

Under review as a conference paper at ICLR 2023

where ṽ−1 := 0 and ṽ∗ := inf{mini∈[d] ṽk,i : k ∈ N} (see Appendix A.3.4).

We give a brief outline of the proof strategy of Theorem 3.1, with an emphasis on the main difficulty
that has to be overcome in order not to assume Lipschitz smoothness of f (i.e.,∇f is Lipschitz con-
tinuous with the Lipschitz constant L). First, we show that (C2) and (A1) imply that (E[∥mk∥])k∈N
and (E[∥dk∥])k∈N are bounded, where dk := −H−1

k m̂k. Since we do not assume Lipschitz smooth-
ness of f , we cannot use the descent lemma, i.e., f(y) ≤ f(x) +∇f(x)⊤(y − x) + L

2 ∥y − x∥2
(x,y ∈ Rd). This is the main difficulty to prove Theorem 3.1. Almost all of the previous analyses
of adaptive methods are based on the descent lemma, and hence, they can use the expectation of
the squared norm of the full gradient E[∥∇f(θk)∥2] as the performance measure. Accordingly, we
must use other performance measures that are different from E[∥∇f(θk)∥2]. This paper uses the
performance measure VI(K,θ). We next show that

∑K
k=1 E[m⊤

k−1(θk − θ)] ≤ aK + bK + cK ≤
C1 +

C2K
b + C̃3K, where C1 and C2 are defined as in Theorem 3.1 and C̃3 > 0. In particular, (2),

(A1), and (A2) imply aK ≤ C1, the boundedness condition of (E[∥dk∥])k∈N implies bK ≤ C2K
b ,

and (A2) and the Cauchy–Schwarz inequality imply cK ≤ C̃3K. The definition of mk, the Cauchy–
Schwarz inequality, the triangle inequality, and Jensen’s inequality imply Theorem 3.1(i). Theorem
3.1(i) and C1

K + C2

b + C3 = ϵ lead to Theorem 3.1(ii) and (iii).

3.1 ADVANTAGE OF SETTING A SMALL CONSTANT LEARNING RATE AND
HYPERPARAMETERS CLOSE TO ONE

We first show theoretical evidence that Adam using a small constant learning rate α, β1 and β2 close
to 1, and a large number of steps K performs well. Theorem 3.1(i) indicates that the upper bound of
VI(K,θ) for Adam is

VI(K,θ) ≤ dD(θ)
√
M

2αβ1

√
1− β2K

+
α(σ2b−1 +G2)

2
√
v∗β1(1− β1)K

K∑
k=1

√
1− βk+1

2 + h(β1), (7)

where β1 ∈ (0, 1), β2 ∈ [0, 1), and

h(β1) := Dist(θ)

{
G(1− β1)

β1
+ 2
√

σ2 +G2

(
1

β1
+ 2(1− β1)

)}
(8)

(the strict evaluation (7) of Theorem 3.1(i) comes from (31) in Appendix A). Since the function
h(β1) defined by (8) is monotone decreasing, using β1 close to 1 makes h(β1) small. Since 1

β1(1−β1)

is monotone increasing for β1 ≥ 1/2, using β1 close to 1 makes 1
β1(1−β1)

large. Hence, we need to

set a small α to make α(σ2b−1+G2)
2
√
v∗β1(1−β1)

small. The function
√
1− βk+1

2 is monotone decreasing with
respect to β2, while using β2 close to 1 makes 1√

1−β2
large. When β2 close to 1 and a small learning

rate α are used, we need to use a large number of steps K to make dD(θ)
√
M

2αβ1

√
1−β2K

small.

3.2 CRITICAL BATCH SIZE

Theorem 3.1(ii) indicates that the number of steps K to satisfy VI(K,θ) ≤ ϵ can be expressed
as (3). The function K(b) defined by (3) is convex and monotone decreasing. Hence, the form of
K defined by (3) supports theoretically the relationship between K and b shown in (Shallue et al.,
2019; Zhang et al., 2019) (see also Figures 1 and 3 in this paper). Theorem 3.1(iii) indicates that
SFO complexity defined by (4) is convex with respect to batch size b. This result agrees with the fact
of (1) (see also Figures 2 and 4 in this paper). Moreover, SFO complexity N := Kb is minimized at
b⋆ defined by (5); e.g., b⋆S for SGD, b⋆M for Momentum, and b⋆A for Adam are respectively

b⋆S =
σ2
Sα

ϵ− C3,S
, b⋆M =

σ2
Mα

β1(ϵ− C3,M)
, b⋆A =

σ2
Aα√

v∗β1(1− β1)(ϵ− C3,A)
, (9)

where σS, σM, and σA are positive constants depending on SGD, Momentum, and Adam and C3 =
C3,S, C3,M, C3,A are positive constants defined as in Theorem 3.1. From (9), the lower bounds b∗
of b⋆S, b⋆M, and b⋆A are respectively

b⋆S > b∗S :=
σ2
Sα

ϵ
, b⋆M > b∗M :=

σ2
Mα

β1ϵ
, b⋆A > b∗A :=

σ2
Aα√

v∗β1(1− β1)ϵ
. (10)

7

Under review as a conference paper at ICLR 2023

4 NUMERICAL RESULTS

We evaluated the performances of SGD, Momentum, and Adam with different batch sizes. The
metrics were the number of steps K and the SFO complexity N satisfying f(θK) ≤ 10−1, where
θK is generated for each of SGD, Momentum, and Adam using batch size b. The stopping condition
was 200 epochs. The experimental environment consisted of two Intel(R) Xeon(R) Gold 6148 2.4-
GHz CPUs with 20 cores each, a 16-GB NVIDIA Tesla V100 900-Gbps GPU, and the Red Hat
Enterprise Linux 7.6 OS. The code was written in Python 3.8.2 using the NumPy 1.17.3 and PyTorch
1.3.0 packages. A constant learning rate α = 10−3 was commonly used. Momentum used β1 = 0.9.
Adam used β1 = 0.9 and β2 = 0.999 (Kingma & Ba, 2015).

Here, we use (10) and estimate appropriate batch sizes in the sense that SFO complexity is mini-
mized. The definitions of v∗ and vk,i (see also (26) in Appendix A) imply that, for k ∈ [K] and all
i ∈ [d], v∗ ≤ vk,i ≤ maxk∈[K] maxi∈[d] g

2
k,i =: g2k∗,i∗ ≤

∑d
i=1 g

2
k∗,i = ∥∇fBk∗ (θk∗)∥2. Con-

dition (C2) implies that E[∥∇fBk
(θk)∥2] ≤ σ2

b + E[∥∇f(θk)∥2] (see also (14) in Appendix A).
Conditions (C2) and (C3) imply that, if b is large, then σ is small. Hence, assuming that σ2

b ≈ 0 im-
plies that v∗ ≤ ∥∇f(θk∗)∥2 = ∥ 1n

∑
i∈[n]∇ℓi(θk∗)∥2 = 1

n2 ∥
∑

i∈[n]∇ℓi(θk∗)∥2 =: 1
n2 ∥Gk∗∥2 =

1
n2

∑
i∈[d] G

2
k∗,i ≤ d

n2 maxi∈[d] G
2
k∗,i. Since deep learning optimizers can approximate stationary

points of f , we assume that, for example, Gk∗,i ≈ ϵ. Then, (10) implies that

b∗S :=
σ2
S

103ϵ
, b∗M :=

σ2
M

9 · 102ϵ
, b∗A :=

σ2
A

9 · 10√v∗ϵ
>

σ2
An

9 · 10
√
dϵ2

=: b∗∗A . (11)

Conditions (C2) and (C3) imply that, if b is large, then σ is small. If SGD and Momentum can exploit
large batch sizes, then σS and σM are small. However, (11) implies that b∗S and b∗M must be small
when σS and σM are small. Accordingly, SGD and Momentum would not be able to use large batch
sizes. Meanwhile, from (11), we expect that Adam can exploit a large batch size b⋆A > b∗A > b∗∗A ,
for example, when b∗∗A < 211 (CIFAR-10; n = 50000, ResNet-20; d ≈ 1.1× 107, b∗∗A ≈ 1600) and
210 < b∗∗A < 211 (MNIST; n = 60000, ResNet-18; d ≈ 1.0 × 107, b∗∗A ≈ 2000) (He et al., 2016;
Leong et al., 2020), where σ2

A ≈ 10−2 and ϵ ≈ 10−3 are used.

4.1 RESNET-20 ON THE CIFAR-10 DATASET

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

Batch Size

102

103

104

105

106

St
ep

s

SGD
Momentum
Adam

Figure 1: Number of steps for SGD, Momen-
tum, and Adam versus batch size needed to
train ResNet-20 on CIFAR-10. There is an
initial period of perfect scaling (indicated by
dashed line) such that the number of steps K
for Adam is inversely proportional to batch
size b. Adam has critical batch size b⋆ = 211.

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

Batch Size

0.2

0.4

0.6

0.8

1.0

SF
O

×107

SGD
Momentum
Adam

Figure 2: SFO complexities for SGD, Mo-
mentum, and Adam versus batch size needed
to train ResNet-20 on CIFAR-10. SFO com-
plexity of Adam (resp. Momentum) is min-
imized at critical batch size b⋆ = 211 (resp.
b⋆ = 23), whereas SFO complexity for SGD
tends to increase with batch size.

Let us consider training ResNet-20 on the CIFAR-10 dataset with n = 50000. Figure 1 shows the
number of steps for SGD, Momentum, and Adam versus batch size. For SGD and Momentum, the
number of steps K needed for f(θK) ≤ 10−1 initially decreased. However, SGD with b ≥ 26 and

8

Under review as a conference paper at ICLR 2023

Momentum with b ≥ 210 did not satisfy f(θK) ≤ 10−1 before the stopping condition was reached.
Adam had an initial period of perfect scaling (indicated by dashed line) such that the number of
steps K needed for f(θK) ≤ 10−1 was inversely proportional to batch size b, and critical batch size
b⋆ = 211 such that K was not inversely proportional to the batch size beyond b⋆; i.e., there were
diminishing returns.

Figure 2 plots the SFO complexities for SGD, Momentum, and Adam versus batch size. For SGD,
SFO complexity was minimum at b⋆ = 22; for Momentum, it was minimum at b⋆ = 23. This
implies that SGD and Momentum could not use large batch sizes, as shown in (11). For Adam,
SFO complexity was minimum at the critical batch size b⋆ = 211 that was close to estimation of
critical batch b⋆A > b∗∗A with 1600 ≈ b∗∗A < b⋆A = 211 = 2048, as shown in (11). We also checked
that the elapsed time for Adam monotonically decreased for b ≤ 211 and that the elapsed time for
critical batch size b⋆ = 211 was the shortest. The elapsed time for b ≥ 212 increased with the SFO
complexity, as shown in Figure 2 (see Tables 3, 4, 5, and 6 in Appendix A).

4.2 RESNET-18 ON THE MNIST DATASET

22 23 24 25 26 27 28 29 210 211 212 213 214

Batch Size

102

103

104

105

106

S
te
p
s

SGD

Momentum

Adam

Figure 3: Number of steps for SGD, Mo-
mentum, and Adam versus batch size needed
to train ResNet-18 on MNIST. There is an
initial period of perfect scaling (indicated by
dashed line) such that the number of steps K
for Adam is inversely proportional to batch
size b. Adam has critical batch size b⋆ = 210.

22 23 24 25 26 27 28 29 210 211 212 213 214

Batch Size

0.2

0.4

0.6

0.8

1.0

S
F
O

×107

SGD

Momentum

Adam

Figure 4: SFO complexities for SGD, Mo-
mentum, and Adam versus batch size needed
to train ResNet-18 on MNIST. SFO com-
plexity of Adam (resp. Momentum) is min-
imized at critical batch size b⋆ = 210 (resp.
b⋆ = 23), whereas SFO complexity for SGD
tends to increase with batch size.

Let us consider training ResNet-18 on the MNIST dataset with n = 60000. Figures 3 and 4 indicate
that Adam could exploit larger batch sizes than SGD and Momentum. Moreover, these figures
indicate that Momentum minimized SFO complexity at the critical batch size b⋆ = 23 and Adam
minimized SFO complexity at the critical batch size b⋆ = 210 that was close to estimation of critical
batch b⋆A > b∗∗A with 210 < b∗∗A ≈ 2000 < 211, as shown in (11). We can also check that the elapsed
time for critical batch size b⋆ = 210 was the shortest (see Tables 7, 8, 9, and 10 in Appendix A).

We also estimated appropriate batch sizes of Adam for (i) CNN on MNIST (n = 60000, d ≈
7.7 × 106) and (ii) ResNet-32 on CIFAR-10 (n = 50000, d ≈ 2.0 × 107) from b∗∗A in (11) and
checked that actual critical batch sizes in (Zhang et al., 2019, Figure 5(a), (e)) are close to estimated
batch sizes ((i) b⋆A = 211 = 2048 > b∗∗A ≈ 2000, (ii) b⋆A = 210 = 1024 ≈ b∗∗A ≈ 1200).

5 CONCLUSION

This paper showed the relationship between batch size b and the number of steps K to achieve an
ϵ-approximation of deep learning optimizers using a small constant learning rate α and hyperparam-
eters β1 and β2 close to 1. From the convexity of SFO complexity N , there exists a global minimizer
b⋆ of N that is the critical batch size. We also gave numerical results indicating that Adam using
a small constant learning rate, hyperparameters close to one, and the critical batch size has faster
convergence than Momentum and SGD. Moreover, we estimated appropriate batch sizes from our
formula for b⋆ and showed that actual critical batch sizes are close to estimated batch sizes.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 2022.

Jonathan Borwein and Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and
Examples. CMS Books in Mathematics. Springer, New York, 2000.

Hao Chen, Lili Zheng, Raed AL Kontar, and Garvesh Raskutti. Stochastic gradient descent in cor-
related settings: A study on Gaussian processes. In Advances in Neural Information Processing
Systems, volume 33, 2020.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural network. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, volume 452, pp.
3267–3275, 2021.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of Adam-
type algorithms for non-convex optimization. In Proceedings of The International Conference on
Learning Representations, 2019.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. In Advances in Neural Information Processing Systems, volume 24,
2011.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic gradi-
ent descent method for non-convex objective functions. Journal of Machine Learning Research,
21:1–48, 2020.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
vex stochastic composite optimization I: A generic algorithmic framework. SIAM Journal on
Optimization, 22:1469–1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
vex stochastic composite optimization II: Shrinking procedures and optimal algorithms. SIAM
Journal on Optimization, 23:2061–2089, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
1985.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
ing stochastic gradient descent for least squares regression: Mini-batching, averaging, and model
misspecification. Journal of Machine Learning Research, 18(223):1–42, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of The International Conference on Learning Representations, 2015.

Mei Chee Leong, Dilip K. Prasad, Yong Tsui Lee, and Feng Lin. Semi-CNN architecture for effec-
tive spatio-temporal learning in action recognition. Applied Sciences, 10(2), 2020.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-
size for SGD: An adaptive learning rate for fast convergence. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of The
International Conference on Learning Representations, 2019.

10

Under review as a conference paper at ICLR 2023

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19:1574–
1609, 2009.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). Doklady AN USSR, 269:543–547, 1983.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4:1–17, 1964.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
Proceedings of The International Conference on Learning Representations, 2018.

Herbert Robbins and Herbert Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, 22:400–407, 1951.

Kevin Scaman and Cédric Malherbe. Robustness analysis of non-convex stochastic gradient descent
using biased expectations. In Advances in Neural Information Processing Systems, volume 33,
2020.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In Proceedings of The International Conference on Learning Representations,
2018.

Tijmen Tieleman and Geoffrey Hinton. RMSProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4:26–31, 2012.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems, volume 31, 2018.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. In Advances in Neural Information Processing Systems, vol-
ume 31, 2018.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger Grosse. Which algorithmic choices matter at which batch
sizes? Insights from a noisy quadratic model. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the con-
vergence of adaptive gradient methods for nonconvex optimization. In 12th Annual Workshop on
Optimization for Machine Learning, 2020.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James S. Duncan. AdaBelief optimizer: Adapting stepsizes by the belief in
observed gradients. In Advances in Neural Information Processing Systems, volume 33, 2020.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for con-
vergences of Adam and RMSProp. In Computer Vision and Pattern Recognition Conference, pp.
11127–11135, 2019.

A APPENDIX

Unless stated otherwise, all relationships between random variables are supposed to hold almost
surely. Let S be a positive definite matrix, which is denoted by S ∈ Sd++. The S-inner product of
Rd is defined for all x,y ∈ Rd by ⟨x,y⟩S := ⟨x, Sy⟩ = x⊤(Sy), and the S-norm is defined by
∥x∥S :=

√
⟨x, Sx⟩.

11

Under review as a conference paper at ICLR 2023

A.1 PREVIOUS RESULTS IN TABLE 1

This section provides the upper bounds of the performance measure of optimizers indicated in Table
1.

A.1.1 TAIL-AVERAGED SGD

We consider the stochastic approximation problem of least square regression that is to minimize the
expected square loss function f(θ) := 1

2E(x,y)∼D[y − x⊤θ] (see Section 2.1 for the mathematical
preliminaries). Tail-averaged SGD (Jain et al., 2018, Algorithm 1) with a constant learning rate α
depending on the batch size b and the largest eigenvalue of the Hessian of f satisfies

E[f(θ̄)]− f(θ⋆) ≤ 2(1− αµ)s

α2µ2(nb − s)2
(f(θ0)− f(θ⋆)) +

4σ2

b(nb − s)
, (12)

where s is the initial iterations, and n is the total samples, µ > 0 is the smallest eigenvalue of the
Hessian of f , (θi)i>s is the sequence generated by Tail-averaged SGD, and θ̄ := 1

⌊n
b ⌋−s

∑
i>s θi

(Jain et al., 2018, Theorem 1). The upper bound of Tail-averaged SGD when K := n
b − s is

E[f(θ̄)]− f(θ⋆) = O
(

1

K2
+

1

Kb

)
.

A.1.2 ADAM

Theorem 1 in (Zaheer et al., 2018) and the proof of Theorem 1 in (Zaheer et al., 2018) show that,
under the condition that ∇f is Lipschitz continuous with the Lipschitz constant L, Adam using
α = O(L−1), β1 = 0, and β2 ≥ 1−O(G−2) satisfies

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
≤ 2

(√
β2G+ ϵ

){f(θ1)− f(θ⋆)

αK
+

(
G
√
1− β2

ϵ2
+

Lα

2ϵ2

)
σ2

b

}
,

that is, the upper bound of Adam with β1 = 0 is

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
= O

(
1

K
+

1

b

)
.

A.1.3 GENERIC ADAM

Theorem 4 in (Zou et al., 2019) shows that, under the condition that ∇f is Lipschitz continuous
with the Lipschitz constant L, Generic Adam using αk = O(1√

k
), β1 ∈ (0, 1), and β2k = 1− α

k+1

satisfies

E
[
∥∇f(θτ)∥

4
3

] 3
2 ≤

D +D′∑K
k=1 αk

√
1− β2k

αKK
,

where τ is randomly chosen from {1, 2, . . . ,K}, α > 0, γ ∈ (0, 1), v0 = (v0,i)
d
i=1, D0, D1 > 0,

D′ :=
2D2

0D3d
√
B4 + v0,1d

(1− β1)β2,1
, D :=

2D0

√
B4 + v0,1d

1− β1

{
D4 +D3D0dα log

(
1 +

B4

v0,1d

)}
,

D3 :=
D0√

D1(1−
√
γ)

 D2
0αL

D1(1−
√
γ)2

+ 2

(
β1

(1− β1)
√
D1(1− γ)β2,1

+ 1

)2

B2

 ,

D4 := f(θ1)− f(θ⋆).

This implies that the upper bound of Generic Adam is

E
[
∥∇f(θτ)∥

4
3

] 3
2

= O
(
logK√

K

)
(see also Corollary 10 in (Zou et al., 2019) when s = 1

2 and r = 1).

12

Under review as a conference paper at ICLR 2023

A.1.4 ADAFOM

Corollary 3.2 in (Chen et al., 2019) shows that, under the condition that∇f is Lipschitz continuous
with the Lipschitz constant L, the AdaGrad with First Order Momentum (AdaFom) algorithm using
αk = 1√

k
and β1 ∈ (0, 1) satisfies

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
≤ Q1 +Q2 logK√

K
,

where Ḡ > 0, c > 0,

Q1 := G

{
D1d(1− log(c2) + 2 logG) +

D2d

c
+

D3d

c2
+D4

}
, Q2 := GD1d,

D1 :=
3

2
L+

1

2
+

L2β1

1− β1

(
1

1− β1

)2

, D2 := G2

(
β1

1− β1
+ 2

)
,

D3 := G2

{
1 +

(
L

1− β1

)2
β1

1− β1

}(
β1

1− β1

)2

,

D4 :=

(
β1

1− β1

)
(G2 + Ḡ2) +

(
β1

1− β1

)2

Ḡ2 + 2α1G
2E
[∥∥∥∥ 1√

v̂1

∥∥∥∥
1

]
+ E[f(θ1)− f(θ⋆)].

A.1.5 AMSGRAD

Theorem 3 in (Zhou et al., 2020) shows that, under the condition that ∇f is Lipschitz continuous
with the Lipschitz constant L, AMSGrad using a constant learning rate α and β1 and β2 with β1 <√
β2 satisfies

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
≤ D1

αK
+

D2d

K
+

αD3d

K
1
2−s

,

where s ∈ (0, 1
2), G∞ > 0, γ > 0,

D1 := 2G∞(f(θ1)− f(θ⋆)), D2 :=
2G3

∞
γ(1− β1)

, D3 :=
2LG2

∞

γ
√
1− β2(1− β1√

β2
)

(
1 +

2β2
1

1− β1

)
.

Hence, the upper bound of AMSGrad is

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
= O

(
1

K
1
2−s

)
.

A.1.6 ADABELIEF

Theorem 2.2 in (Zhuang et al., 2020) shows that, under the condition that∇f is Lipschitz continuous
with the Lipschitz constant L, AdaBelief using αk = α√

k
, where α > 0, and β1, β2 ∈ (0, 1) satisfies

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
≤ Q1 +Q2 logK

α
√
K

,

where c > 0, Ḡ > 0,

Q1 := G

{
D1α

2(G2 + σ2)

c
+

D2dα√
c

+
D3dα

2

c
+D4

}
, Q2 :=

GD1α
2(G2 + σ2)

c
,

D1 :=
3

2
L+

1

2
+

L2β1

1− β1

(
1

1− β1

)2

, D2 := G2

(
β1

1− β1
+ 2

)
,

D3 := G2

{
1 +

(
L

1− β1

)2
β1

1− β1

}(
β1

1− β1

)2

,

D4 :=

(
β1

1− β1

)
(G2 + Ḡ2) +

(
β1

1− β1

)2

Ḡ2 + 2α1G
2E
[∥∥∥∥ 1√

v̂1

∥∥∥∥
1

]
+ E[f(θ1)− f(θ⋆)].

13

Under review as a conference paper at ICLR 2023

A.1.7 PADAM

Corollary 4.5 in (Chen et al., 2021) shows that, under the condition that∇f is Lipschitz continuous
with the Lipschitz constant L, the Partially adaptive momentum estimation (Padam) method using a
constant learning rate α, p ∈ [0, 1

4], and β1 and β2 with β1 < β2p
2 satisfies

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
≤ D1

αK
+

D2d

K
+

αD3dG∞

K
1
2−s

,

where s ∈ (0, 1
2), G∞ > 0,

D1 := 2G2p
∞(f(θ1)− f(θ⋆)), D2 :=

4G2+2p
∞ E[∥v̂−p

1 ∥1]
d(1− β1)

+ 4G2
∞,

D3 :=
4LG1−2p

∞
(1− β2)2p

+
8LG1−2p

∞ (1− β1)

(1− β2)2p(1− β1

β2p
2

)

(
β1

1− β1

)2

.

Hence, the upper bound of Padam is

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
= O

(
1

K
1
2−s

)
.

A.2 LEMMAS

Lemma A.1. Suppose that (C1), (C2), and (C3) hold. Then, Adam satisfies the following: for all
k ∈ N and all θ ∈ Rd,

E
[
∥θk+1 − θ∥2Hk

]
= E

[
∥θk − θ∥2Hk

]
+ α2E

[
∥dk∥2Hk

]
+ 2α

{
β1

β̃1k

E
[
(θ − θk)

⊤mk−1

]
+

β̂1

β̃1k

E
[
(θ − θk)

⊤∇f(θk)
]}

,

where dk := −H−1
k m̂k, β̂1 := 1− β1, and β̃1k := 1− βk+1

1 .

Proof. Let θ ∈ Rd and k ∈ N. The definition θk+1 := θk + αdk implies that

∥θk+1 − θ∥2Hk
= ∥θk − θ∥2Hk

+ 2α ⟨θk − θ,dk⟩Hk
+ α2 ∥dk∥2Hk

.

Moreover, the definitions of dk, mk, and m̂k ensure that

⟨θk − θ,dk⟩Hk
= ⟨θk − θ,Hkdk⟩ = ⟨θ − θk, m̂k⟩ =

1

β̃1k

(θ − θk)
⊤mk

=
β1

β̃1k

(θ − θk)
⊤mk−1 +

β̂1

β̃1k

(θ − θk)
⊤∇fBk

(θk).

Hence,

∥θk+1 − θ∥2Hk
= ∥θk − θ∥2Hk

+ α2 ∥dk∥2Hk

+ 2α

{
β1

β̃1k

(θ − θk)
⊤mk−1 +

β̂1

β̃1k

(θ − θk)
⊤∇fBk

(θk)

}
.

(13)

Conditions (C2) and (C3) guarantee that

E
[
E
[
(θ − θk)

⊤∇fBk
(θk)

∣∣∣θk]] = E
[
(θ − θk)

⊤E
[
∇fBk

(θk)
∣∣∣θk]] = E

[
(θ − θk)

⊤∇f(θk)
]
.

Therefore, the lemma follows from taking the expectation on both sides of (13). This completes the
proof.

The discussion in the proof of Lemma A.1 also gives the following lemma.

14

Under review as a conference paper at ICLR 2023

Lemma A.2. Suppose that (C1), (C2), and (C3) hold. Then, SGD satisfies the following: for all
k ∈ N and all θ ∈ Rd,

E
[
∥θk+1 − θ∥2

]
= E

[
∥θk − θ∥2

]
+ α2E

[
∥∇fBk

(θk)∥2
]
+ 2αE

[
(θ − θk)

⊤∇f(θk)
]
.

Moreover, Momentum satisfies the following: for all k ∈ N and all θ ∈ Rd,

E
[
∥θk+1 − θ∥2

]
= E

[
∥θk − θ∥2

]
+ α2E

[
∥mk∥2

]
+ 2α

{
β1E

[
(θ − θk)

⊤mk−1

]
+ β̂1E

[
(θ − θk)

⊤∇f(θk)
]}

,

where β̂1 := 1− β1.

The following lemma indicates the bounds on (E[∥mk∥2])k∈N and (E[∥dk∥2Hk
])k∈N.

Lemma A.3. Adam under (C2) and (A1), for all k ∈ N satisfies

E
[
∥mk∥2

]
≤ σ2

b
+G2, E

[
∥dk∥2Hk

]
≤

√
β̃2k

β̃2
1k

√
v∗

(
σ2

b
+G2

)
,

where v∗ := inf{mini∈[d] vk,i : k ∈ N}, β̃1k := 1− βk+1
1k , and β̃2k := 1− βk+1

2k .

Proof. Condition (C2) implies that

E
[
∥∇fBk

(θk)∥2
∣∣∣θk] = E

[
∥∇fBk

(θk)−∇f(θk) +∇f(θk)∥2
∣∣∣θk]

= E
[
∥∇fBk

(θk)−∇f(θk)∥2
∣∣∣θk]+ E

[
∥∇f(θk)∥2

∣∣∣θk]
+ 2E

[
(∇fBk

(θk)−∇f(θk))⊤∇f(θk)
∣∣∣θk]

= E
[
∥∇fBk

(θk)−∇f(θk)∥2
∣∣∣θk]+ ∥∇f(θk)∥2,

(14)

which, together with (C2) and (A1), in turn implies that

E
[
∥∇fBk

(θk)∥2
]
≤ σ2

b
+G2. (15)

The convexity of ∥ · ∥2, together with the definition of mk and (15), guarantees that, for all k ∈ N,

E
[
∥mk∥2

]
≤ β1E

[
∥mk−1∥2

]
+ β̂1E

[
∥∇fBk

(θk)∥2
]

≤ β1E
[
∥mk−1∥2

]
+ β̂1

(
σ2

b
+G2

)
.

Induction thus ensures that, for all k ∈ N,

E
[
∥mk∥2

]
≤ max

{
∥m−1∥2,

σ2

b
+G2

}
=

σ2

b
+G2, (16)

where m−1 = 0. For k ∈ N, Hk ∈ Sd++ guarantees the existence of a unique matrix Hk ∈ Sd++

such that Hk = H
2

k (Horn & Johnson, 1985, Theorem 7.2.6). We have that, for all x ∈ Rd, ∥x∥2Hk
=

∥Hkx∥2. Accordingly, the definitions of dk and m̂k imply that, for all k ∈ N,

E
[
∥dk∥2Hk

]
= E

[∥∥∥H−1

k Hkdk

∥∥∥2] ≤ 1

β̃2
1k

E
[∥∥∥H−1

k

∥∥∥2 ∥mk∥2
]
,

where ∥∥∥H−1

k

∥∥∥ =
∥∥∥diag (v̂− 1

4

k,i

)∥∥∥ = max
i∈[d]

v̂
− 1

4

k,i = max
i∈[d]

(
vk,i

β̃2k

)− 1
4

=:

(
vk,i∗

β̃2k

)− 1
4

.

Moreover, the definition of
v∗ := inf {vk,i∗ : k ∈ N}

and (16) imply that, for all k ∈ N,

E
[
∥dk∥2Hk

]
≤

β̃
1
2

2k

β̃2
1kv

1
2
∗

(
σ2

b
+G2

)
,

completing the proof.

15

Under review as a conference paper at ICLR 2023

A.3 PROOF OF THEOREM 3.1

A.3.1 SGD

We show Theorem 3.1 for SGD.

Proof. (i) Lemma A.2 and (15) imply that, for all k ∈ N and all θ ∈ Rd,

2αE
[
(θk − θ)⊤∇f(θk)

]
= E

[
∥θk − θ∥2

]
− E

[
∥θk+1 − θ∥2

]
+ α2E

[
∥∇fBk

(θk)∥2
]

≤ E
[
∥θk − θ∥2

]
− E

[
∥θk+1 − θ∥2

]
+ α2

(
σ2

b
+G2

)
.

Summing the above inequality from k = 1 to k = K leads to the finding that, for all K ≥ 1,

2α

K∑
k=1

E
[
(θk − θ)⊤∇f(θk)

]
≤ E

[
∥θ1 − θ∥2

]
− E

[
∥θK+1 − θ∥2

]
+ α2

(
σ2

b
+G2

)
K,

which implies that, for all K ≥ 1 and all θ ∈ Rd,

VI(K,θ) :=
1

K

K∑
k=1

E
[
(θk − θ)⊤∇f(θk)

]
≤

E
[
∥θ1 − θ∥2

]
2αK

+
α

2

(
σ2

b
+G2

)

=
E
[
∥θ1 − θ∥2

]
2α︸ ︷︷ ︸
C1

1

K
+

σ2α

2︸︷︷︸
C2

1

b
+

G2α

2︸ ︷︷ ︸
C3

.
(17)

(ii) Let θ ∈ Rd and ϵ > 0. Condition C1

K + C2

b + C3 = ϵ is equivalent to

K = K(b) =
C1b

(ϵ− C3)b− C2
. (18)

Since ϵ = C1

K + C2

b +C3 > C3, we consider the case b > C2

ϵ−C3
> 0 to guarantee that K > 0. From

(17), the function K defined by (18) satisfies VI(K,θ) ≤ C1

K + C2

b +C3 = ϵ. Moreover, from (18),

dK(b)

db
=

−C1C2

{(ϵ− C3)b− C2}2
≤ 0,

d2K(b)

db2
=

2C1C2(ϵ− C3)

{(ϵ− C3)b− C2}3
≥ 0,

which implies that K is convex and monotone decreasing with respect to b.

(iii) We have that

Kb = K(b)b =
C1b

2

(ϵ− C3)b− C2
.

Accordingly,

dK(b)b

db
=

C1b{(ϵ− C3)b− 2C2}
{(ϵ− C3)b− C2}2

,
d2K(b)b

db2
=

2C1C
2
2

{(ϵ− C3)b− C2}3
≥ 0,

which implies that K(b)b is convex with respect to b and

dK(b)b

db

< 0 if b < b⋆,

= 0 if b = b⋆ = 2C2

ϵ−C3
,

> 0 if b > b⋆.

The point b⋆ attains the minimum value K(b⋆)b⋆ = 4C1C2

(ϵ−C3)2
of K(b)b. This completes the proof.

16

Under review as a conference paper at ICLR 2023

A.3.2 MOMENTUM

We show Theorem 3.1 for Momentum.

Proof. (i) Lemma A.2 ensures that, for all k ∈ N and all θ ∈ Rd,

E
[
(θk − θ)⊤mk−1

]
=

1

2αβ1

{
E
[
∥θk − θ∥2

]
− E

[
∥θk+1 − θ∥2

]}
+

α

2β1
E
[
∥mk∥2

]
+

β̂1

β1
E
[
(θ − θk)

⊤∇f(θk)
]
,

which, together with Lemma A.3, the Cauchy–Schwarz inequality, and (A1) and (A2), implies that

E
[
(θk − θ)⊤mk−1

]
≤ 1

2αβ1

{
E
[
∥θk − θ∥2

]
− E

[
∥θk+1 − θ∥2

]}
+

α

2β1

(
σ2

b
+G2

)
+

β̂1

β1
Dist(θ)G.

Summing the above inequality from k = 1 to k = K gives a relation that implies that

K∑
k=1

E
[
(θk − θ)⊤mk−1

]
≤ 1

2αβ1

{
E
[
∥θ1 − θ∥2

]
− E

[
∥θK+1 − θ∥2

]}
+

α

2β1

(
σ2

b
+G2

)
K

+
β̂1

β1
Dist(θ)GK,

and hence,

1

K

K∑
k=1

E
[
(θk − θ)⊤mk−1

]
≤

E
[
∥θ1 − θ∥2

]
2αβ1K

+
α

2β1

(
σ2

b
+G2

)
+

β̂1

β1
Dist(θ)G.

Moreover, we have that, for all k ∈ N and all θ ∈ Rd,

(θk − θ)⊤mk = (θk − θ)⊤mk−1 + β̂1(θk − θ)⊤(∇fBk
(θk)−mk−1)

≤ (θk − θ)⊤mk−1 + β̂1Dist(θ) (∥∇fBk
(θk)∥+ ∥mk−1∥) ,

where the first equality comes from the definition of mk and the first inequality comes from the
Cauchy–Schwarz inequality, the triangle inequality, and (A2). Hence, from Lemma A.3, (15),
Jensen’s inequality, and b ≥ 1,

E
[
(θk − θ)⊤mk

]
≤ E

[
(θk − θ)⊤mk−1

]
+ 2β̂1Dist(θ)

√
σ2

b
+G2

≤ E
[
(θk − θ)⊤mk−1

]
+ 2β̂1Dist(θ)

√
σ2 +G2.

(19)

Therefore, for all K ≥ 1 and all θ ∈ Rd,

1

K

K∑
k=1

E
[
(θk − θ)⊤mk

]
≤

E
[
∥θ1 − θ∥2

]
2αβ1K

+
σ2α

2β1b
+

G2α

2β1
+ β̂1Dist(θ)

(
G

β1
+ 2
√
σ2 +G2

)
.

(20)

The definition of mk ensures that

(θk − θ)⊤∇fBk
(θk)

= (θk − θ)⊤mk + (θk − θ)⊤(∇fBk
(θk)−mk−1) + (θk − θ)⊤(mk−1 −mk)

= (θk − θ)⊤mk +
1

β1
(θk − θ)⊤(∇fBk

(θk)−mk) + β̂1(θk − θ)⊤(mk−1 −∇fBk
(θk)),

17

Under review as a conference paper at ICLR 2023

which, together with the Cauchy–Schwarz inequality, the triangle inequality, and (A2), implies that

(θk − θ)⊤∇fBk
(θk)

≤ (θk − θ)⊤mk +
1

β1
Dist(θ)(∥∇fBk

(θk)∥+ ∥mk∥) + β̂1Dist(θ)(∥∇fBk
(θk)∥+ ∥mk−1∥).

Lemma A.3, (15), Jensen’s inequality, and b ≥ 1 guarantee that

E
[
(θk − θ)⊤∇f(θk)

]
≤ E

[
(θk − θ)⊤mk

]
+ 2

(
1

β1
+ β̂1

)
Dist(θ)

√
σ2

b
+G2

≤ E
[
(θk − θ)⊤mk

]
+ 2

(
1

β1
+ β̂1

)
Dist(θ)

√
σ2 +G2.

(21)

Therefore, (20) ensures that, for all K ≥ 1 and all θ ∈ Rd,

1

K

K∑
k=1

E
[
(θk − θ)⊤∇f(θk)

]
≤

E
[
∥θ1 − θ∥2

]
2αβ1︸ ︷︷ ︸
C1

1

K
+

σ2α

2β1︸︷︷︸
C2

1

b
+

G2α

2β1
+Dist(θ)

{
Gβ̂1

β1
+ 2
√

σ2 +G2

(
1

β1
+ 2β̂1

)}
︸ ︷︷ ︸

C3

.

(ii) A discussion similar to the one showing (ii) in Theorem 3.1 for SGD would show (ii) in Theorem
3.1 for Momentum.

(iii) An argument similar to that which obtained (iii) in Theorem 3.1 for SGD would prove (iii) in
Theorem 3.1 for Momentum.

A.3.3 ADAM

We show Theorem 3.1 for Adam.

Proof. (i) Let θ ∈ Rd. Lemma A.1 guarantees that for all k ∈ N,

E
[
(θk − θ)⊤mk−1

]
=

β̃1k

2αβ1

{
E
[
∥θk − θ∥2Hk

]
− E

[
∥θk+1 − θ∥2Hk

]}
︸ ︷︷ ︸

ak

+
αβ̃1k

2β1
E
[
∥dk∥2Hk

]
︸ ︷︷ ︸

bk

+
β̂1

β1
E
[
(θ − θk)

⊤∇f(θk)
]

︸ ︷︷ ︸
ck

. (22)

We define γk := β̃1k

2β1α
(k ∈ N). Then, for all K ≥ 1,

K∑
k=1

ak = γ1E
[
∥θ1 − θ∥2H1

]
+

K∑
k=2

{
γkE

[
∥θk − θ∥2Hk

]
− γk−1E

[
∥θk − θ∥2Hk−1

]}
︸ ︷︷ ︸

ΓK

− γKE
[
∥θK+1 − θ∥2HK

]
.

(23)

Since Hk ∈ Sd++ exists such that Hk = H
2

k, we have ∥x∥2Hk
= ∥Hkx∥2 for all x ∈ Rd. Accordingly,

we also have

ΓK = E

[
K∑

k=2

{
γk
∥∥Hk(θk − θ)

∥∥2 − γk−1

∥∥Hk−1(θk − θ)
∥∥2}] .

18

Under review as a conference paper at ICLR 2023

From Hk = diag(v̂
1/4
k,i), we have that, for all x = (xi)

d
i=1 ∈ Rd, ∥Hkx∥2 =

∑d
i=1

√
v̂k,ix

2
i . Hence,

for all K ≥ 2,

ΓK = E

[
K∑

k=2

d∑
i=1

(
γk
√

v̂k,i − γk−1

√
v̂k−1,i

)
(θk,i − θi)

2

]
. (24)

Condition (2) and γk ≥ γk−1 (k ≥ 1) imply that, for all k ≥ 1 and all i ∈ [d],

γk
√
v̂k,i − γk−1

√
v̂k−1,i ≥ 0. (25)

Moreover, (A2) ensures that D(θ) := sup{maxi∈[d](θk,i − θi)
2 : k ∈ N} < +∞. Accordingly, for

all K ≥ 2,

ΓK ≤ D(θ)E

[
K∑

k=2

d∑
i=1

(
γk
√

v̂k,i − γk−1

√
v̂k−1,i

)]
= D(θ)E

[
d∑

i=1

(
γK
√

v̂K,i − γ1
√
v̂1,i

)]
.

Let ∇fBk
(θk) ⊙ ∇fBk

(θk) := (g2k,i) ∈ Rd
+. Assumption (A1) ensures that there exists M ∈ R

such that, for all k ∈ N, maxi∈[d] g
2
k,i ≤M . The definition of vk guarantees that, for all i ∈ [d] and

all k ∈ N,

vk,i = β2vk−1,i + β̂2g
2
k,i.

Induction thus ensures that, for all i ∈ [d] and all k ∈ N,

vk,i ≤ max{v0,i,M} = M, (26)

where v0 = (v0,i) = 0. From the definition of v̂k, we have that, for all i ∈ [d] and all k ∈ N,

v̂k,i =
vk,i

β̃2k

≤ M

β̃2k

. (27)

Therefore, (23), E[∥θ1 − θ∥2H1
] ≤ D(θ)E[

∑d
i=1

√
v̂1,i], and (27) imply, for all K ≥ 1,

K∑
k=1

ak ≤ γ1D(θ)E

[
d∑

i=1

√
v̂1,i

]
+D(θ)E

[
d∑

i=1

(
γK
√

v̂K,i − γ1
√
v̂1,i

)]

= γKD(θ)E

[
d∑

i=1

√
v̂K,i

]

≤ γKD(θ)

d∑
i=1

√
M

β̃2K

≤ dD(θ)
√
Mβ̃1K

2β1α

√
β̃2K

.

(28)

Inequality (28) with β̃1K := 1− βK+1
1 ≤ 1 and β̃2K := 1− βK+1

2 ≥ 1− β2 =: β̂2 implies that

K∑
k=1

ak ≤
dD(θ)

√
Mβ̃1K

2β1α

√
β̃2K

≤ dD(θ)
√
M

2β1α

√
β̂2

. (29)

Lemma A.3 guarantees that, for all k ∈ N,

bk =
αβ̃1k

2β1
E
[
∥dk∥2Hk

]
≤ αβ̃1k

2β1

√
β̃2k

β̃2
1k

√
v∗

(
σ2

b
+G2

)
=

α

√
β̃2k

2
√
v∗β1β̃1k

(
σ2

b
+G2

)
. (30)

Inequality (30) with β̃1k := 1− βk+1
1 ≥ 1− β1 =: β̂1 and β̃2k := 1− βk+1

2 ≤ 1 implies that

bk ≤
α

√
β̃2k

2
√
v∗β1β̃1k

(
σ2

b
+G2

)
≤ α

2
√
v∗β1β̂1

(
σ2

b
+G2

)
. (31)

19

Under review as a conference paper at ICLR 2023

The Cauchy–Schwarz inequality and (A2) imply that, for all k ∈ N,

ck =
β̂1

β1
E
[
(θ − θk)

⊤∇f(θk)
]
≤ Dist(θ)G

β̂1

β1
. (32)

Hence, (22), (29), (31), and (32) ensure that, for all K ≥ 1,

1

K

K∑
k=1

E
[
(θk − θ)⊤mk−1

]
≤ dD(θ)

√
M

2β1α

√
β̂2K

+
α(σ2b−1 +G2)

2
√
v∗β1β̂1

+Dist(θ)G
β̂1

β1
.

Therefore, from (19), for all K ≥ 1,

1

K

K∑
k=1

E
[
(θk − θ)⊤mk

]
≤ dD(θ)

√
M

2β1α

√
β̂2K

+
σ2α

2
√
v∗β1β̂1b

+
G2α

2
√
v∗β1β̂1

+ β̂1Dist(θ)

(
G

β1
+ 2
√
σ2 +G2

)
.

(33)

From (21) and (33), for all K ≥ 1,

1

K

K∑
k=1

E
[
(θk − θ)⊤∇f(θk)

]
≤ dD(θ)

√
M

2αβ1

√
β̂2︸ ︷︷ ︸

C1

1

K
+

σ2α

2
√
v∗β1β̂1︸ ︷︷ ︸
C2

1

b
+

G2α

2
√
v∗β1β̂1

+Dist(θ)

{
Gβ̂1

β1
+ 2
√
σ2 +G2

(
1

β1
+ 2β̂1

)}
︸ ︷︷ ︸

C3

.

(ii) A discussion similar to the one showing (ii) in Theorem 3.1 for SGD would show (ii) in Theorem
3.1 for Adam.

(iii) An argument similar to that which obtained (iii) in Theorem 3.1 for SGD would prove (iii) in
Theorem 3.1 for Adam.

A.3.4 AMSGRAD

We show that Ci for AMSGrad are (6).

Proof. Let us consider AMSGrad (Algorithm 1 with m̂k = mk, v̂k = vk, ṽk,i :=

max{ṽk−1,i, vk,i}, and Hk := diag(
√
ṽk,i)). Induction, together with (26) and ṽk,i :=

max{ṽk−1,i, vk,i}, ensures that, for all k ∈ N, ṽk,i ≤ M , where ṽ−1 = (ṽ−1,i) = 0. An ar-
gument similar to that which showed (i) in Appendix A.3.3 ensures that

K∑
k=1

ak ≤
dD(θ)

√
M

2αβ1
, bk ≤

α

2
√
ṽ∗β1

(
σ2

b
+G2

)
, and ck ≤ Dist(θ)G

β̂1

β1
,

where ak, bk, and ck are defined as in (22) and ṽ∗ := inf{mini∈[d] ṽk,i : k ∈ N}. Inequalities (21)
and (33) thus imply that Ci for AMSGrad are (6).

A.4 RESULTS FOR VARYING LEARNING RATES

We can establish the upper bound of VI(K,θ) for Adam with varying learning rates from a discus-
sion similar to the one for proving Theorem 3.1(i) (Appendix A.3.3). Let (αk)k∈N be monotone
decreasing. Then, γk := β̃1k

2β1αk
satisfies γk+1 ≥ γk (k ∈ N). Hence, (25) holds. The discussion in

Appendix A.3.3 thus ensures that

VI(K,θ) ≤ dD(θ)
√
M

2β1

√
1− β2αKK

+
σ2b−1 +G2

2
√
v∗β1(1− β1)K

K∑
k=1

αk

√
1− βk+1

2 + h(β1). (34)

20

Under review as a conference paper at ICLR 2023

Let us consider the case where αk = 1√
k
(k ≥ 1). From (34), we have that

VI(K,θ) ≤ dD(θ)
√
M

2β1

√
1− β2

√
K

+
σ2b−1 +G2

2
√
v∗β1(1− β1)K

K∑
k=1

1√
k
+ h(β1)

≤ dD(θ)
√
M

2β1

√
1− β2

√
K

+
σ2b−1 +G2

√
v∗β1(1− β1)

√
K

K
+ h(β1)

=
dD(θ)

√
M

2β1

√
1− β2

√
K

+
σ2b−1 +G2

√
v∗β1(1− β1)

1√
K

+ h(β1),

where 1− βk+1
2 ≤ 1 and

∑K
k=1

1√
k
≤ 2
√
K. Hence,

VI(K,θ) ≤

(
dD(θ)

√
M

2β1

√
1− β2

+
G2

√
v∗β1(1− β1)

)
1√
K

+
σ2

√
v∗β1(1− β1)

1

b
√
K

+ h(β1)

=:
C̃1√
K

+
C̃2

b
√
K

+ h(β1).

(35)

Theorem 3.1(i) indicates that Adam with a constant learning rate α satisfies

VI(K,θ) ≤ C1

K
+

C2

b
+ C3.

Hence, using αk = 1√
k

mitigates the variance (the term C̃2

b
√
K

) in contrast to the term C2

b using

αk = α. However, the bias term C1

K using αk = α would be better than the bias term C̃1√
K

using
αk = 1√

k
in the sense of minimizing the upper bound of VI(K,θ).

Let T ≥ 1, γ ∈ (0, 1), α > 0, and P := K
T . Next, let us consider the following varying learning

rate

(αk) = (αT , α2T , . . . , αPT),

where αjT = (γj−1α, γj−1α, . . . , γj−1α) (j = 1, 2, . . . , P). That is, (αk) is

((α, α, . . . , α︸ ︷︷ ︸
T

), (γα, γα, . . . , γα︸ ︷︷ ︸
T

), . . . , (γP−1α, γP−1α, . . . , γP−1α︸ ︷︷ ︸
T

)).

Let α > 0 be the lower bound of αk. From
K∑

k=1

αk = αT + γαT + · · ·+ γP−1αT ≤ αT

1− γ

and (34), we have that

VI(TP,θ) ≤ dD(θ)
√
M

2β1

√
1− β2αTP

+
σ2b−1 +G2

2
√
v∗β1(1− β1)TP

αT

1− γ
+ h(β1)

=
dD(θ)

√
M

2β1

√
1− β2αTP

+
(σ2b−1 +G2)α

2
√
v∗β1(1− β1)(1− γ)P

+ h(β1)

=

(
dD(θ)

√
M

2β1

√
1− β2αT

+
G2α

2
√
v∗β1(1− β1)(1− γ)

)
1

P
+

σ2α

2
√
v∗β1(1− β1)(1− γ)

1

Pb

+ h(β1)

= O
(
1

P
+

1

Pb

)
+ h(β1).

Here, we recall that Adam with αk = α satisfies

VI(TP,θ) ≤ C1

TP
+

C2

b
+ C3 = O

(
1

P
+

1

b

)
+ C3,

21

Under review as a conference paper at ICLR 2023

and Adam with αk = 1√
k

satisfies

VI(TP,θ) ≤ C̃1√
TP

+
C̃2

b
√
TP

+ h(β1) = O
(

1√
P

+
1

b
√
P

)
+ h(β1).

Therefore, using

(αk) = (αT , α2T , . . . , αPT)

is more desirable to minimize the upper bound of VI(K,θ) for Adam than using αk = α, 1√
k

.

A.5 BOUNDEDNESS CONDITION OF (∇f(θk))k∈N

Let f : Rd → R be convex. Then, f is Lipschitz continuous (i.e., |f(x)−f(y)| ≤ G∥x−y∥) if and
only if ∥∇f(x)∥ ≤ G (x ∈ Rd) (see, e.g., Theorem 6.2.2, Corollary 6.1.2, and Exercise 6.1.9(c) in
(Borwein & Lewis, 2000)). Let θ∗ be a local minimizer of a Lipschitz continuous function f . The
continuity of f ensures that f is convex around θ∗. Hence, for any θ belonging to a neighborhood
N(θ∗) of θ∗, ∥∇f(θ)∥ ≤ G. If the sequence (θk)k∈N generated by an optimizer approximates θ∗,
then θk ∈ N(θ∗) for sufficiently large k, i.e., ∥∇f(θk)∥ ≤ G.

A.6 CONDITION ϵ− C3 > 0

Under Lipschitz smoothness condition of f (i.e., ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥), the gradient
descent (GD) with a constant learning rate α = O(L−1) satisfies that limk→+∞ ∥∇f(θk)∥ = 0 by
the descent lemma (f(y) ≤ f(x)+∇f(x)⊤(y−x)+L

2 ∥y−x∥
2). Under non-smoothness condition

of f , GD with a constant learning rate α > 0 satisfies that lim infk→+∞∇f(θk)⊤(θk − θ) ≤
G2

2 α. Hence, it is not guaranteed that, under non-smoothness condition of f , GD with a constant
learning rate α > 0 converges. However, we can expect that using a small constant learning rate α
approximates a stationary point of f .

Meanwhile, under non-smoothness condition of f , GD with a diminishing learning rate αk = 1√
k

satisfies that

VI(K,θ) ≤ D(θ)

2KαK
+

σ2b−1 +G2

2K

K∑
k=1

αk =
D(θ)

2KαK
+

G2

2K

K∑
k=1

αk = O
(

1√
K

)
(see also Appendix A.3.1 when α is 1√

k
). Hence, GD with a diminishing learning rate does not need

C3 used in Theorem 3.1. This result strongly depends on the condition β1 = 0.

Under non-smoothness condition of f , Adam with a diminishing learning rate αk = 1√
k

and b = n

(i.e., σ = 0) satisfies that

VI(K,θ) ≤ C̃1√
K

+
C̃2

b
√
K

+ h(β1) =
C̃1√
K

+ h(β1)

(see (35)) and Adam with a constant learning rate α and b = n (i.e., σ = 0) satisfies that

VI(K,θ) ≤ C1

K
+

C2

b
+ C3 =

C1

K
+ C3.

The previous results (Zaheer et al., 2018) indicated that Adam with a constant learning rate α =
O(L−1), β1 = 0, and σ = 0 satisfies that

1

K

K∑
k=1

E
[
∥∇f(θk)∥2

]
≤ 2

(√
β2G+ ϵ

) f(θ1)− f(θ⋆)

αK
=:

Ĉ1

K
.

The condition β1 ̸= 0 is essential to analyze Adam since the practically useful β1 is close to 1.
The upper bound of VI(K,θ) for Adam with β1 ̸= 0 depends on the term with respect to β1, i.e.,
C3 := G2α

2
√
v∗β1(1−β1)

+ h(β1). Hence, ϵ > C3 and ϵ > h(β1) are needed to consider K to satisfy

VI(K,θ) ≤ C̃1√
K

+ h(β1) = ϵ (diminishing learning rate case) and VI(K,θ) ≤ C1

K + C3 = ϵ

(constant learning rate case) even if σ = 0.

22

Under review as a conference paper at ICLR 2023

A.7 LOWER AND UPPER BOUNDS ON K WITH VI(K, θ∗) = ϵ

Let us consider SGD under (C1)–(C3) and let θ∗ be a stationary point f . From Lemma A.2, we
have that

2αE
[
(θk − θ∗)⊤∇f(θk)

]
= E

[
∥θk − θ∗∥2

]
− E

[
∥θk+1 − θ∗∥2

]
+ α2E

[
∥∇fBk

(θk)∥2
]
.

Hence, for all K ≥ 1,

2α

K∑
k=1

E
[
(θk − θ∗)⊤∇f(θk)

]
= E

[
∥θ1 − θ∗∥2

]
− E

[
∥θK+1 − θ∗∥2

]
+ α2

K∑
k=1

E
[
∥∇fBk

(θk)∥2
]
.

Here, we assume that there exists c ∈ [0, 1] such that cσ2 ≤ E[∥Gξk(θk)−∇f(θk)∥2] ≤ σ2. From
(14), we have that

E
[
∥∇fBk

(θk)∥2
∣∣∣θk] = E

[
∥∇fBk

(θk)−∇f(θk)∥2
∣∣∣θk]+ ∥∇f(θk)∥2 ≥ cσ2

b
.

Since θK+1 approximates θ∗, we assume that there exists X(θ∗) ≥ 0 such that E[∥θ1 − θ∗∥2] −
E[∥θK+1 − θ∗∥2] ≥ X(θ∗). Hence,

2α

K∑
k=1

E
[
(θk − θ∗)⊤∇f(θk)

]
≥ X(θ∗) +

cσ2α2K

b
,

which implies that

VI(K,θ∗) ≥ D1

K
+

D2

b
,

where

D1 :=
X(θ∗)

2α
and D2 :=

cσ2α

2
.

Meanwhile, Theorem 3.1(i) indicates that

VI(K,θ∗) ≤ C1

K
+

C2

b
+ C3,

where

C1 :=
E[∥θ1 − θ∗∥2]

2α
, C2 :=

σ2α

2
, and C3 :=

G2α

2
.

Suppose that VI(K,θ∗) ≤ ϵ. Then, we have that

D1

K
+

D2

b
≤ ϵ,

which implies that

K(b) :=
D1b

ϵb−D2
≤ K.

Suppose that VI(K,θ∗) ≥ ϵ. Then, we have that

C1

K
+

C2

b
+ C3 ≥ ϵ,

which implies that

K(b) :=
C1b

(ϵ− C3)b− C2
≥ K.

From

D1 =
X(θ∗)

2α
≤ E[∥θ1 − θ∗∥2]− E[∥θK+1 − θ∗∥2]

2α
≤ E[∥θ1 − θ∗∥2]

2α
= C1,

23

Under review as a conference paper at ICLR 2023

D2 =
cσ2α

2
≤ σ2α

2
= C2,

and
(ϵ− C3)b− C2 ≤ ϵb− C2 ≤ ϵb−D2,

we have that K(b) ≤ K(b). Hence, K with VI(K,θ∗) = ϵ satisfies

K(b) ≤ K ≤ K(b)

and the SFO complexity N = Kb satisfies
K(b)b =: N ≤ N ≤ N := K(b)b.

Moreover, b⋆ := 2D2

ϵ minimizing N and b⋆ := 2C2

ϵ−C3
minimizing N (see Theorem 3.1(iii)) satisfy

that b⋆ ≤ b⋆. Let α be small enough. Then, we have that
b⋆ ≈ b⋆ and K(b⋆)b⋆ ≈ K(b⋆)b⋆,

where

C1 =
E[∥θ1 − θ∗∥2]

2α
≈ D1 =

X(θ∗)

2α
, C2 =

σ2α

2
≈ D2 =

cσ2α

2
, and C3 =

G2α

2
≈ 0

are used. Hence, the batch sizes b⋆ and b⋆ (b⋆ ≈ b⋆) approximate the batch size minimizing N =
Kb.

A.8 SFO COMPLEXITY REGARDING COMPUTATIONAL COST OF PARALLELIZABLE STEPS

Let us consider Tail-averaged SGD (Jain et al., 2018, Algorithm 1) independently in P machines,
each of which contains n

P samples, for minimizing the expected square loss function f(θ) :=
1
2E(x,y)∼D[y − x⊤θ] (see Appendix A.1.1). Let θ̄i be the point generated by Tail-averaged SGD
with the batch size b on machine i (i ∈ [P]) and let θ̄ := 1

P

∑P
i=1 θ̄i be the point generated by

Parallelizing Tail-averaged SGD. Then, Theorem 6 in (Jain et al., 2018) guarantees that

E[f(θ̄)]− f(θ⋆) ≤ (1− αµ)s

α2µ2(n
Pb − s)2

2 + (P − 1)(1− αµ)s

P
(f(θ0)− f(θ⋆)) +

4σ2

Pb(n
Pb − s)

,

where s is the initial iterations, and n is the total samples, µ > 0 is the smallest eigenvalue of the
Hessian of f , and (θi)i>s and θ̄i :=

1
⌊ n
Pb ⌋−s

∑
i>s θi are the sequences generated by Tail-averaged

SGD (see also Appendix A.1.1). This result with P = 1 coincides with (12). Setting s > κb logP
and α =

αb,max

2 (Jain et al., 2018, P. 15, Remarks) ensures that

E[f(θ̄)]− f(θ⋆) ≤ exp

(
− s

κb

)
3κ2

b

(n
Pb − s)2P

(f(θ0)− f(θ⋆)) +
4σ2

Pb(n
Pb − s)

,

which, together with K := n
Pb − s, implies that

E[f(θ̄)]− f(θ⋆) = O
(

1

K2P
+

1

KPb

)
. (36)

Hence, (36) indicates that the larger the number of machines P is, the smaller the upper bound of
E[f(θ̄)]− f(θ⋆) becomes.

Next, let us consider SGD independently in P machines, each of which contains n
P samples, for

minimizing the expected square loss function f . Given θk ∈ Rd, machine i (i ∈ [P]) generates the
point

θ
(i)
k+1 := θk − α∇f

B
(i)
k

(θk) = θk −
α

b

∑
j∈[b]

G
ξ
(i)
k,j

(θk)

using SGD with the batch size b and computes

θk+1 :=
1

P

P∑
i=1

θ
(i)
k+1, (37)

where ξ
(i)
k,j is a random variable generated by the j-th sampling in the k-the iteration for machine i

and we assume that the stochastic gradient G
ξ
(i)
k,j

(θk) satisfies (C2).

We have the following theorem.

24

Under review as a conference paper at ICLR 2023

Theorem A.1. Consider minimizing the expected square loss function f(θ) := 1
2E(x,y)∼D[y −

x⊤θ] and let θ⋆ be a minimizer of f . Then, under (C2) and (A1), the sequence (θk) generated by
Parallelizing SGD (37) satisfies the following:

(i) [Upper bound of VI(K,θ⋆)] For all K ≥ 1,

E

[
f

(
1

K

K∑
k=1

θk

)]
− f(θ⋆) ≤ VI(K,θ⋆) ≤ C1

K
+

C2

Pb
+ C3,

where P is the number of machines,

C1 :=
maxi∈[P] E[∥θ

(i)
1 − θ⋆∥2]

2α
, C2 :=

σ2α

2
, C3 :=

G2α

2
.

(ii) [Steps to satisfy VI(K,θ⋆) ≤ ϵ] The number of steps KP defined by

KP (b) =
C1Pb

(ϵ− C3)Pb− C2
(38)

satisfies VI(KP ,θ
⋆) ≤ ϵ and the function KP (b) defined by (38) is convex and monotone decreasing

with respect to b (> C2

(ϵ−C3)P
> 0).

(iii) [Minimization of SFO complexity] The SFO complexity defined by

NP = KP (b)b =
C1Pb2

(ϵ− C3)Pb− C2
(39)

is convex with respect to b (> C2

(ϵ−C3)P
> 0). The batch size

b⋆P :=
2C2

(ϵ− C3)P

attains the following minimum value of NP defined by (39):

N⋆
P = KP (b

⋆
P)b

⋆
P =

4C1C2

(ϵ− C3)2P
. (40)

Let θ(i)
1 = θ1 (i ∈ [P]). Then, the SFO complexity N⋆ = K(b⋆)b⋆ for unparallelizing SGD with

the batch size b⋆ = 2C2

ϵ−C3
is obtained by (40) with P = 1 (see also Theorem 3.1(iii)), i.e.,

N⋆ = N⋆
1 = K1(b

⋆)b⋆ =
4C1C2

(ϵ− C3)2
.

Meanwhile, Parallelizing SGD (37) with the batch size b⋆P = 2C2

(ϵ−C3)P
, where P (> 1) is the number

of machines, has SFO complexity (40), i.e.,

N⋆
P =

4C1C2

(ϵ− C3)2P
<

4C1C2

(ϵ− C3)2
= N⋆.

Therefore, we can conclude that the larger P is, the smaller SFO complexity becomes.

Proof of Theorem A.1. (i) Let k ∈ N. The definition of θ(i)
k+1 := θk − α∇f

B
(i)
k

(θk) ensures that,
for all i ∈ [P],

∥θ(i)
k+1 − θ⋆∥2 = ∥θk − θ⋆∥2 − 2α(θk − θ⋆)⊤∇f

B
(i)
k

(θk) + α2∥∇f
B

(i)
k

(θk)∥2,

which implies that

E
[
∥θ(i)

k+1 − θ⋆∥2
∣∣∣θk]

= ∥θk − θ⋆∥2 − 2αE
[
(θk − θ⋆)⊤∇f

B
(i)
k

(θk)
∣∣∣θk]+ α2E

[
∥∇f

B
(i)
k

(θk)∥2
∣∣∣θk]

= ∥θk − θ⋆∥2 − 2α(θk − θ⋆)⊤E
[
∇f

B
(i)
k

(θk)
∣∣∣θk]+ α2E

[
∥∇f

B
(i)
k

(θk)∥2
∣∣∣θk] .

25

Under review as a conference paper at ICLR 2023

Hence, (C2) implies that, for all i ∈ [P],

E
[
∥θ(i)

k+1 − θ⋆∥2
]

= E
[
∥θk − θ⋆∥2

]
− 2αE

[
(θk − θ⋆)⊤∇f(θk)

]
+ α2E

[
E
[
∥∇f

B
(i)
k

(θk)∥2
∣∣∣θk]] . (41)

A discussion similar to the one showing (14) implies that, for all i ∈ [P],

E
[
∥∇f

B
(i)
k

(θk)∥2
∣∣∣θk] = E

[
∥∇f

B
(i)
k

(θk)−∇f(θk) +∇f(θk)∥2
∣∣∣θk]

= E
[
∥∇f

B
(i)
k

(θk)−∇f(θk)∥2
∣∣∣θk]+ E

[
∥∇f(θk)∥2

∣∣∣θk]
+ 2E

[
(∇f

B
(i)
k

(θk)−∇f(θk))⊤∇f(θk)
∣∣∣θk]

= E
[
∥∇f

B
(i)
k

(θk)−∇f(θk)∥2
∣∣∣θk]+ ∥∇f(θk)∥2.

The definition of θk and the linearity of ∇f guarantee that

E
[
∥∇f

B
(i)
k

(θk)−∇f(θk)∥2
∣∣∣θk]

= E

∥∥∥∥∥∥1b

∑
j∈[b]

(
G
ξ
(i)
k,j

(θk)−∇f(θk)
)∥∥∥∥∥∥

2 ∣∣∣∣∣θk

=
1

b2
E

∥∥∥∥∥∥
∑
j∈[b]

G
ξ
(i)
k,j

 1

P

∑
i∈[P]

θ
(i)
k

−∇f
 1

P

∑
i∈[P]

θ
(i)
k

∥∥∥∥∥∥
2 ∣∣∣∣∣θk

=

1

P 2b2
E

∥∥∥∥∥∥
∑
j∈[b]

∑
i∈[P]

(
G
ξ
(i)
k,j

(θ
(i)
k)−∇f(θ(i)

k)
)∥∥∥∥∥∥

2 ∣∣∣∣∣θk
 ,

which, together with (C2), in turn implies that

E
[
∥∇f

B
(i)
k

(θk)−∇f(θk)∥2
∣∣∣θk] ≤ Pbσ2

P 2b2
=

σ2

Pb
.

Hence, from (A1),

E
[
∥∇f

B
(i)
k

(θk)∥2
]
≤ σ2

Pb
+G2. (42)

Accordingly, from (41) and (42), for all i ∈ [P],

E
[
∥θ(i)

k+1 − θ⋆∥2
]
≤ E

[
∥θk − θ⋆∥2

]
− 2αE

[
(θk − θ⋆)⊤∇f(θk)

]
+ α2

(
σ2

Pb
+G2

)
.

Since the convexity of ∥ · ∥2 and the definition of θk imply that

E
[
∥θk+1 − θ⋆∥2

]
≤ 1

P

∑
i∈[P]

E
[
∥θ(i)

k+1 − θ⋆∥2
]
,

we have that

E
[
∥θk+1 − θ⋆∥2

]
≤ E

[
∥θk − θ⋆∥2

]
− 2αE

[
(θk − θ⋆)⊤∇f(θk)

]
+ α2

(
σ2

Pb
+G2

)
.

Hence, for all K ≥ 1,

VI(K,θ⋆) :=
1

K

K∑
k=1

E
[
(θk − θ⋆)⊤∇f(θk)

]
≤

E
[
∥θ1 − θ⋆∥2

]
2αK

+
α

2

(
σ2

Pb
+G2

)

≤
∑

i∈[P] E[∥θ
(i)
1 − θ⋆∥2]

2αP

1

K
+

σ2α

2

1

Pb
+

G2α

2

≤
maxi∈[P] E[∥θ

(i)
1 − θ⋆∥2]

2α︸ ︷︷ ︸
C1

1

K
+

σ2α

2︸︷︷︸
C2

1

Pb
+

G2α

2︸ ︷︷ ︸
C3

.

26

Under review as a conference paper at ICLR 2023

Since f is convex, we have that

E

[
f

(
1

K

K∑
k=1

θk

)]
− f(θ⋆) ≤ 1

K

K∑
k=1

E [f(θk)− f(θ⋆)] ≤ VI(K,θ⋆).

(ii) A discussion similar to the one showing (ii) in Theorem 3.1 for SGD would show (ii) in Theorem
A.1.

(iii) An argument similar to that which obtained (iii) in Theorem 3.1 for SGD would prove (iii) in
Theorem A.1.

A.9 ADDITIONAL NUMERICAL RESULTS

Table 3: Elapsed time and training accuracy of SGD when f(θK) ≤ 10−1 for training ResNet-20
on CIFAR-10

SGD
Batch Size 22 23 24 25 26 27 28 29

Time (s) 16983.64 9103.76 6176.19 3759.25 — — — —
Accuracy (%) 96.75 96.69 96.66 96.88 — — — —

Table 4: Elapsed time and training accuracy of Momentum when f(θK) ≤ 10−1 for training
ResNet-20 on CIFAR-10

Momentum
Batch Size 22 23 24 25 26 27 28 29

Time (s) 7978.90 3837.72 2520.82 1458.70 887.01 678.66 625.10 866.65
Accuracy (%) 96.49 96.79 96.51 96.72 96.70 96.94 96.94 98.34

Table 5: Elapsed time and training accuracy of Adam when f(θK) ≤ 10−1 for training ResNet-20
on CIFAR-10

Adam
Batch Size 22 23 24 25 26 27 28 29

Time (s) 10601.78 4405.73 2410.28 1314.01 617.14 487.75 281.74 225.03
Accuracy (%) 96.46 96.38 96.65 96.53 96.43 96.68 96.58 96.72

27

Under review as a conference paper at ICLR 2023

Table 6: Elapsed time and training accuracy of Adam when f(θK) ≤ 10−1 for training ResNet-20
on CIFAR-10

Adam
Batch Size 210 211 212 213 214 215 216

Time (s) 197.78 195.40 233.70 349.81 691.04 644.19 1148.68
Accuracy (%) 96.74 97.21 97.54 97.75 97.51 99.05 99.03

Table 7: Elapsed time and training accuracy of SGD when f(θK) ≤ 10−1 for training ResNet-18
on MNIST

SGD
Batch Size 22 23 24 25 26 27 28 29

Time (s) 1620.98 1002.89 1140.47 1298.52 — — — —
Accuracy (%) 99.70 99.69 99.70 99.70 — — — —

Table 8: Elapsed time and training accuracy of Momentum when f(θK) ≤ 10−1 for training
ResNet-18 on MNIST

Momentum
Batch Size 22 23 24 25 26 27 28 29

Time (s) 1949.66 550.28 298.72 238.66 268.98 362.89 567.54 —
Accuracy (%) 99.68 99.65 99.68 99.69 99.71 99.70 99.72 —

Table 9: Elapsed time and training accuracy of Adam when f(θK) ≤ 10−1 for training ResNet-18
on MNIST

Adam
Batch Size 22 23 24 25 26 27 28 29

Time (s) — 7514.43 614.27 297.97 216.10 160.93 127.97 102.98
Accuracy (%) — 99.74 99.66 99.64 99.66 99.66 99.69 99.71

Table 10: Elapsed time and training accuracy of Adam when f(θK) ≤ 10−1 for training ResNet-18
on MNIST

Adam
Batch Size 210 211 212 213 214

Time (s) 93.53 100.22 129.29 217.23 375.87
Accuracy (%) 99.68 99.67 99.67 99.70 99.69

28

